
TRACE: Real-time Compression of Streaming Trajectories in
Road Networks

Tianyi Li
§
, Lu Chen

†
, Christian S. Jensen

§
, Torben Bach Pedersen

§
§
Department of Computer Science, Aalborg University, Denmark

†
College of Computer Science, Zhejiang University, Hangzhou, China

§
{tianyi, csj, tbp}@cs.aau.dk

†
luchen@zju.edu.cn

ABSTRACT
The deployment of vehicle location services generates increas-

ingly massive vehicle trajectory data, which incurs high storage

and transmission costs. A range of studies target offline compres-

sion to reduce the storage cost. However, to enable online services

such as real-time traffic monitoring, it is attractive to also reduce

transmission costs by being able to compress streaming trajecto-

ries in real-time. Hence, we propose a framework called TRACE

that enables compression, transmission, and querying of network-

constrained streaming trajectories in a fully online fashion. We

propose a compact two-stage representation of streaming trajecto-

ries: a speed-based representation removes redundant information,

and a multiple-references based referential representation exploits

subtrajectory similarities. In addition, the online referential repre-

sentation is extended with reference selection, deletion and rewrit-

ing functions that further improve the compression performance.

An efficient data transmission scheme is provided for achieving low

transmission overhead. Finally, indexing and filtering techniques

support efficient real-time range queries over compressed trajec-

tories. Extensive experiments with real-life and synthetic datasets

evaluate the different parts of TRACE, offering evidence that it is

able to outperform the existing representative methods in terms of

both compression ratio and transmission cost.

PVLDB Reference Format:
Tianyi Li, Lu Chen, Christian S. Jensen, Torben Bach Pedersen. TRACE:

Real-time Compression of Streaming Trajectories in Road Networks.

PVLDB, 14(7): 1175-1187, 2021.

doi:10.14778/3450980.3450987

1 INTRODUCTION
Massive volumes of vehicle trajectories are being accumulated at

an unprecedented scale with the proliferation of GPS-enabled de-

vices and mobile internet connectivity. This yields high storage and

transmission costs for trajectories. Hence, trajectory compression

that addresses these aspects has attracted attention [3–5, 8, 11, 13,

16, 17, 19, 27, 31–33, 41, 44, 45]. However, most existing studies tar-

get offline compression [11, 13, 16, 17, 19, 32, 33, 41, 44, 45]. They

generally compress an entire trajectory after all the GPS points

are collected, which may not be realistic for resource-constrained

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 7 ISSN 2150-8097.

doi:10.14778/3450980.3450987

Edge Server

Centralized

Cloud

Edge Server

SRSUSRSU

Smart Vechicles

Smart Vechicle Layer

Edge Server Layer

Centralized Cloud Layer

Figure 1: Vehicular edge computing architecture.

GPS-enabled devices. In particular, offline compression incurs high

communication overheads or data loss because the data needs to be

transmitted to the location where the compression is performed. In

contrast, with online compression, GPS points are compressed as

they arrive in real-time, thus enabling a broader range of applica-

tions, while saving both storage and transmission costs [3, 4, 21, 27].

To enable compression on diverse devices with variable com-

puting capabilities, we employ vehicular edge computing (VEC) to

compress trajectories in real-time [3]. A VEC architecture has three

layers: a smart vehicle layer, an edge server layer, and a centralized

cloud layer [29], as shown in Figure 1. The smart vehicle layer

delivers raw GPS data to the edge server layer that encompasses

software-defined networking (SDN) based roadside units (SRSUs),

which possess the computational and storage capabilities needed

for trajectory compression. The centralized cloud layer collects and

stores the compressed trajectories from the edge server layer to

provide multiple services.

Although several studies [3–5, 31] consider online network-

constrained trajectory compression, two challenges remain to be

tackled. The first challenge is how to obtain a concise and accurate
representation of trajectories. Existing studies obtain a compact rep-

resentations in part by discarding information [3–5, 31], e.g., the

exact locations of trajectories. This renders the resulting trajecto-

ries inaccurate and reduces their usability. The second challenge is
how to compress trajectories in real-time with low transmission costs.
Some previous proposals for streaming trajectory compression rely

on offline training of prediction models using historical data, en-

abling them to omit data that can be predicted within a certain error

bound [5, 31]. However, movement patterns on even the same road

vary across time [12, 24], necessitating frequent re-training and

incurring high transmission cost for delivering re-trained models.

To address the above two challenges, we propose a new frame-

work for online TRAjectory ComprEssion (TRACE). The goals of

1175

https://doi.org/10.14778/3450980.3450987
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3450980.3450987

TRACE are to achieve high compression ratios and low transmis-

sion costs with acceptable time delays. To realize these, we first

present a speed-based trajectory representation on the basis of

UTCQ [19]. This representation removes redundant information

while enabling decompression of trajectories by capturing growth

rates of accumulative distances and vehicle speeds. Further, as ex-

isting studies indicate that subtrajectories from different streaming

trajectories are likely to exhibit co-movement patterns during the

same time periods [12], we make it possible to exploit the similarity

between subtrajectories from different streaming trajectories by

means of so-called referential compression. Next, we develop an

effective online referential representation and a reference selec-

tion technique based on so-called 𝑘-mer matching, which employs

hashing to identify matching subsequences [25]. To keep memory

consumption low, we design a reference deletion algorithm that

removes references that have not been used for some time. To be

able to adapt to variable movement patterns, we present a reference

rewriting algorithm that updates the references in real-time. Fur-

ther, we provide a real-time data transmission scheme that targets

low-overhead transmission of trajectory data. Finally, we develop

an index structure and filtering techniques that facilitate real-time

range querying of compressed trajectories.

In summary, our main contributions are as follows:

• We propose a new real-time streaming vehicle trajectory

compression, transmission, and querying framework. To the

best of our knowledge, this is the first such framework that

does not depend on offline training and discard any data.

• We develop a concise speed-based representation and a 𝑘-

mer matching based referential representation that use mul-

tiple references to capture the similarities between subtrajec-

tories. A reference selection technique and reference deletion

and rewriting functions are provided that further improve

compression performance.

• We provide an effective data transmission scheme that re-

duces transmission overhead and supports decoding at the

centralized cloud. We also propose an index structure and

filtering techniques to accelerate real-time query processing.

• Extensive experiments offer insight into the workings of the

different parts of the framework and show that it is able to

outperform three baselines in terms of compression ratio

and transmission cost.

The rest of the paper is organized as follows. We present prelimi-

naries in Section 2 and give an overview of the proposed framework

in Section 3. Section 4 details the representation. Section 5 presents

the encoding and transmission schemes, and Section 6 covers the

index structure and query processing. Section 7 reports the ex-

perimental results. Section 8 reviews related work, and Section 9

concludes and offers directions for future work.

2 PRELIMINARIES
We proceed to introduce preliminary definitions and algorithms.

Table 1 summarizes frequently used notation.

2.1 Data Model
A raw trajectory is a series of raw GPS points 𝑝 = ((𝑥,𝑦), 𝑡),
where 𝑥 is longitude, 𝑦 is latitude, and 𝑡 is a timestamp. Tp1 =

Table 1: Frequently used notation.
Notation Description
Tr a set of streaming trajectories

Tr𝑛 a streaming trajectory in Tr
𝑙𝑖 the 𝑖𝑡ℎ mapped GPS point

sp(Tr𝑛) the path traversed by Tr𝑛

ad(Tr𝑛) the accumulative distance sequence of Tr𝑛

t(Tr𝑛) the time sequence of Tr𝑛

SV(Tr𝑛) the start vertex of Tr𝑛

E(Tr𝑛) the outgoing edge number sequence of Tr𝑛

RD(Tr𝑛) the first relative distance of Tr𝑛

GD(Tr𝑛) the growth rates of accumulative distances of Tr𝑛

V(Tr𝑛) the speed sequence of Tr𝑛

E(Tr𝑛) [𝑖] the 𝑖𝑡ℎ outgoing edge number of E(Tr𝑛)
E(Tr𝑛

𝑖
) the outgoing edge numbers arriving at t(Tr𝑛) [𝑖]

Ref a reference streaming trajectory

Nref a non-reference streaming trajectory

Com𝜙 (Nref) the referential representation of Nref
𝐺𝑜 the reference set at timestamp 𝑡𝑜

𝐺𝑜 [𝑖] .𝑓 the freshness of the 𝑖𝑡ℎ reference in𝐺𝑜

𝐺𝑜 [𝑖] .tl the latest visiting timestamp of the 𝑖𝑡ℎ reference in𝐺𝑜

𝐹𝑜 the sum of freshness of references in𝐺𝑜

FA a factor matrix

ˆ𝑠𝑒𝑞 the binary code of a sequence 𝑠𝑒𝑞

⟨𝑝0, · · · , 𝑝7⟩ in Figure 2a is an example of a raw trajectory. A

road network is modeled as a directed spatial graph 𝐺 = (𝑉 , 𝐸),
where 𝑉 is a set of geo-located vertices 𝑣 denoting intersections

or end points, and 𝐸 is a set of directed edges 𝑒 = (𝑣𝑖 → 𝑣 𝑗).
Figure 2 gives a road network example. A mapped GPS point
𝑙 is a network-constrained point in a road network 𝐺 obtained

by map-matching [34]. It is represented as ((𝑣𝑖 → 𝑣 𝑗), nd(𝑣𝑖 , 𝑙), 𝑡),
where nd(𝑣𝑖 , 𝑙) is the network distance between 𝑣𝑖 and 𝑙 on the edge
(𝑣𝑖 → 𝑣 𝑗) and 𝑡 is a timestamp. In Figure 2a, 𝑙0 = ((𝑣0 → 𝑣1), 50,
7:03:25) is a mapped GPS point. We also denote a mapped GPS point

as ((𝑣𝑖 → 𝑣 𝑗), nd(𝑣𝑖 , 𝑙)) when the timestamp 𝑡 is not considered.

Definition 1. Given two vertices 𝑣𝑠 and 𝑣𝑒 in a road network 𝐺 ,
a path 𝑠𝑝 is a sequence of connected edges (𝑣𝑖 → 𝑣 𝑗) that starts from
𝑣𝑠 and ends at 𝑣𝑒 , i.e., 𝑠𝑝 = ⟨(𝑣𝑠 → 𝑣0), · · · , (𝑣𝑛−1→ 𝑣𝑒)⟩.

Definition 2. A streaming network-constrained trajectory
Tr𝑛 is modeled as an infinite, time-ordered sequence of mapped GPS
points 𝐿𝑛 with an infinite path sp(Tr𝑛) traversed by Tr𝑛 .

Figure 2 gives an example of a set Tr = {Tr1, Tr2, Tr3} of three
streaming network-constrained trajectories, where, e.g., sp(𝑇𝑟1) =
⟨(𝑣0 → 𝑣1), · · · , (𝑣11 → 𝑣12), · · · ⟩ and 𝐿1 = {𝑙0, 𝑙1, · · · , 𝑙7, · · · }. Tr
uses two road-network distances as defined next.

Definition 3. The accumulative distance of a streaming tra-
jectory Tr𝑛 at its 𝑖𝑡ℎ timestamp 𝑡 (Tr𝑛) [𝑖], denoted as ad(Tr𝑛) [𝑖], is
the network distance nd(𝑣𝑠 , 𝑙𝑖) along the path (𝑣𝑠 → 𝑣𝑒), · · · , (𝑣𝑠∗ →
𝑣𝑒∗), where 𝑙𝑖 is located on (𝑣𝑠∗ → 𝑣𝑒∗) and (𝑣𝑠 → 𝑣𝑒) is the first
edge traversed by Tr𝑛 . The accumulative distance sequence ad(𝑇𝑟𝑛)
of a streaming trajectory Tr𝑛 contains the trajectory’s accumulative
distance at each timestamp.

Definition 4. Given a mapped GPS point ((𝑣𝑠 → 𝑣𝑒), nd(𝑣𝑠 , 𝑙)),
the relative distance rd of 𝑙 w.r.t. (𝑣𝑠 → 𝑣𝑒) is the ratio of nd(𝑣𝑠 , 𝑙)
to the length of (𝑣𝑠 → 𝑣𝑒) (denoted as | (𝑣𝑠 → 𝑣𝑒) |).

In Figure 2a, given nd(𝑣0, 𝑙1) = 150, we have ad(Tr1) [1] = 150.

