
The Case for NLP-Enhanced Database Tuning:
Towards Tuning Tools that “Read the Manual”

Immanuel Trummer
Database Group, Cornell University

Ithaca, New York
itrummer@cornell.edu

ABSTRACT
A large body of knowledge on database tuning is available in the
form of natural language text. We propose to leverage natural
language processing (NLP) to make that knowledge accessible to
automated tuning tools. We describe multiple avenues to exploit
NLP for database tuning, and outline associated challenges and
opportunities. As a proof of concept, we describe a simple prototype
system that exploits recent NLP advances to mine tuning hints
from Web documents. We show that mined tuning hints improve
performance of MySQL and Postgres on TPC-H, compared to the
default configuration.

PVLDB Reference Format:
Immanuel Trummer. The Case for NLP-Enhanced Database Tuning:
Towards Tuning Tools that “Read the Manual”. PVLDB, 14(7): 1159 - 1165,
2021.
doi:10.14778/3450980.3450984

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://tinyurl.com/9crrjezv.

1 INTRODUCTION
A large body of work is available on the topic of database tuning.
This work comes in the form of vendor-provided documentation,
blog entries, or scientific papers. It covers various aspects of data-
base tuning, different systems, hardware, and software configura-
tions, as well as different use cases. This treasure trove of tuning
knowledge is mainly targeted at human database administrators.
Hence, it is represented as natural language text. Up to date, auto-
mated tuning tools do not benefit from it directly.

We propose to leverage recent advances in natural language
processing (NLP) to make this information accessible to database
tuning tools. The state of the art in NLP has recently advanced
significantly by the advent of pre-trained language models. Those
language models correspond to large neural network that have
been pre-trained using large text corpora. As a result, training
them for custom NLP tasks is relatively cheap and requires only
modest amounts of training data [10]. This makes them particularly
well suited for domains such as database tuning where labeling

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 7 ISSN 2150-8097.
doi:10.14778/3450980.3450984

training data requires highly specialized knowledge (making it hard
to obtain large collections of samples).

We see multiple avenues for leveraging NLP for database tun-
ing. First, there are myriads of tuning hints available in the form
of natural language text (e.g., on the Web or in manuals). Those
hints specify for instance how to set values for various database
system parameters to optimize performance. They cover different
scenarios in terms of platform (e.g., different settings are often
recommended for different operating systems or hardware setups)
or workload (e.g., the best settings may differ between analytical
and transactional workloads). Often, such hints propose formulas,
rather than fixed parameter values, allowing them to generalize
across a range of situations. In principle, automated tuning tools
may identify optimal parameter settings by trying options in a
principled manner (e.g., via reinforcement learning [16]) or based
on large amounts of training data. However, mining hints from
text documents can complement those approaches by speeding up
convergence or reducing the amount of required training data.

Second, NLP may enable tuning tools to gain a deeper under-
standing of parameter semantics. For instance, certain parameters
trade performance for reduced consistency guarantees. Such de-
pendencies are typically pointed out in the manual, or outlined in
related tuning hints on the Web. The detrimental effects of reduced
consistency guarantees manifest rarely, making it hard to identify
them based on experiments alone. Hence, parsing text documents
can save the need for additional, system-specific user input, prior
to automated tuning. Third, beyond additional text documents,
already the names of parameters or database elements can hold
valuable information. For instance, an experienced DBA may form
an educated guess about parameter semantics based on parameter
names alone. This can help forming priors for tuning options (e.g.,
increasing parameters related to memory and buffer space tends
to improve performance on analytical workloads). We propose to
enable database tuning tools to apply a similar kind of reasoning.

In the remainder of this paper, we first provide additional back-
ground on natural language processing and on database tuning (see
Section 2). Then, we outline the aforementioned research opportu-
nities in more detail in Section 3. Next, in Section 4, we discuss first
experimental results on mining tuning hints from text documents.
Our early prototype parses text documents and uses pre-trained
language models to identify key sentences, proposing parameter
settings. Further, we classify key sentences according to tuning
hint type, and extract relevant context as well as parameter names
and proposed values. We evaluate our prototype for MySQL and
Postgres, using tuning hints mined from Web documents. We show
that mined configuration recommendations improve performance

1159

https://doi.org/10.14778/3450980.3450984
https://tinyurl.com/9crrjezv
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3450980.3450984


on TPC-H, compared to default settings. Finally, we summarize and
point out future work directions in Section 5.

2 BACKGROUND
We discuss prior work in NLP in Section 2.1. Giving a complete
overview of NLP methods is beyond our scope. Instead, we focus on
recent developments that connect to this work. Section 2.2 discusses
prior work in database tuning and optimization.

