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ABSTRACT
The Kuhn-Munkres (KM) algorithm is a classical combinatorial op-

timization algorithm that is widely used for minimum cost bipartite

matching in many real-world applications, such as transportation.

For example, a ride-hailing service may use it to find the optimal

assignment of drivers to passengers to minimize the overall wait

time. Typically, given two bipartite sets, this process involves com-

puting the edge costs between all bipartite pairs and finding an

optimal matching. However, existing works overlook the impact of

edge cost computation on the overall running time. In reality, edge

computation often significantly outweighs the computation of the

optimal assignment itself, as in the case of assigning drivers to pas-

sengers which involves computation of expensive graph shortest

paths. Following on from this observation, we observe common

real-world settings exhibit a useful property that allows us to incre-

mentally compute edge costs only as required using an inexpensive

lower-bound heuristic. This technique significantly reduces the

overall cost of assignment compared to the original KM algorithm,

as we demonstrate experimentally on multiple real-world data sets,

workloads, and problems. Moreover, our algorithm is not limited

to this domain and is potentially applicable in other settings where

lower-bounding heuristics are available.
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1 INTRODUCTION
The Kuhn-Munkres (KM) algorithm [14, 16], also known as the

Hungarian Method, is a combinatorial optimization algorithm that

is widely utilized to solve many real-world problems, particularly

in transportation. The KM algorithm solves the assignment problem,

also known as the minimum-weight bipartite matching problem,

which involves finding an optimal pair-wise assignment of a set

of agents to a set of jobs. Assigning an agent to a job is associated

with some cost, thus the goal is to find an optimal assignment or
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matching of agent-job pairs, such that the overall cost is minimized

(or maximized depending on the problem and desired outcome).

Assignment tasks are of particular importance in transportation

problems, and the KM algorithm is widely used as a subroutine

in many existing works [8, 12, 26, 28]. For example, it is used in

ride-hailing services to optimally match drivers to passengers for

maximum utilization of available vehicles. Other examples include

computing mail delivery routes using Route Inspection, where

minimum-weight bipartite matching is used to compute the min-

imum T-join [4] or the order picking problem solved by using

an approximate Traveling Salesman algorithm utilizing bipartite

matching. The KM algorithm takes the assignment costs as input,

hence these costs must be computed for each assignment task. How-

ever, we find that existing works overlook the significance of this

step. Moreover, all of the aforementioned examples involve com-

puting assignment costs based on computationally expensive graph

shortest paths. For example, the cost to assign a car to a passenger

is the wait time, which is commonly modeled by the travel time of

the shortest path in a road network graph. As we discuss next, cost

computation has significant implications for algorithm efficiency

with increasingly expensive assignment cost metrics.

1.1 Motivation
Let 𝑈 be a set of agents and 𝑉 be a set of jobs, both with size

𝑚 = |𝑈 | = |𝑉 |, for which an optimal assignment is required. Also,

let 𝑐 (𝑢, 𝑣) be the cost of assigning agent 𝑢 ∈ 𝑈 to job 𝑣 ∈ 𝑉 . Costs
𝑐 (𝑢, 𝑣)∀𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 are often conceptualized as an𝑚 ×𝑚 matrix.

To the best of our knowledge, all previous work utilizing KM to

solve transport problems like ride-hailing assumes this matrix is

provided to the KM algorithm or the cost of computing the ma-

trix is not a bottleneck. However, in many real-world applications,

computing the matrix is not only a non-trivial cost but also more

computationally expensive than the assignment itself. Moreover,

the matrix may need to be re-computed each time an assignment

is required. Given the real-time nature of transportation problems,

this may be quite frequent, which serves to only exacerbate the

non-trivial cost of computing 𝑐 (𝑢, 𝑣). For example, in a ride-hailing

service, a new assignment is required as new cars become available

and new passenger requests are received continuously in real-time.

According to Fortune
1
, popular ride-hailing services like Grab are

reported to process 6 million ride requests a day, highlighting the

scale of throughput required.

Our observation can be demonstrated using a simple ride-hailing

assignment framework. Let us represent the cost of assigning a

passenger (job) to a ride-hailing car (agent) as the travel-time of

1
https://fortune.com/longform/grab-gojek-super-apps/
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the shortest route from the car to the passenger. All costs for one

car (agent) can be computed by performing a single Dijkstra’s

single-source multiple-destination (SSMD) shortest path query. The

entire cost matrix can be populated by performing𝑚 such searches.

Simple worst-case analysis suggests that this will cost 𝑂 (𝑚 |𝐸 | +
𝑚 |𝑁 | log |𝑁 |) time

2
where |𝑁 | and |𝐸 | are the number of vertices

and edges in the road network graph and𝑚 = |𝑈 | = |𝑉 |. Typical
real-world scenarios would see this dominate the KM algorithm

time complexity of 𝑂 (𝑚3). For example, in the Singapore road

network |𝑁 | is over 280, 000 while 𝑚 might be 100 representing

finding a matching for 100 ride-hailing cars to 100 passengers. We

verify this intuition in practice for the Singapore road network for

varying values of𝑚 in Figure 1a using Dijkstra’s search as above.

As expected, the time to compute the matrix dominates the time

to compute the optimal assignment for increasing𝑚, only being

overtaken when𝑚 reaches 5000. In Figure 1b we show this is still

true even if a fast modern point-to-point shortest path technique

like Contraction Hierarchies is used
3
.
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Figure 1: Proportion of running time spent on matrix com-
putation and finding optimal assignment on Singapore road
network for varying𝑚

1.2 Contributions
We have seen that computing the cost matrix often dominates com-

puting the optimal assignment itself. Moreover, the cost matrix

must be computed from scratch for each assignment problem and

may be required to be performed frequently in real-world applica-

tions such as ride-hailing. In attempting to address the scalability

and throughput concerns that arise as a result, it begs the question

of whether all assignment costs are even necessary to compute an

optimal solution as first observed by [15]. We observe that this is

also not necessarily the case due to a property exhibited by opti-

mal assignments in typical real-world scenarios. For example, in

a ride-hailing service for a particular geographic region, such as

Singapore, typically passengers and drivers will be distributed in

various parts of the region. It is unlikely that a driver 𝑢 ∈ 𝑈 will be

assigned to some passenger 𝑣 ∈ 𝑉 a significant distance away. We

say that such problems exhibit high spatial locality of matching. Us-
ing this intuition we propose a minimum-weight bipartite matching

algorithm based on the KM algorithm that incrementally computes

costs that are most likely to be in the optimal matching. We develop

2
Dijkstra’s complexity using Fibonacci heaps. Note that the number of edges |𝐸 | on
road network graphs observes |𝐸 | = 𝑂 ( |𝑁 |)
3
While faster techniques for point-to-point shortest path search are available, Dijkstra

is typically faster for SSMD search when many destinations are involved. This is

because for increasing𝑚 the number of point-to-point queries increases by its square,

explaining why the matrix computation cost percentage is still high for large values of