Given | (𝑣0 → 𝑣1) | = 100, rd of 𝑙0 w.r.t. (𝑣0 → 𝑣1) is 0.5. In the

1176

v13

v0 v1

v3v14

v5 v4

v7 v10

v15

v16

l00l1

l2 0

l3
v11
l4

v2

v3

v4

v7 v10 v11

v15

v16

v17

v18

l0 l1
l2

l3

l4
l5

l66

l7

l8
441

2 1

2 2 2

3

2 2 1

1

1

2 2 2

3

3

3

p0=(120.14514, 30.34056, 7:03:25)

p1=(120.14511, 30.34152, 7:03:45)

p2=(120.14549, 30.34228, 7:04:06)

p3=(120.14546, 30.34236, 7:04:26)

p4=(120.14559, 30.34253, 7:04:46)

p5=(120.14552, 30.34256, 7:05:05)

p6=(120.14510, 30.34258, 7:05:30)

p7=(120.14510, 30.34259, 7:05:50)

(b) (c)

7

l9

l5

l6
v17

3

v1 v2

v3

v4v5

v6

v7

v8 v9

v10

1

p2

l1

l22
p1

l4 p4

p3pppppppl3

l5

p5

p6 l6

v0

p0

l0

2 2
1

1

4

12

2

2

3

3

(a)

1

50

v11

v12 8

Tr1 Tr2 Tr3

Tr1
.l0

Tr
2
.l0

7:03:25

Tr3
.l0

7:03:35

Tr1
.l1

7:03:45 7:03:55 7:04:05 7:04:15 7:04:25 7:04:35 7:04:45 7:04:55 7:05:05 7:05:15 7:05:25 7:05:35 7:05:45 7:05:55

2
.l1Tr

Tr3
.l1 Tr1

.l2

2
.l2Tr

Tr3
.l2 Tr1

.l3

2
.l3Tr

2
.l4Tr

Tr3
.l3 Tr1

.l4 Tr3
.l4 Tr1

.l5

2
.l5Tr

Tr3
.l5 Tr1

.l6

2
.l6Tr

Tr3
.l6 Tr3

.l7

7:06:05

Tr3
.l8

(d) Time line of Tr, Tr and Tr1 2 3

Tr3
.l9

7:06:357:06:15 7:06:25

p7
p
7 l7

Tr1
.l7

100

Figure 2: A streaming network-constrained trajectory set Tr = {Tr1, Tr2 and Tr3}.
rest of the paper, we simply use “trajectory” instead of “network-

constrained trajectory” when this does not cause ambiguity.

2.2 UTCQ Representation
Trajectory representation transforms network-constrained trajec-

tories into a format with small entropy to achieve a high compres-

sion ratio [11, 13, 16, 19, 32, 41]. The UTCQ representation [19] is

designed for compressing uncertain trajectories. Due to the uncer-

tainty, a raw trajectory can be transformed to multiple trajectory

instances by probabilistic map-matching [2]. UTCQ first adapts

the representative trajectory representation TED [41] to express a

trajectory instance Tr𝑛 as a start vertex SV(Tr𝑛), an edge sequence

𝐸 (Tr), a relative distance sequence 𝐷 (Tr), a time flag bit-string

𝑇 ′(Tr), and a timestamp sequence 𝑇 (Tr).
Example 1. Assuming that the default sample interval of Tr in Fig-

ure 2 is 20s, the UTCQ representation of Tr1 is i) SV(Tr1) = 44183; ii)
𝐸 (Tr1) = ⟨2, 2, 1, 1, 4, 1, 2, 1, 2, 3, 2, 3, 0⟩; iii)𝐷 (Tr1) = ⟨0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.75⟩; iv)𝑇 ′(Tr1) = ⟨1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1⟩ and v)
𝑇 (Tr1) = ⟨7:03:25, 0, 1, 0, 0,−1, 5, 0⟩. The single 0 and the last 3 (3
is the outgoing edge number of (𝑣11 → 𝑣12) w.r.t. 𝑣11) in 𝐸 (Tr1)
indicate that (𝑣11 → 𝑣12) has two mapped GPS points, 𝑙6 and 𝑙7.
𝑇 ′(Tr) is introduced to map relative distances in 𝐷 (Tr) to outgoing
edge numbers in 𝐸 (Tr) for decompression [41].

Next, UTCQ exploits the similarity between trajectory instances

of a single uncertain trajectory and provides referential represen-
tations for the edge sequence 𝐸 (Tr), the distance sequence 𝐷 (Tr),
and the time flag bit-string 𝑇 ′(Tr). It encodes the differences of an
input sequence w.r.t. a reference sequence. (i.e., the more similar

the sequences are, the higher the compression ratio) [9, 38, 39].

Definition 5. Given an input sequence 𝜙 (Nref) (also called a
non-reference) and its corresponding reference 𝜙 (Ref), 𝜙 (Nref) can be
represented as a list of𝑊 factors, i.e., Com𝜙 (Nref) = ⟨𝜙 (Ma𝑤) |0 ≤
𝑤 <𝑊 ⟩, where a factor 𝜙 (Ma𝑤) denotes a subsequence in 𝜙 (Nref).

Here, 𝜙 identifies the to-be-represented sequence of a trajectory.

For example, Com𝐸 (Nref) is the referential representation of the

edge sequence 𝐸 (Nref). UTCQ adopts the (𝑆, 𝐿,𝑀) format to encode

each factor in Com𝜙 (Nref). Specifically, 𝑆 is the start position of the

subsequence in the reference, 𝐿 is the length of the subsequence, and
𝑀 is the firstmis-matched character following the subsequence. For
example, in Figure 2, we have 𝐸 (Tr2) = ⟨4, 4, 1, 2, 1, 2, 2, 2, 3, 0, 3⟩ and
𝐸 (Tr3) = ⟨2, 2, 1, 1, 1, 2, 2, 2, 3, 0, 3, 3⟩. Let Tr3 be a non-referenceNref

and Tr2 be its corresponding reference Ref. We get Com𝐸 (Nref) =
⟨(5, 2, 1), (2, 1, 1), (5, 6, 3)⟩. Note that UTCQ only assigns one refer-

ence to each non-reference.

2.3 k-mer Matching
Developed for genome sequences, 𝑘-mer matching is an effective

strategy for high-speed referential compression [25].

Definition 6. A k-mer 𝜙𝑛
𝑖
is a subsequence of fixed length 𝑘 of

𝜙 (Tr𝑛), i.e., 𝜙𝑛
𝑖
= {𝜙 (Tr𝑛) [𝑖], 𝜙 (Tr𝑛) [𝑖 + 1], ..., 𝜙 (Tr𝑛 [𝑖 + 𝑘 − 1])}.

Given a reference 𝜙 (Ref) and a non-reference 𝜙 (Nref), 𝑘-mer

matching employs a hash table𝐻 , to efficiently obtain the referential

representation Com𝜙 (Nref). Each factor of Com𝜙 (Nref) is of the
form (𝑆, 𝐿,𝑀), where 𝐿 is the length of the matched subsequence.

We highlight that 𝑘 is different from 𝐿; thus, 𝑘 is kept fixed during

compression. To be specific, for a reference 𝜙 (Ref), 𝑘-mer matching

first computes the hash key of each 𝑘-mer in 𝜙 (Ref) by a given

hash function. Next, each 𝑘-mer is stored with its start position 𝑆 in

𝜙 (Ref) in 𝐻 . For a non-reference 𝜙 (Nref), 𝑘-mer matching greedily

finds the longest prefix of 𝜙 (Nref) that exists in 𝜙 (Ref) with the

help of 𝐻 . In particular, it calculates the hash key of each 𝑘-mer

in 𝜙 (Nref) and checks whether a matched subsequence exists in

𝐻 . If it exists, it continues to match the subsequent characters in

𝜙 (Nref) and 𝜙 (Ref) until an un-matched character𝑀 occurs. The

procedure implies that 𝐿 can be an arbitrary value with 𝐿 ≥ 𝑘 ,

meaning that 𝑘 can remain fixed during compression. It also means

that the correctness of 𝑘-mer matching is un-affected by 𝑘 .

Example 2. Consider 𝐸 (Tr1) as a reference and 𝐸 (Tr3) as a non-
reference. Assuming that the current timestamp is 7:04:55, we have
four 𝑘-mers for 𝐸 (Tr1), i.e., 𝐸1

0
= (2, 2, 1), 𝐸1

1
= (2, 1, 1), 𝐸1

2
= (1, 1, 4),

and 𝐸1
3
= (1, 4, 1), each of which is mapped to a hash table with its

corresponding start position in 𝐸 (Tr1). To find the longest prefix of
𝐸 (Tr3) in 𝐸 (Tr1), we get the first 𝑘-mer of 𝐸 (Tr3), i.e., 𝐸3

0
= ⟨2, 1, 1⟩,

and finds 𝐸1
0
= 𝐸3

0
in the hash table; then we greedily match the

subsequent characters of both 𝐸3
0
and 𝐸1

0
until the first mis-matched

character (i.e., 𝐸 (Tr3) [4] = 1) occurs. Thus, we obtain a factor (0, 4, 1),
where 0 is the offset of 𝐸1

0
[0] in 𝐸 (Tr1). After that, we remove the

subsequence represented by (0, 4, 1) from 𝐸 (Tr3). Since 𝐸 (Tr3) = ∅,
the 𝑘-mer matching stops.

Note that 𝑘 is a pre-defined and fixed value that only con-

strains the initial length of a matched subsequence. We adapt 𝑘-mer

1177

Speed-based

representation

Referential

representation

Trajectory

Representor

T(Tr)
7:03:25

...
0
...

GD(Tr)

...
0.67
...

V(Tr)

...
5
...

∅
SV(Tr)
44183

...

...

k-mers
<5,5,5>
<7,17,9>

...

k-mers
<2,2,1>
<4,4,1>

...

E(Tr)
2
...
2
...

RD(Tr)
0.5
...

...

k-mers
<2,2,1>

...

k-mers
<2,2,3>

...

Reference

deletion

Reference

rewritingk-mer matching

based reference selection

Encoding and

data transmission
S1

(1,0,3)
0000010

...

S2

1
1
...

...

...

...

...

S3

1
001
...

States
Representation
Binary codes

...

()
E

Com Tr

()
V

Com Tr

Query processing

Compressed

trajectories

Index
100
...

Trajectory

Compressor

Query Processor

Edge

Server Layer

Compressed trajectories

and index information

Decompress

T(Tr)

Filtering

technique

Decompress
Query

results

Centralized

Cloud Layer

()Com Trφ

∅

∅∅

Figure 3: TRACE framework.
matching to streaming settings and detail how to select references

and referentially compress trajectories in real-time.

3 TRACE FRAMEWORK
The framework enables the online compression and subsequent

querying of streaming network-constrained trajectories (NCTs). It

takes a set Tr = {Tr𝑛 |1 ≤ 𝑛 ≤ 𝑁 } of streaming trajectories as input.

Each Tr𝑛 contains i) the streaming path sp(Tr𝑛) traversed by Tr𝑛 , ii)
a streaming sequence of accumulative distances ad(Tr𝑛), and iii) a

streaming time sequence t(Tr𝑛). Figure 3 depicts the TRACE frame-

work that encompasses three components: a trajectory representor,

a trajectory compressor, and a query processor. We deploy TRACE

at the edge server and the centralized cloud layers of VEC. Raw GPS

points are delivered from the smart vehicle layer to the edge server

layer, where they are transformed to mapped GPS points using

map-matching [34]. We do this to support smart vehicle layers with

limited computational capabilities [4], thus extending the applicabil-

ity. While the cost of data transmission from the smart vehicle layer

to the edge server layer equals the size of the raw trajectories, this

transmission is relatively efficient and scalable, because the edge

server layer is geographically closer to the smart vehicle layer than

to the centralized cloud layer, reducing the wireless communication

energy consumption and the network load [20, 29].

Edge Server Layer. The trajectory representor converts the
NCTs into speed-based and referential representations. In particu-

lar, we propose to use speed information to identify the mapped

GPS point to achieve a compact representation format. Then, we

apply the referential representation in [19] to exploit the similar-

ities among subtrajectories and multiple references to achieve a

high compression ratio, with the details presented in Sections 4.1

and 4.2. To select references and to represent non-references in

online scenarios, we adopt 𝑘-mer matching [25]. Specifically, two

hash tables are used to store the reference sets E(Ref) and V(Ref)
for fast retrieval. Reference deletion and rewriting functions are

provided that make it possible to update the tables efficiently. The

former enables deleting infrequent sequences to reduce the storage

cost, while the latter updates references using frequent sequences

to improve the compression ratio. The detailed algorithms are cov-

ered in Sections 4.3–4.5. In the sequel, the trajectory compressor
compresses the references and non-references into binary codes.

A scheme for transmitting binary codes is also presented, which

enables the centralized cloud to decode binary codes without extra

information. The details are provided in Section 5.

Centralized Cloud Layer. The query processor is located at

the centralized cloud and operates on compressed trajectories. It

has an online range query algorithm that exploits indexing and

filtering to achieve efficiency, to be detailed in Section 6.

4 REPRESENTATION
We proceed to detail the representation of streaming trajectories.

4.1 Speed-based Representation
Existing works show that objects moving on the same road during

the same time period tend to have a similar speed trend [12]. This

motivates us to transfer the accumulative distances of trajectories to

speeds and apply the referential representation to them. However,

the reference speed sequence is difficult to compress substantially

due to its wide range [41]. We tackle this challenge by developing

the following representation.

ad(Tr) → (RD(Tr),GD(Tr),V(Tr)). We represent accumula-

tive distances as a sequence of growth rates (denoted as GD(Tr))
following the first relative distance of Tr (denoted as RD(Tr)). The
growth rate of the accumulative distance at T(Tr) [𝑖], denoted as

GD(Tr) [𝑖] (𝑖 > 0), is calculated by
ad(Tr) [𝑖]−ad(Tr) [𝑖−1]
ad(Tr) [𝑖]−ad(Tr) [𝑖−2] (𝑖 > 1).