2.1 Natural Language Processing
For many NLP tasks, achieving state of the art performance nowa-
days requires large neural networks with many parameters [27].
Training such models is expensive and requires large training sets.
In many scenarios, this makes it prohibitively expensive to train
models from scratch for all but the most common NLP tasks. This
has recently motivated large, pre-trained language models that can
be specialized to new tasks with limited overheads. Arguably, some
of the most impressive advances in NLP over the past few years are
due to such models [24].

Pre-trained language models follow the high-level idea of trans-
fer learning. They are trained on generic tasks for which large
amounts of training data are available. Then, they are specialized to
new tasks using small amounts of training data and with moderate
overheads. For instance, the recently proposed BERT model [6] is
pre-trained on the task of masked language modeling. Here, the
goal is to infer masked words in input sentences. Doing so success-
fully requires a certain “understanding” of syntax and semantics as
well as some commonsense knowledge. All of those are important
for other NLP tasks as well which makes language modelling a
suitable pre-training objective (together with the large amounts of
available training data).

A pre-trained model can be applied to new tasks either by fine-
tuning (i.e., adaptingweights of a pre-trainedmodel via task-specific
training) or by using output of the pre-trained model as features
for another, task-specific model. It has been shown that using pre-
trained models can reduce the number of task-specific samples
required for competitive performance by multiple orders of mag-
nitude [10]. This seems particularly important when using text
analysis for database tuning, as labeling samples often requires spe-
cialized knowledge (e.g., by database administrators) or expensive
data processing (if labels are based on performance results gained
via experiments).

Pre-trained models, and NLP methods more broadly, have been
used in the context of database systems before [15, 17, 25]. However,
typically, they are used on the interface side, to make data more
accessible. Here, we propose to use NLP methods for performance
optimization instead.

2.2 Database Tuning and Optimization
The performance of a database system can be influenced via various
parameters. These include system configuration parameters, typi-
cally specified in configuration files [16, 23, 33]. More broadly, they
include parameters related to physical design (e.g., which index
structures or materialized views to generate [3, 5, 9, 30]), scheduling
decisions [14], and query planning [26].

NLP-Enhanced DB Tuner

NLP Analysis

Optimizer
Priors

Text About System
Manual, Web

Text from Data
Schema, Content

Text from Queries
Query, Comments

Figure 1: NLP-enhanced database tuner: system, data, and
query related text are used to form priors for optimization.

Most of those tuning problems are difficult for two reasons. First,
many of them are NP-hard [4, 5, 12]. This implies high computa-
tional cost for finding optimal solutions. Second, it is often difficult
to model performance in data processing as a function of tuning
choices. For instance, it is notoriously hard to estimate the cardinal-
ity of intermediate results during query processing [8]. This makes
it hard to assess the execution cost of query plans during planning.
Already for that reason, it is difficult to predict the impact of all
tuning choices (e.g., index creations) that are aimed at speeding up
query processing.

Challenges due to unreliable cost estimates have recently moti-
vated a new wave of tuning approaches, based on machine learn-
ing [13, 19, 20, 22, 23]. We use the term “tuning” in a broad sense,
encompassing all of the aforementioned tuning and optimization
problems. The approach proposed in this paper belongs into the
same broad category, as it is implicitly based on machine learning.
It differs from prior work as it uses machine learning for text anal-
ysis. We envision NLP-enhanced database tuning to be used not
as an alternative but in combination with other tuning methods. It
unlocks one additional source of tuning knowledge that can be used
for generating constraints, priors, or priorities for optimization.

3 RESEARCH VISION
We introduce the idea of NLP-enhanced database tuning in general
in Section 3.1. In Sections 3.2 and 3.3, we describe instances of the
aforementioned ideas, based on two concrete use cases.

3.1 NLP-Enhanced Database Tuning
A treasure trove of database tuning knowledge is available in the
form of natural language text. For instance, any diligent database
administrator will first consult the manual when maximizing per-
formance for an unfamiliar system. Beyond the manual, myriads of
tuning hints have been published on the Web in blog entries, online
forums, or scientific papers.

Relevant knowledge is hidden not only in text documents. Even
the names of tuning parameters in configuration files, together
with associated comments, may already provide some intuition for
their semantics and promising values to try. The names of database
schema elements, as well as short associated descriptions in a data
dictionary, may carry useful information on their semantics. Even
queries themselves, containing user-defined column names and
comments, may contain text fragments that are helpful to under-
stand query intent and ultimately optimize their execution.

