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ABSTRACT

Measuring flow spread in real time from large, high-rate data
streams has numerous practical applications, where a data stream
is modeled as a sequence of data items from different flows and the
spread of a flow is the number of distinct items in the flow. Past
decades have witnessed tremendous performance improvement
for single-flow spread estimation. However, when dealing with nu-
merous flows in a data stream, it remains a significant challenge to
measure per-flow spread accurately while reducing memory foot-
print. The goal of this paper is to introduce new multi-flow spread
estimation designs that incur much smaller processing overhead
and query overhead than the state of the art, yet achieves signifi-
cant accuracy improvement in spread estimation. We formally an-
alyze the performance of these new designs. We implement them
in both hardware and software, and use real-world data traces to
evaluate their performance in comparison with the state of the art.
The experimental results show that our best sketch significantly
improves over the best existing work in terms of estimation accu-
racy, data item processing throughput, and online query through-
put.
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1 INTRODUCTION

Measuring statistics in real time from large, high-rate data streams
has numerous applications [10, 11, 20, 30, 33, 36, 41, 43, 45]. Tra-
ditionally, a data stream is modeled as a sequence of data items
{d1,d2,d3,d2, ...}, and the statistics of interest include the frequen-
cies of the data items appearing in the stream [17, 18, 21, 22, 27, 40,
45] and the number of different items called the cardinality of the
stream [22, 37, 40].
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However, the traditional model is unsuitable for many sophisti-
cated applications. To capture greater details of a data stream, we
adopt a more general model where a data stream consists of data
items from multiple sub-streams also called flows and each data
item is a pair 〈f , e〉, where f is a flow label that tells which flow
the item belongs to, and e is the actual data (also referred to as ele-
ment) of interest in the flow. This paper studies how tomeasure the
spread of each flow, which is defined as the number of distinct ele-
ments in each flow. As a special case, if we treat the whole stream
as a single flow, its spread is the traditional cardinality.

The general model has many applications such as P2P hot-spot
localization [28], web caching prioritization [3, 46], detection of
DDoS attacks [2, 24], port scanning measurement [10] and worm
propagation detection [6, 29], which do not fit with the traditional
model. Below we give several examples in the context of Internet
applications. Consider a packet stream that arrives at a high-speed
router, with each packet modelled as 〈f , e〉, where f and e can
be defined arbitrarily based on information from packet header or
payload for specific application need. For example, if we consider
all packets from the same source address as a flow and use desti-
nation addresses as the elements under monitoring, a flow-spread
measurement module deployed at a gateway router will detect po-
tential external adversaries that are scanning the internal network
— these are external sources with large spreads (i.e., their flows con-
tain toomany distinct destinations), or in case of stealthy scanning
they are sources with modest spreads at any measurement period
but persisting at a spread level higher than normal over a long time
[44]. As an opposite example, if we use destination addresses as
flow labels and source addresses as elements, spread measurement
will help identify the victims of possible DDoS attacks — these are
internal destination addresses with large spreads (i.e., their flows
contain too many distinct source addresses). In yet another exam-
ple, a large server farm may learn the popularity of its content by
tracking the number of distinct users accessing each file [5], where
all users accessing the same file form a flow. Finally, spread mea-
surement has also been applied in various data analysis systems
at Google [16]. For instance, Sawzall [26], Dremel [23] and Pow-
erDrill [15] estimate the number of distinct users that search the
same key, where we can model all search requests for the same
key as a flow and user identities (e.g., their IP addresses) as the
elements in each flow.
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This paper is interested in per-flow spread measurement, al-
lowing users to query the spread of any flow online in real time.
We have three performance requirements for the design of a
spread measurement module. First, it should incur low process-
ing overhead per data item in order to support high-rate stream-
ing. Second, it should be memory-efficient in order to support soft-
ware/hardware implementation on the data plane of a streaming
device which may operate on cache memory. Third, it should sup-
port efficient online spread queries to support real-time applica-
tions. We again use packet stream in high-speed networks as exam-
ple to justify the requirements. Modern routers forward packets at
hundreds of gigabits or even terabits per second (at least 8.3M pack-
ets or 83M packets per second considering Maximum transmission
unit for Ethernet is 1500 bytes). Tracking a large number of flows si-
multaneously can be a serious challenge. Specifically, if one wants
to perform online flow spread measurement in real time, one way
is to implement the measurement module on data-plane network
processors. Since their on-chip circuitry and cachememory have to
be shared among many other routing/performance/security func-
tions, low overhead and memory efficiency become highly desir-
able properties in order not to create performance bottleneck.

