
Heracles: An Efficient Storage Model and Data Flushing for
Performance Monitoring Timeseries

Zhiqi Wang
The Chinese University of Hong Kong

zqwang@cse.cuhk.edu.hk

Jin Xue
The Chinese University of Hong Kong

jinxue@cse.cuhk.edu.hk

Zili Shao
The Chinese University of Hong Kong

shao@cse.cuhk.edu.hk

ABSTRACT
Performance-monitoring timeseries systems such as Prometheus
and InfluxDB play a critical role in assuring reliability and op-
erationality. These systems commonly adopt a column-oriented
storage model, by which timeseries samples from different time-
series are separated, and all samples (with both numeric values
and timestamps) in one timeseries are grouped into chunks and
stored together. As a group of timeseries are often collected from
the same source with the same timestamps, managing timestamps
and metrics in a group manner provides more opportunities for
query and insertion optimization but posts new challenges as well.
Besides, for performance monitoring systems, to support better
compression and efficient queries for most recent data that are
most likely accessed by users, huge volumes of data are first cached
in memory and then periodically flushed to disks. Periodic data
flushing incurs high IO overhead, and simply discarding flushed
data, which can still serve queries, not only is a waste but also brings
huge memory reclamation cost. In this paper, we propose Heracles
which integrates two techniques - (1) a new storage model, which
enables efficient queries on compressed data by utilizing the shared
timestamp column to easily locate corresponding metric values;
(2) a novel two-level epoch-based memory manager, which allows
the system to gradually flush and reclaim in-memory data while
unreclaimed data can still serve queries. Heracles is implemented as
a standalone module that can be easily integrated into existing per-
formance monitoring timeseries systems. We have implemented a
fully functional prototype with Heracles based on Prometheus tsdb,
a representative open-source performance monitoring system, and
conducted extensive experiments with real and synthetic timeseries
data. Experimental results show that, compared with Prometheus,
Heracles can improve the insertion throughput by 171%, and reduce
the query latency and space usage by 32% and 30%, respectively,
on average. Besides, to compare with other state-of-the-art stor-
age techniques, we have integrated LevelDB (for LSM-tree-based
structure) and Parquet (for column stores) into Prometheus tsdb,
respectively, and experimental results show Heracles outperform
these two integrations. We have released the open-source code of
Heracles for public access.

PVLDB Reference Format:
Zhiqi Wang, Jin Xue, and Zili Shao. Heracles: An Efficient Storage Model
and Data Flushing for Performance Monitoring Timeseries. PVLDB, 14(6):
1080 - 1092, 2021.
doi:10.14778/3447689.3447710

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 6 ISSN 2150-8097.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/naivewong/heracles.

1 INTRODUCTION
Performance-monitoring timeseries systems like Prometheus [38]
and InfluxDB [25] are used to collect real-time performance metrics
such as CPU utilization and memory usage, and play a critical role
in assuring reliability and operationality with the support of system
alerts and problem diagnosis. In this kind of systems, timeseries
samples mainly consist of numeric values (representing by double-
precision floating-point number) and timestamps (representing by
64-bit integer); each timeseries is uniquely identified by a set of pre-
defined labels that are used for data queries. By handling millions
of samples coming from different sources at the same time, these
systems need to provide high insertion throughput (several tens
millions of samples per second) and low query latency (millisecond
level involving large-scale data aggregation ) with efficient storage
based on compression. With these characteristics, performance-
monitoring timeseries data cannot be efficiently handled by SQL
and NoSQL databases [27], and require specially-tailored data man-
agement.

Specifically, performance-monitoring timeseries systems com-
monly adopt a column-oriented storage model [25, 38, 44], by which
timeseries samples from different timeseries are separated, and all
samples (with both timestamps and numeric values) in one time-
series are grouped into chunks (partition in column store) and stored
together in a single column. By combining and storing timestamps
and values together, this storage model enables easy data manage-
ment. Particularly, queries can be directly served once temporal
information of a timeseries has been located inside one column.
Moreover, in performance monitoring systems, to support better
compression and efficient queries for most recent data that are most
likely accessed by users, huge volumes of data are first cached and
compressed in memory and then periodically flushed to disks. Stor-
ing timestamps and values together makes data flushing simpler;
otherwise, for each timeseries, timestamps and values need to be
handled separately.

This storage model, however, hinders insertion and query op-
timization from exploring group behaviors. That is, performance
monitoring timeseries data are commonly collected in a group
manner so a group of timeseries from the same source are with
the same timestamps. For instance, all metrics from a Docker con-
tainer [19, 22], a MySQL server [35], or a device, share the same
temporal information. With this storage model, nonetheless, the
temporal information (i.e. timestamps) is duplicated and stored

doi:10.14778/3447689.3447710

1080

https://doi.org/10.14778/3447689.3447710
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/naivewong/heracles
https://doi.org/10.14778/3447689.3447710


with each metric column when forming one timeseries. This not
only introduces unnecessary memory/storage space overhead but
also raises two more issues as follows.

First, this will add more latency to query execution. To serve a
query with a time range on a timeseries, as timestamps are stored
with values in compressed chunks, we need to first locate corre-
sponding chunks, decompress them and then obtain specific sam-
ples based on the timestamps inside. Second, this will degrade the
insertion throughput. For a group of data from different timeseries
with the same timestamps, by duplicating timestamps and storing
with values in each timeseries, during insertions, we have to lock
each timeseries individually instead of utilizing a group-based inser-
tion with only one lock. When the number of timeseries in a group
is big (e.g. one single Linux machine can have 500 performance
metrics [36]), this overhead is not negligible.

To address these issues, we propose a new group-based storage
model to manage all timeseries with the same timestamps in a
group manner for performance monitoring timeseries. There are
two challenges for implementing such a group-based storage model.
First, given the continuously-growing large volume of timeseries
data, timestamps and metric values need to be compressed with
less memory/storage footprints. However, when they are stored
separately and compressed with different techniques, it is more
difficult to map timestamps to metric values. Without a proper
mapping, we cannot directly read corresponding metric values
in metric value columns after we locate the timestamp from the
timestamp column. While this is similar to column mapping in
column-oriented databases [15, 44, 45], fixed data formats in times-
tamps and metric values open new optimization opportunities for
efficient queries on compressed floating-point numbers based on
compressed timestamps.

Such a group-based storage model also poses a challenge on
data flushing. For performance monitoring systems, while efficient
queries for most recent data are extremely important as they are
most likely accessed by users, in many applications, such as sen-
sor monitoring [48], network anomaly troubleshooting [9], and IT
infrastructure monitoring [24], long-term trends of metrics with
days/months/years of data are needed as well, thus requiring both
in-memory and on-disk data management [24, 25, 34, 38]. To ad-
dress this, one effective solution is to cache and compress data in
memory and then periodically flush them to disks. However, peri-
odic data flushing incurs high IO overhead, and reclaiming flushed
data degrades system performance as well. A group-based storage
model can bring further system deterioration in data flushing, when
timestamps and values are handled separately with different com-
pression schemes and different in-memory and on-disk formats,
thus demanding more computation resources and conversion time.

In this paper, we propose Heracles that integrates two tech-
niques. The first one is a storage model with a new compression and
mapping method to jointly optimize data compression and direct
queries on compressed data considering both in-memory and on-
disk timeseries data. The key issue is to strike a balance between the
storage and query efficiency by compressing one shared timestamp
column (with 64-bit integer) and multiple metric columns (with
floating-point number) with a proper time-to-metric mapping. In
our method, a fine-grained compression and mapping technique

Figure 1: The architecture of a performancemonitoring sys-
tem.

is proposed, by which samples in a group will be continuously in-
serted and compressed into tuples in one shared timestamp column
and multiple metric columns, respectively. A tuple contains a fixed
number of compressed values or timestamps, and is the unit for the
alignment of timestamps and metric values. Specifically, different
from Gorilla [33], a state-of-the-art compression technique, a scal-
ing method and fine-grained classification are proposed to further
optimize timestamp and value compression, respectively, by fully
exploring more regular data patterns in performance monitoring
timeseries.