Further, GD(Tr) [1] = ad(Tr) [1]−ad(Tr) [0]
ad(Tr) [1] . For example in Figure 2a,

given ad(Tr1) [0] = 50, ad(Tr1) [1] = 150 and ad(Tr1) [2] = 250, we

have GD(Tr1) [1] = 0.67 and GD(Tr1) [2] = 0.5. V(Tr) is a sequence
of speeds. The speed at 𝑡 (Tr) [𝑖] is calculated by ad(Tr) [𝑖]−ad(Tr) [𝑖−1]

𝑡 (Tr) [𝑖]−𝑡 (Tr) [𝑖−1]
(𝑖 > 0), denoted as V(Tr) [𝑖]. Given T(Tr), both GD(Tr) and V(Tr)
are able to identify ad(Tr). Thus, we only store one of them, to be

detailed in Section 4.2.

sp(Tr) → (SV(Tr), E(Tr)) & t(Tr) → T(Tr). We adopt UTCQ

[19] to represent a path sp(Tr) as SV(Tr) followed by 𝐸 (Tr) and
a time sequence t(Tr) as T(Tr). We use the UTCQ representation

because it is the state-of-the-art referential compression framework

for network-constrained trajectories and exhibits high compression

ratios. Note that, since both GD(Tr) and V(Tr) enable decompress-

ing trajectories without T′(Tr) and the “0” in 𝐸 (Tr) used in UTCQ

representation, we omit them to achieve a more compact format.

Overall, the speed-based representation expresses Tr as a tu-

ple (SV(Tr), E(Tr), RD(Tr),GD(Tr),V(Tr), T(Tr)). Table 2 shows an
example representation for Tr in Figure 2.

4.2 Representation with Multiple-References
Based on the representation introduced in Section 4.1, we apply ref-

erential compression [19] to sub-trajectories from different stream-

ing trajectories. Due to the use of multiple references, we modify

the (𝑆, 𝐿,𝑀) format [19] as (ref𝑖𝑑 , 𝑆, 𝐿,𝑀), where ref𝑖𝑑 is the ID of

the reference. For example, the referential representation of 𝐸 (Tr3)
w.r.t. 𝐸 (Tr1) and 𝐸 (Tr2) is Com𝐸 (Tr3) = ⟨(1, 0, 4, 1), (2, 5, 5, 3)⟩.

Different from the outgoing edge numbers, the speeds are un-

likely to be exactly the same. Therefore, we consider 𝑉 (Tr𝑛) [𝑖] ≈
𝑉 (Tr𝑛′) [𝑖 ′] if ¥𝑉 (Tr𝑛) [𝑖] = ¥𝑉 (Tr𝑛′) [𝑖 ′], where ¥𝑉 (Tr𝑛) [𝑖] is the in-
teger closest to

𝑉 (Tr𝑛) [𝑖]
0.5[and [is the speed error bound. A larger

[yields a more accurate compression at the expense of the com-

pression ratio. If 𝑉 (Tr) is a non-reference, we record GD(Tr) [𝑖] if

1178

Table 2: Speed-based representation of Tr in Figure 2.
𝑛 1 2 3

SV(Tr𝑛) 44183 27444 44183

𝐸 (Tr𝑛) ⟨2, 2, 1, 1, 4, 1, 2, 1, 2, 3, 2, 3⟩ ⟨4, 4, 1, 2, 1, 2, 2, 2, 3, 3⟩ ⟨2, 2, 1, 1, 1, 2, 2, 2, 3, 3, 3⟩
RD(Tr𝑛) 0.5 0.05 0.25

GD(Tr𝑛) ⟨0.67, 0.5, 0.5, 0.67, 0.33, 0.83, 0.05⟩ ⟨0.97, 0.69, 0.35, 0.53, 0.11, 0.75⟩ ⟨0.8, 0.5, 0.5, 0.5, 0.64, 0.53, 0.11, 0.75, 0.67⟩
V(Tr𝑛) ⟨5, 4.76, 5, 10, 5.26, 20, 1.25⟩ ⟨6.9, 17.11, 8.75, 10, 1.25, 3.75⟩ ⟨5, 5, 5, 5, 8.75, 10, 1.25, 3.95, 7.5⟩
T(Tr𝑛) ⟨7:03:25, 0, 1, 0, 0,-1, 5, 0⟩ ⟨7:03:30, 1,-1, 0, 0, 0, 0⟩ ⟨7:03:35, 0, 0, 0, 0, 0, 0, 0,-1, 0⟩

..
.

86

24

..
.

25

877

..
.

1 4 null

996

985

954 1<1> 1 985

..
.

..
.

955

969 2<4,4,1> 0 877

..
.

986

987

..
.

..
.

..
.

996

2 3 24 25<2>

null

1<2,2,1> 0 954null

2 5 25 987<2>

2 6 986<3> null

1 2 86<4> 954

2<1> 2 877 955

2<2> 4 955 986

1<1> 3 996 877

2<2> 1 969 24

86

Figure 4: A hash table H constructed according to E(Tr) in
Table 2 at 7:05:06, where k=3.
V(Tr) [𝑖] is a mis-matched value w.r.t. its reference; otherwise, we

store GD(Tr) instead of V(Tr). This is because V(Tr) [𝑖] (∈ [0, `])
can only achieve the same compression as GD(Tr) [𝑖] (∈ [0, 1)) at
the cost of compression accuracy, where ` is a speed constraint

of the road network. Taking V(Tr1) and V(Tr2) as references and
given [= 0, we have Com𝑉 (Tr3) = ⟨(1, 0, 3, 0.5), (2, 2, 4, 0.67)⟩.

4.3 Reference Selection for E(Tr𝑛)
We introduce the real-time reference selection technique based

on 𝑘-mer matching. Note that, we only decompose 𝐸 (Tr𝑛) and
𝑉 (Tr𝑛) into 𝑘-mers, i.e., 𝜙 = 𝐸 or 𝑉 , as we only apply referential

representation to them.

Definition 7. The subsequence of 𝐸 (Tr) of a streaming trajectory
Tr arriving at 𝑡 (Tr) [𝑗] (𝑗 > 0), is denoted as 𝐸 (Tr𝑗) (𝑗 > 0). It starts
from the edge traversed by Tr immediately after leaving the last edge
of 𝐸 (Tr𝑗−1) and ends at the edge where Tr is located at 𝑡 (Tr) [𝑗].

Specifically, 𝐸 (Tr0) is the outgoing edge number of (𝑣𝑠 → 𝑣𝑒)
w.r.t. 𝑣𝑠 , where (𝑣𝑠 → 𝑣𝑒) is the first edge traversed by Tr. For
example, in Figure 2a, we have 𝐸 (Tr1

4
) = ⟨4, 1⟩ because (𝑣4 → 𝑣5)

is traversed by Tr1 after leaving (𝑣3 → 𝑣4) and 𝑙4 is located on

(𝑣5 → 𝑣6) at 𝑇 (Tr1) [4].
We construct a hash table 𝐻 for 𝐸 (Tr𝑛), whose cardinality (i.e.,

number of hash entries) is pre-defined and fixed. Each 𝑘-mers in 𝐻

is stored as a tuple (𝐸𝑛
𝑖
, 𝑛, off𝑖 , pt𝑖 , pd𝑖), where i) 𝐸𝑛𝑖 is the 𝑖th 𝑘-mer

of 𝐸 (Tr𝑛); ii) 𝑛 is the ID of Tr𝑛 ; iii) off𝑖 is the offset of 𝐸𝑛
𝑖
[0] in

𝐸 (Tr𝑛), and iv) pt𝑖 and pd𝑖 are the indexes of the entries associated
with 𝐸𝑛

𝑖−1 and 𝐸
𝑛
𝑖+1 in 𝐻 , respectively. Figure 4 gives an example of

the hash table constructed according to the streaming trajectories

in Table 2, where BKDR hashing is adopted due to its high efficiency

and good distribution capability [40]. To save space, we only store

𝐸𝑛
𝑖
[𝑘 − 1] (𝑖 > 0) instead of 𝐸𝑛

𝑖
in the hash table because the whole

𝑘-mer can be retrieved by pt𝑖 . For example, the entry associated

with 𝐸1
1
(= (2, 1, 1)) in 𝐻 is stored as (⟨1⟩, 1, 1, 985, 996), where 985

and 996 are the indexes of 𝐸1
0
and 𝐸1

2
of Tr1 in 𝐻 , respectively.

A𝑘-mer does not form until |𝐸 (Tr𝑛𝑚)∪𝐸 (Tr𝑛𝑚+1)∪· · ·∪𝐸 (Tr
𝑛
𝑚+𝑗) |

≥ 𝑘 . For example given 𝑘 = 3, 𝐸1
0
is formed at 𝑡 (Tr) [2] =7:04:06,

as 𝐸 (Tr1
0
) ∪ 𝐸 (Tr1

1
) ∪ 𝐸 (Tr1

2
) = ⟨2, 2, 1⟩. Once the first 𝑘-mer 𝐸𝑛

0
of

𝐸 (Tr𝑛) is formed, we hash it to hash table 𝐻 according to its hash

key, denoted as key.
1) If 𝐻 [key] = ∅, 𝐸𝑛

0
cannot be referentially represented by the

existing 𝑘-mers in 𝐻 , as it is distinct from all of them. Hence, we

mark 𝐸 (Tr𝑛) as a reference and create a tuple for 𝐸𝑛
0
as well as all the

subsequent 𝑘-mers 𝐸𝑛
𝑖
(𝑖 > 0), in order to prepare for referentially

representing other sequences.

2) If 𝐻 [key] ≠ ∅ and a tuple (𝐸𝑛′
𝑖′ , 𝑛

′, off𝑖′, pt𝑖′, pd𝑖′) exists with
𝐸𝑛
′

𝑖′ = 𝐸𝑛
0
, Tr𝑛 is marked as a non-reference. Then, we initialize

a factor 𝐸 (Ma0) = (𝑛′, off𝑖′, 𝑘, ∅) for 𝐸 (Tr𝑛), where 𝑘 is the cur-

rent matched length and ∅ indicates that the mis-matched value

of 𝐸 (Ma0) is unknown. Next, we follow an existing work [25] to

greedily match the subsequent character 𝐸𝑛
𝑖+1 [𝑘 − 1] (𝑖 > 0) with

that in 𝐸 (Tr𝑛′). This process ends when a mis-matched character

𝑀 occurs. So far, a factor (𝑛′, 𝑆, 𝐿,𝑀) is generated, where 𝐿 is the

final matched length of the subsequence of 𝐸 (Tr𝑛′) and 𝑆 = off𝑖′ .
Then we wait until another 𝑘-mer forms and repeat the process.

Clearly, the time delay occurs mainly when waiting for 𝑘 mapped

GPS points before initializing a factor.

Example 3. Following the example shown in Figure 4 and Table 2,
since 𝐸3

0
matches with 𝐸1

0
, we initialize a factor (1, 0, 3, ∅) for it. For the

arriving 𝐸 (Tr3
3
) = ⟨1⟩, we retrieve 𝐸 (Tr1) [3] according to the index

pd
0
associated with 𝐸1

0
, i.e, 954, and compare it with 𝐸 (Tr3

3
) (= 𝐸3

1
[2]).

After that, we update the factor to (1, 0, 4, ∅) due to 𝐸 (Tr1) [3] =

𝐸 (Tr3
3
). As 𝐸 (Tr1) [4] ≠ 𝐸3

2
[2], we generate a factor, i.e., (1, 0, 4, 1),

for Com𝐸 (Tr3). Then, we wait until 𝐸 (Tr3
6
) arrives due to |𝐸 (Tr3

5
) ∪

𝐸 (Tr3
6
) | ≥ 3 and repeat the process. Finally, we get Com𝐸 (Tr3) =

⟨(1, 0, 4, 1), (2, 5, 5, 3)⟩.
However, a streaming trajectory Tr𝑛 can be a non-reference

at the beginning but cannot be referentially represented since a

timestamp 𝑡𝑖 , because its 𝑘-mer formed at 𝑡𝑖 cannot match any

tuple stored in the hash table 𝐻 . In this case, we call Tr𝑛 as a hy-
reference and create a tuple for each 𝑘-mer of Tr𝑛 generated since

𝑡𝑖 to referentially represent other sequences. Intuitively, the former

part of a hy-reference Tr𝑛 is a non-reference that is referentially

represented, while the latter part of it is a reference.