There are two categories of solutions for per-flow spread mea-
surement. One category estimates each flow with a separate data
structure, called spread estimator. To count distinct elements, it
must be able to remember the elements that it has seen. Such single-
flow estimators include bitmap [38], FM [13], multi-resolution bit-
map [11], KMV [4], LogLog [9] and HyperLogLog (HLL) [12, 16].
They require hundreds or thousands of bits for each flow in order
to achieve good accuracy and range. When the number of flows is
numerous, monitoring all flows with separate data structures can
be too costly. We need more compact data structures called spread
sketches that monitor all flows simultaneously without linearly in-
creasing thememory overhead, which leads to the second category
of solutions [8, 39, 42, 46]. They share a certain number of spread
estimators among all flows when recording their elements. But
sharing causes error in spread estimation. When a flow shares an
estimator with other flows, the estimator produces the combined
spread of all those flows instead of the spread of an individual flow.
To reduce the error, the current approach [8, 42, 46] follows the
idea of CountMin [7] by mapping each flow to multiple estimators,
making multiple spread estimations, and taking the minimum an-
swer. However, it is well known that this approach has a positively
biased error that can be very large when the multiple estimators
are all shared with other large flows. Moreover, since each flow
has to be recorded in multiple estimators and each query has to be
computed from multiple estimators, both the processing overhead
per data item and the query overhead for each flow are increased
multi-fold.

The goal of this paper is to design new spread sketches for on-
line per-flow spread estimation (in the scenarios described before)
that incur much smaller processing overhead and query overhead
than the start of the art, yet result in much less error in spread
estimation. More specifically, we want the processing overhead
and the query overhead to be multiple times smaller, and the error
to be an order of magnitude smaller. To achieve these seemingly
conflicting objectives, we cannot follow the prior approaches but
need to explore new paths toward compact and efficient recording

of data items in a way that enables error removal. We introduce
two new sketch designs, called randomized error-reduction sketch
(rSkt) and unit-level randomized error-reduction sketch (rSkt2).
Their basic idea is to spread the error due to estimator sharing
evenly between a primary estimator and a complement estimator,
so that the error can be subtracted away. We formally analyze the
performance of these new sketches. We implement them in both
hardware and software, and use real-world data traces to evalu-
ate their performance in comparison with the state of the art. The
experimental results show that our best sketch significantly im-
proves over the best existing work in terms of estimation accu-
racy (up to 99.5% estimation error reduction), data item process-
ing throughput (up to 126% throughput improvement), and online
query throughput (up to 3 times throughput improvement), thanks
to its randomized error-reduction design.

2 BACKGROUND AND PRIOR ART

2.1 Problem Statement

The traditional model considers a data stream as a sequence of data
items, . . . d . . . The classical measurements include the frequen-
cies of the data items [17, 18, 21, 22, 27, 40, 45] and the spread (or
cardinality) of the stream [22, 40], which is defined as the num-
ber of distinct items in the stream. For example, for a data stream
of {d1,d2,d1,d1}, the frequency of d1 is 3, that of d2 is 1, and the
spread of thewhole stream is 2 because there are two distinct items,
d1 and d2.

This paper adopts a more general model where a data stream
consists of a continuous sequence of data items 〈f , e〉, where f

is a flow label and e is an element identifier. All data items with
the same label form a flow. Essentially, we divide the stream into
multiple sub-streams, called flows, each with a separate label and
containing a set of elements — in fact, it is a multi-set because an
element may appear multiple times as we will explain shortly with
an example. There can be different measurement tasks: (1) finding
the size of each flow f , i.e., the number of data items in flow f ,
(2) finding the number of different flows, and (3) find the spread of
each flow f , i.e., the number of distinct elements in flow f . The first
two tasks are identical to those in the traditional model; we simply
replace f withd and ignore e . The third task is what this paper will
focus on, which leads to our problem statement: design an efficient

sketch (i.e., compact data structure) that records the data items of a

given stream, and support online queries for spread estimates on any

given flow labels. Online queries are performed live when we process

the data stream. They are important for applications that require real-

time responses. In contrast, offline queries are performed after the

data stream has been processed [19, 39, 41, 46], and thus not subject

to any real-time requirement.

For a continuous data stream (such as a packet stream on the In-
ternet), measurement is typically done in each pre-defined period,
and the content of the sketch is offloaded to a server for long-term
storage after each period.

We use a simple example to explain the above model. Consider
the gateway of an enterprise network. Suppose that it is config-
ured tomonitor the inbound packet stream for scan detection. Each
packet is abstracted as a date item 〈f , e〉. We define all packets
from the same source address as a flow; hence, the flow label f
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is the source address carried in the packet header. We define the
destination address/port in the packet header as element e under
measurement.

• Consider a packet flow {〈f1, e1〉, 〈f2, e2〉, 〈f1, e1〉, 〈f1, e1〉}.
For the first task, we count that there are three packets in flow
f1 and one packet in flow f2. Note that the same destination ad-
dress/port e1 appears in flow f1 three times. For the second task,
we count that there are two flows. For the third task, we see that
the spread of flow f1 is one and that of flow f2 is also one.

• Consider a packet flow {〈f1, e1〉, 〈f2, e2〉, 〈f1, e3〉, 〈f1, e4〉}.
The answers are all the same as in the previous case except for the
spread of f1 is now 3.

Now suppose an external source (f ) sends 1,000,000 packets
through the gateway. If the packets go to the same destination/port
(e), the spread for the external source is 1. But if the packets all go
to different destination address/port pairs, the spread is 1,000,000;
it is likely that the external source is scanning the enterprise net-
work. If the gateway monitors the spreads of all sources simultane-
ously, it can detect the scanners in real time. This application fits
well with the general model, but not with the traditional model.
Additional application examples can be found in the introduction.