Second, we introduce a novel two-level time-partitioned epoch-
based memory manager which can serve data caching and memory
allocation for performance monitoring timeseries. Through it, we
can gradually flush and reclaim outdated in-memory data blocks
while unflushed data are still cached and can serve queries. Different
from the previous works [7, 16, 20, 30], we judiciously exploit the
temporal information, a special characteristic in timeseries data, in
the epoch-based memory reclamation algorithm. Specifically, every
data flushing period is associated with a unique version that will
be returned together with memory blocks when they are allocated.
This version enables our two-level epoch mechanism, in which
memory blocks with the first-level epoch will be put into a hot
data area partition during data flushing (that can continue to serve
queries), and after a hard release time, all data blocks in the hot
area partition will be pushed to a cooling area and attached with
the second-level epoch (that become invisible for query threads
and can be allocated as free memory blocks).

2 BACKGROUND AND MOTIVATION
2.1 Performance Monitoring System
A performance monitoring system can collect, index, store and
query monitoring metric data from targeted data sources. Figure 1
shows a general architecture of a performance monitoring system.
Data collectors automatically collect monitoring metric data from
targets and insert them into the storage engine. Users can query

Figure 2: An example of inverted indexes for timeseries.

1081



data from the storage engine through the query processor. For the
storage engine, it generally handles two kinds of data - temporary
data (in-memory data manager) and persistent data (on-disk data
manager).

2.2 Storage Model
Timeseries identifiers and metric values are stored separately. For
timeseries identifiers, they are semi-structured data like JSON la-
bels and an inverted index is often applied on them to locate time-
series. Figure 2 shows an example, in which for each label pair (e.g.
name="net_receive") of a timeseries, an inverted index is built (e.g.
name="net_receive" -> [TS1]) accordingly. For timeseries data, each
timeseries logically has two columns - one for timestamps (64-bit
integer) and the other for timeseries metric values (64-bit double-
precision floating-point number). As a result, the compressionmeth-
ods in column-oriented database systems [1] can be applied to the
two columns of each timeseries. For convenient management, times-
tamps and metric values of one timeseries are combined and stored
together into chunks. To achieve better compression ratios, com-
pression methods are normally based on relatively large chunks,
and thus, in order to get a sample in the middle of a compressed
chunk, decompression from the beginning is needed.

For each timeseries, an index is provided so the time interval
of one chunk and its in-memory or on-disk chunk location can be
recorded. The index contains two types of information: one is label
pairs that are the identifier of a timeseries, and the other is chunks
metadata that records the minimum and maximum timestamps and
the location of each chunk. To serve queries with time ranges, the
index needs to be searched first so as to locate chunks; after that,
each chunk in the range needs to be decompressed so as to obtain
timestamps; finally, based on the timestamps, data can be returned
to users.

A typical workflow in a performance monitoring system is il-
lustrated in Figure 1. Data collectors fetch monitoring data from
data sources and insert them into the storage engine periodically.
Users can issue queries through different clients, and the query
processor will send parsed queries to the storage engine. Although
many timeseries (e.g. 500) may come from one data source, the
storage engine still stores them separately. The timestamps and
metric values are stored together in the chunks where the gray
square represents timestamp and the white square represents time-
series metric value. The compression method such as Gorilla [33] is
applied to compress timestamps with delta-delta and metric values
with the XOR-based algorithm. One chunk is kept relatively large
(more than 100 samples) for high compression ratios. Note that

even timeseries are from the same device, their timestamps are
stored in separate chunks redundantly for each timeseries.

2.3 Motivation
2.3.1 Issues In the Storage Model. State-of-the-art performance
monitoring timeseries systems like Prometheus and InfluxDB han-
dle and store timeseries independently although they may come
from the same source (e.g. same host/application). There are several
problems caused by this model.

Problem 1: Inefficient Query. This storage model introduces
extra query overheads. As aforementioned, during a query with
a time range, we need to first traverse chunks metadata in the in-
dex to locate chunks before we read chunk data. With a separate
timestamp column, for each group of timeseries, metric values in
chunks can be directly located based on the timestamp column;
thus, chucks metadata in the index are not needed and the search
overhead for chunks metadata can be eliminated. Furthermore, by
storing timestamps and values together in chunks, when reading
data from a chunk, we have to decompress it in order to get tem-
poral information. This is particularly inefficient when we need to
get data samples in the middle of a chunk, in which we have to de-
compress the timestamps and metric values from the beginning of
the chunk until the queried timestamp is found. Instead, a separate
timestamp column enables queries on compressed data, by which
the chunk-decompression overhead can be mitigated.

We have conducted experiments to reveal the overheads with
the experimental setup in §4.3. Specifically, we run Prometheus and
Heracles to monitor 10 Linux servers, respectively, and query the
average CPU usage in the last 5 minutes every 10 seconds (See §4.3
for details), which only accesses the in-memory data. Figure 3a and
Figure 3c show the results of locating the first sample and the overall
query time from Prometheus and Heracles, respectively. The red
curve is themoving average time of locating the valid position in the
chunks, which can be reduced with a separate timestamp column in
Figure 3a. For Prometheus, it can be observed this unnecessary cost
is slightly more than a half of the execution time for the in-memory
queries. Second, we move this query window two hours before
the current time, which only accesses the on-disk data, and similar
results can be found in Figure 3b and Figure 3d as well.

Problem 2: Redundant Timestamps. For performance moni-
toring systems, timeseries are usually collected and sent as groups
to the storage engine periodically (e.g. timeseries from the same
hosts for system-level performance metrics or timeseries from the
same services for application-level performancemetrics). If we store
timestamps and metric values separately, the timestamps of the

(a) Prometheus memory chunks (b) Prometheus disk chunks (c) Heracles memory chunks (d) Heracles disk chunks

Figure 3: Cost of wasted decompression in a two-hour Prometheus recording rule tracing.

1082



(a) Lock operation percentage in
the profiling

(b) Duration of flushing in-memory data to disk and CPU usage (c) CDF of query latency during
data flushing

Figure 4: Issues in the storage model.

timeseries from the same source can be stored together; without
redundant timestamps, the storage footprint can be reduced.

Problem 3: Limited Write Throughput. As each timeseries
is tracked and handled independently, a cache-line-aligned [43]
lock is needed for each operation on a single timeseries. As a result,
when inserting a large scale of data from different timeseries, the
overhead of locking operations can be huge. Figure 4a shows the
cost of lock operations under a 200Hz sampling-rate profiling of an
insertion micro-benchmark of Prometheus tsdb (the storage engine
of Prometheus), from which it can be observed that lock operations
occupy around 24% of the total time. If we manage timeseries in a
group manner, this problem can be naturally mitigated since lock
operations will operate in a coarse-grained manner.

2.3.2 Issues In Data Flushing. Although separating timestamps and
metric values unleashes the potentials to reduce query latencies and
storage footprint and enhance write throughput, a group-based stor-
age model can bring further system deterioration in data flushing
as follows.

Problem 1: Computation Overhead. Since data are first accu-
mulated in memory, data flushing can occupy a huge amount of
CPU and I/O resources especially when the formats of in-memory
and on-disk data are different. Figure 4b shows the data flushing du-
rations of 2 hours’ data (random, increasing counter, and real mon-
itoring data, respectively) from 10000 timeseries with Prometheus
and Heracles, respectively (See §4.5 for details), where Heracles
(Heracles w/o concurrency) is not integrated with our two-level
epoch-based memory manager for data flushing optimization. It
can be observed that data flushing with Heracles is much longer
than that with Prometheus. Since Prometheus utilizes a uniform
data format for both in-memory and on-disk data, data flushing
simply writes the data to disks without extra computation, thus
enabling more efficient data flushing.