We argue that recent advances in NLP enable automated tuning
tools to benefit from knowledge contained in text fragments. Fig-
ure 1 shows a template for NLP-enhanced database tuning tools. We

1160



envision systems that may exploit any subset of the aforementioned
types of text fragments, related to system, data, or query workload.
As discussed in more detail next, we see multiple use cases for differ-
ent database tuning problems. We do not argue to rely exclusively
on text for making tuning decisions. We see NLP as a complemen-
tary mechanism, unlocking additional sources of information that
complement others. Other sources of information include statistics
from past query executions [1], as well as information that is col-
lected during tuning by executing sample workloads with specific
configurations (which is the case for tuning methods that rely on
active learning [19] or reinforcement learning [29, 33]). Knowledge
gained by text analysis could for instance serve as a prior for the
optimizer, as illustrated in Figure 1. This means that optimization
will initially favor tuning options that are consistent with sugges-
tions extracted from text. Reinforcement learning (the approach
adopted by several recent database tuning methods [16, 21, 31]) can
integrate priors in various ways. For instance, Monte-Carlo Tree
Search methods [2] typically select actions randomly during initial
exploration. Here, priors can be used as a domain-specific heuristic
instead. Next, we outline two concrete use cases for NLP-enhanced
database tuning.

3.2 NLP-Enhanced System Configuration
Database systems nowadays feature a large set of tuning param-
eters. As pointed out in prior work [1, 32], the number of tuning
parameters keeps growing, making it hard to find optimal configura-
tions manually. In this context, we see multiple avenues to exploit
NLP. First, there is a variety of tuning hints available in online
forums. Those hints cover different workloads, tuning goals, hard-
ware properties and software platforms. The optimal parameter
values depend on that context. Those tuning hints are not always
reliable (and tuning hints from different sources may conflict). We
believe however that aggregating hints from a variety of textual
sources yields at least a reasonable starting point for further tuning.
We verify this intuition in the following section by experiments. In
some cases, even the name of a parameter may yield hints on which
settings to prioritize. E.g., considering a parameter with the term
“buffer_size” in its name, we may first try to increase it (rather than
decrease it) in order to speedup analytical workloads. Such priors
could be gained by analyzing correlations between performance
and parameter settings for a sufficient number of database systems.

Second, we may use NLP to gain a deeper understanding of pa-
rameter semantics. For instance, there are often parameter settings
that increase performance while allowing isolation anomalies. Also,
it is often possible to improve performance over extended peri-
ods by postponing expensive clean-up operations (or paying with
higher overheads during a recovery for instance). Analyzing text in
the manual or in forums can help to spot problematic parameter set-
tings. For instance, parameter settings that relax isolation are often
identified explicitly in associated text. If an appropriately trained
text classifiers identifies such passages, the associated setting can
be discarded or de-prioritized during optimization.

3.3 NLP-Enhanced Cardinality Estimation
Imagine a query filtering a large data set by two predicates. One
predicate restricts column “dayOfWeek” to a constant, the other

one restricts column “uniqueCustomerID” to a constant. Assuming
a target table with millions of rows, and preferring evaluating more
selective predicates earlier, which one would you evaluate first?

Most of us would intuitively evaluate the predicate on the sec-
ond column (“uniqueCustomerID”) first. Based on the name of the
column, we expect unique values. If so, an equality predicate filters
out all but at most one row. For the other column, based on its name
(“dayOfWeek”), we expect a value domain of size seven. Assuming
a uniform distribution of rows over values, the selectivity of an
equality predicate is 1/7. For large tables, we expect the predicate
on customer ID to be the more selective one. Hence, using it first
for filtering is more efficient.

Column names or data dictionary entries associated with schema
elements can sometimes provide a prior for cardinality estima-
tion. Such priors can be learned by considering a sufficiently large
number of data sets, together with cardinality-related information,
during training. In particular, certain column names may imply
expectations on the size of the associated value domain. Also, cor-
relations between columns are often indicated by column names
(e.g., a data set with columns named “date” and “dayOfWeek”). Car-
dinality estimates are often based on assumptions on independent
column content. Priors gained from column names can provide first
warning signs that those assumptions are invalid.

Analyzing text fragments associated with schema elements can-
not replace traditional cardinality estimation methods. Column
names do not always convey useful information. Also, column
names may be misleading or not paint the full picture. For instance,
the data set from the prior example may not contain any entries
with values “Saturday” or “Sunday” in the “dayOfWeek” column
(e.g., if it describes sales of a shop closed on week-ends). Then the
value domains is smaller than the name suggests.