In some applications, we only need to monitor the super spread-
ers (those with very large spreads) [8, 31]. However, there are other
scenarios where the spread information of non-super spreaders
is also useful. For example, to avoid detection, stealthy scanners
may probe a small number of destination addresses/ports at any
time but do so persistently over a long period. If we measure the
spreads of all flows and analyze such information over time, we
will be able to find these stealthy scanners that are not aggressive
at any instant but persist in low-rate scanning. In another example,
suppose that an intrusion detection system identifies a set of worm-
infected hosts that perform probing to infect others. With per-flow
measurement, we will be able to examine these hosts in the mea-
surements taken from the previous periods and find out when each
of them begins its probing (which results in spread increase). This
helps us to establish infection timeline among the hosts for trace-
back purpose. Moreover, we can query their current probing rates
in real time as per-flow measurement is performing in the current
period. In general, measuring the spreads of all flows enables us
to perform broad analysis over long-term flow behaviors in order
to detect subtle anomalies that deviate from the norm. Additional
applications of per-flowmeasurement on stealthy attack detection,
fine-grained traffic analysis, flow loss map, ECMP debugging, and
TCP timely attack detection can be found in [18].

It is more difficult to measure the spread of a flow than doing
so for the size of a flow (which requires only a counter). The rea-
son is that we have to “remember" the elements that have been
seen before in order to remove duplicate elements, and that takes
a lot of memory space if the flow has a very large number of dis-
tinct elements. The overhead can be greatly reduced if we provide
a spread estimate. In this paper, we refer to a data structure that
records the elements of a flow and provides a spread estimate as
an estimator. Below we discuss the related work, beginning with
single-flow spread estimators.

estimator of flow f  

e

Figure 1: An estimator is an array of units (bits, FM registers

or HLL registers). Any element e of flow f will be recorded

in one of the units.

Table 1: Memory need for different single-flow spread esti-

mators withm units.

Estimators Memory Remark
bitmap m m lnm > n. n is the real spread of flow
FM 32m recommended asm = 128
HLL 5m recommended asm = 128

2.2 Single-flow Spread Estimators

To monitor the spread of a flow, a naive solution is to use a hash
table to store the received elements for duplicate removal [14, 34],
but this is costly as a flow may have millions or billions of distinct
elements.

More efficient single-flow spread estimators include bitmap [8,
11, 38], FM sketch [13], and HLL sketch [12, 16]. We unify their
description as follows: As shown in Figure 1, each estimator is an
arrayU ofm units, where each unit,U [i], 0 ≤ i <m, is a bit, a 32-bit
register, or a 5-bit register for bitmap, FM or HLL, respectively. The
memory consumption of single-flow spread estimators are shown
in Table 1.

When receiving an element e of the flow, we hash e to one of
the units,U [h(e)], for recording, where h(.) is a hash function. The
recording operation depends on the unit type. In case of bitmap, we
set U [h(e)] to one. In case of FM, we choose one bit in U [h(e)] to
set, with the ith bit being chosen at probability ( 12 )i+1, where 0 ≤
i < 32. In case of HLL, we updateU [h(e)] = max{U [h(e), i}, where
value i is randomly chosen from [1, 32) with probability ( 12 )i .

When we estimate the flow’s spread, we average across the ar-
ray. This computation also depends on the unit type. In case of
bitmap [38],

avд =

∑m−1
i=0 U [i]
m

.

In case of FM [13], let ρ(U [i]) be the number of consecutive ones
starting from the lowest-order bit in U [i].

avд =

∑m−1
i=0 2ρ (U [i ])

m

In case of HLL [12, 16], harmonic averaging is used to tame the
impact of outliers.

avд =
m

∑m−1
i=0

1
2U [i ]

From the average, we can estimate the flow spread based on
the formulas from the papers cited above. For example, in case of
bitmap [11, 38], the spread is estimated as −m ln(1 − avд).

While UnivMon [22] and ElasticSketch [40] are designed tomea-
sure the sizes of flows, they also estimate the number of flows,
called cardinality, in a packet stream. For this purpose, they treat
the whole stream as a single giant flow and the flow labels as el-
ements. They belong to single-flow spread estimators, and their
memory overhead is very large when comparing with bitmap/FM/
HLL.
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f f ’’f ’

an array C of estimators

C[h( f )]

Figure 2: Flow f is hashed to estimatorC[h(f )], which carries

error from otherflows due to hash collision. Recall that each

estimator is an array of units.
f f ’’f ’

C 

Figure 3: Hashing each flow f to d estimators, where d > 1.
Note that f ′ and f ′′ are also hashed to d estimators each,

which are not drawn.

2.3 Multi-flow Overhead Challenge

To monitor multiple flows, we may assign each flow a separate
spread estimator. With 5,000 bits, a bitmap estimator has an esti-
mation range up to just −5000× ln(1/5000) = 42, 586, according to
[38]. To achieve good accuracy, an FM (HLL) estimator will need
hundreds or thousands of bits [39]. For example, when an HLL es-
timator takes 640 bits when it uses 128 registers of 5 bits each [46].
Consider one million concurrent flows. The memory requirement
for one million bitmaps is 5000 Mb, while that for one million HLL
estimators is 640Mb, which can be a serious problem for online op-
erations, particularly when its implementation uses on-chip cache
memory for high speed [46], such as on a network processor for
Internet traffic. Today’s switches may have 128MB SRAM [25], but
this cachememory has to store the routing table and support essen-
tial routing/security/performance functions. Moreover, there may
be multiple measurement tasks. Therefore, it is highly desirable to
minimize the memory consumption of any measurement task.