𝑚 in Figure 1b for CH.

novel refinement rules using inexpensive lower-bounding heuris-

tics to only compute costs when necessary. Notably, our technique

still computes the optimal matching, but does so while computing

far fewer expensive pair-wise exact assignment costs, significantly

reducing the overall running time. Moreover, our technique is a

drop-in replacement for the KM algorithm in any technique or

framework that uses the KM as a subroutine. Our contributions can

be summarized as follows:

• We identify that computing assignment costs such as graph

shortest paths are more computationally expensive than

finding the optimal assignment itself in typical workloads

for real-world problems such as ride-hailing.

• We present a minimum-weight bipartite matching algorithm

based on the Kuhn-Munkres algorithm that incrementally

computes the exact assignment costs required for an assign-

ment only when it is necessary according to novel pruning

rules utilizing inexpensive lower-bounding heuristics.

• We implement a specialized lower-bounding heuristic for

use in ride-hailing services, where the assignment cost is

represented by the travel-time of the shortest path in a road

network graph, adapting landmark-based lower-bounds and

graph search techniques.

• Our extensive experimental investigation using large-scale

real-world data sets and workloads demonstrates the signifi-

cant improvement achieved by our proposed solutions with

highly favorable implications for real-world scalability and

throughput.

2 PRELIMINARIES
The assignment problem is often formulated as theminimumweight

bipartite matching problem. In this formulation, we are given a

bipartite graph 𝐵 = (𝑈 ∪𝑉 , 𝐸𝐵) where𝑈 and𝑉 are the bipartite sets

of vertices. 𝐸𝐵 is the set of edges, and contains an edge (𝑢, 𝑣)∀𝑢 ∈
𝑈 , 𝑣 ∈ 𝑉 . The weight 𝑐 (𝑢, 𝑣) of an edge represents the cost of

assigning 𝑢 to 𝑣 . The assignment problem finds a perfect matching,
where every object in 𝑈 is assigned to exactly one object in 𝑉 (and

vice versa), such that the sum of the weights over all assigned pairs

is minimized. For simpler exposition, we consider the size of sets

to be equal, i.e.,𝑚 = |𝑈 | = |𝑉 |, which in practice can be simulated

by adding dummy vertices to the smaller set. Next, we describe the

preliminaries for the applied setting for which our techniques are

designed to be deployed.

Road Network: In the case of a ride-hailing service, the bipar-

tite sets consist of the locations of passengers and drivers to be

matched. The cost of assigning a passenger to a driver is commonly

considered as the minimum travel-time for the driver to reach the

passenger’s location. These costs can be computed by first consid-

ering the road network𝐺 = (𝑉𝐺 , 𝐸), where 𝑉𝐺 is the set of vertices

and 𝐸 is the set of edges. Each edge (𝑥,𝑦) ∈ 𝐸 represents the road

segments connecting junction vertices 𝑥 and 𝑦 with weight𝑤 (𝑥,𝑦)
representing the travel-time to traverse the edge. Note that other

real positive metrics, such as physical length, can also be consid-

ered. In our context travel-time, and hence the waiting time for

passengers, is most relevant. The network distance 𝑑 (𝑠, 𝑡) between
a source vertex 𝑠 and destination vertex 𝑡 is the minimum sum

of weights connecting vertices 𝑠 and 𝑡 , i.e., by the shortest path
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in 𝐺 . Note that we consider passenger and driver locations that

occur on vertices for simpler exposition and implementation, but

our techniques can be extended for when this is not the case. In

relation to the assignment problem, 𝑐 (𝑢, 𝑣) = 𝑑 (𝑢, 𝑣).
LandmarkLower-Bounds (LLBs): Our proposed technique lever-
ages the idea of computing an inexpensive lower-bound on the

assignment cost 𝑐 (𝑢, 𝑣) that is as accurate as possible. In the case

of network distance as assignment cost, Landmark Lower-Bounds

(LLBs) [10] are an effective lower-bound for shortest paths in graphs

and can be computed cheaply. LLBs involve selecting 𝑘 “landmark”

vertices and computing network distances to each vertex in𝑉 from

each landmark in an offline pre-processing step. During the online

query phase, a lower-bound distance between any two vertices 𝑠

and 𝑡 may be computed using the distances to any landmark ver-

tex 𝑙 and the triangle inequality as in (1). A surprisingly accurate

lower-bound can be computed by considering lower-bounds over

all 𝑘 landmarks as in (2), even for small values of 𝑘 . Consequently,

we utilize LLBs as the lower-bound on assignment cost 𝑐 (𝑢, 𝑣).

𝐿𝐵𝑙 (𝑞, 𝑝) = |𝑑 (𝑙, 𝑞) − 𝑑 (𝑙, 𝑝) | ≤ 𝑑 (𝑞, 𝑝) (1)

𝐿𝐵𝑚𝑎𝑥 (𝑞, 𝑝) = max

𝑙 ∈𝐿
( |𝑑 (𝑙, 𝑞) − 𝑑 (𝑙, 𝑝) |) (2)

Kuhn-Munkres Algorithm: We use the Kuhn-Munkres (KM)

algorithm as the basis for our improved techniques. KM works by

iteratively updating a set of labels 𝑙𝑢 (resp. 𝑙𝑣 ) for bipartite set 𝑈

(resp.𝑉 ) that imply a reduced cost of each bipartite edge (𝑢, 𝑣) ∈ 𝐸𝐵 :

𝑐𝑟 (𝑢, 𝑣) = 𝑐 (𝑢, 𝑣) − 𝑙𝑢 − 𝑙𝑣 (3)

KM adjusts the labels to generate edges of zero reduced costs

while maintaining the invariants below. If a perfect matching exists

amongst these edges (referred to as the reduced graph), then this

matching is the optimal solution to the minimum-weight bipartite

matching problem [20].