Instead of an alternative, we consider NLP-enhanced analysis
rather as a complement to existing methods. The results of the latter
can be used to corroborate estimates obtained by more traditional
methods. Also, they can be used to guide efforts in gathering addi-
tional information. For instance, prior work has aimed at detecting
inter-column correlations based on samples [11]. If resources for
correlation detection are limited, one can prioritize column groups
where the names indicate a likely correlation.

4 PRELIMINARY RESULTS
We perform a proof of concept for the scenario outlined in Sec-
tion 3.2. Section 4.1 describes a prototype of a simple NLP Analysis
component (see Figure 1) which could be used in that scenario. This
prototype mines tuning recommendations from Web documents.
In Section 4.2, we describe experiments in which we use mined
hints directly for configuration. In a full blown system, following
the sketch from Section 3.1, mined recommendations would form
the input for further optimization stages.

4.1 Prototype Description
Figure 2 shows an overview of a simple prototype system. The goal
of this system is to mine tuning hints for database systems from
input text. The input to the system is a collection of text documents
that (potentially) contain relevant recommendations for tuning a
specific database system. Additionally, the system receives names

1161



System Sentence with Context Hint Expression Type Condition

Postgres If you have a systemwith 1GB ormore of RAM, a reasonable
starting value for shared_buffers is 1/4 of the memory in
your system

𝑠ℎ𝑎𝑟𝑒𝑑_𝑏𝑢𝑓 𝑓 𝑒𝑟𝑠 = 0.25 ·
𝑚𝑒𝑚𝑜𝑟𝑦

Assign 𝑚𝑒𝑚𝑜𝑟𝑦 ≥ 1𝐺𝐵

There are some workloads where even larger settings for
shared_buffers are effective, but given the way PostgreSQL
also relies on the operating system cache, it’s unlikely you’ll
find using more than 40% of RAM to work better than a
smaller amount

𝑠ℎ𝑎𝑟𝑒𝑑_𝑏𝑢𝑓 𝑓 𝑒𝑟𝑠 ≤ 0.4 ·
𝑚𝑒𝑚𝑜𝑟𝑦

Upper
Bound

-

Be aware that if your system or PostgreSQL build is 32-bit, it
might not be practical to set shared_buffers above 2-2.5GB

𝑠ℎ𝑎𝑟𝑒𝑑_𝑏𝑢𝑓 𝑓 𝑒𝑟𝑠 ≤ 2.5𝐺𝐵 Upper
Bound

32-bit

The maintenance_work_mem parameter basically provides
the maximum amount of memory to be used by mainte-
nance operations like vacuum, create index, and alter ta-
ble add foreign key operations ... It’s recommended to set
this value higher than work_mem; this can improve perfor-
mance for vacuuming

𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒_𝑤𝑜𝑟𝑘_𝑚𝑒𝑚 ≥
𝑤𝑜𝑟𝑘_𝑚𝑒𝑚

Lower
Bound

-

MySQL innodb_stats_on_metadata Setting this to “OFF” avoids un-
necessary updating of InnoDB statistics and can greatly
improve read speeds

𝑖𝑛𝑛𝑜𝑑𝑏_𝑠𝑡𝑎𝑡𝑠_𝑜𝑛_𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎

= 𝑂𝐹𝐹

Assign -

innodb_flush_method ... If your disk is stored in SAN,
O_DSYNC might be faster for a read-heavy workload with
mostly SELECT statements

𝑖𝑛𝑛𝑜𝑑𝑏_𝑓 𝑙𝑢𝑠ℎ_𝑚𝑒𝑡ℎ𝑜𝑑

= 𝑂_𝐷𝑆𝑌𝑁𝐶
Assign SAN, read-heavy

Table 1: Subset of tuning hints found on first ten Web documents retrieved via Google queries “Postgres database tuning” and
“MySQL database tuning”.

Text Documents on DB Tuning

Tuning
Parameters
Platform
Properties

Aggregated Tuning Hints

Detect Hints Extract Context

Classify Type

Extract Properties

Instantiate Hint

Aggregate Hint

Figure 2: Overview of prototype: we parse tuning hints from
text documents, classify them, instantiate parameterized
hints for specific platforms, and aggregate potentially con-
flicting hints.

of system-specific configuration parameters, and information about
platform properties (e.g., the main memory size). Next, we describe
the different steps of the pipeline in detail.

First, we identify text snippets in the input that give actionable
tuning advice. For that, we first decompose the input into single
sentences. Then, we detect sentences that propose values or value

ranges for specific parameters. We call them “key sentences” in the
following. We detect such sentences using a classifier based on the
Roberta language model [18]. We describe the training process in
the next subsection.