To save space, if we use fewer estimators than the number of
flows, each estimator will have to handle multiple flows. For exam-
ple, we may hash the flows to an arrayC of estimators, as is shown
in Figure 2, where flows f , f ′ and f ′′ are hashed to the same esti-
mator. When we query for the spread of flow f , the estimator will
produces an estimate that carries noise (error) from f ′ and f ′′ due
to hash collision.

We give an example to show the error can be very large in prac-
tical scenarios. Suppose that the allocated memory is 10Mb and
the number of flows is 106, which is validated by the fact that a
10-min CAIDA dataset contains 2.52M flows if we consider each
source-destination pair as a flow. Considering the most compact
single-flow spread estimator, i.e., HLL, which occupies 640 bits un-
der recommended setting, if each data item is recorded in one es-
timator, on average, 64 flows share one estimator. Therefore, the
error can be very large. Below we explain how the existing litera-
ture handles such error.

2.4 Existing Multi-flow Estimators

There are two approaches to reduce error caused by hash collision.
One is to hash each flow f to d estimators, as shown in Figure 3,
where d = 2. The d estimators each produce a spread estimation
for flow f . The smallest of the d estimations carries the least er-
ror. Essentially, this approach [8, 42] uses the CountMin idea [7]

Table 2: Notations.

C , C̄ hash table of estimators
V (.) result of an estimator
f , e flow label and element identifier

sf /ŝf actual/estimated spread of f
d No. of hashed estimators per data item
w No. of estimators per hash table
m No. of units per estimator

h(.) ∈ [0,w) uniform hash function
д(.) ∈ {0, 1} uniform hash function

д′(., .) ∈ {0, 1} two-input uniform hash function

but replaces counters with spread estimators. A generalized design
called bSkt can be found in [46].

For online spread queries, the above approach has two problems.
First, even though error is reduced by taking the smallest, our ex-
periments still show significant error. Second, the query computa-
tion overhead increases d-fold because, for each flow, we have to
perform estimation from d estimators instead of one. This is fine
if it is done offline, but will be a problem if it is done online as we
process the live stream. Note that in order to ensure decent error
reduction,d cannot be too small. Our goal is to design a new sketch
that reduces error to a level much lower than bSkt [46] and in the
meantime reduces query computation as well.

Another approach in the literature for reducing estimation error
is virtual sketches [19, 39, 41, 46], which share a large array of units
(e.g., bits, FM/HLL registers) for all flows. More specifically, they
construct virtual estimators for individual flows from these shared
units. Each flow has its own virtual estimator, which produces a
spread estimation that carries error from other flows due to unit
sharing. Removing this error will require memory access to the
whole unit array and computation across the whole unit array.
Such overhead is many times larger than that of bSkt [46], making
it unsuitable for online spread queries. Specifically, in our test, the
online query throughput of bSkt is at least 50-300 times larger than
that of virtual sketches. We will not consider this approach further
in the paper for the desire of supporting online queries.

3 RANDOMIZED ERROR-REDUCTION
SKETCHES

In this section, we introduce two new randomized sketches for
flow spread measurement that produce asymptotically unbiased
estimation with much lower error and much lower computation
time than the prior art.

3.1 Hash Table

Let’s first revisit the hash table approach in Section 2.3 and Figure 2.
The hash table is an array C of w estimators. The ith estimator
in the table is denoted as C[i], 0 ≤ i < w . Each estimator is an
array ofm units which may be bits, FM registers or HLL registers
as explained in Section 2.2 and Figure 1. The jth unit in the ith
estimator is denoted as C[i][j], 0 ≤ i < w , 0 ≤ j <m.

• Recording: Consider an arbitrary flow f . It is hashed toC[h(f )].
After we receive an item 〈f , e〉, we hash the element e to a unit,
C[h(f )][h(e)], where it is recorded based on the unit type accord-
ing to Section 2.2. Note that a modulo operation is always assumed
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f f ’’f ’

C

C

C[h( f )]

C[h( f )]

Figure 4: Flow f is hashed to a primary estimator (C̄[h(f )] for
this example) and a complement estimator (C[h(f )] for this
example). The noise in Ff −{ f } is split between these two es-

timators with equal probability. For example, f ′ is recorded
in C[h(f )] and f ′′ is recorded in C̄[h(f )].
in this paper to keep the hash output in the proper range. For exam-
ple, C[h(f )][h(e)] should actually be C[h(f ) modw][h(e) modm].
Some important notations are shown in Table 2 for reference.

• Querying: Upon receiving a spread query on flow f , we pro-
duce an estimate from C[h(f )] based on its type (bitmap, FM or
HLL); see Section 2.2. The result is denoted as V (C[h(f )]), where
V (.) refers to the type-dependent estimation formula.