In Heracles, we can reduce the flushing duration by increasing
the degree of parallelism. For instance, as shown in Figure 4b, for
Heracles with concurrency, for each timeseries in the same group,
we launch a Goroutine (lightweight thread in Golang) [28] to handle
the data conversion and flushing (around 100 Goroutines running
concurrently). However, this will compete with query threads for
CPU resources and incur query tail latencies. Figure 4c shows the
CDF of query latencies during the data flushing and the P99.99
latencies of Heracles is 25% higher than that of Prometheus. Thus,
optimizing data flushing becomes critical for Heracles.

Problem 2: Memory Reutilization. In current systems like
Prometheus and InfluxDB, flushed data are directly discarded and
are immediately invisible to query threads. However, since flushed
in-memory blocks are still valid and can serve queries, simply dis-
carding them not only is a waste but also causes high garbage
collection overhead. If we manage in-memory data by ourselves,
we can gradually reclaim and reuse flushed data blocks while unre-
claimed data blocks can continue to serve queries.

3 DESIGN
The general data flow of Heracles is presented in Figure 5. Data
collected by data collectors are converted to group-based samples
(containing a timestamp and values of all timeseries in the group)
by data processors that will perform the data insertion through
the group insertion primitive. Queries are converted to <group id,
timeseries id, time range> by the query processor and it will call the
group querying primitive accordingly.

The physical format of Heracles is illustrated in Figure 6. Similar
to Prometheus and InfluxDB, data are first cached in memory and
then are flushed to disks where they are compressed differently.

In the following sections, we will first introduce Heracles storage
model (§3.1). Then, to solve the problems in the data flushing of
Heracles storage model mentioned in §2.3, we introduce our two-
level EBR memory manager (§3.2). Finally, we introduce the query
procedure of Heracles (§3.3).

3.1 Heracles Storage Model
In this section, we first introduce two different tuple mappings for
Heracles storage model. Then, we introduce the in-memory and
on-disk storage models, respectively.

Figure 5: The data flow of Heracles.

1083



Figure 6: Heracles in-memory/on-disk models.

3.1.1 Tuple-Based Mapping. To strike a balance between compres-
sion ratios and query efficiencies, timestamps and metric values
are managed based on tuples and compressed with different tech-
niques. As a result, we need to carefully design the mapping from
timestamp tuples to timeseries value tuples through which we can
quickly obtain the corresponding timeseries value tuple after we
locate the timestamp tuple. We utilize two methods to implement
the mapping: (1) Tuples with index - We utilize an extra index (i.e.
containing the location information of metric value tuples) to help
us track the tuples and indexes can be stored together with times-
tamp tuples; (2) Padded tuples - Because the size of a tuple can be
irregular after compression, we pad the compressed tuples to make
them aligned.

In our experiments, we select eight as the tuple size because we
find it can achieve good results on both compression ratios and
query efficiencies. We will show the trade-off of different tuple sizes
in §4.4.5.

3.1.2 In-Memory Group Model. In-memory Heracles accepts in-
coming group samples, compresses them on the fly, and then flushes
them to disks periodically. As shown in Step (2) and Step (3) in Fig-
ure 6, in-memory Heracles separates and compresses timestamps
(that will be stored in the time tuple) and metric values (that will
be stored in the series slots) differently.

Because we compress data on the fly and in-memory Heracles
is continuously absorbing incoming samples, the size of padded
tuples cannot be determined. As a result, we choose Method 1 (i.e.
Tuples with index) where we generate an index for each timestamp
tuple to track the location of its metric-value tuple and we store

Figure 7: An example of the timeseries metric compression.

this index together with the timestamp tuple as shown in Step (2)
in Figure 6.

Timestamp Compression. We use the base-delta method to
compress timestamps in the Varint format [11] because samples are
continuously coming and the ending time cannot be determined.
At the end of a timestamp tuple, we store the location information
of each series slot as aligned-bits with the same sizes. In our im-
plementation, we manage all time tuples as an object array. As a
result, to query a timestamp, we can easily perform a binary search
on this time tuple array by comparing the first timestamp of the
tuple and locate the target tuple.

Timeseries Metric Value Compression. Metric values from
different series are separated and compressed into different series
slots. For each series, we continuously compress the values into
tuples as shown in Step (3) in Figure 6.

To insert a new metric value into a tuple, the basic idea is to use
the XOR operation to compare it with a base value (if the tuple is
empty, the base value will be the first value of this timeseries in
the current in-memory group; otherwise, the base value will be the
previous value in this tuple) and then store the comparison result.
Similar to the XOR’d compression in Gorilla [33], there are three
cases as follows:

• Case 1: If the XOR’d value is 0 (the new value is the same as
the base value), we only store one control bit, namely ’0’, in
the tuple.

• Cases 2 and 3: Otherwise, we will first store the control bit,
namely ’1’. Let LZ be the number of leading zeros and L

Figure 8: An example of the local optimality with useless
significant-bits in XOR’d compression.

1084



Algorithm 1: On-disk Timestamp Scaling Compression
Input: Timestamp array: 𝑇𝑠
// Compute interval between two samples

1 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙=(𝑇𝑠 .Back()-𝑇𝑠 .Front())/𝑇𝑠 .Size();
2 for 𝑖 = 0; i < 𝑇𝑠 .Size(); i++ do
3 𝑑𝑖 𝑓 𝑓 = 𝑇𝑠 [𝑖] - (𝑇𝑠 .Front() + 𝑖 * 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 );
4 WriteAlignedBits(𝑑𝑖 𝑓 𝑓 );
5 end

the length of significant-bits in the XOR’d value. To further
optimize this, one more controlled bit is used to differentiate
the following two cases:
– Case 2: If the significant-bits of the current XOR’d result
are in the range of the significant-bits of the previous
XOR’d result (e.g. as shown in the third to fifth numbers in
Figure 7), the second control bit will be ’0’ and after that,
we will directly store the significant-bits of the XOR’d
value based on the previous LZ and L (i.e. reusing the
previous significant-bits range).

– Case 3: If the significant-bits of the current XOR’d result
are outside the range of the significant-bits of the previous
XOR’d result (e.g. as shown in the second number in Fig-
ure 7), the second control bit will be ’1’ and after that, we
will store LZ (5 bits), L (6 bits), and then the significant-bits
of the XOR’d value.

In the above algorithm, for Case 2, we find that we may fall into
the local optimality with big significant-bits range (e.g. as shown in
Figure 8); thus, when a tuple is finished, we will conduct an overall
comparison with all the values in it and may switch from Case 2 to
Case 3 to further save space for the final result of the tuple.

3.1.3 On-Disk Group Model. With on-disk Heracles, data stored
in memory are flushed to disks periodically as shown in Step (4) in
Figure 6. Since on-disk data blocks are immutable, we implement
the mapping based on Method 2 (i.e. Padded tuples) and compress
data differently from in-memory Heracles.

Timestamp Compression. For timestamps, because perfor-
mance metrics are collected periodically and the interval between
two samples is normally stable, we resort to a scaling method in-
stead of using the base-delta method. As shown in Algorithm 1,
we first compute the average value of all the timestamps and for
each timestamp, we only store the difference (the scaling value)
by subtracting it from the average value. Compared to the base-
delta method, this scaling method exhibits a better compression
ratio because the scaling differences are commonly smaller than
the increasing deltas.