Sentences with tuning recommendations often depend on prior
context. In particular, we observe that parameter names are often
specified in a section heading or in sentences that precede the key
sentence. Hence, we extract context for each key sentence. For
the moment, we use a simple heuristic that retrieves the last prior
sentence mentioning a parameter name.

Example 4.1. Table 1 shows a few of the tuning hints that can
be extracted from Web documents. The hints focus on Postgres
and MySQL. The first stage of the pipeline aims at extracting key
sentences, such as the ones shown in Table 1, from surrounding
text. Some of them require context (shown in blue).

Next, we classify key sentences based on their type. Here, we
use again a classifier based on Roberta [18]. We assume that each
hint can be translated into an equation that involves the referenced
parameter. We classify hints based on the type of formula. E.g.,
we distinguish hints proposing specific values from hints defining
lower bounds, upper bounds, or sets of recommended values. For the
moment, our prototype only considers hints that propose specific
values. Exploiting value ranges requires a mechanism that explores
the associated search space. We plan to do so in future versions.

1162



System #Sentences #Key S. # Context S.
Postgres 2980 46 29

MySQL 3056 35 20
Table 2: Size of labeled training data.

For each sentence classified as key sentence proposing a specific
value, we extract parameter name and proposed setting (the hint
“properties”). Tuning hints do not always propose concrete values
for a parameter. Instead, they propose a formula that may depend
on constants as well as other parameters or system properties (e.g.,
the number of cores, mainmemory, operating system, or disk space).
Currently, we support extraction of specific parameter values as
well as percentages of mainmemory (one of themost common types
of formulas in our sample). After this step, we instantiate tuning
hints by filling in concrete platform properties for placeholders
(e.g., the precise amount of main memory).

Example 4.2. Table 1 shows hints associated with key sentences.
Hints are represented by an expression that limits the set of possible
values to a subset of recommended values. We distinguish different
types of expressions (e.g., single value assignments versus lower
bounds). Also, some hints come with conditions under which the
recommendations apply.

Different text authors may disagree with regards to the best
parameter settings. Additionally, the optimal setting may depend
on context (e.g., tuning tools and constraints as well as workload
properties). While we plan to refine our text analysis to distinguish
different situations, our current prototype does not yet support
this functionality. Finally, our extraction is noisy and may lead to
incorrect tuning hints. For all of these reasons, extractions from
different text documents may contradict each other. We aggregate
hints from different documents in a final step. For the moment,
we simply filter tuning hints to the ones that are mentioned at
least twice by independent sources. More sophisticated resolution
methods could cluster tuning hints that are not exactly but approx-
imately equivalent. Also, we may weight documents based on the
reputation of the document source.

4.2 Experimental Results
We obtained preliminary experimental results for the prototype
outlined before. We focus on tuning MySQL and Postgres. We
downloaded the first ten documents returned by each of the Google
queries “MySQL database tuning” and “Postgres database tuning”
respectively. In all 20 documents, we identified “key sentences”,
including the ones in Table 1, that propose specific value domains
for specific parameters. Additionally, we identified sentences that
provide context (e.g., the parameter name) required to understand
the key sentence. Table 2 reports the size of the corresponding
subsets. While relatively small, note that pre-trained models have
shown competitive performance on some tasks with as little as 100
labeled training samples [10].

Our prototype uses two classifiers that require supervised train-
ing. First, we classify sentences into key and non-key sentences.
Next, we classify key sentences into six categories based on the type

Stage Postgres MySQL

Detecting Hints 4m27s 4m45s

Classifying Hints 16s 17s
Table 3: Training times for detecting hints in text and for
classifying given hints.

Task Approach MCC Recall Precision F1

Detect Baseline 0.27 0.31 0.25 0.28

This 0.51 0.49 0.55 0.52

Classify Baseline 0.04 0.05 1 0.09

This 0.27 0.91 0.71 0.8
Table 4: Quality metrics when processing hints for MySQL
after training with hints for Postgres.

Task Approach MCC Recall Precision F1

Detect Baseline 0.25 0.33 0.22 0.26

This 0.6 0.48 0.76 0.59

Classify Baseline 0 0.09 1 0.17

This 0.21 0.82 0.53 0.64
Table 5: Quality metrics when processing hints for Postgres
after training with hints for MySQL.

of the associated logical expression (assignment, lower or upper
bound, value range, value set assignment, warning to exclude a
specific value). To make the task more challenging, we train both
classifiers with hints for one system and test with data for the other
system. This simulates the appearance of new database systems
for which hints must be parsed, using training data from prior sys-
tems. We train on the Google CoLab platform 1, using Python 3.6.7
as programming language and the simple transformers library2.
Starting from a pre-trained model (“Roberta-base”), we perform 20
epochs when training to detect tuning sentences and 10 epochs
for classifying tuning sentences. We weight key sentences with a
factor of 50 in the loss function to make up for class imbalance. We
used a default GPU instance with Intel Xeon 2.2GHz CPU, 12.7 GB
of main memory, 68.4 GB of hard disk, and a Tesla T4 GPU.