Let Ff be the set of flows that are hashed to C[h(f )], i.e., ∀f ′ ∈
Ff , h(f ′) = h(f ) mod w . Let sf be the true spread of flow f . The
number of distinct data items 〈f , e〉 that are actually recorded by
C[h(f )] is ∑f ′∈Ff sf ′ , which is greater than or equal to sf since

f ∈ Ff . The noise with respect to flow f is
∑
f ′∈Ff −{f } sf ′ , which

is what we want to remove.

3.2 Baseline Randomized Error-Reduction
Sketch - rSkt

Our first solution, called randomized error-reduction sketch (rSkt),
is to use two hash tables,C and C̄ , each ofw spread estimators, as
shown in Figure 4, where each flow f is hashed to a pair of can-
didate estimators, C[h(f )] and C̄[h(f )]. Let д(.) be a function that
maps f to 0 or 1 pseudo-randomly with equal probability. All ele-
ments of flow f will be recorded inC[h(f )] ifд(f ) = 0 or in C̄[h(f )]
if д(f ) = 1. We call the estimator that records elements of f as the
flow’s primary estimator and the other as the flow’s complement

estimator. In practice, we may implement д(f ) by taking the least-
order bit of hash value h′(f ) using another uniform hash function
h′(.) or taking the highest-order bit of h(f ) before modulow .

Consider an arbitrary noise flow f ′ ∈ Ff − { f }, where Ff is
the set of flows that ∀f ′ ∈ Ff , h(f ′) = h(f ) mod w . It is also ei-

ther recorded inC[h(f )] or C̄[h(f )], with equal probability, depend-
ing on the value of д(f ′). Hence, it is either recorded in flow f ’s
primary estimator or its complement estimator, with equal prob-
ability. Therefore, our solution splits error Ff − { f } between f ’s
primary estimator and its complement estimator, with equal prob-
ability. Roughly speaking, the flow’s primary estimator records sf
and about half of the error, and its complement records about half
of the error, allowing us to subtract error away. The flow’s esti-
mated spread, denoted as ŝf , is computed as follows.

ŝf = (1 − 2д(f ))[V (C[h(f )]) − (V (C̄[h(f )])] (1)

We stress that the splitting operation of Ff − { f } between

C[h(f )] and C̄[h(f )] will not be perfect and residual error will re-
main after subtraction. Due to the pseudo-randomness of hashing,

Ff − { f } may happen to contain a large flow f ′ that dominates
in Ff − { f }. Even if the flows in Ff − { f } are evenly distributed

between C[h(f )] and C̄[h(f )], the error caused by these flows is
not evenly distributed between the two. Most error will go where
f ′ goes. In this case, subtraction will not serve its purpose.

One approach to solve the above problem is to use d indepen-
dent hash functions, hi (f ), 0 ≤ i < d , each mapping f to a pair
of candidate estimators,C[hi(f )] and C̄[hi (f )]. We also use d inde-
pendent pseudo-random functions, дi (f ), 0 ≤ i < d , each choos-
ing a primary estimator from two candidates: For 0 ≤ i < d ,
if дi (f ) = 0, all elements of f will be recorded in C[hi(f )]; if
дi (f ) = 1, all elements of f will be recorded in C̄[hi (f )]. Hence,
for each received item 〈f , e〉, it will be recorded for d times, once
in each of f ’s primary estimators. The recording and querying op-
erations of rSkt are given in Algorithms 1 and 2, respectively.

Algorithm 1 Recording a data item in rSkt

1: Input: data item 〈f , e 〉
2: Action: record e of f in hash tables C and C̄
3: for i = 0 to d − 1 do

4: if дi (f ) = 0 then

5: record 〈f , e 〉 to estimator C[hi (f )]
6: else

7: record 〈f , e 〉 to estimator C̄[hi (f )]
8: end if

9: end for

Algorithm 2 Querying on a flow in rSkt

1: Input: flow label f , maximum integer value MAX_VALUE
2: Output: spread estimate
3: X=MAX_VALUE
4: for i = 0 to d − 1 do

5: if X > V (C[hi (f )]) +V (C̄[hi (f )]) then
6: X = V (C[hi (f )]) +V (C̄[hi (f )])
7: x=i
8: end if

9: end for

10: if дx (f ) = 0 then

11: return V (C[hx (f )]) −V (C̄[hx (f )])
12: else

13: return V (C̄[hx (f )]) −V (C[hx (f )])
14: end if

To estimate the spread of flow f , we first find the pair of candi-
date estimators,C[hx (f )] and C̄[hx (f )], that has the smallest com-
bined estimation, i.e.,

∃x ∈ [0,d),V (C[hx (f )]) +V (C̄[hx (f )]) =
min{V (C[hi(f )]) +V (C̄[hi (f )]), 0 ≤ i < d}.

(2)

This is the pair that carries the least combined error in Ff − { f }
and is thus less likely to contain large flows. Finally, we estimate
ŝf as follows:

ŝf = (1 − 2д(f ))[V (C[hx (f )]) − (V (C̄[hx (f )])] (3)

We find through experiments that by choosing d > 1, the es-
timation accuracy may be improved (in case of using HLL estima-
tors) or may be worse (in case of using bitmap/FM estimators). The
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reason is that although using the pair with the smallest combined
error helps avoid large flows, each element is now recorded for d
times in C and C̄ , which boost overall error among all estimators.
Whether estimation accuracy becomes better or worse will depend
on the joint impact of the above two factors.