Timeseries Metric Value Compression. In XOR’d compres-
sion, an appropriate base value can significantly improve the com-
pression ratio and since the data are fixed in on-disk Heracles, we
can choose the base value for the XOR operation more efficiently. In
our preliminary experiments, using the median value can achieve
a better compression ratio than using mean/min/max values. But
when the timeseries values fluctuate intensively, simply choosing
one median value is not enough. As a result, we choose two quan-
tiles (the (n/4)th largest value and the (3*n/4)th largest value) as
the base values. For the first value in a tuple, we perform the XOR

Figure 9: The memory manager in Heracles.

operation with the closer quantile. For the following value (i.e. the
second one) in a tuple, we perform the XOR operation with the
previous value.

To track metric values efficiently, we leverage a 2-level alignment
structure (block and tuple) as shown in Figure 6. A block contains
multiple tuples whose sizes are aligned with the largest tuple in the
same block and since block sizes are not aligned, we need to store
the starting offset of each block.

Currently, we use two quantiles as the base values for XOR
operations, which requires one indicator bit for each tuple. Theo-
retically, more quantiles can reduce the XOR bits of the first value
of the tuple. But it will also introduce more indicator bits. Based on
our experiments, two base values have the best compression ratio
compared to using more base values.

3.2 Two-Level Epoch-Based Memory Manager
For convenient management, current performance monitoring sys-
tems directly discard flushed data after periodic data flushing and
then the flushed data are either freed or handled by the GC (Garbage
collection) of the programming language (e.g. Golang, Java). How-
ever, as mentioned in section 2.3.2, the data flushing procedure is
resource consuming and simply discarding the flushed data that
can still serve queries is wasteful.

In Heracles, we control the rate of data flushing and man-
age flushed data including reclaiming the flushed data. To avoid
read/reclamation races, an efficient memory reclamation algorithm
is needed [16, 18, 31, 42, 47]. Compared to lock-free reference count-
ing, epoch-based reclamation (EBR) has a lower overhead because
it does not require per-element atomic instructions. Besides, com-
pared to hazard-pointer-based reclamation, EBR scales better when
many elements must be traversed. Thus, in Heracles, based on EBR,
we propose a novel two-level epoch-based memory manager.

Physical Layout. The bottom of Figure 9 shows the physical
layout of memory blocks managed by the memory manager. Inside

1085



the big page (e.g. 1MB), space is split into small blocks (e.g. 256
bytes) and the ID of each block is the overall index of that block.
Besides, there is a version array that records the version of each
block. For each version, we use 8 bits where the first two bits
indicate whether the block is currently in the recycled or cooling
area and the remaining 6 bits store the actual version. Since we
increment the version after a long period (e.g. 2 hours), 6 bits can
cover a long time span that is enough for the system to reclaim
outdated memory blocks. When writer threads request for new
blocks, the memory manager will return block IDs and a version
that matches the corresponding time range based on the sample
timestamp provided by writer threads.

First-Level Epoch. Because of periodic data flushing (e.g. 2
hours), we assign each time period with a version/epoch as shown
at the top of Figure 9 and the memory manager will return the
corresponding versionwhen allocating newmemory blocks. During
data flushing (the soft release limit in the example), the flushed
data blocks will be put into the hot area of the memory manager.
Since the memory space is limited, we need to explicitly make the
oldest time range invisible in the in-memory index and reclaim the
corresponding memory blocks at some time point (the hard release
line). In in-memory Heracles, we store the versions together with
block IDs. Thus, query threads can utilize the version to identify
whether a block is still valid before reading it. Specifically, a query
can only access memory blocks that have an equal or a higher
version.

Second-Level Epoch.We apply an epoch-based reclamation al-
gorithm to prevent memory reclamation when some query threads
are currently reading the corresponding blocks. There is a global
epoch that is periodically incremented. Query threads need to set
their local epochs to the global epoch and register them at the be-
ginning of a query. Memory blocks in the hot area are gradually
precipitated into the cooling area and the memory manager will
record the global epoch for each block when it enters the cooling
area. When the memory manager attempts to reclaim a memory
block in the cooling area, it will compare the attached epoch with
the smallest epoch among the registered query threads. If the epoch
of the memory block is smaller than the minimum epoch of the
query threads, then it means no query thread is currently reading
this block and it is safe to be moved to the recycled area.

Time Partitioning and Reclamation Strategy. As discussed
above, we assign different versions for different time ranges. In-
side the memory manager, we partition the hot and cooling areas
based on the same time ranges. During a data flushing procedure
on the soft release limit, all memory blocks of the same time range
are put into the corresponding hot area partition. During a clean-
ing procedure on the hard release limit, all the memory blocks in
the partition are moved to a global cooling area (the cooling area
in Figure 9). When the size of allocated memory blocks exceeds
the pre-defined threshold, the memory manager will trigger back-
ground hot-cooling migration and reclamation of the blocks in the
cooling area. Since the recent data are more important than the old
data in performance monitoring systems, we preferentially reclaim
the blocks in older partitions (e.g. given a number of blocks to be
reclaimed, we perform 45% in the first partition, 35% in the second
partition, and 20% in the third partition).

3.3 Query Procedure
A query in performance monitoring systems comes with a set of
labels and a time range. It consists of the following steps:

(1) Generate Heracles Primitives. For the provided labels, the
storage engine first queries the index to find the group IDs and
timeseries IDs. Second, by combining those IDs with the time range,
we can generate the Heracles query primitives.

(2) Query In-Memory/On-Disk Heracles. Using the time
range, we can filter out unrelated blocks because each block cor-
responds to a time range. Because of the gradual flushing scheme
mentioned above, the time ranges of in-memory and on-disk Hera-
cles may be overlapping so we start with in-memory Heracles and
then on-disk Heracles as follows. First, in-memory Heracles will be
queried when the given time range in a query overlaps with the time
range of in-memory data. Before querying, a query thread needs to
register with the current global epoch in the memory manager. To
query based on a given time, we can directly perform binary search
on the in-memory timestamp tuple array by comparing it with
the first timestamp of the tuple. After we locate the tuple, we can
sequentially search inside the tuple until we find the corresponding
timestamp. Then, we can read the location information of metric
values stored in the tuple. Before we read the memory blocks in
the series slot, the corresponding version stored in metadata will
be validated in the memory manager. If the version is not equal
to the version stored in the version array in the memory manager,
which means the memory block has been reclaimed, then we need
to utilize on-disk Heracles. Second, to query a sample with a specific
timestamp of on-disk Heracles, namely t, we first perform binary
search on the diff array as shown in Figure 6. After locating the
index inside the array, we can use it to find the corresponding block
and the timeseries metric value tuple. Finally, we decode that tuple
and obtain the corresponding metric value.

4 EVALUATION
4.1 Implementation
We implement Heracles storage engine based on Prometheus tsdb
v0.8.0 (the storage engine of Prometheus) where we replace the
storage model and add our memory manager.

To further integrate with Prometheus, two components of
Prometheus are involved, namely, the storage engine (Prometheus
tsdb) and data scraper (data collector). Specifically, for the storage
engine in Prometheus, we replace it with our group-based storage
engine and the epoch-based memory manager for data flushing;
for the data scraper, we modify it by adding a group id so all data
with the same timestamps from the same source can be identified.

4.2 Experimental Setup
Our experiments are conducted on a Ubuntu 18.04 workstation with
an 8-core 3.0 GHz Intel Core i7-9700 CPU, 32GB of RAM, and 2TB
HDD (Seagate Barracuda). We install Prometheus v2.10.0 as the
baseline, our Heracles prototype, and InfluxDB on the workstation.

Monitoring Targets. We choose 10 Debian servers with Linux
kernel 3.2.0.5 as the performance monitoring targets. On these
targets, we run Prometheus Node Exporter [36], which is a program
that can collect and export the metrics (CPU, memory, network,
etc.) of the host machine periodically to a web page, so we can

1086



(a) cpu_avg (b) memory_usage_avg (c) net_receive_throughput

(d) average cpu_avg (e) average memory_usage_avg (f) average net_receive_throughput

Figure 10: The real-time end-to-end query latency with Prometheus recording rules.