We store a repetitive 𝐸𝑛
𝑖
as (𝑛, off𝑖 , 𝑝𝑡𝑖 , 𝑝𝑑𝑖) by omitting the re-

dundant 𝐸𝑛
𝑖
. We associate this tuple with (𝐸𝑛′

𝑖′ , 𝑛
′, off𝑖′, 𝑝𝑡𝑖′, 𝑝𝑑𝑖′)

(𝐸𝑛
′

𝑖′ = 𝐸𝑛
𝑖
) (i.e., they are stored in the same hash entry) to trace

back the subsequence of Tr𝑛 during 𝑘-mer matching. As shown

in Figure 4, the tuple of 𝐸1
4
, i.e., (1, 4, 86, null) is associated with

that of 𝐸2
1
, as 𝐸1

4
= 𝐸2

1
. Here, null indicates that 𝐸1

5
is unknown at

the current timestamp. Moreover, 𝐸𝑛
𝑖
and 𝐸𝑛

′
𝑖′ may be stored in the

same hash entry even if 𝐸𝑛
𝑖
≠ 𝐸𝑛

′
𝑖′ due to hash collisions. Accord-

ing the introduction of 𝑘-mer matching in Section 2.3, 𝑘 remains

1179

unchanged during compression and only determines the length of

the initial matched subsequence. However, 𝑘 cannot be too large

or too small. A too large 𝑘 may result in a very high probability of

failed matching and thus excessively many references, and a too

small 𝑘 may lead to many “trivial” matches, where each factor of a

non-reference represents a very short subsequence. We study the

impact of 𝑘 on compression performance in Section 7.

4.4 Reference Deletion for E(Tr𝑛)
The number of 𝑘-mers stored in the hash table increases over time.

To reduce the storage cost, we delete the 𝑘-mers corresponding to

references from the hash table that have not been visited for a long

time. A reference 𝐸 (Ref) is visited if i) it referentially represents a

non-reference or ii) its corresponding data is still arriving.We define

𝐺𝑜 as the set of the references at timestamp t𝑜 . Specifically, 𝐺𝑜 [𝑖],
that represents a reference 𝐸 (Ref), denotes the tuple (ref𝑖𝑑 ,𝐺𝑜 [𝑖] .tl),
where ref𝑖𝑑 is the ID of the reference 𝐺𝑜 [𝑖], and 𝐺𝑜 [𝑖] .tl is the
timestamp when 𝐺𝑜 [𝑖] was most recently visited.

Definition 8. A reference 𝐺𝑜 [𝑖] is outdated at t𝑜 if its fresh-
ness at t𝑜 , denoted as 𝐺𝑜 [𝑖] .𝑓 , satisfies 𝐺𝑜 [𝑖] .𝑓 < 𝐶 · 𝐹𝑜

|𝐺𝑜 | , where

𝐹𝑜 =
∑ |𝐺𝑜 |−1
𝑖′=0 𝐺𝑜 [𝑖 ′] .𝑓 and 𝐶 (0 < 𝐶 ≤ 1) is the deletion coefficient.

We set the deletion coefficient 𝐶 ∈ (0, 1] because we consider
a reference as outdated only if its freshness is below the average

freshness
𝐹𝑜
|𝐺𝑜 | . A larger𝐶 implies that references expire more easily.

We calculate 𝐺𝑜 [𝑖] .𝑓 as follows:

𝐺𝑜 [𝑖] .𝑓 = _t𝑜−𝐺𝑜 [𝑖] .tl (t𝑜 ≥ 𝐺𝑜 [𝑖] .tl), (1)

where _ ∈ (0, 1) is a decay factor [7]. In Figure 2, given the current

timestamp t𝑜 =7:03:26 and _ = 0.998, we get 𝐸 (Tr1) .𝑓 = 0.998 at t𝑜 .
Definition 8 is more effective than using a fixed threshold to

determine whether a reference is expired. Specifically, using a fixed

threshold, if no trajectory arrives for a long time due to an oc-

casional interrupt of communications, all references in the hash

table will expire. A naive solution is to update the freshness of

each reference in the hash table at each timestamp in order to

compute the average freshness and then to identify the outdated

data. To improve efficiency, we propose to compute the freshness

of parts of 𝐺𝑜 [𝑖] (0 ≤ 𝑖 < |𝐺𝑜 |) at t𝑜 . We sort 𝐺𝑜 in ascend order

of 𝐺𝑜 [𝑖] .𝑓 (0 ≤ 𝑖 < |𝐺𝑜 |). Then, we detect expired data in order

until𝐺𝑜 [𝑖 ′] .𝑓 ≥ 𝐶 · 𝐹𝑜
|𝐺𝑜 | (0 < 𝑖 ′ < |𝐺𝑜 |). Specifically, no 𝑘-mers are

deleted if 𝐺𝑜 [0] .𝑓 ≥ 𝐶 · 𝐹𝑜
|𝐺𝑜 | . This process can actually be realized

without sorting, as shown in Algorithm 1. Next, we define a set

containing the references in 𝐺𝑜 that are visited at t𝑜 , denoted as

𝑅𝑣𝑜 (𝑅𝑣𝑜 ⊆ 𝐺𝑜). Given 𝐹𝑜′ , 𝐹𝑜 (𝑡𝑜 > 𝑡𝑜′) is updated as follows:

𝐹𝑜 = (𝐹𝑜′ −
∑

𝐺𝑜′ [𝑖] ∈𝑅𝑣𝑜
𝐺𝑜′ [𝑖] .𝑓) · _t𝑜−t𝑜′ + |𝑅𝑣𝑜 | (2)

Formula 2 enables us to update 𝐹𝑜 by only computing the freshness

of 𝐺𝑜′ [𝑖], such that 𝐺𝑜′ [𝑖] ∈ 𝑅𝑣𝑜 . The derivation of it is omitted

due to the space limitation.

Algorithm 1 details the reference deletion. Assuming that the lat-

est timestamp when new data arrives is 𝑡𝑜′ . The algorithm searches

each 𝐺𝑜′ [𝑖] ∈ Rv𝑜 in the current reference set 𝐺𝑜′ and removes

𝐺𝑜′ [𝑖] from 𝐺𝑜′ if it exists in Rv𝑜 (Lines 1–4). Then, each reference

𝐸 (Ref) ∈ Rv𝑜 is appended to 𝐺𝑜′ (Line 6). This way, it sorts 𝐺𝑜′ in

ascending order of freshness. Meanwhile, Formula 2 is applied to

Algorithm 1: Reference Deletion Algorithm

Input: the reference set𝐺𝑜′ at t𝑜′ , the set 𝑅𝑣𝑜 , the sum of

freshness 𝐹𝑜′ and a threshold𝐶

Output: the reference set𝐺𝑜 and the sum of freshness 𝐹𝑜

1 for each reference 𝐸 (Ref) ∈ 𝑅𝑣𝑜 do
2 if 𝐸 (Ref) ∈ 𝐺𝑜′ with 𝐸 (Ref)=𝐺𝑜′ [𝑖] then
3 compute𝐺𝑜′ [𝑖] .𝑓 using Formula 1

4 remove the tuple (ref𝑖𝑑 ,𝐺𝑜′ [𝑖] .tl) from𝐺𝑜′

5 𝐹𝑜′ ← 𝐹𝑜′ −𝐺𝑜′ [𝑖] .𝑓
6 append the tuple (ref𝑖𝑑 , 𝑡𝑜) to𝐺𝑜′

7 𝐹𝑜 ← 𝐹𝑜′ · _t𝑜−t𝑜′ + |𝑅𝑣𝑜 |
8 while _t𝑜−𝐺𝑜′ [0] .tl < 𝐶 · 𝐹𝑜

|𝐺𝑜′ |
do

9 𝐹𝑜 ← 𝐹𝑜 − _t𝑜−𝐺𝑜′ [0] .tl

10 remove the tuple (ref𝑖𝑑 ,𝐺𝑜′ [0] .tl) from𝐺𝑜′

11 delete the 𝑘-mers associated with𝐺𝑜′ [0] from the hash table

12 return𝐺𝑜′ (= 𝐺𝑜) and 𝐹𝑜

calculate 𝐹𝑜 (Lines 5 and 7) and 𝐺𝑜′ is updated to 𝐺𝑜 . After “sort-

ing”, we check the freshness of references in 𝐺𝑜 by starting from

its first reference every time, in order to only calculate the fresh-

ness of the potentially outdated references (Lines 8–11). Finally,

the updated references 𝐺𝑜 and the sum of their freshness 𝐹𝑜 are

returned (Line 12). This approach reduces the time complexity of

updating freshness from 𝑂 (|𝐺𝑜 |) to 𝑂 (|Rv𝑜 | + |EX𝑜 |), where EX𝑜
is the set of expired references at 𝑡𝑜 . We evaluate the effectiveness

and efficiency of reference deletion via experiments in Section 7.

4.5 Reference Rewriting for E(Tr𝑛)
To further improve the compression ratio, we rewrite the references

𝐸 (Ref) in real-time. The motivation is that a non-frequent edge

sequence may become a reference if it arrives early. For example,

given a frequent path ⟨44183, 2, 2, 1, 1, 1, 2, 2⟩, ⟨2, 2, 1, 1, 1, 2, 2⟩, i.e., a
subsequence of 𝐸 (Tr3), should be stored as 𝑘-mers. However, since

Tr1 arrives before Tr3 and 𝐸 (Tr1) can referentially represent 𝐸 (Tr3),
𝐸 (Tr3) is made as a non-reference and Tr1 is a reference, as shown
in Example 3. In this case, for another new arriving subsequent Tr𝑛

that also traverses ⟨44183, 2, 2, 1, 1, 1, 2, 2⟩, Com𝐸 (Tr𝑛) will contain
at least two factors. To address the problem, we detect the frequent

subsequence and rewrite the 𝑘-mers in real-time. Following an

existing study [39], we define the rewriting candidate below.

Definition 9. A rewriting candidate is a reference 𝐸 (Ref) that
represents a non-reference 𝐸 (Nref) as Com𝐸 (Nref) = ⟨· · · , (refid, 𝑆, 𝐿,
𝑀), (refid, 𝑆 ′, 𝐿′, 𝑀 ′), · · · ⟩, where 𝑆 + 𝐿 + 1 = 𝑆 ′ and refid is the ID of
the reference Ref.

Given a rewriting candidate Ref, we can merge two factors

(refid, 𝑆, 𝐿,𝑀) and (refid, 𝑆 ′, 𝐿′, 𝑀 ′) into one factor (refid, 𝑆, 𝐿 + 1 +
𝐿′, 𝑀 ′), by replacing 𝐸 (𝑅𝑒 𝑓) [𝑆 +𝐿] with𝑀 , which is called a rewrit-

ing operation.

Example 4. Given 𝐸 (Tr4) = ⟨2, 2, 1, 1, 4, 1, 3, 1, 2, 3, 3⟩ such that
Tr4 arrives after Tr1 ends, 𝐸 (Tr1) becomes a rewriting candidate as
Com𝐸 (Tr4) = ⟨(1, 0, 6, 3), (1, 7, 3, 3)⟩. If 𝐸 (Tr1) [6] is replaced with 3,
Com𝐸 (Tr4) will only contain one factor, i.e., (1, 0, 10, 3), which leads to
a higher compression. Similarly, given 𝐸 (Tr5) = ⟨1, 1, 4, 1, 3, 1, 2, 3, 3⟩
such that Tr5 also arrives after Tr1 terminates, the compression can
be improved by replacing 𝐸 (Tr1) [6] with 3.

1180

Algorithm 2: Reference Rewriting Algorithm

Input: a rewriting operation, i.e., replacing 𝐸 (Ref) [𝑖] with𝑀 , a

𝑏 × 𝑏 factor matrix FA of 𝐸 (Ref) , an array rp of 𝐸 (Ref) and
a threshold 𝛼

Output: a rewritten reference or ∅
1 𝑓 (𝑀) ← 𝑓 (𝑀) + 1, where 𝑓 (𝑀) is associated with rp[𝑖]
2 if ∀𝑀′ ∈ 𝑟𝑝 [𝑖] (𝑓 (𝑀) ≥ 𝑓 (𝑀′)) ∧ 𝑓 (𝑀) ≥ 𝛼 then

3 if
∑⌊ 𝑖

𝑘
⌋+1

𝑥=1

∑𝑏

𝑦=⌊ 𝑖
𝑘
⌋+1

FA𝑥𝑦 < 𝑓 (𝑀) then

4 replace 𝐸 (Ref) [𝑖] with𝑀

5 update 𝑘-mers associated with 𝐸 (Ref)
6 delete FA and rp of 𝐸 (Ref)
7 return a rewritten reference
8 else
9 return ∅ /* no operation will be conducted */

10 else
11 return ∅ /* no operation will be conducted */

We construct an array rp for each 𝐸 (Ref), where rp[𝑖] is a list
recording𝑀 corresponding to a rewriting operation for 𝐸 (Ref) [𝑖] (1
≤ 𝑖 < |𝐸 (Ref) − 1|) and its frequency of occurrence, denoted as

𝑓 (𝑀). Following Example 4, rp[6] of 𝐸 (Tr1) is ⟨(3, 2)⟩, due to𝑀 = 3

and 𝑓 (𝑀) = 2. Obviously, a prerequisite for conducting a rewriting

operation is that 𝑓 (𝑀) should be large. This is to guarantee that

a frequent subsequence (i.e., a frequent path) is generated by the

rewriting. Moreover, we should ensure that the factors overlapping

𝐸 (Ref) [𝑖] occur rarely. Given a factor (refid, 𝑆, 𝐿,𝑀), it intersects
𝐸 (Ref) [𝑖], if refid is the ID of Ref and 𝑆 ≤ 𝑖 < 𝑆 + 𝐿.