There are two additional consequences of choosing d > 1. One
is that we will have to compute the estimation formula V (.) for
2d times, increasing the query overhead. The other is that we will
have to record each data item d times, increasing the recording
overhead.

Next we will introduce a new randomized error reduction
design that not only improves estimation accuracy for all
bitmap/FM/HLL types to a level that rSkt cannot achieve with any
d value, but also does so with low query overhead of computing
V (.) only twice and with low processing overhead of recording
each data item just once.

3.3 Unit-level Randomized Error-Reduction
Sketch - rSkt2

We use an example to illustrate the idea behind our second design,
referred to as rSkt2. Consider the baseline sketch rSkt withd = 1. A
flow f is hashed toC[h(f )] and C̄[h(f )]. Without loss of generality,
suppose that д(f ) = 0 and f is recorded in C[h(f )]. Suppose there
are only two flows, f and f ′, in Ff . Flow f ′ is a flow of large spread.
There are two possible cases.

Case 1: f ′ is recorded in C[h(f )]. Because all elements of f

and f ′ are recorded in C[h(f )], V (C[h(f )]) is an estimate of the
combined spread of f and f ′. Because no element is recorded
in C̄[h(f )], V (C̄[h(f )]) = 0. Hence, the estimate by (1) becomes
ŝf = V (C[h(f )]) − V (C̄[h(f )]) = V (C[h(f )]), which carries large
positive error introduced by f ′.

Case 2: f ′ is recorded in C̄[h(f )]. Because all elements of f are
recorded in C[h(f )], V (C[h(f )]) is an estimate of the spread of f .
Because all elements of f ′ are recorded in C̄[h(f )], V (C̄[h(f )]) is
an estimate of the spread of f ′. As ŝf = V (C[h(f )]) − V (C̄[h(f )]),
it is the estimated spread of f minus the estimated spread of f ′,
thus carrying large negative error introduced by f ′.

To resolve the above dilemma, we have to look deeper atC[h(f )]
and C̄[h(f )] into their unit-level structures and break up f ′ into
pieces such that half of the pieces are stored with f and half are
stored away from f , allowing them to be subtracted away. In fact,
we need to break up every flow in such a way because any flow has
a potential to cause error to other flows due to hash collision. Be-
lowwe describe how rSkt2will record the elements of an arbitrary
flow f differently from rSkt .

Recall from Section 2.2 that each estimator in the hash table C
(or C̄) is an array of m units, which may be bits, FM registers or
HLL registers. Flow f is hashed to a pair of estimators, C[h(f )]
and C̄[h(f )]. Different from rSkt, our new idea will not use either
of them to record f in its entirety. Instead, we construct a logi-
cal primary estimator Lf from the units of C[h(f )] and C̄[h(f )] to
record f . Lf is also an array ofm units. Its ith unit is taken from

the ith unit of eitherC[h(f )] or C̄[h(f )], with equal probability. Let
д′(f , i) be a pseudo-random function taking two input parameters
i and f and returning a bit, 0 or 1, with equal probability, where

0 ≤ i <m. We define

Lf [i] ≡
{
C[h(f )][i], if д′(f , i) = 0

C̄[h(f )][i], if д′(f , i) = 1
(4)

When we receive an element e of flow f , it is recorded as usual in
Lf [h(e)], which is C[h(f )][h(e)] if д′(f ,h(e)) = 0 or C̄[h(f )][h(e)]
if д′(f ,h(e)) = 1. The actual recording operation is explained in
Section 2.2. The recording and querying operations of rSkt2 are
formally presented in Algorithms 3 and 4, respectively.

Algorithm 3 Recoding a data item in rSkt2

1: Input: data item 〈f , e 〉
2: Action: record e of f in hash tables C and C̄
3: if д′(f , h(e)) = 0 then
4: record 〈f , e 〉 to C[h(f )][h(e)]
5: else

6: record 〈f , e 〉 to C̄[h(f )][h(e)]
7: end if

Algorithm 4 Querying on a flow in rSkt2

1: Input: flow label f
2: Output: spread estimate
3: for i= 0 tom do

4: if д′(f , i) = 0 then

5: Lf [i] = C[h(f )][i]
6: L̄f [i] = C̄[h(f )][i]
7: else

8: Lf [i] = C̄[h(f )][i]
9: L̄f [i] = C[h(f )][i]
10: end if

11: end for

12: return V (Lf ) −V (L̄f )

The logical complement estimator of flow f , denoted as L̄f , is
constructed from the units that Lf does not use.