Table 1: Recording rules used in production environment
evaluation.

Recording Rule Description
cpu_avg Get the recent average CPU usage of

all targets (last 5 minutes)
memory_
usage_avg

Get the recent average memory usage
of all targets (last 5 minutes)

net_transmit Get the recent network receiving throu-
ghput of all targets (last 5 minutes)

periodically collect data from those targets. The workstation and
the monitoring servers are connected with a 1Gbps local Ethernet
network.

Group Setup. For all the benchmarks of the storage engine with
our group models, all the timeseries (500) from the same target are
identified and processed as a single group during data insertions.

Comparison Systems. For the production environment eval-
uation (§4.3), we compare Heracles with the Prometheus system.
For the storage engine evaluation (§4.4) and the data flushing eval-
uation (§4.5), we compare the storage engine of Heracles with the
storage engine of Prometheus (namely Prometheus tsdb). For the
comparison with state-of-the-art storage techniques (§4.6), we mod-
ify the on-disk storage of Prometheus tsdb and evaluate the query
latencies.

4.3 Production Environment Evaluation
To evaluate end-to-end query latency performance, each of Hera-
cles, Prometheus, and InfluxDB is deployed on our Ubuntu work-
station to collect performance metrics of the 10 Debian servers,
where we have a totally 70 targets (on each server, 7 Prometheus
Node Exporter programs are operated). In our experiments, data are
collected and inserted into each system every 5 seconds, and specifi-
cally, in Prometheus, we utilize its own data collector to scrape data;
in Heracles, the Prometheus data collector is modified to scrape
data in a group manner; in InfluxDB, a simple Golang program
has been implemented for data scrapping and insertion. For query
latency evaluation, we first compare Heracles with Prometheus by
utilizing Prometheus user-defined recording rules, and then com-
pare Heracles with Prometheus and InfluxDB via the HTTP API
interfaces.

Recording Rules Latency. Prometheus supports user-defined
recording rules [37] that defines periodic background query tasks,
by which the duration of executing a query defined by a rule can be

Figure 11: The real-time end-to-end query latency through
the HTTP API interface.

recorded automatically. Through this, we can exclude the network
latency and obtain the query latency of the system. In the paper, we
only show three typical performance monitoring metrics with the
recording rules in Table 1. In the experiment, we run Prometheus
and Heracles prototype one by one, let them scrape data from the
monitoring servers, and meanwhile execute the recording rules
every 10 seconds. We record the real-time latency of executing
each recording rule. We capture a two-hour time range after the
system has been warmed-up for one hour which is shown in Fig-
ures 10(a)(b)(c). We can see the real-time rule evaluation latency
curve of Heracles is more stable and has lower latency than that of
Prometheus. Besides, we also evaluate the average rule evaluation
latency under different number of monitoring targets and the ex-
perimental results are shown in Figures 10(d)(e)(f), from which a
13% average latency reduction can be observed.

End-to-End Query Latency. An HTTP API query interface is
provided by both Prometheus and InfluxDB, by which we further
evaluate the end-to-end query latencies of Heracles, Prometheus
and InfuxDB. Specifically, Prometheus v1.0 query range HTTP
API [39] is utilized for Heracles and Prometheus, and InfluxDB
v2.0 query HTTP API [26] is for InfluxDB; to reduce network la-
tencies, all queries are executed via HTTP API directly on our
Ubuntu workstation (where Heracles, Prometheus and InfluxDB
are deployed) when data collection is performing by each system
as described above. InfluxDB does not provide a scrape component
like Prometheus, thus we implement a simple Golang program to
scrape and insert data of the above-mentioned targets into InfluxDB

1087



Table 2: TSBS query patterns.

TSBS
Query

Description

1-8-1 Query data on one timeseries from 8 targets,
every 5 minutes window for 1 hour.

5-1-1 Query data on 5 timeseries from 1 target,
every 5 minutes window for 1 hour.

5-1-12 Query data on 5 timeseries from 1 target,
every 5 minutes window for 12 hours.

5-8-1 Query data on 5 timeseries from 8 targets,
every 5 minutes window for 1 hour.

double-
group-
by-1

Aggregate on across both time and host,
giving the average of 1 CPU metric per
host per hour for 12 hours.

last-
point

The last reading of 1 CPU metric
of one host.

every 5 seconds. Similar to the previous experiment, we capture a
two-hour time range after the system has been warmed-up for one
hour and Figure 11 shows the real-time latency of the periodically
HTTP queries. We can see the query latency from Prometheus or
from our Heracles prototype is similar because of the influence
of transferring data among different system components and the
network latency. For InfluxDB, since we do not apply further pa-
rameter tuning, it demonstrates inferior performance compared
with Prometheus and our Heracles prototype. As InfluxDB utilizes
a similar storage model as Prometheus, we expect it can be further
optimized by applying our Heracles model.

4.4 Storage Engine Evaluation
In the production environment, since performance monitoring sys-
tems ingest data through periodic data collection, with targets, we
cannot saturate the bandwidth so the insertion throughput cannot
be effectively evaluated. Similarly, the query performance cannot
be effectively compared as well due to the overheads introduced
by the network and other system components. Thus, in this sec-
tion, we directly benchmark the storage engine to evaluate the
insertion throughput, query latency, and disk data size under huge
workloads.

4.4.1 Dataset. To obtain large datasets, we run 30 node exporters
on each of the 10 monitoring servers and totally we have 150K
timeseries. For the metadata of the timeseries, we use the timeseries
labels collected from the node exporters. For the sample data of the
timeseries, we prepare two different kinds of data – real monitoring
and random data, respectively.

For real monitoring data, we scrape the above node exporters
every 5 seconds for 12 hours to make the real monitoring dataset
which contains a total of 1.3 billion samples. For random data, we
keep the timestamp and replace the metric value with a random

Table 3: Label Description.

Acronym Description
P-L Prometheus tsdb LevelDB integration
P-P Prometheus tsdb Parquet integration
P Prometheus tsdb

(a) Random data (b) Real monitoring data

Figure 12: Write throughput comparison.

floating-point number between 0 and 1 for each sample in the
real monitoring dataset. To insert data into the storage engine
with a specific interval, taking 15 seconds as an example, since our
collected data has 5 seconds interval, we need to skip 2 samples
each time when we insert a new sample of the same timeseries.

4.4.2 Insertion Throughput. To evaluate insertion throughput, we
fix the sample interval as 15 seconds and measure the durations
of inserting 12-hour data of different numbers of timeseries from
both our random and real monitoring datasets. Figure 12 shows the
insertion throughput and we can see the insertion throughput of
Heracles is much higher and more stable than that of Prometheus
tsdb. On average, Heracles has 103% and 239% improvements on
the write throughput over Prometheus tsdb for random and real
monitoring datasets, respectively, which credits to the group-based
locking unit.

4.4.3 TSBS Query Benchmarks. To measure the query latency, we
utilize TSBS [46] that is a popular and comprehensive benchmark
suite for timeseries databases to generate six query patterns as
shown in Table 2. We run the benchmark with preloaded random
and real monitoring datasets, respectively. Table 3 shows the de-
scriptions of acronyms we use in the experiment.

(1) Different Numbers of Timeseries. First, we fix the sample
interval as 15 seconds and gradually increase the number of time-
series contained in the storage engine and evaluate the query perfor-
mance. In Figure 13, each point represents one benchmark round for
the storage engine containing the data of the corresponding num-
ber of timeseries in the x-axis. We can see the query latency curve
of Heracles is more stable and lower than that of Prometheus tsdb
in Figures 13(a)(b)(c)(d)(f). For Figure 13(e), the difference in query
latencies becomes smaller; this is because in double-groupby-1,
we query for a long time range of data, the duration of continuous
decompression becomes the main influencing factor on the query
latency instead of the duration of locating the first sample. On av-
erage, from the experiments of Figure 13, Heracles has 43.9% and
44.5% improvements over Prometheus tsdb for the random and real
monitoring datasets, respectively.