Example 5. Given 𝐸 (Tr6) = ⟨2, 2, 1, 1, 4, 1, 2, 1, 2, 2, 2, 2, 1, 3⟩ such
that Tr6 arrives after Tr1 terminates, we get Com𝐸 (Tr6) = ⟨(1, 0, 9, 2),
(1, 0, 3, 3)⟩, where (1, 0, 9, 2) intersects 𝐸 (Tr1) [6]. Following Exam-
ple 4, even if replacing 𝐸 (Tr1) [6] with 3 reduces the number of factors
of both Com𝐸 (Tr4) and Com𝐸 (Tr5), it produces one more factor for
Com𝐸 (Tr6). This indicates that we should rewrite 𝐸 (Tr1) [6] only
when it does not frequently intersect any factors.

The above analysis implies that we should record each factor that

intersects 𝐸 (Ref) [𝑖] (1 ≤ 𝑖 < |𝐸 (Ref) | − 1) for rewriting. Intuitively,
this results in a high space-time consumption. Inspired by the regu-

lar square grid graph [10], we construct a 𝑏 ×𝑏 factor matrix FA for

each 𝐸 (Ref), where 𝑏 = ⌈ |𝐸 (Ref) |𝑟
𝑘
⌉. Here, |𝐸 (Ref) |𝑟 is the length of

the subsequence of 𝐸 (Ref) used as a reference. FA[𝑥] [𝑦] (𝑥,𝑦 > 0),
denoted as FA𝑥𝑦

, is associated with a subsequence of 𝐸 (Ref) in its

factor matrix, i.e., ⟨𝐸 (Ref) [(𝑥 − 1) · 𝑘], · · · , 𝐸 (Ref) [𝑦 · 𝑘 − 1]⟩, and
counts the frequency of factors (refid, 𝑆, 𝐿,𝑀) intersecting 𝐸 (Ref) [𝑖]
((𝑥 − 1) · 𝑘 ≤ 𝑖 ≤ 𝑦 · 𝑘 − 1), where refid is the ID of Ref. Thus, we
update FA once a factor is generated.

Proposition 4.1. A factor (ref𝑖𝑑 , 𝑆, 𝐿,𝑀) contributes to FA𝑥𝑦 ,
where 𝑥 = ⌊ 𝑆

𝑘
⌋ + 1 and 𝑦 = ⌈𝑆+𝐿

𝑘
⌉.

Example 6. Following Examples 3, 4, and 5 and assuming that
Tr = {Tr1, Tr2, Tr3, Tr4, Tr5, Tr6}, the factor matrix FA of 𝐸 (Tr1) is:

FA =

[0, 2] [0, 5] [0, 8] [0, 11]

[3, 5] [3, 8] [3, 11]
[6, 8] [6, 11]

[9, 11]

 →

1 3 1 0

0 0 0

0 2

0

Here, the left part of FA intuitively gives the subsequences of 𝐸 (Tr1)
corresponding to FA𝑥𝑦 , and the right part shows the value of FA𝑥𝑦 .
For instance, FA12 = 3 is contributed by three factors, i.e, (1, 0, 4, 1),
(1, 0, 6, 3), and (1, 2, 4, 3).

Lemma 1. Given a factor (refid, 𝑆, 𝐿,𝑀) that intersects 𝐸 (Ref) [𝑖]
and a 𝑏 × 𝑏 factor matrix FA of 𝐸 (Ref), (refid, 𝑆, 𝐿,𝑀) can only con-
tribute to FA𝑥𝑦 , where 𝑥 ≤ 𝑖

𝑘
+ 1 ∧ 𝑦 > 𝑖

𝑘
.

Proof. As (refid, 𝑆, 𝐿,𝑀) intersects 𝐸 (Ref) [𝑖], we have 𝑆 ≤ 𝑖 <

𝑆 + 𝐿. Proposition 4.1 guarantees that 𝑆 ≥ (𝑥 − 1) · 𝑘 ∧ 𝑆 + 𝐿 ≤ 𝑦 · 𝑘
if (refid, 𝑆, 𝐿,𝑀) contributes to FA𝑥𝑦

. Hence, we have 𝑖 ≥ (𝑥 − 1) ·
𝑘 ∧ 𝑖 < 𝑦 · 𝑘 , i.e., 𝑥 ≤ 𝑖

𝑘
+ 1 ∧ 𝑦 > 𝑖

𝑘
. □

Lemma 2. Given a 𝑏 ×𝑏 factor matrix FA of 𝐸 (Ref), the maximum

number of factors that intersect 𝐸 (Ref) [𝑖] is∑ ⌊ 𝑖𝑘 ⌋+1
𝑥=1

∑𝑏

𝑦= ⌊ 𝑖
𝑘
⌋+1 FA

𝑥𝑦 .

Proof. Following Lemma 1, the factors intersecting 𝐸 (Ref) [𝑖]
can only contribute to FA𝑥𝑦

, where 𝑥 ≤ 𝑖
𝑘
+ 1 ∧ 𝑦 > 𝑖

𝑘
. As a

result, the maximum number of the factors that intersect 𝐸 (Ref) [𝑖]
is

∑ ⌊ 𝑖
𝑘
⌋+1

𝑥=1

∑𝑏

𝑦= ⌊ 𝑖
𝑘
⌋+1 FA

𝑥𝑦
. □

Example 7. Continuing Example 6, the maximum number of the
factors intersecting 𝐸 (Tr) [6] is ∑3

𝑥=1

∑
4

𝑦=3 FA
𝑥𝑦 = 3, where only 6

out of 10 elements in FA need to be visited.

Based on the above conclusions, we present the conditions for

implementing a rewriting operation, i.e, replacing 𝐸 (Ref) [𝑖] with
𝑀 : i) 𝑓 (𝑀) ≥ 𝛼 , where ∀𝑀 ′ ∈ 𝑟𝑝 [𝑖] (𝑓 (𝑀) ≥ 𝑓 (𝑀 ′)) and 𝛼 (≥
1) is the rewriting coefficient, and ii)

∑ ⌊ 𝑖
𝑘
⌋+1

𝑥=1

∑𝑏

𝑦= ⌊ 𝑖
𝑘
⌋+1 FA

𝑥𝑦 <

𝑓 (𝑀). The first condition ensures that𝑀 occurs more frequently

than other characters for a given position 𝑖 . The second condition

ensures that the maximum number of factors intersecting 𝐸 (Ref) [𝑖]
is smaller than 𝑓 (𝑀). Note that a smaller 𝛼 means that 𝑓 (𝑀) ≥ 𝛼

occurs more often, thus implying more frequent rewriting.

Algorithm 2 presents the pseudo-code of rewriting references. If

a reference is rewritten, we update its corresponding 𝑘-mers (Line

5). Moreover, we store the rewritten reference by referentially rep-

resenting it according to the corresponding original one. The aim

is to reduce the storage needed when introducing a new reference.

Thus, we do not consider to rewrite a reference more than once, as

it introduces \ -order compression (\ > 2) at the cost of decreased

efficiency of decompression and querying. This is also the reason

that we delete FA and rp after rewriting a reference (Line 6). In ad-

dition, we observe that the factor matrix FA of 𝐸 (Ref) still takes up
unnecessary space due to FA𝑥𝑦 (𝑦 > 𝑥) = ∅. Hence, to store FA𝑥𝑦

,

we construct a vector FV of size
𝑏 · (𝑏+1)

2
, where 𝑏 = ⌈ |𝐸 (Ref) |𝑟

𝑘
⌉ and

|𝐸 (Ref) |𝑟 is the length of 𝐸 (Ref) that is used as a reference. FV is

enlarged over time according to the latest |𝐸 (Ref) |𝑟 . The worst case
time complexity of reference rewriting for a reference is 𝑂 (|FV|).
However, Lemma 2 enables rewriting by scanning part of FV (as

shown in Example 7), which enhances the efficiency of reference

rewriting. This is also studied in Section 7.

4.6 Reference Selection and Deletion for V(Tr𝑛)
The reference selection for V(Tr𝑛) is almost the same as that for

E(Tr𝑛). However, as a speed V(Tr𝑛) [𝑖] is a float, we cannot directly
apply 𝑘-mer matching to it. Instead, we convert it to an integer

¥V(Tr𝑛) [𝑖], where ¥V(Tr𝑛) [𝑖] is the integer closest to V(Tr𝑛) [𝑖]
0.5[. This

1181

strategy is consistent with the error-bounded referential representa-

tion in Section 4.2. The reference deletion for V(Tr𝑛) is also similar

to that for E(Tr𝑛); thus, we omit it. Moreover, we do not rewrite a

reference V(Ref), as speed patterns may vary substantially during

different time periods [12, 24] and the latest patterns have already

been mined by reference selection.

5 COMPRESSION
We proceed to present the binary encoding and data transmission

of streaming trajectories.

5.1 Binary Encoding
We denote the binary code of seq as ˆseq. e.g., the binary code of

𝐸 (·) is denoted as 𝐸 (·).
Binary Encoding of References. We follow UTCQ [19] to

compress 𝐸 (Ref). Moreover, we adapt a typical scheme [41] to en-

code RD(Ref) and GD(Ref). Specifically, given an encoding error

bound 𝛾 , the binary code
ˆfv of a floating number fv is calculated

as
ˆfv = argmin

ˆfv𝑚

����∑ | ˆfv𝑚 |𝑖=1
ˆfv𝑚 [𝑖 − 1] · 12𝑖 − fv

����, where | ˆfv𝑚 | = 𝛾 . For

example, given fv = 0.37 and 𝛾 = 3, we get
ˆfv=011, i.e., fv is approxi-

mated as 0.375. The binary code of a reference 𝜙 (Ref) (𝜙 = 𝐸,GD) is
delivered to the centralized cloud immediately after it is generated.

Binary Encoding of Non-references. We set the lengths of

the binary codes of both 𝑆 and 𝐿 the same, denoted as len, and record
it for decoding a factor (refid, 𝑆, 𝐿,𝑀) in a streaming setting. The

Exp-Golomb encoding [37] is adopted to compress len. Moreover,

len is set to 0 if the reference 𝜙 (Ref) has terminated before generat-

ing a factor (refid, 𝑆, 𝐿,𝑀). This way, we can improve compression

as len = 0 only takes 1 bit, and both 𝑆 and �̂� are still decodable as

the length of 𝜙 (Ref) is known [19]. Finally, �̂� takes ⌈log
2
𝑜⌉ bits

for Com𝐸 (Nref) and takes 𝛾 bits for Com𝑉 (Nref), where 𝑜 is the

maximum number of outgoing edges for any vertex 𝑣 ∈ 𝑉 .

5.2 Transmission of Compressed Binary Codes
As illustrated in Section 4.3, a factor (refid, 𝑆, 𝐿,𝑀) cannot be gen-
erated until the mis-matched character 𝑀 is found. It is easy to

recognize each part of a factor if we transmit it as a whole to the

centralized cloud. However, in this case, the centralized query pro-

cessor is unable to receive the latest data in real-time, resulting

in inaccurate results. To avoid this, we continue transmitting the

up-to-date information of a factor during its formation.

We propose a data transmission strategy, which targets low

transmission overhead and enables decoding at the centralized

cloud without the need of delivering extra information. Given the

value of 𝑘 for 𝑘-mer, the transmission of a factor (refid, 𝑆, 𝐿,𝑀)
is completed in three states: ① transferring the initialized factor

(refid, 𝑆, 𝐿′, ∅), where 𝐿′ ≥ 𝑘 and |𝑆 | = | ˆ𝐿′ |; ② transferring the

updated 𝐿′; and ③ transferring the mis-matched element𝑀 when

𝐿′ is updated to 𝐿. We denote the binary code of a factor transmitted

to the centralized cloud at each timestamp as
ˆbc. Obviously, | ˆbc| =

| ˆrefid | + 2 · |𝑆 | ≥ | ˆrefid | + 2 · 𝑘 at step ①, and the
ˆbc that is used to

update 𝐿′ at step ② is always | ˆrefid | + 1. As the maximum number

of outgoing edges for any vertices in a road network is generally no

less than 4, i.e, 𝑜 ≥ 4, and we set𝛾 ≥ 2, we have | ˆbc| = | ˆrefid |+ |�̂� | >
| ˆrefid |+1 at step③. If we let 2· |𝑆 | ≠ |�̂� |, the binary codes transferred

v2

v3

v4v5

v6
v7 v10

v11

v12

l1

l22

l4

l3

l5

v0 l0l0

l2

l3

l4
l5

l666

l8

2 2
1

1

4

12

2

2

3

3

2 2 1

1

1

2 2 2

3

3

3

(a) (b)1
Tr

3
Tr

l9

1

re0 re1

r0

z0

r1 z1

RE0

RE1
v1 l1

000 001 010

011 100

101 110 111

v8 v9

l6

8

r0

r2 z1

RE1

l7

Figure 5: The partition of the road network 𝐺 in Figure 2.
during the above three states can be distinguished just by | ˆbc|. The
initial state is ③.