Invariant 1. The reduced cost of each edge must be non-negative,
i.e., 𝑐𝑟 (𝑢, 𝑣) ≥ 0

Invariant 2. Each edge in𝑀 is "tight" in that it has reduced cost
zero, i.e., 𝑐𝑟 (𝑢, 𝑣) = 0 where (𝑢, 𝑣) ∈ 𝑀

KM uses the augmenting path algorithm [6] to find a perfect

matching in the reduced graph. When one does not exist, the labels

are adjusted by computing 𝛿 below, where 𝑆 ∈ 𝑈 and 𝑁 (𝑆) ∈ 𝑉 are

vertices visited by the search. We refer to [5, 6, 20] for details of

these well-known classical techniques.

𝛿 :=𝑚𝑖𝑛{𝑐 (𝑢, 𝑣) − 𝑙𝑢 − 𝑙𝑣 : 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑁 (𝑆)} (4)

3 INCREMENTAL KUHN-MUNKRES BY
LOWER-BOUNDS

Recall the intuition of spatial locality of matching, that posits an
optimal assignment for ride-hailing matching task is unlikely to as-

sign drivers to passengers that are very far away. A simple approach

to utilize this intuition might be to subdivide the region further

and run the KM algorithm on each subregion separately. Naturally,

this would reduce the size of𝑚 and hence the number of assign-

ment costs that must be computed. However, this approach would

no longer provide a globally optimal assignment. For example, at

borders between regions, suboptimal assignment is likely to occur.

In this section, we propose methods to utilize the intuition and

avoid computation of exact costs, while still returning the globally

optimal result.

3.1 Lower-Bounding Module
Our technique is underpinned by the ability to compute lower-

bounds on edge cost 𝑐 (𝑢, 𝑣) during the KM algorithm iterations. We

propose an abstract Lower-Bound Module that provides the ability

to compute two different lower-bounds, defined as follows:

Definition 1. (Individual Lower-Bound Edge Cost) Given vertices
𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 , an individual lower-bound edge-cost 𝐿𝐵(𝑢, 𝑣) is a
lower-bound on the true edge-cost 𝑐 (𝑢, 𝑣), i.e., 𝐿𝐵(𝑢, 𝑣) ≤ 𝑐 (𝑢, 𝑣).

Definition 2. (Group Lower-Bound Edge Cost) Given vertex 𝑢 ∈
𝑈 , let 𝑄𝑢 ⊆ 𝑉 represent the set of vertices for which the true edge
cost is not known (initially 𝑄𝑢 = 𝑉 ). A group lower-bound edge
cost 𝐿𝐵(𝑄𝑢 ) is a lower-bound for all edge-costs 𝑐 (𝑢, 𝑣)∀𝑣 ∈ 𝑄𝑢 , i.e.,
𝐿𝐵(𝑄𝑢 ) ≤ 𝑐 (𝑢, 𝑣)∀𝑣 ∈ 𝑄𝑢 .

The group lower-bound edge cost ismost efficiently implemented

as a minimum priority queue. This allows us to iteratively extract

candidates from 𝑄𝑢 , while maintaining the definition. Moreover,

such a queue can be lazily updated such that the definition is met.

That is, 𝑄𝑢 is not required to contain individual lower-bounds for

all vertices in𝑉 , as identified in [1] in their on-demand heaps. Next,

we show how the above functionality will allow us to modify the

KM algorithm to determine when it is necessary to compute the

exact cost 𝑐 (𝑢, 𝑣), using individual and group lower-bound edge

costs to avoid computation of exact costs where possible.

Note that the solution is agnostic to the implementation of 𝑄𝑢

and the type of cost 𝑐 (𝑢, 𝑣), and can be applied to any problem

setting. However, we specify the implementation for costs based on

shortest paths in road network graphs where significant benefits

can be gained. This is because computation of shortest paths in

road network graphs is a highly computationally intensive task

and is often used in real-world applications such as ride-hailing

services and the route inspection problem. Figure 2 depicts the

components of the system. The priority queues for each vertex

𝑢 ∈ 𝑈 are exposed to the KM algorithm module, as is a module to

compute the true cost 𝑐 (𝑢, 𝑣) (when deemed necessary) using a fast

shortest path distance technique such as G-tree [29].

Matching 
Module

Min Priority Queue Q1 for u1

Min Priority Queue Q2 for u2

Min Priority Queue Qm for um

Shortest 
Path Module

… Query

Results

Ride-Hailing 
Service

Figure 2: System Overview

3.2 Refinement Rules
We propose the Incremental Kuhn-Munkres (IKM) algorithm (Algo-

rithm 1) that incrementally computes exact edge-costs only when

necessary, utilizing the Lower-Bound Module in the process. In
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this section, we propose two novel refinement rules, which des-

ignate when an exact cost 𝑐 (𝑢, 𝑣) must be computed during the

incremental process.

Algorithm 1 Optimized KM algorithm using refinement rules

1: function OptKuhnMunkres(𝑈 ,𝑉 )

2: 𝑀 ← 𝜙 and initialize labels 𝑙𝑢 = 𝑙𝑣 = 0

3: Initialize Lazy MPQ𝑄𝑢 for each 𝑢 ∈ 𝑈
4: while𝑀 is not a perfect matching (i.e., |𝑀 |! =𝑚) do
5: while unmarked free vertex𝑢 ∈ 𝑈 & augment. path not found do
6: Call find-augmenting-path(𝑢) subroutine on 𝑢 (mark 𝑢)

7: if augmenting path 𝑃 found then
8: Augment𝑀 by 𝑃 (increasing size of𝑀 by 1)

9: else
10: Call update-labels subroutine

11: return minimum-weight matching𝑀

Rule 1 - BFS Expansion: Let us first define refinement as extract-
ing an element 𝑣 from queue𝑄𝑢 with the smallest individual lower-

bound, and computing its cost 𝑐 (𝑢, 𝑣), and then updating 𝐿𝐵(𝑄𝑢 )
such that Definition 2 ismaintained.We can compute a lower-bound

reduced cost for all vertices in 𝑄𝑢 based on (3), as we propose in

Lemma 3.1.