L̄f [i] ≡
{
C̄[h(f )][i], if д′(f , i) = 0

C[h(f )][i], if д′(f , i) = 1
(5)

Consider an arbitrary flow f ′ ∈ Ff − { f }, where h(f ′) = h(f ) by
definition. The flow is recorded in its own logical primary estima-
tor Lf ′ that is constructed similarly from the units of C[h(f )] and
C̄[h(f )]. Each unit from C[h(f )] or C̄[h(f )] has 50% chance to be
in Lf and also independently 50% chance to be in L′

f
. Hence, when

an element e ′ of f ′ is recorded in a unit of L′
f
, it has 50% chance to

be in Lf as well because that unit has 50% chance to be in Lf . By

the same token, element e ′ has 50% chance to be in L̄f . Hence, we
are successful in splitting f ′ to two halves. One half is stored in Lf ,
and the other half in L̄f , allowing us to subtract them away. We es-
timate the spread of flow f based on its logical primary estimator
and the logical complement estimator as follows:

ŝf = V (Lf ) −V (L̄f ), (6)

which not only solves the accuracy problem raised at the begin-
ning of this subsection, but does so with a low query overhead of
computingV (.) only twice. Moreover, each element is recorded for
d times in rSkt, and it is recorded just once in rSkt2. This smaller
processing overhead allows rSkt2 to handle an incoming stream of
data items at higher throughput.
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3.4 Multiple Streams, Super Spreaders, Flow
Labels

Spread estimation for multiple streams. The proposed ran-
domized error reduction sketches can be deployed onmultiple loca-
tions to jointly measure multiple data streams concurrently [8, 46].
For example, it may be deployed on multiple routers to support
network-wide flow spread monitoring. Suppose there are k mea-
surement points in a network, each running an instance of rSkt2
with the same parameter setting, e.g., d ,w and hash functions. The
recorded hash tables,Cj and C̄j , 0 ≤ j < k , are sent to a central con-
troller for merging together into two tables,C∗ and C̄∗. The merge
operation is dependent on the estimator type.

• bitmap or FM: Bitmap/FM estimators from k routers, Cj [i],
0 ≤ i < k , are merged to C∗[i] by bitwise OR. Similarly, C̄j [i],
0 ≤ i < k , are merged to C̄∗[i] by bitwise OR.

• HLL: HLL estimators from k routers, Cj [i], 0 ≤ i < k , are
merged toC∗[i] by taking the maximum unit values, i.e.,C∗[i][z] =
max{Cj [i][z], 0 ≤ j < k}, 0 ≤ z < m. Likewise, C̄∗[i][z] =
max{C̄j [i][z], 0 ≤ j < k}, 0 ≤ z <m.

After merging, spread estimation is performed on C∗ and C̄∗ as
described earlier in the section.

There exists unified frameworks for implementing diverse mea-
surement tasks by combining basic building blocks [22, 40]. One
example is OpenSketch [42]. Our sketch can serve a building block
in such a framework to implement flow spread estimation. In case
of OpenSketch, without changing the hash stage and classification
stage, we can use two consecutive bitmaps in its framework to im-
plement rSkt2 (with bitmap estimators). We can also replace the
bitmaps with FM/HLL estimators as plug-ins to fit in the frame-
work.
Super spreader detection. The low query overhead makes rSkt2
ideal for supporting real-time detection of super spreaders, where
queries are made as we receive data items. Similar to rSkt, most
prior art on super spreader detection requires using O(d) estima-
tors and computing O(d) estimations per query [31, 42, 46], com-
paring withO(1) of rSkt2. Because their query overhead for spread
estimation is higher than the recording overhead, we will not be
able to query the spread of f for each received 〈f , e〉 for super
spreader detection, but instead perform sampling on the received
items to query at a lower rate. The smaller query overhead of rSkt2
will allow it to perform queries at a higher rate and therefore im-
prove on real-time detection of super spreaders.
Discussion about flow labels. In many applications, the flow la-
bels are pre-known. For example, if wemonitor the data flows from
all hosts in a data center, the flow labels are host addresses which
are known. In other cases, we do not need to keep flow labels. For
example, we perform real-time super spreader detection by query-
ing on the flow labels from the received data items. Some prior
art [31] extends each estimator to include a flow label field, which
tracks the flow that is estimated to have the largest spread among
all flows hashed to this estimator. This idea can be incorporated
into our design quite easily. We may also use a separate data struc-
ture to keep flow labels if needed — for example, using a hash map
or a heap to store the flow labels of super spreaders that have been
detected.

4 ANALYSIS

Let sf be the actual spread of flow f , ŝf be the spread estimate of
flow f , S be the total number of distinct items 〈f , e〉 in the data
stream, and Ff be the set of flows f ′ such that h(f ′) = h(f ) in case
of rSkt2 or that ∃i ∈ [0,d),hi (f ′) = hi (f ), in case of rSkt. The data
items in flow f ′ ∈ Ff −{ f } are called error data items with respect
to f .

Theorem 4.1. For any given flow f , the expectation of ŝf pro-

duced by rSkt/rSkt2 satisfies

|E(ŝf ) − sf | ≤





o(sf ) + o(
S−sf
2w ), if using HLL/FM estimators;

sf
2m +

1
2 (e

sf
m − 1) + o( S−sf2w ),

if using bitmap estimators.

The proof can be found in the supplementary materials and [35].
Note thatw is a large value: when using HLL estimators with 128
units and allocated 10Mb memory, w is about 8k. The bound for
expectation of the spread estimate produced by rSkt/rSkt2 can be

small when f ’s spread is large. For instance,
S−sf
2w represents the

average error in each estimator. If it is smaller than sf , the bound
will become o(sf ) ≪ sf . Consider a special case where each flow is
allocated an estimator and 2w approaches the number of flows. If

using HLL estimators, the bound is o(sf )+o(
S−sf
2w ). S−sf2w is equal to

the average flow spread among all flows. Under this circumstance,
|E(ŝf ) − sf | ≤ o(sf ) if f ’ spread is above the average flow spread,
which is much smaller compared to its actual flow spread.