Example 8. Continuing Example 5 and letting ˆrefid take 3 bits,
the first factor of Com𝐸 (Tr6) is initialized as (1, 0, 3, ∅) and thus is
encoded as (000, 00, 10), i.e., ˆbc = 0000010. Then it is sent to the
centralized cloud, which triggers the state transition from ③ to ①.
Next, we continue to transfer ˆbc = 0001 before the mis-matched value
𝑀 = 2 is found, during which the state is first transferred to ② and
then remains unchanged. Meanwhile, 𝐿′ continues to be incremented
by 1. Once the centralized cloud receives 𝑀 = 2, i.e., ˆbc = 000001,
a factor is generated and stored in the form (�̂�, ˆ𝑙𝑒𝑛, ˆrefid, 𝑆, �̂�), i.e.,
(001, 0, 000, 0000, 1000), in the centralized cloud, where we assume
𝑜 = 7, i.e., �̂� takes 3 bits.

6 QUERY PROCESSING
6.1 Query Definition

Definition 10. Given a query region RE and a set of compressed
streaming trajectories ˆTr, a range query range(ˆTr, RE) returns the
set of streaming trajectories Tr𝑛 (1 ≤ 𝑛 ≤ 𝑁) in Tr, such that Tr𝑛 ∩
RE ≠ ∅ at the current timestamp.

We denote the lastest timestamp of a trajectory Tr𝑛 as Tr𝑛 .tp,
i.e., Tr𝑛 .tp = 𝑡 (Tr𝑛) [|𝑡 (Tr𝑛) | − 1].

Example 9. Considering the streaming trajectories in Figure 2 and
assuming that the current timestamp is 7:04:06, we have Tr1 .tp =7:04:06
and Tr3 .tp =7:03:55. Given 𝑘 = 2, 𝛾 = 7, [= 0, and | (𝑣0 → 𝑣1) | =
| (𝑣1 → 𝑣2) | = | (𝑣2 → 𝑣3) | = 100, we get ad(Tr1) [2] = 254.76,
ad(Tr3) [1] = 127.38, and 𝑉 (Tr3) [1] = 5.12 after decompression, i.e.,
Tr1 is located on (𝑣2 → 𝑣3) and Tr3 is located on (𝑣1 → 𝑣2); thus,
the range query range(ˆTr, RE1) returns ∅.

A naive strategy for computing range queries over compressed

streaming trajectories is to decompress each Tr𝑛 (1 ≤ 𝑛 ≤ 𝑁) and
calculate their current locations, which is time-consuming. Instead

we introduce indexing and filtering to achieve fast query processing.

6.2 Index and Filtering Technique
We partition the road network𝐺 using grid cells 𝑟𝑒𝑚 , each of which

links to the streaming trajectories that are currently located in it.

The number of grid cells is denoted by gc. Figure 5 partitions the
road network 𝐺 in Figure 2. Considering the examples in Figure 2

and assuming the current timestamp is 7:03:25, 𝑟𝑒0 links to Tr1.

Definition 11. Theminimumdistancemind(re𝑚, RE) between
a grid cell re𝑚 and a query region RE is the distance between a location
𝑟 and a location 𝑧, denoted as |𝑟𝑧 |, where 𝑟 ∈ re𝑚 ∧ 𝑧 ∈ RE ∧ ∀𝑟 ′ ≠
𝑟 (𝑟 ′ ∈ re𝑚 ∧ |𝑟 ′𝑧 | ≥ |𝑟𝑧 |) ∧ ∀𝑧′ ≠ 𝑧 (𝑧′ ∈ RE ∧ |𝑟𝑧′ | ≥ |𝑟𝑧 |).

1182

For instance in Figure 5a, the minimum distance between grid

cell re1 and query region RE0 is |𝑟0𝑧0 |. Since queries are computed

centrally, we need to calculate the current location of each stream-

ing trajectory from the most recently arrived data. Given a speed

constraint ` of the road network and a timestamp tc, the reachable
distance of a streaming trajectory Tr𝑛 w.r.t. tc, denoted as dis, is
(tc−Tr𝑛 .tp) ·`. Following Example 9 and given ` = 21, the reachable

distance of Tr1 w.r.t. 7:04:06 is 0 × 21 = 0, while that of Tr3 w.r.t.
7:04:06 is 11 × 21 = 231.

Lemma 3. Given a range query range(ˆTr, RE), the current times-
tamp tc, the reachable distance dis of Tr𝑛 w.r.t. tc, and Tr𝑛 located in
grid cell 𝑟𝑒𝑚 at Tr𝑛 .tp, if the minimum distance mind(re𝑚, RE) > dis,
Tr𝑛 cannot be in the result.

Proof. Assuming that Tr𝑛 has a mapped location 𝑙 at Tr𝑛 .tp,
we have 𝑙 ∈ re𝑚 as Tr𝑛 located in grid cell 𝑟𝑒𝑚 at Tr𝑛 .tp. Since
mind (re𝑚, RE) > dis, the distance between 𝑙 and RE must also

exceed the reachable distance dis of Tr𝑛 w.r.t. tc, i.e., Tr𝑛 cannot

reach RE at tc. Hence, Tr𝑛 cannot be in the query result. □

Lemma 3 enables pruning Tr𝑛 without computing its location

at the current timestamp. Following Example 9 and given |𝑟2𝑧1 | =
233 in Figure 5b, we do not need to decompress

ˆCom𝐸 (Tr3) and
ˆCom𝑉 (Tr3) if a range query range(ˆTr, RE1) arrives at 7:04:06. This

is because Tr3 overlaps re0 at 7:03:55 and the reachable distance of

Tr3 w.r.t. 7:04:06 is 231<233. If Tr𝑛 cannot be filtered, we need to

fully decompress it to calculate its current location. The details are

omitted due to the space limitation.

6.3 Index Transmission
Index information is created at the edge server once new data ar-

rives, while query processing occurs centrally. Hence, we need to

deliver the index to the centralized cloud. As illustrated in Sec-

tion 5.2, we always transmit a compressed trajectory once it is

(referentially) represented, in order to support accurate queries. A

naive strategy is to transfer the ID of the grid cell where Tr𝑛 is

located at each timestamp, which incurs high transmission cost.

We propose to transfer the ID of the grid cell, denoted as 𝑔id, for

Tr𝑛 only when it changes. As shown in Figure 5b, Tr𝑛 can enter at

most 8 grid cells if it leaves the current grid cell. Therefore, ˆ𝑔id takes

3 bits and is appended to
ˆbc. We add one bit at the beginning of

ˆbc
to identify whether it carries index information. The transmission

algorithm that includes indexes is very similar to that in Section 5.2,

so we omit the details due to the space limitation.

6.4 Discussion
TRACE is able to adopt and support a variety of partitioning meth-

ods and queries, as discussed next.

Road Network Partition. We introduce two representative

partitioning methods, spatial partitioning [22, 30] and graph-based

partitioning [1, 35, 36], which are alternatives to our grid parti-

tioning. Quad-tree partitioning [22, 30] is used often in different

settings. It recursively decomposes the space while considering the

spatial distribution of the underlying data, and it stops when some

pre-defined conditions are satisfied. Each tree node represents a

subregion and has either exactly four children (an internal node),

or no children (a leaf node). In congestion-based partitioning of a

road network [1, 35, 36], edges are associated with feature values

Table 3: Trajectory datasets.
Datasets Storage of NCTs # of NCTs # of edges per NCT

Denmark 3.47GB 415,920 Average 95.844

Hangzhou 24.60GB 1,918,677 Average 250.540

Synthetic 384.61GB 50,000,000 Average 137.712

Table 4: Parameter ranges and default values.
Parameter Range

the length of 𝑘-mer 5, 7, 9, 10, 11, 13, 15, 20, 25
the value of𝐶 0.1, 0.3, 0.5, 0.7, 0.9
the value of 𝛼 2, 3, 4, 5, 6, 8,∞
the number of grid cells gc 8

2
, 16

2
, 32

2
, 642, 1282

and traffic densities. Based on this information, different hetero-

geneous subregions of a road network are identified that exhibit

homogeneous traffic congestion patterns internally.

The above-mentioned partitioning methods and corresponding

indexing techniques can be adapted straightforwardly to TRACE,

by considering subregions as grid cells. We use grid partitioning

because it is simple, is very efficient, and has low construction

cost [24]. However, exploration of possible benefits of other parti-

tioning techniques is a relevant topic for future work.

Query. We introduce two different types of queries that can be

supported by TRACE, i.e., a shortest path query and a KNN query.

We use 𝑙𝑐 to denote the mapped GPS point of a streaming trajectory

Tr𝑛 at the current timestamp 𝑡𝑐 .

Shortest path query: short(ˆTr𝑛 , 𝑣𝑞). Given a vertex 𝑣𝑞 and a

compressed streaming trajectory
ˆTr𝑛 , short(ˆTr𝑛 , 𝑣𝑞) returns the

shortest path distance between 𝑙𝑐 and 𝑣𝑞 . To answer short(ˆTr𝑛 , 𝑣𝑞),
we first decompress 𝑇 (Tr𝑛), 𝐸 (Tr𝑛) and ˆGD(Tr𝑛) (or 𝑉 (Tr𝑛)) to
get 𝑙𝑐 = ((𝑣𝑖 → 𝑣 𝑗), nd(𝑣𝑖 , 𝑙𝑐), 𝑡𝑐)). Then the shortest path distance

between 𝑙𝑐 and 𝑣𝑞 is obtained by computing the shortest path dis-

tances between 𝑣𝑖 and 𝑣𝑞 and between 𝑣 𝑗 and 𝑣𝑞 [15]. This process

can be facilitated by constructing a G*-tree [23].

KNN query: KNN (
ˆTr𝑛 , ˆTr, 𝓀). Given a threshold 𝓀, a com-

pressed streaming trajectory
ˆTr𝑛 , and a set of compressed stream-

ing trajectories
ˆTr, KNN (

ˆTr𝑛 , ˆTr, 𝓀) returns the top 𝓀 streaming

trajectories in
ˆTr ranked by their shortest path distances to 𝑙𝑐 at

𝑡𝑐 in ascending order. The process of computing KNN (
ˆTr𝑛 , ˆTr, 𝓀)

is similar to that of computing short(ˆTr𝑛 , 𝑣𝑞). In addition, a pri-

ority queue is maintained to perform the most promising vertex

expansions [23].

7 EXPERIMENTAL EVALUATION
7.1 Experimental Setting
Datasets. We use two real datasets, Denmark (DK) and Hangzhou

(HZ), and a synthetic dataset, Synthetic (Syn), as described in Table 3.

DK is collected from 162 vehicles over about 2 years from Jan. 2007

to Dec. 2008 in Denmark, while HZ is collected from 24,515 taxis

during Nov. 2011 in Hangzhou, China. Syn is generated using the

road network of Hangzhou. It contains five data groups, each with

the same number of trajectories (i.e., Syn0.1, Syn0.3, Syn0.5, Syn0.7,

and Syn0.9), where the similarities between each pair of trajectories

are 0.1 ± 0.05, 0.3 ± 0.05, 0.5 ± 0.05, 0.7 ± 0.05, and 0.9 ± 0.05,

respectively. The similarity is measured according to the Longest

Common Road Segment (LCRS) [42]. We generate similar speed

patterns when trajectories traverse an LCRS. Specifically, any two

1183

subsequences of speeds corresponding to an LCRS, denoted as

𝑠𝑢𝑏 (𝑉𝑛) and 𝑠𝑢𝑏 (𝑉𝑛′), satisfy |𝑠𝑢𝑏 (𝑉𝑛) | = |𝑠𝑢𝑏 (𝑉𝑛′) | ∧ |𝑠𝑢𝑏 (𝑉𝑛
𝑖
) −

𝑠𝑢𝑏 (𝑉𝑛′
𝑖
) | ≤ 1

2

[(0 ≤ 𝑖 < |𝑠𝑢𝑏 (𝑉𝑛) |), where [= 7. The default

sample interval of HZ and Syn is 20s, and that of DK is 1s.

Parameter Setting. In the experiments, we study the effect on

the performance of the parameters summarized in Table 4. We set

_ to 0.998 and 𝛾 to 3 on both datasets, and set [to 3 on DK and

7 on HZ, respectively. Note that the default values of parameters

for Syn are the same as those for HZ. The cardinalities of the hash

tables for storing 𝐸 (Ref) and𝑉 (Ref), are both 1000. All algorithms

are implemented in C++ and run on a computer with an Intel Core

i9-9880H CPU (2.30 GHz) and 32 GB memory.

ComparisonAlgorithms.We compare TRACEwith threemeth-

ods: CLEAN [44], OCT-LSTM [5], and OCT [5]. CLEAN is an offline

method, while OCT-LSTM trains an LSTM model to obtain repeti-

tive patterns of time-distance sequences using historical data. OCT-

LSTM compresses time-distance sequences by discarding data if the

prediction deviation is smaller than an error bound. OCT [5] is sim-

ilar to OCT-LSTM, except that it uses a linear model for prediction

and does not perform any offline training.