Lemma 3.1. 𝑐𝑟 (𝑢, 𝑣) ≥ 𝐿𝐵𝑟 (𝑢, 𝑣) = 𝐿𝐵(𝑄𝑢 ) − 𝑙𝑢 − 𝑙𝑣∀𝑣 ∈ 𝑄𝑢

Proof. By Definition 2, we have 𝐿𝐵(𝑄𝑢 ) ≤ 𝑐 (𝑢, 𝑣)∀𝑣 ∈ 𝑄𝑢 . By

(3), 𝑐𝑟 (𝑢, 𝑣) = 𝑐 (𝑢, 𝑣) − 𝑙𝑢 − 𝑙𝑣 . Therefore, 𝑐𝑟 (𝑢, 𝑣) ≥ 𝐿𝐵(𝑄𝑢 ) −
𝑙𝑢 − 𝑙𝑣 . Substituting gives 𝑐𝑟 (𝑢, 𝑣) ≥ 𝐿𝐵𝑟 (𝑢, 𝑣), thus completing the

proof. □

The proof of Lemma 3.1 follows in a straight-forward manner

given the definition of 𝐿𝐵(𝑄𝑢 ). During the BFS expansion in the

augmenting path algorithm, the KM algorithm expands all “tight”

edges, i.e., those with reduced cost zero by Invariant 2. To ensure

correctness of this expansion in our algorithm, we first propose the

following theorem:

Theorem 3.2. Given 𝑣 ∈ 𝑄𝑢 , if 𝐿𝐵𝑟 (𝑢, 𝑣) > 0 where 𝐿𝐵𝑟 (𝑢, 𝑣)
computed by the definition in Lemma 3.1, then edge (𝑢, 𝑣) cannot be
a tight edge.

Proof. From Lemma 3.1, we have that 𝑐𝑟 (𝑢, 𝑣) ≥ 𝐿𝐵𝑟 (𝑢, 𝑣). If
𝐿𝐵𝑟 (𝑢, 𝑣) > 0, then it follows that 𝑐𝑟 (𝑢, 𝑣) > 0. Thus, 𝑐𝑟 (𝑢, 𝑣) ≠ 0

and therefore edge (𝑢, 𝑣) cannot be tight by Invariant 2. □

Theorem 3.2 implies the first refinement rule, which we incor-

porate into a modified augmenting path search as presented in

Algorithm 2. If the BFS reaches vertex 𝑣 ∈ 𝑉 from vertex 𝑥 ∈ 𝑈 and

𝐿𝐵𝑟 (𝑥, 𝑣) ≤ 0, we iteratively refine 𝑄𝑥 by extracting the element

in 𝑄𝑥 with the smallest lower-bound and updating 𝐿𝐵(𝑄𝑥 ) (and
therefore 𝐿𝐵𝑟 (𝑥, 𝑣)) for the vertices remaining in 𝑄𝑥 . This loop

terminates when either (a) 𝐿𝐵𝑟 (𝑥, 𝑣) > 0 and by Theorem 3.2, edge

(𝑥, 𝑣) is not tight and need not be expanded or (b) element 𝑣 is

extracted from 𝑄𝑥 . If the extracted element is not 𝑣 then we save

it in excess set 𝐸, which we make sure to re-insert into the queue

after the loop ends, to ensure 𝐿𝐵(𝑄𝑥 ) remains accurate for other

𝑣 ∈ 𝑉 while ensuring we only compute necessary edge costs. Note,

𝐿𝐵𝑥 remains correct for 𝑣 even when we remove 𝑒 ≠ 𝑣 from 𝑄𝑥 by

the definition 𝐿𝐵(𝑄𝑥 ).

Algorithm 2 Find augmenting paths given Rule 3.2

1: function find-augmenting-path(𝑢)

2: Initialize new queue 𝑃𝑄 by inserting 𝑢

3: while 𝑃𝑄 is not empty do
4: Extract candidate 𝑥 from 𝑃𝑄

5: for each neighbor 𝑣 ∈ 𝑉 of 𝑥 do
6: if 𝑐 (𝑥, 𝑣) not yet computed and 𝐿𝐵𝑟 (𝑥, 𝑣) ≤ 0 by Lemma (3.1)

then
7: while 𝐿𝐵𝑟 (𝑥, 𝑣) ≤ 0 and 𝑐 (𝑥, 𝑣) not yet computed do
8: Extract minimum element 𝑒 ∈ 𝑉 from𝑄𝑥

9: if 𝑒 = 𝑣 then
10: Compute 𝑐 (𝑥, 𝑣) and break loop

11: else
12: Add 𝑒 to set 𝐸 and update 𝐿𝐵𝑟 (𝑥, 𝑣)
13: Re-insert all 𝑒 ∈ 𝐸 back to𝑄𝑥 by 𝐿𝐵 (𝑥, 𝑒)
14: if 𝑐 (𝑥, 𝑣) was calculated and 𝑐𝑟 (𝑥, 𝑣) = 0 then
15: if 𝑣 is a free vertex (i..e., not covered by𝑀) then
16: return path 𝑃 from 𝑢 to 𝑣 as augmenting path

17: else
18: Add each neighbor 𝑢 ∈ 𝑈 of 𝑣 where (𝑢, 𝑣) ∈ 𝑀 to𝑄

Rule 2 - 𝛿 Computation: Computing exact edge costs may also

be required to determine 𝛿 by (4). Let 𝛼 :=𝑚𝑎𝑥 (𝑙𝑣) : 𝑣 ∉ 𝑁 (𝑆), i.e.,
the maximum label value for vertices not in set 𝑁 (𝑆) defined in

Section 2 (vertices in𝑉 visited by the augmenting path search). We

propose an iterative process as in Algorithm 3 to refine and update

𝛿 until its final value is attained. We first propose Lemma 3.3 to

define a lower-bound on the smallest reduced cost for any edge

(𝑢, 𝑣) where 𝑣 ∈ 𝑄𝑢 :

Lemma 3.3. Let 𝐿𝐵𝑟 (𝑢) = 𝐿𝐵(𝑄𝑢 )−𝑙𝑢−𝛼 . Then 𝐿𝐵𝑟 (𝑢) ≤ 𝑐𝑟 (𝑢, 𝑣)
for all 𝑣 ∈ 𝑄𝑢 \ 𝑁 (𝑆).

Proof. We prove Lemma 3.3 by contradiction. Let us assume

there exists 𝐿𝐵𝑟 (𝑢) > 𝑐𝑟 (𝑢, 𝑣) for some 𝑣 ∈ 𝑄𝑢 . Since 𝑐𝑟 (𝑢, 𝑣) =
𝑐 (𝑢, 𝑣) − 𝑙𝑢 − 𝑙𝑣 and by the definition of 𝐿𝐵(𝑄𝑢 ), we have 𝑐𝑟 (𝑢, 𝑣) ≥
𝐿𝐵(𝑄𝑢 ) − 𝑙𝑢 − 𝑙𝑣 . Given our assumption and 𝛼 ≥ 𝑙𝑣 , 𝑐𝑟 (𝑢, 𝑣) ≥
𝐿𝐵(𝑄𝑢 ) − 𝑙𝑢 −𝛼 . That is, 𝑐𝑟 (𝑢, 𝑣) ≥ 𝐿𝐵𝑟 (𝑢, 𝑣) thereby contradicting
our assumption. □

Now, given the definition of 𝐿𝐵𝑟 (𝑢) we can propose Theorem

3.4 to identify when to refine a 𝑄𝑢 .