(2) Different Data Densities. Second, we fix the number of
timeseries contained in the storage engine as 5000 and benchmark
the query performance under different sample intervals (data den-
sities). For the x-axis of Figure 14, different numbers represent
different data densities. From Figures 14(a)(b)(c)(d)(f), we can see
the query latency of our Heracles prototype under both random and
real monitoring datasets is much lower than that of the Prometheus
tsdb. For the random dataset, the query latency is slightly larger

1088



(a) 1-8-1 (b) 5-1-1 (c) 5-1-12

(d) 5-8-1 (e) double-groupby-1 (f) lastpoint

Figure 13: Query durations of TSBS patterns under different number of timeseries.

(a) 1-8-1 (b) 5-1-1 (c) 5-1-12

(d) 5-8-1 (e) double-groupby-1 (f) lastpoint

Figure 14: Query durations of TSBS patterns with 5000 timeseries under different data densities.

compared with the real monitoring dataset; this is because it takes
more compressed bits and more time to write the random dataset af-
ter XOR compression. Besides, when the sample interval increases,
the query latency becomes lower, which is because the size of the
querying data becomes smaller since the data density decreases. For
Figure 14(e), similar to the previous experiment, the fraction of the
duration of locating the first sample becomes small and the overall
query latency of Heracles becomes closer to that of Prometheus
tsdb. On average, for the experiments of Figure 14, Heracles has
29% and 33% improvements over Prometheus tsdb for the random
and real monitoring datasets, respectively.

4.4.4 Compressed Data Size Comparison. In this section, we com-
pare the compressed data size between Prometheus tsdb and Hera-
cles.

For in-memory data, after the benchmarks in §4.4.3 finish, we
observe a 12% data size reduction of Heracles over Prometheus tsdb.
For on-disk data, similar to the benchmark in Part 2 of §4.4.3, we
insert 12-hour data from both random and real monitoring datasets

into Prometheus tsdb and Heracles, respectively. Figure 15 shows
the size comparisons for compressed timeseries data and index
under different data densities, respectively.

For the block data, on average, Heracles has 13% and 50% of data
size reduction over Prometheus tsdb for the random and real moni-
toring datasets, respectively. For the index, on average, Heracles
has a 12% of data size reduction over Prometheus tsdb. Besides, the
size of the index of Prometheus tsdb increases with data densities.

4.4.5 Tuple Size Trade-off. As mentioned in §3.1.1, in our imple-
mentation, we choose eight as the tuple size because it provides a
good balance between the query performance and compression ra-
tios. In this section, we explore the influences of query performance
and compression ratios under different tuple sizes. We can see from
Figure 16(a) that the query latency slightly increases with the tuple
size because of more decompression during querying. Besides, since
more samples can be compressed continuously when the tuple size
becomes larger, Figure 16(b) shows a slowly decreasing trend of
the compressed data size as the tuple size grows.

1089



(a) Size of on-disk data (b) Size of on-disk index

Figure 15: Data size comparison.

4.5 Data Flushing Evaluation
In this section, we evaluate the data flushing duration and query
latency during data flushing. Figure 4(b) shows the data flushing
durations of Prometheus tsdb and Heracles without the memory
manager. We test with three kinds of data – random, increasing
counter, and real monitoring data. We flush 2 hours’ in-memory
data of 10000 timeseries with 15 seconds interval to disks and
record the duration. For Heracles, we first evaluate the data flushing
duration and the corresponding CPU usage without concurrency
where the groups are converted and flushed sequentially. The data
flushing duration is 3.4 times higher than that of Prometheus tsdb
because the model conversion of Heracles is time-consuming and
Prometheus tsdb simply flushes the chunks to disks with the same
format for in-memory and on-disk data.

To reduce the data flushing overhead, because the model con-
version of each timeseries in the same group is independent, we
can launch a Goroutine for model conversion for each timeseries of
the same group (around 100 Goroutines running concurrently) and
write the converted results to disks sequentially. The data flushing
duration is then reduced to 55% higher than that of Prometheus tsdb.
However, as we can see from the right part of Figure 4(b), the CPU
usage of Heracles is 1.8 times higher than that of Prometheus tsdb
which can affect the query performance during the data flushing.

Next, during the data flushing, we continuously query the last
15 minutes’ data of one timeseries in a background Goroutine and
record the latency of each query for Prometheus tsdb and Heracles
with concurrency, respectively. Figure 4(c) shows the CDF of query
latency during the data flushing. The P99.99 and maximum query
latencies of Heracles with concurrent data flushing are 25% and
28% higher than those of Prometheus tsdb, respectively.

(a) Query performance (b) On-disk data size

Figure 16: Query performance and on-disk data size under
different tuple sizes.

(a) Prometheus tsdb (b) Heracles

Figure 17: Query performance during data flushing.

Our memory manager can gradually flush and reclaim in-
memory data. In Figure 17(a) and Figure 17(b), after adding the
memory manager into Heracles, we repeat the above experiment,
in which a significant tail latency reduction can be observed. For
instance, the P99.99 and maximum query latencies of Heracles are
70% and 64% lower than those of Prometheus tsdb, respectively,
during data flushing.

4.6 Comparison with State-of-the-art Storage
Techniques

In this section, we explore the possibility of handling performance
monitoring timeseries with state-of-the-art storage techniques.
Specifically, we replace the back-end storage of Prometheus tsdb
with LevelDB and Parquet and compare the performance with
Prometheus tsdb and Heracles.

Insertion throughput. As shown in Figure 12, the insertion
throughput of both the LSM integration and the Parquet integration
are similar to that of the original tsdb. This is because we manage
the in-memory data with the same mechanism of Prometheus tsdb,
and we only apply the integration on the on-disk data.

Prometheus tsdb LSM-based KV Store Integration. First,
we replace the back-end storage of Prometheus tsdb with LSM-
based KV Store that has a write-optimized design. We choose Lev-
elDB [17], a widely used LSM-based KV store for the integration.
As shown in Figure 18(a), for each chunk in Prometheus tsdb, we
generate a unique ULID [32] as the key of the inserted KV pair,
use the chunk contents as the value, and insert the KV pair into
LevelDB. Figure 14 shows the query latency under different data
densities. In Figure 13, on average, the query latency of the Lev-
elDB integration is 12% higher than that of Prometheus tsdb. This
is mainly because of the poor data locality as the chunks of the
same timeseries may be scattered in different SSTables.

(a) LevelDB (b) Parquet

Figure 18: Prometheus tsdb integration with State-of-the-
art techniques.

1090



Prometheus tsdb Parquet Integration. Second, we explore
the possibility of leveraging columnar storage techniques to store
performance monitoring timeseries data. We choose Parquet [14], a
state-of-the-art columnar storage format for the integration. When
flushing in-memory data chunks, we leverage a Parquet schema as
shown in Figure 18(b) to store the data chunks into Parquet files [51].
As shown in Figure 13, the query latency of the Parquet integration
is similar to that of the original Prometheus tsdb (3% higher). This
is mainly because Prometheus tsdb can better compress timeseries
data compared to Parquet. On the other hand, similar to Prometheus,
Parquet also suffers from the decompression overheads as discussed
in §2.3.1.

4.7 Discussion
In this section, we discuss the limitations and possible future direc-
tions.

Data Diversity. Currently, we only support 64-bit double-
precision floating-point number for timeseries metric values like
Prometheus. In the future, we will add support for more data types
and design the corresponding compression methods to integrate
into our storage model.