Performance Metrics. For compression, we use the compres-

sion ratio (CR), time delay (Delay), maximum memory cost (MC),

and transmission cost (TC) as the performance metrics. For query

processing, we use the query time (Time) and transmission cost

(TC) as the performance metrics. Specifically, the maximum mem-

ory cost records the maximum storage of auxiliary structures (such

as hash tables) created for compression over all timestamps. The

auxiliary structures are stored in main memory at the edge server,

while the compressed data is transmitted to and stored in the cen-

tralized cloud. Moreover, both the time delay and transmission cost

are reported as average values to process an arriving mapped GPS

point at a timestamp. As the experiments are simulated in a vehicu-

lar edge computing architecture, the transmission cost is the size of

contents to be transferred from the edge server to the centralized

cloud. The contents include compressed trajectories and indexes,

thus we use the transmission cost as a performance metric of both

compression and query processing.

7.2 Experimental Results
Comparison and Scalability. Figure 6 reports experimental find-

ings when varying the dataset size from 20% to 100%. We use 80%,

10%, and 10% of each dataset for training, validation, and testing

for OCT-LSTM, respectively. Thus, all methods are applied to 10%

of each dataset in this set of experiments. Since CLEAN is an of-

fline method and takes 192.1 hours to compress 20% Syn, we only

report its compression ratio and maximum memory cost on HZ

and 20% Syn. First, TRACE outperforms all the baselines in terms

of compression ratio and transmission cost. This is mainly due to

TRACE’s separate compression of paths, speeds, and timestamps

that eliminates more redundancy. Second, the compression ratios

of TRACE and OCT-LSTM increase slightly, as more subsequences

can be referentially compressed and more training data is used. The

transmission cost of OCT-LSTM is two orders of magnitude higher

than that of TRACE. The reason is that OCT-LSTM needs to update

and transmit the model to adapt to new speed patterns. Next, the

maximum memory cost and time delay of TRACE exceed those of

OCT-LSTM and OCT. This is in line with TRACE’s goal of achieving

20 40 60 80 1000

10

20

30

C
R

Data size (%)

 TRACE OCT
 CLEAN OCT-LSTM

(a) CR on HZ

20 40 60 80 10010-1

101

103

105

M
C

 (M
B

)

Data size (%)

 TRACE OCT
 CLEAN OCT-LSTM

(b) MC on HZ

20 40 60 80 100101

103

105

Data size (%)

TC
 (b

it)

 TRACE OCT
 OCT-LSTM

(c) TC on HZ

20 40 60 80 10010-3

10-1

101

D
el

ay
 (s

)

Data size (%)

 TRACE OCT
 OCT-LSTM

(d) Delay on HZ

20 40 60 80 1000

15

30

C
R

Data size (%)

 TRACE OCT
 CLEAN OCT-LSTM

(e) CR on Syn

20 40 60 80 10010-2

101

104

107

M
C

 (M
B

)

Data size (%)

 TRACE OCT
 CLEAN OCT-LSTM

(f) MC on Syn

20 40 60 80 100101

103

105
TC

 (b
it)

Data size (%)

 TRACE OCT
 OCT-LSTM

(g) TC on Syn

20 40 60 80 1000

2

4

D
el

ay
 (s

)

Data size (%)

 TRACE OCT
 OCT-LSTM

(h) Delay on Syn

Figure 6: Comparison and scalability.

high compression ratios without losing mapped GPS points. Hence,

TRACE needs to maintain references in main memory and needs

to wait for 𝑘 mapped GPS points to initialize a factor. In contrast,

OCT-LSTM and OCT trade the accuracy for compression efficiency

and memory cost, by discarding data that can be predicted within

an error bound. However, the maximum memory cost of TRACE

never exceeds 8 MB, which we expect is easily accommodated by

the edge server layer [29]. The maximum memory cost and the

processing time of CLEAN are the highest among the four methods.

However, CLEAN is the best among the baselines in terms of com-

pression ratio; thus, it is a good option if the compression can take

place offline and the dataset is relatively small. Finally, the time

delay of TRACE is roughly independent of the dataset size, while

that of OCT-LSTM drops slightly with more data as fewer models

are re-trained. The time delay of TRACE on both datasets never

exceeds its corresponding default sample interval, i.e., 20s, which

suggests that TRACE supports real-time compression.

Effect of 𝑘 . Figure 7 reports the results when varying 𝑘 , the

length of 𝑘-mers. First, the compression ratios on both DK and

HZ first increase and then drop. On one hand, a larger 𝑘 results

in more references due to the higher probability of mismatching

among longer sequences, which reduces the compression ratio. On

the other hand, a longer subsequence tends to be encoded into

one factor, increasing the compression ratio. Second, the maximum

memory cost increases with𝑘 , becausemore references lead tomore

𝑘-mers being stored. Next, the transmission cost has an opposite

trend to the compression ratio. The higher the compression ratio

we can achieve, the less data is delivered to the centralized cloud.

1184

5 7 9 11 13

22

24

26

C
R

The value of k

 CR

6

7

8

9

M
C

 (M
B

)

MC

(a) CR and MC on DK

5 7 9 11 1351

52

53

54

55

TC
 (b

it)

The value of k

 TC

0

1

2

D
el

ay
 (s

)

 Delay

(b) TC and Delay on DK

5 10 15 20 25

18

22

26

30

C
R

The value of k

 CR

4

5

6
M

C
 (M

B
)

MC

(c) CR and MC on HZ

5 10 15 20 25

44

46

48
TC

 (b
it)

The value of k

 TC

6

9

12

15

D
el

ay
 (s

)

 Delay

(d) TC and Delay on HZ

Figure 7: Effect of 𝑘 .

0.1 0.3 0.5 0.7 0.924

25

26

C
R

The value of C

 CR

6

7

8

M
C

 (M
B

)

1.52.14.530.2
 MC

23.5

(a) CR and MC on DK

0.1 0.3 0.5 0.7 0.951

52

53

TC
 (b

it)

The value of C

 TC

0

1

2

D
el

ay
 (s

)
2.241.240.04 0.08

 Delay

2.15

(b) TC and Delay on DK

0.1 0.3 0.5 0.7 0.925

26

27

13.1 10.9
48.1C

R

The value of C

 CR

61.7

4

5

6

M
C

 (M
B

)

35.1

 MC

(c) CR and MC on HZ

0.1 0.3 0.5 0.7 0.945

46

47

TC
 (b

it)

The value of C

 TC

5

6

7

8

9

10.6 15.813.36.3 D
el

ay
 (s

)

2.1

 Delay

(d) TC and Delay on HZ

Figure 8: Effect of 𝐶.

Finally, Figures 7b and 7d show that the time delay increases with

𝑘 in most cases, as the time to initialize each factor rises.

Effect of𝐶. Figure 8 studies the effect of the deletion coefficient

𝐶 that controls the amount of outdated data. Specifically, the blue

numbers alongwith themaximummemory cost in Figures 8a and 8c

report
kmmax
km %, where kmmax is the maximum number of the 𝑘-mers

in memory over all timestamps using reference deletion, while km is

the number without using reference deletion. The figures show that

reference deletion function reduces the memory cost substantially.

We also report the average processing time (ms) of the reference

deletion at each timestamp in Figures 8b and 8d (the blue numbers

along with the time delay). As observed, the processing time is

2–4 orders of magnitude less than the time delay. In addition, both

the compression ratio and the time delay drop with the increasing

of 𝐶 on both DK and HZ. This is because a larger 𝐶 results in

more deletions, which reduces the number of 𝑘-mers stored in

memory. In this case, an upcoming sequence is more likely to be

assigned as a reference. Since the time delay is mainly caused by

compressing non-references, it drops with the decrease of non-

references. However, the drops are smooth because we only delete

𝑘-mers that are unlikely to be referenced.

Effect of 𝛼 . Figure 9 reports the impact of the rewriting coef-

ficient 𝛼 on the compression performance, where 𝛼 controls the

frequency of rewriting and “∞” indicates no rewriting. We see that

the compression ratio of TRACE first increases and then drops with

the increase of 𝛼 on DK, while it continues to increase with 𝛼 on

22

23

24

25

862 ∞

C
R

The value of �

 CR

4 6

7

8

M
C

 (M
B

)

 MC

(a) CR and MC on DK

51

52

53
0.08 00.090.11

TC
 (b

it)

The value of �

 TC

862 ∞4

0.19

0

1

2

D
el

ay
 (s

)

 Delay

(b) TC and Delay on DK

24

25

26

27

C
R

 CR

542 ∞
The value of �
3 3

4

5

M
C

 (M
B

)

 MC

(c) CR and MC on HZ

46

47

48

∞543

TC
 (b

it)

 TC

The value of �
2 5

6

7

8

9

01.631.802.23

D
el

ay
 (s

)

2.67

 Delay

(d) TC and Delay on HZ

Figure 9: Effect of 𝛼 .

30

32

34

36

0.1 0.3 0.5 0.7

C
R

Trajectory similarity

 CR

0.9 6

7

8

M
C

 (M
B

)

 MC

(a) CR and MC

40

42

44

46

D
el

ay
 (s

)

TC
 (b

it)

 TC

0.1 0.3 0.5 0.7
Trajectory similarity

0.9 1

3

5
 Delay

(b) TC and Delay

Figure 10: Effect of trajectory similarity.

51

52

53

82

2.582.55 2.64
2.49TC

 (b
it)

Number of grid cells

 TRA (TC)
 NOI (TC)

1282642322162

2.46

0.2

0.4

0.6

0.8

Ti
m

e
(m

s)

 TRA (Time)
 NOI (Time)

(a) TC and query time on HZ

42

45

48

51

363126

TC
 (b

it)

Number of grid cells

 TRA (TC)
 NOI (TC)

0.2

0.4

0.6

Ti
m

e
(m

s)

128264232216282

25

 TRA (Time)
 NOI (Time)

22

(b) TC and query time on HZ

Figure 11: Effect of number of grid cells gc.
HZ. The reason is that subsequences may be identified wrongly

as being frequent if a small 𝛼 is used, while many truly frequent

subsequences may be missed if a very large 𝛼 is used. Intuitively,

the optimal 𝛼 value highly depends on the dataset. Second, the

maximum memory cost of TRACE drops when 𝛼 = ∞, because
we do not maintain any auxiliary structures for rewriting in this

case. Next, the time delay of TRACE follows the opposite trend

of the compression ratio on both datasets, as it is mainly caused

by initializing factors. Finally, the blue numbers along with the

time delay in Figures 9b and 9d are the average processing time

(ms) of reference rewriting at each timestamp, which are negligible

compared with the time delay.

Effect of Trajectory Similarity.WeperformTRACE on Syn0.1,

Syn0.3, Syn0.5, Syn0.7, and Syn0.9, denoted as 0.1, 0.3, 0.5, 0.7, and

0.9, respectively, to study the impact of trajectory similarities on

compression. Figure 10 shows that the compression ratio increases

and that the transmission cost drops as trajectories become more

similar. Moreover, the maximum memory cost and the time delay

decrease with the increase of similarity because fewer 𝑘-mers are

stored and fewer factors are generated. Overall, TRACE achieves

higher compression performance on datasets with larger similarity,

due to its referential compression.

Effect of gc. Figure 11 reports the transmission cost and query

time when varying the number of grid cells, gc. “TRA” denotes our
TRACE framework while “NOI” denotes the case of no indexing. It

is clear that a larger gc results in higher query efficiency and larger

1185

transmission cost. The blue numbers along the TRACE query time

line denote the index creation time (`s), which is the average time

used on creating/updating indexes for all the arriving locations

per timestamp. The index creation time increases slightly with a

finer grid granularity, i.e., larger 𝑔𝑐 . This is because TRACE updates

the grid information of streaming trajectories once this changes

and then delivers the new information to the centralized cloud

to improve the query efficiency. However, the grid information

contributes at most 6.5% to the total transmission cost and the

index creation time is negligible compared with the time delay.

8 RELATEDWORK
8.1 Raw Data Compression
Raw trajectory compression aims to compact trajectories that have

not been map-matched and targets either offline [6, 26, 45] or online

settings [8, 18, 27]. REST [45] is the first offline reference-based

raw trajectory compression framework. Targeting raw trajectories,

it differs very substantially from TRACE. REST compresses the

timestamps of a non-reference w.r.t. to that of a reference only

when their spatial information are matchable, while TRACE refer-

entially compresses different parts of trajectories separately, which

enables the removal of more redundancy. SQUISH [27] is a repre-

sentative work that aims at reducing data loss and preserves speed

information at high accuracy during compression. Deng et al. [8]

consider direction-preserving compression in streaming settings

and propose an advanced online DPTS algorithm that achieves high

compression ratios. Li et al. [18] take into account the special needs

of real-time surveillance applications and increase the loading speed

of trajectory data very noticeably. Comprehensive experimental

evaluations of raw trajectory compression are available [14, 28, 43].

8.2 Network-constrained Compression
Network-constrained trajectory compression leverages the under-

lying road network to improve compression, which also occurs

either offline or online.

OfflineMode. Krogh et al. [17] compress a trajectory by storing

only the first and last edges of each shortest path in a trajectory.