Theorem 3.4. Let 𝛿𝑐𝑎𝑛𝑑 = 𝑐𝑟 (𝑥,𝑦) be a potential 𝛿 by (4) for
𝑥 ∈ 𝑆,𝑦 ∉ 𝑁 (𝑆). Given some 𝑢 ∈ 𝑆 , if 𝛿𝑐𝑎𝑛𝑑 < 𝐿𝐵𝑟 (𝑢), then 𝛿𝑐𝑎𝑛𝑑 <

𝑐𝑟 (𝑢, 𝑣)∀𝑣 ∈ 𝑄𝑢 .

Proof. By Lemma 3.3, we have 𝐿𝐵𝑟 (𝑢) ≤ 𝑐𝑟 (𝑢, 𝑣)∀𝑣 ∈ 𝑄𝑢 .

Therefore, if 𝛿𝑐𝑎𝑛𝑑 < 𝐿𝐵𝑟 (𝑢) then 𝛿𝑐𝑎𝑛𝑑 < 𝑐𝑟 (𝑢, 𝑣)∀𝑣 ∈ 𝑄𝑢 . Thus

completing the proof. □

Using Theorem 3.4, Algorithm 3 can iteratively refine queues

until converging to the correct 𝛿 . 𝛿𝑐𝑎𝑛𝑑 is the candidate value of

𝛿 that we will iteratively update until it is correct. We initialize

𝛿𝑐𝑎𝑛𝑑 with the minimum reduced cost 𝑐𝑟 (𝑢, 𝑣) amongst 𝑢 ∈ 𝑆 and

𝑣 ∉ 𝑁 (𝑆) for which 𝑐 (𝑢, 𝑣) has been already calculated and infinity

otherwise. Given𝑄𝑢 where𝑢 ∈ 𝑆 , we compute lower-bound 𝐿𝐵𝑟 (𝑢)
using Lemma 3.3. While 𝐿𝐵𝑟 (𝑢) < 𝛿𝑐𝑎𝑛𝑑 , we extract the minimum

element from 𝑄𝑢 . If it is in 𝑁 (𝑆) we add to an excess set 𝐸, other-

wise, we try to filter it by computing an individual lower-bound
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using the Lower-Bounding Module according to Definition 1, thus

potentially avoiding computing an expensive exact cost. Otherwise,

we compute the exact cost of the edge and update 𝛿𝑐𝑎𝑛𝑑 if it im-

proves it. Once 𝑄𝑢 is sufficiently refined (i.e., 𝐿𝐵𝑟 (𝑢) ≥ 𝛿𝑐𝑎𝑛𝑑 ), we

repeat the procedure for all 𝑢 ∈ 𝑆 . 𝛿 = 𝛿𝑐𝑎𝑛𝑑 upon termination.

Algorithm 3 Updated labels based on Rule 3.4

1: function update-labels

2: Let 𝑆 ⊂ 𝑈 & 𝑁 (𝑆) ⊂ 𝑉 be vertices visited by find-augmenting-

path

3: Set 𝛿 to min 𝑐𝑟 (𝑢, 𝑣) for𝑢 ∈ 𝑆 and 𝑣 ∉ 𝑁 (𝑆) where 𝑐 (𝑢, 𝑣) has been
computed

4: for each 𝑢 ∈ 𝑆 do
5: while 𝐿𝐵𝑟 (𝑢) < 𝛿𝑐𝑎𝑛𝑑 with 𝐿𝐵𝑟 (𝑢) by Lemma (3.3) do
6: Extract minimum element 𝑒 ∈ 𝑉 from𝑄𝑢

7: if 𝑒 ∉ 𝑁 (𝑆) then
8: Compute individual 𝐿𝐵 (𝑢, 𝑒) by Lower-Bounding Module

9: Set 𝐿𝐵𝑟 (𝑢, 𝑒) = 𝐿𝐵 (𝑢, 𝑒) − 𝑙𝑢 − 𝑙𝑒
10: if 𝐿𝐵𝑟 (𝑢, 𝑒) < 𝛿𝑐𝑎𝑛𝑑 then
11: Compute 𝑐 (𝑢, 𝑒) and 𝑐𝑟 (𝑢, 𝑒)
12: if 𝑐𝑟 (𝑢, 𝑒) < 𝛿𝑐𝑎𝑛𝑑 then
13: Set 𝛿𝑐𝑎𝑛𝑑 = 𝑐𝑟 (𝑢, 𝑒)
14: else
15: Add 𝑒 to set 𝐸 and update 𝐿𝐵𝑟 (𝑢)
16: else
17: Add 𝑒 to set 𝐸 and update 𝐿𝐵𝑟 (𝑢)
18: Re-insert all 𝑒 ∈ 𝐸 back to𝑄𝑢 by 𝐿𝐵 (𝑢, 𝑒)
19: for each 𝑢 ∈ 𝑆 do
20: Increase 𝑙𝑢 by 𝛿

21: for each 𝑣 ∈ 𝑁 (𝑆) do
22: Decrease 𝑙𝑣 by 𝛿

The incremental computation of exact costs, adjudicated by the

refinement rules, ensures that no other possible 𝛿 can be lower

than the one computed by Algorithm 3. Similar to the modified

augmenting path search in Algorithm 2, this is done in a greedy

heuristic way, such that we only refine (and thus compute exact

costs) for edges when it is necessary while still producing the same

result as the original KM algorithm. We propose Theorem 3.5 to

show that our refinement rules still produce the same assignment

as the original KM algorithm.

Theorem 3.5. The matching produced by Algorithm 1 is identical
to the matching produced by the original Kuhn-Munkres algorithm
using the augmenting path search method.