Table 3 shows training times for both classifiers and for both
systems. Next, we test the classifiers trained with data for the first
system on documents targeted at the other. We compare against a
simple baseline. The baseline considers sentences containing pa-
rameter names and a numerical value as key sentences. The baseline
classifies a sentence, based on the number of values that appear in it
(e.g., multiple values indicate a set of recommended values, a single
value may indicate an assignment or a bound). It selects the class

1https://colab.research.google.com/
2https://simpletransformers.ai/

1163

https://colab.research.google.com/
https://simpletransformers.ai/


Parameter Baseline This

innodb_buffer_pool_size 2.9 GB 16 GB

innodb_log_file_size 16 MB (default)

query_cache_size 0 (default)

query_cache_type 0 (default)

innodb_buffer_pool_instances (default) 8

innodb_flush_log_at_trx_commit (default) 0

join_buffer_size (default) 4 GB
Table 6: Changes to default configuration for MySQL.

Parameter Baseline This

shared_buffers 16 GB 16 GB

maintenance_work_mem 1 GB (default)

checkpoint_completion_target 0.9 (default)

effective_cache_size (default) 4 GB
Table 7: Changes to default configuration for Postgres.

System Default Baseline This

MySQL 307 97 82

Postgres 141 121 119
Table 8: Total time for TPC-H queries in seconds for differ-
ent configurations.

randomly among all classes that are consistent with the number of
values. Tables 4 and 5 report results for the trained classifiers and
the baselines. We compare according to Matthew’s Correlation Co-
efficient (respectively the generalization to the multiclass case [7]).
We also calculate precision, recall, and the F1 score, focusing on
retrieving sentences that can be used by the current prototype (i.e.,
tuning hints of assignment class). The classifiers outperform the
baselines.

Next, we evaluate the end-to-end impact of the tuning hints
mined by the prototype. Again, we train classifiers with documents
from one classifier and process all documents retrieved for the
other system. Besides the classifiers, we use the simple heuristics
outlined before. During aggregation, we only keep tuning hints that
are mined from at least two independent sources. For MySQL, the
system identified 15 sentences as likely tuning sentences with hints,
14 of them as likely assignments. Four of the hints extracted from
those sentences appeared at least twice. For Postgres, the system
identified 17 sentences as likely tuning sentences, 10 of them as
likely assignments. Two extracted hints appeared at least twice.

We compare against two tuning systems that are specialized for
Postgres and for MySQL respectively: the MySQL Tuner3 and the
3https://github.com/major/MySQLTuner-perl

102

103

104

105

Ti
m
e
(m

s)

MySQL

1 2 3 4 5 6 7 8 9 10111213141516171819202122

102

104

TPC-H Query

Ti
m
e
(m

s)

Postgres

Default Configuration This Baseline

Figure 3: Comparing Postgres andMySQL performancewith
different configurations.

Postgresql Tuner4. We consider them as strong baselines as those
tools have been specialized for the database systems we evaluate on.
Tables 6 and 7 describe the changes to the default configuration that
are proposed by the prototype (“This”) as well as by the respective
tuning tool (“Baseline”). We evaluate different configurations on the
TPC-H benchmark [28] with scaling factor 1. We use Postgres 10.15
and MySQL 5.7.32 on an Amazon EC2 t2.2xlarge instance with
200 GB of EBS gp2 storage. The operating system is Ubuntu 18.04.
For each configuration, we perform one warmup run before the
actual measurement.

Figure 3 shows per-query run times and Table 8 shows total run
time. Clearly, both, the configuration proposed by our prototype as
well as the one proposed by the baselines, work better than the de-
fault configuration. Among the two fine-tuned configurations, the
one proposed by the prototype is slightly better. The results come
with several caveats. E.g., first, the system-specific tuning tools
consider additional aspects beyond pure performance (e.g., security,
main memory consumption). Second, the number of analyzed doc-
uments is still fairly small. Nevertheless, the results demonstrate
potential for integrating text analysis into database tuning tools.