Ji et al. [13] encode outgoing road segments clockwise based on a

pre-computed clockwise code table. Sun et al. [11, 32] propose a

two-stage spatial compression algorithm using shortest path and

frequent subtrajectory compression. Yang et al. [41] present a very

compact representation that separates the distance information

from timestamps. Koide et al. [16] develop a compression technique

for spatial information of trajectories and support the retrieval of

subpaths. Sui et al. [33] assign each GPS point to the middle point

of a segment and propose a road-network partitioning strategy

on which the compression ratio depends. CLEAN [44] encodes

trajectories by means of frequent patterns. In particular, CLEAN

is the first study to perform temporal compression on top of spa-

tial compression and presents novel pattern concatenation and

generation techniques that always expand the pattern with the

highest support. However, CLEAN needs to count the support of

each newly generated pattern in the trajectory dataset. This incurs

high main memory and running time costs for large datasets, which

precludes it from running in an online manner. UTCQ [19] targets

compression of uncertain trajectories; in contrast, TRACE aims to

compress streaming trajectories in real-time. Specifically, UTCQ

uses an improved TED representation and develops an FJD func-

tion to measure the similarity between trajectory instances and to

select references in batch mode. Instead, TRACE proposes a more

compact speed-based representation and adapts 𝑘-mer matching

for real-time reference selection.

Online Mode. Four studies exist that target online network-

constrained trajectory compression. Chen et al. [3, 4] present a

solution that compresses the edge sequences in trajectories by re-

taining only out-edges with remarkable heading changes and also

uses frequent paths trained offline to further improve compres-

sion. The solution does not consider the compression of temporal

information and locations of trajectories. ONTRAC [31] uses a 𝑘-

order Markov model to learn frequent paths and apply them to

compress incoming edges in real-time. This solution discards the

mapped GPS points of the original trajectories and only estimates

the time of traversing an edge using a trained model. OCT-LSTM [5]

trains models to obtain repetitive movement patterns of the time-

distance sequences using historical data and only transfers data

when predicted values deviate significantly from the actual ones.

Then, re-training is performed at the centralized cloud and the up-

dated model is transmitted to the edge server layer, incurring a high

transmission cost. Moreover, OCT-LSTM does not mine frequent

paths that exist widely and can enhance compression substantially.

If no historical data exists, OCT-LSTM uses linear prediction, called

OCT. All the above methods compress trajectories by discarding

useful information, but TRACE keeps all of them to maintain data

usability. Moreover, both OCT-LSTM and ONTRAC employ an of-

fline training phase as the foundation for their online compression,

while TRACE is designed to compress streaming trajectories in a

fully online fashion, making it more generally usable in practice.

9 CONCLUSION AND FUTUREWORK
We propose a new framework for compressing, transmitting, and

querying streaming network-constrained trajectories in real-time.

We develop a speed-based and a multiple-references based referen-

tial representation to represent trajectories concisely. We propose

𝑘-mer matching based online reference selection with reference

deletion and rewriting. Deletion reduces the storage cost, while

rewriting improves the compression ratio. Moreover, we propose

a transmission strategy that reduces the transmission cost and

ensures that compressed trajectories are decodable. Finally, we en-

able querying of compressed streaming trajectories and provide

indexing and filtering techniques that accelerate real-time query

processing. An experimental study using two real-life datasets and

one synthetic dataset shows that the proposed TRACE framework

outperforms three baselines [5, 44] in terms of compression ratio

and transmission cost. In future research, it is of interest to reduce

the latency and memory cost of online compression and to deploy

TRACE in a distributed cloud setting.

ACKNOWLEDGMENTS
This work was supported in part by the DiCyPS and DIREC centers,

funded by Innovation Fund Denmark. Lu Chen is the corresponding

author.

1186

REFERENCES
[1] Tarique Anwar, Chengfei Liu, Hai L Vu, Md Saiful Islam, and Timos Sellis. 2018.

Capturing the spatiotemporal evolution in road traffic networks. TKDE 30, 8

(2018), 1426–1439.

[2] Michel Bierlaire, Jingmin Chen, and Jeffrey Newman. 2013. A probabilistic map

matching method for smartphone GPS data. TRANSPORT RES C-EMER 26 (2013),

78–98.

[3] Chao Chen, Yan Ding, Zhu Wang, Junfeng Zhao, Bin Guo, and Daqing Zhang.

2019. VTracer: When online vehicle trajectory compression meets mobile edge

computing. IEEE Syst J 14, 2 (2019), 1635–1646.
[4] Chao Chen, Yan Ding, Xuefeng Xie, Shu Zhang, Zhu Wang, and Liang Feng.

2019. TrajCompressor: An online map-matching-based trajectory compression

framework leveraging vehicle heading direction and change. IEEE Trans. Intell.
Transport. Syst 21, 5 (2019), 2012–2028.

[5] Jie Chen, Zhu Xiao, Dong Wang, Daiwu Chen, Vincent Havyarimana, Jing Bai,

andHongyang Chen. 2018. TowardOpportunistic Compression and Transmission

for Private Car Trajectory Data Collection. IEEE Sens. J. 19, 5 (2018), 1925–1935.
[6] Minjie Chen, Mantao Xu, and Pasi Franti. 2012. A fast 𝑜 (𝑛) multiresolution

polygonal approximation algorithm for GPS trajectory simplification. TIP 21, 5

(2012), 2770–2785.

[7] Yixin Chen and Li Tu. 2007. Density-based clustering for real-time stream data.

In SIGKDD. 133–142.
[8] Ze Deng, Wei Han, LizheWang, Rajiv Ranjan, Albert Y Zomaya, andWei Jie. 2017.

An efficient online direction-preserving compression approach for trajectory

streaming data. Future Gener Comput Syst 68 (2017), 150–162.
[9] Sebastian Deorowicz and Szymon Grabowski. 2011. Robust relative compression

of genomes with random access. Bioinformatics 27, 21 (2011), 2979–2986.
[10] Anton Dignös, Michael H Böhlen, and Johann Gamper. 2014. Overlap interval

partition join. In SIGMOD. 1459–1470.
[11] Yunheng Han, Weiwei Sun, and Baihua Zheng. 2017. COMPRESS: A comprehen-

sive framework of trajectory compression in road networks. TODS 42, 2 (2017),
11.

[12] GangHu, Jie Shao, Fenglin Liu, YuanWang, and HengTao Shen. 2016. If-matching:

Towards accurate map-matching with information fusion. TKDE 29, 1 (2016),

114–127.

[13] Yudian Ji, Yuda Zang, Wuman Luo, Xibo Zhou, Ye Ding, and Lionel M Ni. 2016.

Clockwise compression for trajectory data under road network constraints. In

ICBDA. 472–481.
[14] Jonathan Muckell, Jeong-Hyon Hwang, Catherine T. Lawson and SS Rav. 2010.

Algorithms for compressing GPS trajectory data: an empirical evaluation. In

SIGSPATIAL. 402–405.
[15] Ken CK Lee, Wang-Chien Lee, Baihua Zheng and Yuan Tian. 2012. ROAD: A

new spatial object search framework for road networks. TKDE 24, 3 (2012), 547.

[16] Satoshi Koide, Yukihiro Tadokoro, Chuan Xiao, and Yoshiharu Ishikawa. 2018.

CiNCT: Compression and retrieval for massive vehicular trajectories via relative

movement labeling. In ICDE. 1097–1108.
[17] Benjamin Krogh, Christian S Jensen, and Kristian Torp. 2016. Efficient in-memory

indexing of network-constrained trajectories. In SIGSPATIAL. 17–26.
[18] Lin Li, Xuezhi Xia, and Ziqian Xiong. 2019. A Novel Online Trajectory Compres-

sion Algorithm for Real-time Trajectory Surveillance Applications. In IMCEC.
995–999.

[19] Tianyi Li, Ruikai Huang, Lu Chen, Christian S Jensen, and Torben Bach Pedersen.

2020. Compression of uncertain trajectories in road networks. PVLDB 13, 7

(2020), 1050–1063.

[20] Yushuai Li, David Wenzhong Gao, Wei Gao, Huaguang Zhang, and Jianguo Zhou.

2020. Double-mode energy management for multi-energy system via distributed

dynamic event-triggered Newton-Raphson algorithm. IEEE T Smart Grid. 11, 6
(2020), 5339–5356.

[21] Yushuai Li, Wenzhong Gao, Wei Gao, Huaguang Zhang, and Jianguo Zhou.

2020. A distributed double-Newton descent algorithm for cooperative energy

management of multiple energy bodies in energy internet. IEEE T IND INFORM.
(2020).

[22] Yanhong Li, Guohui Li, Jianjun Li, and Kai Yao. 2018. SKQAI: A novel air index for

spatial keyword query processing in road networks. Inf. Sci. 430 (2018), 17–38.
[23] Zijian Li, Lei Chen, and Yue Wang. 2019. G*-tree: An efficient spatial index on

road networks. In ICDE. 268–279.
[24] Wei Liu, Yu Zheng, Sanjay Chawla, Jing Yuan, and Xie Xing. 2011. Discovering

spatio-temporal causal interactions in traffic data streams. In SIGKDD. 1010–1018.
[25] Yuansheng Liu, Hui Peng, Limsoon Wong, and Jinyan Li. 2017. High-speed

and high-ratio referential genome compression. Bioinformatics 33, 21 (2017),

3364–3372.

[26] Cheng Long, Raymond Chi-Wing Wong, and HV Jagadish. 2014. Trajectory

simplification: on minimizing the direction-based error. PVLDB 8, 1 (2014), 49–

60.

[27] Jonathan Muckell, Jeong-Hyon Hwang, Vikram Patil, Catherine T Lawson, Fan

Ping, and SS Ravi. 2011. SQUISH: an online approach for GPS trajectory com-

pression. In COM.Geo. 1–8.
[28] Jonathan Muckell, Paul W Olsen, Jeong-Hyon Hwang, SS Ravi, and Catherine T

Lawson. 2013. A framework for efficient and convenient evaluation of trajectory

compression algorithms. In COM.Geo. 24–31.
[29] Salman Raza, Shangguang Wang, Manzoor Ahmed, and Muhammad Rizwan

Anwar. 2019. A survey on vehicular edge computing: architecture, applications,

technical issues, and future directions. IEEE Wirel Commun 19, 4 (2019), 2322–

2358.

[30] Sankaranarayanan Jagan Samet Hanan and Alborzi Houman. 2008. Scalable

network distance browsing in spatial databases. In SIGMOD. 43–54.
[31] Arlei Silva, Ramya Raghavendra, Mudhakar Srivatsa, and Ambuj K Singh. 2016.

Prediction-based online trajectory compression. arXiv preprint arXiv:1601.06316
(2016).

[32] Renchu Song, Weiwei Sun, Baihua Zheng, and Yu Zheng. 2014. PRESS: A novel

framework of trajectory compression in road networks. PVLDB 7, 9 (2014),

661–672.

[33] Peipei Sui and Xiaoyu Yang. 2018. A privacy-preserving compression storage

method for large trajectory data in road network. J. Grid Comput. 16, 2 (2018),
229–245.

[34] Shun Taguchi, Satoshi Koide, and Takayoshi Yoshimura. 2018. Online map

matching with route prediction. TITS 20, 1 (2018), 338–347.
[35] Tarique Anwar, Chengfei Liu, Hai L. Vu and Christopher Leckie. 2014. Spatial

Partitioning of Large Urban Road Networks. In EDBT. 343–354.
[36] Tarique Anwar, Chengfei Liu, Hai L. Vu and Md Saiful Islam. 2016. Tracking the

evolution of congestion in dynamic urban road networks. In CIKM. 2323–2328.

[37] Jukka Teuhola. 1978. A compression method for clustered bit-vectors. INFORM
PROCESS LETT 7, 6 (1978), 308–311.

[38] SebastianWandelt and Ulf Leser. 2012. Adaptive efficient compression of genomes.

ALGORITHM MOL BIOL 7, 1 (2012), 30.

[39] Sebastian Wandelt and Ulf Leser. 2013. FRESCO: Referential compression of

highly similar sequences. TCBB 10, 5 (2013), 1275–1288.

[40] Yang Xiang, Wanlei Zhou, and Minyi Guo. 2008. Flexible deterministic packet

marking: An IP traceback system to find the real source of attacks. IEEE Trans
Parallel Distrib Syst 20, 4 (2008), 567–580.

[41] Xiaochun Yang, Bin Wang, Kai Yang, Chengfei Liu, and Baihua Zheng. 2017. A

novel representation and compression for queries on trajectories in road networks.

TKDE 30, 4 (2017), 613–629.

[42] Haitao Yuan and Guoliang Li. 2019. Distributed in-memory trajectory similarity

search and join on road network. In ICDE. 1262–1273.
[43] Dongxiang Zhang, Mengting Ding, Dingyu Yang, Yi Liu, Ju Fan, and Heng Tao

Shen. 2018. Trajectory simplification: an experimental study and quality analysis.

PVLDB 11, 9 (2018), 934–946.

[44] Peng Zhao, Qinpei Zhao, Chenxi Zhang, Gong Su, Qi Zhang, and Weixiong Rao.

2019. CLEAN: frequent pattern-based trajectory spatial-temporal compression

on road networks. In MDM. 605–610.

[45] Yan Zhao, Shuo Shang, YuWang, Bolong Zheng, Quoc Viet Hung Nguyen, and Kai

Zheng. 2018. Rest: A reference-based framework for spatio-temporal trajectory

compression. In SIGKDD. 2797–2806.

1187