Proof Sketch: To prove Theorem 3.5 it is sufficient to show that

(a) the modified-BFS and (b) the calculated delta is the same as the

original. First, (a) follows simply as Algorithm 1 applies Theorem

3.2 to all edges originating from 𝑢 ∈ 𝑈 , so no tight edges are missed

during the𝑈 to𝑉 expansion. For (b), Algorithm 1 iteratively applies

Theorem 3.4 to each 𝑢 ∈ 𝑆 . As such no 𝑐𝑟 (𝑢, 𝑣)∀𝑢 ∈ 𝑆, 𝑣 ∉ 𝑁 (𝑆) can
be smaller than 𝛿𝑐𝑎𝑛𝑑 at termination.

3.3 Incremental Kuhn-Munkres Variants
While we proposed our techniques in a way that is agnostic to

the implementations and problem setting, the efficacy of our im-

provement will depend highly on these factors. The accuracy of

Name Region # Vertices # Edges
SIN Singapore 289,918 632,243

CAL California & Nevada 1,890,815 4,630,444

E Eastern US 3,598,623 8,708,058

Table 1: Road Network Datasets

the lower-bounds (i.e., how close they are to the true edge cost)

will determine how effective the filtering steps are. The net gain

in performance will be determined by the overhead added by our

modifications versus the time saved avoiding exact computations.

We propose two variants of our Increment Kuhn-Munkres tech-

nique to investigate the interplay between filtering efficiency versus

overhead as described below:

IKM-DIJK: In this variant, we utilize the priority queue used by

Dijkstra’s search from each𝑢 ∈ 𝑈 to implement𝑄𝑢 . Both individual

and group lower-bounds provided by the Lower-Bounding Module

utilize the minimum key in the priority queue. The traditional KM

implementation would simply conduct a Dijkstra search from each

𝑢 ∈ 𝑈 , whereas our incremental approach stops and restarts the

search as necessary, potentially terminating earlier. IKM-DIJK will

provide an interesting point of comparison as it essentially adds

no overhead to the original KM algorithm that utilizes Dijkstra to

populate the whole distance matrix.

IKM-CAG: Many road network graph query processing studies

have identified the potential benefit of using off-line pre-processing

to increase online query performance. As a result, many techniques

to compute shortest paths, lower-bounds, and retrieve nearest ob-

jects have been proposed that utilize indexing to improve perfor-

mance. For our second variant, we implement 𝑄𝑢 using COLT [2],

which is a state-of-art-technique technique to retrieve objects by

minimum lower-bounds. We utilize the ALT index [10] to provide

accurate but inexpensive lower-bound computations on shortest

path distances in graphs. Lastly, we utilize G-tree [29] to efficiently

compute shortest path distances with a reasonable memory foot-

print. Both the ALT and G-tree indexes are built in an offline pre-

processing step, whereas COLT is unique to the current assignment

query and built online at query time. All query time overheads are

included in the running times reported in all of our experiments.

Approximate KM: [15, 22] proposed an approach similar in goal

to ours to reduce the number of edges evaluated in the assignment

process and terminate the matching algorithm early. Their tech-

nique focuses on reducing the time to find an assignment as the

edge costs in their domain are not as expensive as graph shortest

paths. However, we see an opportunity to use their approach and

our lower-bounds costs to efficiently find an approximate assign-

ment. Thus we propose an Approximate KM approach by adapting

their technique based on the minimum-cost flow algorithm for

Kuhn-Munkres and utilizing our lower-bound edge costs.

4 EXPERIMENTS
We conduct a detailed experimental study on the performance of

the Incremental Kuhn-Munkres (IKM) algorithm. First, we investi-

gate the likely real-world impact of IKM using actual production

datasets provided by Grab
4
. Then in the second section, we study

scalability and conduct sensitivity analysis using publicly available

4
https://www.grab.com/
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Method Running Time (ms) Matrix Computations (%) Max. Throughput (𝒎)
𝑾=15s 𝑾=30s 𝑾=60s 𝑾=15s 𝑾=30s 𝑾=60s 𝑾=15s 𝑾=30s 𝑾=60s

Dijkstra 2876ms 4595ms 9749ms 100.0% 100.0% 100.0% 𝑚=575 𝑚=1050 𝑚=1675

CH 661ms 1512ms 6605ms 100.0% 100.0% 100.0% 𝑚=575 𝑚=800 𝑚=1150

G-tree 280ms 599ms 2942ms 100.0% 100.0% 100.0% 𝑚=900 𝑚=1200 𝑚=1650

IKM-DIJK 65ms 110ms 407ms 2.7% 3.7% 4.5% 𝑚=1400 𝑚=1750 𝑚=2275

IKM-GAC 12ms 31ms 255ms 2.9% 3.5% 3.2% 𝑚=1425 𝑚=1775 𝑚=2250

Table 2: Performance metrics for a real-world ride-hailing workload for the city of Singapore. Time window𝑾 is the period
that ride-hailing requests are batched for which bipartite matching is then used to compute an optimal matching

real-world datasets and carefully generated synthetic workloads.

Further details of the datasets will be provided in each section,

while we describe the experimental settings below.

Environment: We run experiments on a MacBook Pro running

OS X (64-bit) with a 6-core Intel Core i7 2.6 CPU and 16GB memory

for the production datasets, and a Ubuntu 64-bit PC with a 16-

core AMD Ryzen 3700X CPU and 32GB for the public datasets. All

experiments were conducted using memory-resident indexes for

fast querying. We implemented all techniques in single-threaded

C++ and compiled by g++ v5.4 with O3 flag, sharing subroutines

and basic data structures to ensure fairness.

Techniques: We include the two variants of our IKM technique

described in Section 3.3, IKM-DIJK, and IKM-GAC. We compare

our techniques against variants of the traditional KM algorithm

where the cost matrix is fully computed before the matching is

found. These non-incremental KM variants only differ in the tech-

nique used to compute the matrix. One variant, Dijkstra uses a

single-source multi-destination Dijkstra search from each vertex

in 𝑈 to populate the matrix. G-tree and CH uses point-to-point

shortest path distance queries using the G-tree [29] and Contrac-

tion Hierarchies (CH) [9] indexes, respectively. The Dijkstra and

G-tree variants allow an apples-to-apples comparison of each of our

improved techniques with their corresponding non-incremental

counterparts. For example, the difference in running time between

G-tree and IKM-GAC will show us how much efficiency is gained

from fewer distance computations, while taking into account the

overhead added by object retrieval and lower-bound computations.

4.1 Real-World Performance
Given the importance of the real-world applications, we evaluate

techniques on real-world data sets provided by Grab for the city of

Singapore in several ways as we describe next.