5 CONCLUSION
We advocate for the use of text documents and snippets as one
additional source of information in database tuning. NLP-enhanced
database tuners can exploit such information to complement or
corroborate other sources of information, or to guide efforts in
collecting additional information online. We presented and evalu-
ated a simple prototype of an NLP-enhanced database tuner. We
demonstrated that information parsed automatically from the Web
can yield significant speedups, compared to default configurations.

4https://github.com/jfcoz/postgresqltuner

1164

https://github.com/major/MySQLTuner-perl
https://github.com/jfcoz/postgresqltuner


REFERENCES
[1] Dana Van Aken, Andrew Pavlo, and Geoffrey J Gordon. 2017. Automatic database

management system tuning through large-scale machine learning. In SIGMOD.
1009–1024. https://doi.org/10.1145/3035918.3064029

[2] CB Browne and Edward Powley. 2012. A survey of monte carlo tree search
methods. Trans. on Computational Intelligence and AI in Games 4, 1 (2012), 1–49.
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6145622

[3] Alberto Caprara, Matteo Fischetti, and Dario Maio. 1995. Exact and approximate
algorithms for the index selection problem in physical database design. KDE 7, 6
(1995), 955–967. https://doi.org/10.1109/69.476501

[4] S. Chatterji and SSK Evani. 2002. On the complexity of approximate query
optimization. In PODS. 282–292. https://doi.org/10.1145/543649.543650

[5] Surajit Chaudhuri. 2004. Index selection for databases: A hardness study and a
principled heuristic solution. KDE 16, 11 (2004), 1313–1323. http://ieeexplore.
ieee.org/xpls/abs{_}all.jsp?arnumber=1339260

[6] Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
NAACL, Vol. 1. 4171–4186. arXiv:1810.04805

[7] J. Gorodkin. 2004. Comparing two K-category assignments by a K-category
correlation coefficient. Computational Biology and Chemistry 28, 5-6 (2004),
367–374. https://doi.org/10.1016/j.compbiolchem.2004.09.006

[8] Andrey Gubichev, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2015.
How good are query optimizers, really? PVLDB 9, 3 (2015), 204–215.

[9] Himanshu Gupta, Venky Harinarayan, Anand Rajaraman, and Jeffrey D Ullman.
1997. Index selection for OLAP. In ICDE. 208–219. https://doi.org/10.1109/icde.
1997.581755

[10] Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model Fine-
tuning for Text Classification. In ACL. 328–339. https://doi.org/10.3760/cma.j.
issn.04124081.2010.02.006

[11] I F Ilyas, V Markl, P Haas, P Brown, and Ashraf Aboulnaga. 2004. CORDS:
Automatic discovery of correlations and soft functional dependencies. In SIGMOD.
647–658. https://doi.org/10.1145/1007568.1007641 arXiv:ISBN 0-89791-128-8

[12] Howard Karloff and Milena Mihail. 2013. On the complexity of the cinepanettone.
In PODS. 200–213. https://doi.org/10.1057/9781137305657

[13] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and
Alfons Kemper. 2018. Learned cardinalities: estimating correlated joins with deep
learning. In CIDR. arXiv:1809.00677 http://arxiv.org/abs/1809.00677

[14] H Kllapi, E Sitaridi, M M Tsangaris, and Y E Ioannidis. 2011. Schedule Optimiza-
tion for Data Processing Flows on the Cloud. In SIGMOD.

[15] Fei Li and HV Jagadish. 2014. NaLIR: an interactive natural language interface
for querying relational databases. SIGMOD (2014), 709–712. https://doi.org/10.
1145/2588555.2594519

[16] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2018. QTune: A QueryAware
database tuning system with deep reinforcement learning. PVLDB 12, 12 (2018),
2118–2130. https://doi.org/10.14778/3352063.3352129

[17] Xi Victoria Lin, Richard Socher, and Caiming Xiong. 2020. Bridging Textual and
Tabular Data for Cross-Domain Text-to-SQL Semantic Parsing. (2020), 4870–4888.
https://doi.org/10.18653/v1/2020.findings-emnlp.438 arXiv:2012.12627

[18] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A

robustly optimized BERT pretraining approach. arXiv 1 (2019). arXiv:1907.11692
[19] Lin Ma, Bailu Ding, Sudipto Das, and Adith Swaminathan. 2020. Active Learning

for ML Enhanced Database Systems. In SIGMOD. 175–191. https://doi.org/10.
1145/3318464.3389768

[20] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2018. Neo: A Learned
query optimizer. PVLDB 12, 11 (2018), 1705–1718. https://doi.org/10.14778/
3342263.3342644 arXiv:1904.03711

[21] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi.
2018. Learning State Representations for Query Optimization with Deep Rein-
forcement Learning. In DEEM. arXiv:1803.08604 http://arxiv.org/abs/1803.08604

[22] Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. 2020. QuickSel: Quick
Selectivity Learning with Mixture Models. In SIGMOD. 1017–1033. https://doi.
org/10.1145/3318464.3389727 arXiv:1812.10568

[23] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah, Siddharth San-
turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu,
Ran Xian, and Tieying Zhang. 2017. Self-driving database management systems.
In CIDR.