SQL Support. State-of-the-art timeseries systems like
Prometheus and InfluxDB develop their own query languages
(PromQL [40] and Flux [23], respectively). Since Heracles is
implemented based on Prometheus tsdb, we follow the interfaces
of Prometheus tsdb. In the future, we will add an SQL interface
for Heracles to support complex queries and easy integration with
existing SQL tools.

Further Comparison. In this paper, we utilize LevelDB for the
comparison with LSM-tree key-value stores. However, partitioned
LSM-based B+-tree design such as AsterixDB [2–4] may better
suit timeseries data management with data of the same timeseries
gathered together, which can be a future direction for timeseries
management with key-value stores.

5 RELATEDWORK
Columnar Stores. C-Store [44] is a read-optimized relational
DBMS which partitions projections horizontally into segments
and each segment is associated with sort order. Vertica [29] is im-
plemented based on C-Store, adding super projection and different
denormalized projections with different physical layouts to avoid
expensive join operations. MonetDB [21] leverages a similar stor-
age model to Vertica which stores each column in a logical table
to a separate table. However, similar to Parquet, the compression
schemes of the above systems are not optimized for performance
monitoring timeseries. Besides, data flushing specially-tailored for
timeseries data is critical, which is not provided by these systems.

Timeseries Databases. Gorilla [13, 33] is a fast in-memory
timeseries database that proposes a widely used compression
scheme for timeseries data. We further optimize Gorilla’s com-
pression scheme as discussed in section 3.1.2. InfluxDB is another
widely used timeseries database that provides multiple compression
schemes for integers [6, 41, 50] and leverages XOR compression for
floating-point numbers. However, since InfluxDB manages time-
series independently like Prometheus, it exposes the same problems
as discussed in §2. BtrDB (Berkeley Tree Database) [5] focuses on
high-precision, high-sample-rate telemetry timeseries. Timon [9]

is a timestamped event database. It mainly focuses on the analy-
sis of massive and long-term events and utilizes SEDA program-
ming model [49] which is different from state-of-the-art timeseries
databases. Besides, Timon does not have a data re-utilization mech-
anism as Heracles does.

Main-Memory Databases. Main-memory databases mainly
store data in memory. However, when the data size scales up,
databases need to evict some data to disks where the memory recla-
mation algorithms are leveraged [16, 42, 47]. Anti-Caching [10]
eliminates the caching layer by leveraging a fine-grained eviction
mechanism that gathers the cold tuples and writes them to disks
asynchronously. LeanStore [30] focuses on in-memory data man-
agement beyond main memory. It introduces three states for a data
page (hot, cooling, and cold) where the evicted data is first put into
the cooling queue and then gradually released to the cold stage.
Besides, to avoid the read/reclamation race for the data in the cool-
ing queue, the original epoch-based reclamation algorithm [16] is
modified so the reading threads and the pages in the cooling queue
are attached with epochs. The page in the cooling queue can be
released to the cold stage only when its epoch is smaller than the
minimum epoch among all the current reading threads. Different
from LeanStore, we further partition the hot area according to the
time ranges and assign different reclamation schemes for different
partitions. Besides, the extra epoch attached in each partition helps
quick reclamation when the time range reaches the data retention
time and also helps query threads differentiate whether the time
range is still valid.

MultiversionConcurrency Control.MVCC [8] applied in the
state-of-the-art database systems like Microsoft Hekaton [12] com-
monly leverages a version chain to represent data modifications.
Each tuple contains a begin and an end timestamps to represent
the version which helps decide the visibility to a transaction. Be-
sides, the version also helps garbage collectors in data reclamation
according to the timestamp of the oldest active transaction. MVCC
is not adopted by Heracles because data samples are immutable
once being compressed into memory blocks. Therefore, we only
need to avoid the read/reclamation race so epoch is good enough to
decide whether an outdated data block is currently being accessed
by active readers.

6 CONCLUSION
In this paper, we present Heracles for performance monitoring
timeseries, which contains an efficient group-based storage model
and a novel two-level epoch-based memory manager for better data
flushing. Heracles not only improves the query performance, but
also achieves a higher write throughput and a better compression
ratio. In our experiments, compared to Prometheus tsdb, we achieve
171% higher write throughput, 32% lower query latency, and 30%
lower space usage on average.

ACKNOWLEDGMENTS
The work described in this paper is partially supported by the
grants from the Research Grants Council of the Hong Kong Special
Administrative Region, China (GRF 15273616, GRF 15206617, GRF
15224918), and Direct Grant for Research, The Chinese University
of Hong Kong (Project No. 4055096).

1091



REFERENCES
[1] Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating Com-

pression and Execution in Column-oriented Database Systems. In Proceed-
ings of the 2006 ACM SIGMOD International Conference on Management of
Data (Chicago, IL, USA) (SIGMOD ’06). ACM, New York, NY, USA, 671–682.
https://doi.org/10.1145/1142473.1142548

[2] Wail Y. Alkowaileet, Sattam Alsubaiee, and Michael J. Carey. 2020. An LSM-Based
Tuple Compaction Framework for Apache AsterixDB. Proc. VLDB Endow. 13, 9
(May 2020), 1388–1400. https://doi.org/10.14778/3397230.3397236

[3] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm, Vinayak
Borkar, Yingyi Bu, Michael Carey, Inci Cetindil, Madhusudan Cheelangi, Khurram
Faraaz, Eugenia Gabrielova, Raman Grover, Zachary Heilbron, Young-Seok Kim,
Chen Li, Guangqiang Li, Ji Mahn Ok, Nicola Onose, Pouria Pirzadeh, Vassilis
Tsotras, Rares Vernica, JianWen, and Till Westmann. 2014. AsterixDB: A Scalable,
Open Source BDMS. Proc. VLDB Endow. 7, 14 (Oct. 2014), 1905–1916. https:
//doi.org/10.14778/2733085.2733096

[4] Sattam Alsubaiee, Alexander Behm, Vinayak Borkar, Zachary Heilbron, Young-
Seok Kim, Michael J. Carey, Markus Dreseler, and Chen Li. 2014. Storage
Management in AsterixDB. Proc. VLDB Endow. 7, 10 (June 2014), 841–852.
https://doi.org/10.14778/2732951.2732958

[5] Michael P Andersen andDavid E. Culler. 2016. BTrDB: Optimizing Storage System
Design for Timeseries Processing. In 14th USENIX Conference on File and Storage
Technologies (FAST 16). USENIX Association, Santa Clara, CA, 39–52. https:
//www.usenix.org/conference/fast16/technical-sessions/presentation/andersen

[6] Vo Ngoc Anh and Alistair Moffat. 2010. Index compression using 64-bit words.
Software: Practice and Experience 40, 2 (2010), 131–147. https://doi.org/10.1002/
spe.948

[7] Andrea Arcangeli, Mingming Cao, Paul E McKenney, and Dipankar Sarma. 2003.
Using Read-Copy-Update Techniques for System V IPC in the Linux 2.5 Kernel..
In USENIX Annual Technical Conference, FREENIX Track. 297–309.

[8] Philip A. Bernstein and Nathan Goodman. 1983. Multiversion Concurrency
Control—Theory and Algorithms. ACM Trans. Database Syst. 8, 4 (Dec. 1983),
465–483. https://doi.org/10.1145/319996.319998

[9] Wei Cao, Yusong Gao, Feifei Li, Sheng Wang, Bingchen Lin, Ke Xu, Xiaojie Feng,
YucongWang, Zhenjun Liu, and Gejin Zhang. 2020. Timon: A Timestamped Event
Database for Efficient Telemetry Data Processing and Analytics. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data (Portland,
OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY,
USA, 739–753. https://doi.org/10.1145/3318464.3386136

[10] Justin DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker, and Stan
Zdonik. 2013. Anti-caching: A new approach to database management system
architecture. Proceedings of the VLDB Endowment 6, 14 (2013), 1942–1953.