4.1.1 Ride-Hailing Performance. In this section, we evaluate the

performance of our techniques on a real-world ride-hailing work-

load for the city of Singapore.

Datasets: The dataset consists of the road network graph 𝐺

for Singapore as listed in Table 1 and workload 𝐵 consisting of

hundreds of thousands of anonymized ride-hailing booking records

completed in a 1-week period from December 2018. Each booking

in set 𝐵 contains the time of the booking, the driver’s location,

and the user’s location. Both datasets are provided by Grab and

originate from real-world data generated in a production setting.

Methodology: To accurately evaluate bipartite matching per-

formance in ride-hailing, we implement a simple batching frame-

work based on public descriptions of real-world matching for ride-

hailing applications
5
. Given a time-window𝑊 and a start time 𝑡 ,

we select all bookings made in the time range [𝑡, 𝑡 +𝑊 ) from the

booking set 𝐵. We then create two bipartite sets using the locations

of drivers and users (respectively) from the selected bookings. We

use each technique to find an optimal matching on these bipartite

sets, reporting the running time and the percentage of the full cost

matrix that is computed. We investigate performance over windows

𝑊 of 15, 30, and 60 seconds, and average the reported results over

several randomly selected start times to reduce variability.

Running Time and Efficiency: The running times and matrix

computations for each technique over all windows are listed in

Table 2. The running times of our techniques, IKM-DIJK and IKM-

GAC, are more than an order of magnitude less than their direct

counterparts, Dijkstra and G-tree, for all values of𝑊 . The reason for

this is seen in the percentage of the cost matrix that is computed by

our techniques. Naturally, the original KM variants compute 100% of

the cost matrix. Notably, the impressive results for IKM-GAC show

that the overhead added in computing lower-bounds and retrieving

objects is significantly outweighed by the time saved from reduced

computations. The magnitude of improvement decreases slightly

for the large window𝑊 . With a larger window, the density of driver

and user locations increases, making lower-bounds less accurate.

Nonetheless, the degradation is only slight, and running time is

still over a magnitude better than the original KM algorithms.

Maximum Throughput: Due to the commercially-sensitive

nature of the data, which is subject to non-disclosure agreements,

we are not able to divulge details on the sizes of workload, particu-

larly the average𝑚 for each window𝑤 . However, in place of this,

we report the maximum throughput for each technique in Table 2.

Maximum throughput is the largest possible𝑚 for which a tech-

nique can compute an optimal matching within the time window

𝑊 . In real-world terms, it is the largest number of bookings that

can be batched using each technique for window𝑊 , before the next

batch must be computed. This is a particularly useful metric, as it

will test the ability of each technique to scale to larger cities such

as Jakarta and New York, which are likely to generate a far larger

workload of bookings. The bipartite sets are again generated from

the real-world booking set 𝐵 as before, except we test increasing

values of𝑚 by choosing additional bookings (in time order) until the

running time is𝑊 . Table 2 shows IKM-DIJK and IKM-GAC again

leads the way, reporting the highest supported throughput. Note

that Dijkstra-based techniques perform relatively better here. This

5
https://marketplace.uber.com/matching
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is because Dijkstra’s running time grows linearithmically given its

asymptotic complexity, while the running time of point-to-point

shortest path techniques grows quadratically as it issues one query

for each cell in the cost matrix. While Dijkstra’s algorithm has been

significantly improved upon in the point-to-point shortest path

problem by modern techniques such as G-tree and CH, this shows

it still offers value in the multi-target shortest path problem.
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Figure 3: Singapore Dataset Performance on Varying𝑚

4.1.2 Sensitivity Analysis. The performance on increasing𝑚 eval-

uates the ability of techniques to handle increasingly large batches

of ride-hailing requests. We use synthetic driver and user locations

to conduct sensitivity analysis into the effect of the size of bipartite

sets𝑚. These locations are generated by selecting road network

vertices uniformly at random for a given value of𝑚. Road network

vertices are more densely located in urban areas, so the coordinates

of chosen vertices are more likely to be in such areas, which gener-

ally reflects booking requests. Figure 3a displays the running time

of assignment for synthetic driver and user locations with varying

values of𝑚. IKM-GAC improves significantly over the performance

of G-tree in running time for most values of𝑚. The exception for

small values of𝑚 is due to the overhead added by IKM-GAC (such

as initializing the priority queues 𝑄𝑢 and computing the COLT in-

dex). This overhead represents a higher proportion of running time

for smaller𝑚 where the number of distance computations avoided

is relatively small. In Figure 3b, we compare the number of distance

computations computed by each method. Note that both Dijkstra

and G-tree compute the same number of distance computations

(i.e., for all pairs of locations), and this is represented in the 𝑚2

line. Note the improvement shown on the synthetic dataset appears

to be smaller than the real-world dataset. This is likely due to the

observation of spatial location of matching being less prominent in

the synthetic dataset, which we confirm experimentally. For each

pair in the optimal matching, we found that objects in 𝑈 were on

average assigned to the 2nd to 3rd nearest object for the production

dataset, experimentally confirming the presence of spatial location
of matching in real-world datasets. On the other hand, objects were

matched to increasingly further objects with increasing 𝑚 (e.g.,

10th nearest object for𝑚 = 250) for the synthetic datasets. Thus,

the synthetic datasets are more challenging, and the still sizeable

improvement demonstrates the robustness of our techniques.

Approximation Technique: In Figure 3a, we also evaluate the
performance of the approximate assignment algorithm described

in Section 3 using lower-bound edges costs completely in-place of

exact costs. As expected, the running time is significantly faster

than all other techniques. However, this comes at increasing rel-

ative error as shown in Table 3. The relative error is computed

as | 𝑐−𝑐𝑎𝑝𝑝𝑟𝑜𝑥𝑐 |, where 𝑐 is the exact matching cost, averaged over

several optimal matchings of size𝑚. The promising running time

may warrant further research into improving the approximation

error, for example by utilizing better approximations on shortest

paths than lower-bounds.

Relative Error 𝒎=10 𝒎=50 𝒎=100 𝒎=250 𝒎=500
0.28 0.57 0.65 1.92 1.87

Table 3: Relative Error for Approx. KM Technique

4.2 Scalability Analysis
While the Singapore dataset used in the previous section provides

valuable insight into the real-world performance of the techniques,

we use additional publicly available datasets for further evaluation.