[24] Sebastian Ruder, Matthew E Peters, Swabha Swayamdipta, and Thomas Wolf.
2019. Transfer Learning in Natural Language Processing. In ACL: Tutorials.
15–18.

[25] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq
Minhas, Ashish R Mittal, and Fatma Ozcan. 2016. ATHENA: An ontology-driven
system for natural language querying over relational data stores. VLDB 9, 12
(2016), 1209–1220.

[26] PG G Selinger, MM M Astrahan, D D Chamberlin, R A Lorie, and T G Price. 1979.
Access path selection in a relational database management system. In SIGMOD.
23–34. http://dl.acm.org/citation.cfm?id=582095.582099

[27] Amirsina Torfi, Rouzbeh A. Shirvani, Yaser Keneshloo, Nader Tavaf, and Ed-
ward A. Fox. 2020. Natural language processing advancements by deep learning:
A survey. arXiv (2020), 1–21. arXiv:2003.01200

[28] TPC. 2013. TPC-H Benchmark. http://www.tpc.org/tpch/
[29] Immanuel Trummer, Junxiong Wang, Deepak Maram, Samuel Moseley, Saehan

Jo, and Joseph Antonakakis. 2019. SkinnerDB: regret-bounded query evaluation
via reinforcement learning. In SIGMOD. 1039–1050.

[30] Jian Yang, Kamalakar Karlapalem, and Qing Li. 1997. Algorithms for materialized
view design in data warehousing environment. In VLDB. 136–145. http://www.
vldb.org/conf/1997/P136.PDF

[31] Haitao Yuan, Guoliang Li, Ling Feng, Ji Sun, and Yue Han. 2020. Automatic view
generation with deep learning and reinforcement learning. In ICDE, Vol. 2020-
April. 1501–1512. https://doi.org/10.1109/ICDE48307.2020.00133

[32] Bohan Zhang, Dana Van Aken, Justin Wang, Tao Dai, Shuli Jiang, Jacky Lao,
Siyuan Sheng, Andrew Pavlo, and Geoffrey J Gordon. 1910. A demonstration of
the OtterTune automatic database management system tuning service. VLDB 11,
12 (1910), 1910–1913.

[33] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An
end-to-end automatic cloud database tuning system using deep reinforcement
learning. In SIGMOD. 415–432. https://doi.org/10.1145/3299869.3300085

1165

https://doi.org/10.1145/3035918.3064029
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6145622
https://doi.org/10.1109/69.476501
https://doi.org/10.1145/543649.543650
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=1339260
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=1339260
https://arxiv.org/abs/1810.04805
https://doi.org/10.1016/j.compbiolchem.2004.09.006
https://doi.org/10.1109/icde.1997.581755
https://doi.org/10.1109/icde.1997.581755
https://doi.org/10.3760/cma.j.issn.04124081.2010.02.006
https://doi.org/10.3760/cma.j.issn.04124081.2010.02.006
https://doi.org/10.1145/1007568.1007641
https://arxiv.org/abs/ISBN 0-89791-128-8
https://doi.org/10.1057/9781137305657
https://arxiv.org/abs/1809.00677
http://arxiv.org/abs/1809.00677
https://doi.org/10.1145/2588555.2594519
https://doi.org/10.1145/2588555.2594519
https://doi.org/10.14778/3352063.3352129
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://arxiv.org/abs/2012.12627
https://arxiv.org/abs/1907.11692
https://doi.org/10.1145/3318464.3389768
https://doi.org/10.1145/3318464.3389768
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://arxiv.org/abs/1904.03711
https://arxiv.org/abs/1803.08604
http://arxiv.org/abs/1803.08604
https://doi.org/10.1145/3318464.3389727
https://doi.org/10.1145/3318464.3389727
https://arxiv.org/abs/1812.10568
http://dl.acm.org/citation.cfm?id=582095.582099
https://arxiv.org/abs/2003.01200
http://www.tpc.org/tpch/
http://www.vldb.org/conf/1997/P136.PDF
http://www.vldb.org/conf/1997/P136.PDF
https://doi.org/10.1109/ICDE48307.2020.00133
https://doi.org/10.1145/3299869.3300085