[11] Google Developers. 2020. Protocol Buffers - Base 128 Varints. https://developers.
google.com/protocol-buffers/docs/encoding#varints.

[12] Cristian Diaconu, Craig Freedman, Erik Ismert, Paul Larson, Pravin Mittal, Ryan
Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL Server’s
Memory-Optimized OLTP Engine. In ACM International Conference on Man-
agement of Data 2013 (sigmod 2013 ed.). https://www.microsoft.com/en-
us/research/publication/hekaton-sql-servers-memory-optimized-oltp-engine/

[13] Fackbook. 2020. Beringei - A high performance, in memory time series storage
engine. https://github.com/facebookarchive/beringei.

[14] Apache Software Foundation. 2020. Apache Parquet. https://parquet.apache.org/.
[15] The Apache Software Foundation. 2020. Apache HBase Project. https://hbase.

apache.org/.
[16] Keir Fraser. 2004. Practical lock-freedom. Technical Report. University of Cam-

bridge, Computer Laboratory.
[17] Sanjay Ghemawat and Jeff Dean. 2020. LevelDB. https://github.com/google/

leveldb.
[18] Anders Gidenstam, Marina Papatriantafilou, Håkan Sundell, and Philippas Tsigas.

2008. Efficient and reliable lock-free memory reclamation based on reference
counting. IEEE Transactions on Parallel and Distributed Systems 20, 8 (2008),
1173–1187.

[19] M. Großmann and C. Klug. 2017. Monitoring Container Services at the Network
Edge. In 2017 29th International Teletraffic Congress (ITC 29), Vol. 1. 130–133.
https://doi.org/10.23919/ITC.2017.8064348

[20] Thomas Hart, Paul Mckenney, Angela Brown, and JonathanWalpole. 2007. Perfor-
mance of memory reclamation for lockless synchronization. J. Parallel and Distrib.
Comput. 67 (12 2007), 1270–1285. https://doi.org/10.1016/j.jpdc.2007.04.010

[21] Stratos Idreos, F. Groffen, Niels Nes, Stefan Manegold, Sjoerd Mullender, and
Martin Kersten. 2012. MonetDB: Two Decades of Research in Column-oriented
Database Architectures. IEEE Data Eng. Bull. 35.

[22] Docker Inc. 2020. Collect Docker metrics with Prometheus. https://docs.docker.
com/config/thirdparty/prometheus/.

[23] InfluxData Inc. 2020. Flux data scripting language. https://docs.influxdata.com/
influxdb/v2.0/reference/flux/.

[24] LogicMonitor Inc. 2020. LogicMonitor Case Studies. https://www.logicmonitor.
com/case-studies.

[25] influxdata. 2020. InfluxDB 1.7 Documentation. https://docs.influxdata.com/
influxdb/.

[26] Influxdata. 2020. InfluxDB Query. https://docs.influxdata.com/influxdb/v2.0/api/
#operation/PatchDashboardsIDCellsIDView.

[27] Jing Han, Haihong E, Guan Le, and Jian Du. 2011. Survey on NoSQL database.
In 2011 6th International Conference on Pervasive Computing and Applications.
363–366. https://doi.org/10.1109/ICPCA.2011.6106531

[28] William Kennedy. 2020. Scheduling In Go : Part II - Go Scheduler. https://www.
ardanlabs.com/blog/2018/08/scheduling-in-go-part2.html.

[29] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver,
Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic Database: C-Store 7
Years Later. Proc. VLDB Endow 5, 12 (Aug. 2012), 1790–1801. https://doi.org/10.
14778/2367502.2367518

[30] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management beyond Main Memory. In 34th IEEE
International Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19,
2018. IEEE Computer Society, 185–196. https://doi.org/10.1109/ICDE.2018.00026

[31] Maged M Michael. 2002. Safe memory reclamation for dynamic lock-free objects
using atomic reads and writes. In Proceedings of the twenty-first annual symposium
on Principles of distributed computing. 21–30.

[32] OKLog. 2020. Universally Unique Lexicographically Sortable Identifier. https:
//github.com/oklog/ulid.

[33] Tuomas Pelkonen, Scott Franklin, Paul Cavallaro, Qi Huang, Justin Meza, Justin
Teller, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable, In-Memory
Time Series Database. PVLDB 8, 12 (2015), 1816–1827. https://doi.org/10.14778/
2824032.2824078

[34] Bartlomiej Plotka. 2020. Thanos - Highly available Prometheus setup with long
term storage capabilities. A CNCF Incubating project. https://github.com/thanos-
io/thanos.

[35] Prometheus. 2020. Exporter for MySQL server metrics. https://github.com/
prometheus/mysqld_exporter.

[36] Prometheus. 2020. Node exporter - Exporter for machine metrics. https://github.
com/prometheus/node_exporter.

[37] Prometheus. 2020. Prometheus - Defining recording rules. https://prometheus.io/
docs/prometheus/latest/configuration/recording_rules/.

[38] Prometheus. 2020. Prometheus - From metrics to insight, power your metrics and
alerting with a leading open-source monitoring solution. https://prometheus.io/.

[39] Prometheus. 2020. Prometheus Range Queries. https://prometheus.io/docs/
prometheus/latest/querying/api/#range-queries.

[40] Prometheus. 2020. PromQL. https://prometheus.io/docs/prometheus/latest/
querying/basics/.

[41] A. H. Robinson and C. Cherry. 1967. Results of a prototype television bandwidth
compression scheme. Proc. IEEE 55, 3 (March 1967), 356–364. https://doi.org/10.
1109/PROC.1967.5493

[42] Michael Scott and Maged Michael. 1995. Correction of a Memory Management
Method for Lock-Free Data Structures. (1995).

[43] Chris B. Sears. 2000. The Elements of Cache Programming Style. In Proceedings
of the 4th Annual Linux Showcase & Conference - Volume 4 (Atlanta, Georgia)
(ALS’00). USENIX Association, Berkeley, CA, USA, 18–18. http://dl.acm.org/
citation.cfm?id=1268379.1268397

[44] Mike Stonebraker, Daniel J. Abadi, AdamBatkin, XuedongChen,Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat
O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2005. C-store: A Column-oriented
DBMS. In Proceedings of the 31st International Conference on Very Large Data
Bases (Trondheim, Norway) (VLDB ’05). VLDB Endowment, 553–564. http:
//dl.acm.org/citation.cfm?id=1083592.1083658

[45] Yandex ClickHouse team. 2020. ClickHouse. https://clickhouse.tech/.
[46] Timescale. 2020. Time Series Benchmark Suite, a tool for comparing and evaluating

databases for time series data. https://github.com/timescale/tsbs.
[47] John D Valois. 1995. Lock-free linked lists using compare-and-swap. In Pro-

ceedings of the fourteenth annual ACM symposium on Principles of distributed
computing. 214–222.

[48] Alexander Visheratin, Alexey Struckov, Semen Yufa, Alexey Muratov, Denis
Nasonov, Nikolay Butakov, Yury Kuznetsov, and Michael May. 2020. Peregreen –
modular database for efficient storage of historical time series in cloud environ-
ments. In 2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX
Association, 589–601. https://www.usenix.org/conference/atc20/presentation/
visheratin

[49] Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An Architecture for
Well-Conditioned, Scalable Internet Services. SIGOPS Oper. Syst. Rev. 35, 5 (Oct.
2001), 230–243. https://doi.org/10.1145/502059.502057

[50] Jason Wilder. 2020. simple8b Golang implementation. https://github.com/jwilder/
encoding/tree/master/simple8b.

[51] xitongsys. 2020. Pure golang library for reading/writing parquet file. https:
//github.com/xitongsys/parquet-go.

1092