In particular, the Singapore dataset is a relatively smaller road net-

work dataset and as seen in previous studies [25], the size of the

road network has a large impact on shortest path computation. Us-

ing publicly available datasets will also provide more reproducible

results. To study the scalability of the techniques we study their

performance on larger road network datasets, namely, the Cali-

fornia (CAL) and Eastern (E) US datasets obtained freely from the

9th DIMACS Challenge
6
. Synthetic bipartite sets for these road

networks are generated as in Section 4.1.1, however, we use larger

values of𝑚 to scale with the increased road network size.

California Dataset: Figure 4 reports the running time and

number of distance computations of each technique for increasing

values of𝑚, which corresponds to having more objects to match.

Figure 4b illustrates the efficiency of the heuristic in reducing the

number of shortest path distances that need to be computed by our

techniques.𝑚2
represents the number of computations required

to populate the whole cost matrix, and naturally, both the Dijkstra

and G-tree techniques will compute the whole matrix. Minimum is

an estimate on the theoretical minimum number of costs that are re-

quired to find the optimal matching.Minimum is derived as follows;

given a matching pair (𝑢, 𝑣) with 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 , count the num-

ber of costs less than 𝑐 (𝑢, 𝑣) and sum the counts over all matched

pairs. In Figure Figure 4b, the improvement of IKM-GAC is quite

significant and close to the minimum. This is expected as IKM-GAC

uses a more sophisticated lower-bound heuristic than IKM-DIJK,

utilizing the state-of-the-art COLT-based [2] lower-bound heuris-

tic. On the other hand, Figure 4b demonstrates the running time

improvement of our techniques, which essentially measures how

much net efficiency gain is achieved from the reduction in cost

computations minus the overhead added by the heuristic. Notably,

the gap between IKM-GAC and IKM-DIJK is significantly larger

than for Singapore. This can be explained by the linearithmic time

complexity of Dijkstra of𝑂 ( |𝐸 | + |𝑉𝐺 | log |𝑉𝐺 |). Larger numbers of

road network vertices |𝑉𝐺 | results in more costly distance compu-

tations, as is the case with the California road network containing

far more vertices than Singapore as per Table 1. Nonetheless, the

improvement of IKM-DIJK is essentially free, as IKM-DIJK intro-

duces no overhead compared to plain Dijkstra, as it uses the same

priority queue as the Dijkstra search.

6
http://www.dis.uniroma1.it/%7Echallenge9/
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Figure 4: California Dataset Performance on Varying𝑚
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Figure 5: Eastern US Dataset Performance on Varying𝑚

Eastern US Dataset: We evaluate the performance of tech-

niques on an even larger road network with 3.5 million vertices for

the Eastern US road network. While a ride-hailing batching opera-

tion may not be performed on such a large region, road networks

for big congested cities such as Jakarta have similar numbers of

vertices and edges. Figure 5 shows that the improvement seen in

previous results is consistent even for large datasets such as the

Eastern US. This is particularly true for IKM-GAC, and its improve-

ment compared to the improvement of IKM-DIJK further increases

compared to the California dataset. This indicates that it is indeed

worthwhile to pre-process data offline to accelerate online shortest

path queries, with fast shortest path distance techniques like G-tree

scaling better with increasing size of the road network than Dijk-

stra. Moreover, it suggests that even the overhead added at query

time by IKM-GAC (e.g., construction of the COLT index), which

is included in running times reported in all figures, is worthwhile.

We also verify the observation made for maximum throughput in

Section 4.1.1, with running time of techniques beginning to con-

verge with increasing𝑚 as the time to find an optimal assignment

begins to dominate cost computation time.

5 RELATED WORK
Given their popularity, real-world ride-hailing apps have spawned

a growing body of research. In particular, the Kuhn-Munkres (KM)

algorithm is widely used as a subroutine in real-world ride-hailing

systems. For example, ride-hailing service Didi reportedly uses KM

in the driver dispatch framework [26]. Similarly, Uber frame driver-

ridermatching as a combinatorial optimization problem tominimize

the overall wait time, which is typically solved by KM
5
. The assign-

ment problem, bipartite matching, and Kuhn-Munkres are utilized

in many ride-hailing and taxi studies [8, 11, 12, 19, 28]. Our tech-

niques can potentially improve running time in these frameworks

as a drop-in replacement for the KM algorithm. Other work has

focused on improving different aspects of ride-hailing performance,

such as predictive algorithms to increase the likelihood of the driver

accepting the allocated job [27]. Such considerations are likely to

be orthogonal to our work, as the cost of allocating a passenger to

a driver will still incorporate travel cost.

Since the advent of the Kuhn-Munkres algorithm [14, 16], the

time complexity for the general assignment problem has not been

significantly improved after [5, 23] improved the original 𝑂 (𝑛4)
time to 𝑂 (𝑛3). Further improvements have come primarily in the

form of specialized domains such as considering bounded integer

weights [7, 18] or improvements through clever heuristics that

work extremely well in practice [13, 17]. Other approaches have

attempted to find approximate solutions that trade running time

for accuracy [3, 21]. These works are complementary to our tech-

nique because they increase the relative running time of computing

the cost matrix. For example in Figure 1, these techniques would

decrease the time taken up by the assignment for increasing values

of𝑚, thus making it even more necessary to reduce computations.

An “incremental” variant of the assignment problem has also

been proposed [24], but their definition of incremental involves

updating an optimal assignment based on new objects. Some tech-

niques [15, 22] improve the efficiency of the minimum cost flow

algorithm by attempting to compute only a partial bipartite graph

and terminate early. While utilizing a similar strategy to us, our

techniques also attempt to terminate early by computing a partial

bipartite graph and attempt do so while only computing lower-

bounds on the edges we do compute, wherever possible. This is

necessary in our problem domain as, for example, road network

shortest paths are significantly more expensive to compute than

the Euclidean distance costs in [15]. However, it suggests a possible

future avenue for research in that we may be able to also optimize

the running time of the assignment, which would be helpful when

that running time exceeds the cost matrix computation, e.g., for

very large values of𝑚.

6 CONCLUSION
The computation of assignment costs is a significant contributor

to the overall running time of finding a solution to the assignment

problem. However, our techniques show that by utilizing lower-

bound costs and pruning rules, it is possible to terminate sooner

while computing fewer expensive exact costs. Our experiments

show this is particularly effective in the case of driver-passenger

matching in ride-hailing services, and applicable to a wide range of

frameworks and applications that use the Kuhn-Munkres algorithm

as a component. Moreover, the paradigmwe present is generalizable

and can be potentially applied to other real-world problem settings

for similar benefits.
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