Theorem 4.2. For any given flow f , the variance of the spread

estimate ŝf from rSkt can be derived as

Var (ŝf )=





1.042
m (s2

f
+

(S−sf )sf
w +Tf )+Qf + o(s2f +Qf ),

if using HLL estimators;
0.782
m (s2

f
+

(S−sf )sf
w +Tf )+Qf + o(s2f +Qf ),

if using FM estimators;

(Tf −(
S−sf
2w )2)(λ1+λ5)2+λ4+λ8+ (λ1+λ5)o(

Qf

w )
if using bitmap estimators.

(7)

where β = S−sf ,Qf =
∑
f ′,f

∑
f ′′,f ′,f ′′,f sf ′sf ′′(1 − (1 − 1

w )d )2+
∑
f ′,f s

2
f ′
(1 − (1 − 1

w )d ), Tf =
∑
f ′,f

∑
f ′′,f ′,f ′′,f

sf ′sf ′′
4 (1 − (1 −

1
w )d )2 + ∑

f ′,f
s2
f ′
2 (1 − (1 − 1

w )d ), λ1 = ( e
sf +

β
2w

m −1
2m + 1), λ4 =

m(e
sf +

β
2w

m − sf +
β
2w

m − 1), λ5 = ( e
β

2mw −1
2m + 1), and λ8 = m(e

β
2mw −

β
2mw − 1).
Theorem 4.3. For any given flow f , the variance of the spread

estimate ŝf from rSkt2 can be derived as

Var (ŝf )=





1.042
m (s2

f
+

β (sf + 1

2
)

w +
Rf
2 ) + β

w + o(s2f + Rf ),
if using HLL estimators;

0.782
m (s2

f
+

β (sf + 1

2
)

w +
Rf
2 ) + β

w + o(s2f + Rf ),
if using FM estimators;
S−sf
4w (λ1 + λ5)2 +λ4+λ8+ (λ1 + λ5)o( Sw ),
if using bitmap estimators.

(8)
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where Rf =

∑
f ′,f

∑
f ′′,f ′,f ′′,f

sf ′sf ′′
w 2 +

∑
f ′,f

s2
f ′
w , and

β, λ1, λ4, λ5, λ8 are the same as those in Theorem 4.2.

The proof of Theorems 4.2 and 4.3 is deferred to the supplemen-
tary materials and [35].

Interpretaion of Theorems 4.2 and 4.3 After the rigorous
derivation of the variances of the spread estimate produced by
rSkt/rSkt2. We interprete Theorems 4.2 and 4.3 with some approx-
imation. We first do approximation on Rf .

Rf =
∑

f ′,f

∑

f ′′,f ′,f ′′,f

sf ′sf ′′

w2
+

∑

f ′,f

s2
f ′

w

=

∑

f ′,f

∑

f ′′,f ′,f ′′,f

sf ′sf ′′

w2 +

∑

f ′,f

s2
f ′

w2 −
∑

f ′,f

s2
f ′

w2 +
∑

f ′,f

s2
f ′

w

≤
(∑f ′,f sf ′)2

w2
+ n(

S − sf

n
)2 1
w
) ≤ 2(

S − sf

w
)2 (9)

where n is the number of flows. The last inequality holds as n ≥ w

usually holds in practical settings. Similarly, we can do approxima-
tion on Qf and Tf .

Qf ≈ ((S − sf )(1 − (1 − 1

w
)d ))2 ≈ 2(

d(S − sf )
w

)2 (10)

Tf ≈ (
d(S − sf )

w
)2 (11)

Consider approximation on λ1. sf +
β
2w represents the expected

spread stored in f ’ primary estimator, which isO(m) as the estima-
tion upper bound of bitmap (also called linear counting) is linear
to the bitmap lengthm. Therefore, we have

λ1 = (e
sf +

β
2w

m − 1

2m
+ 1) ≈ (

1 +
sf +

β
2w

m − 1

2m
+ 1) ≈ 1

Doing the similar approximation on λ5, λ4, and λ8, we have

λ5 ≈ 1

λ4 =m(e
sf +

β
2w

m −
sf +

β
2w

m
− 1) ≈

(sf +
β
2w )2

2m

λ8 =m(e
β

2mw − β

2mw
− 1) ≈ 1

2
m( β

2mw
)2 ≈ 0

From the above approximations, we give a concise version of
the variance of estimate produced by rSkt/rSkt2.

• For any given flow f , the rigorous variance of the spread estimate

ŝf from rSkt in (7) can be approximately bounded as

Var (ŝf ) ≤




1.042
m (sf +

d (S−sf )
w )2 + 2(d (S−sf )w )2,

if using HLL estimators;
0.782
m (sf +

d (S−sf )
w )2 + 2(d (S−sf )w )2,

if using FM estimators;
1
2m (sf +

S−sf
2w )2 + 4(4d2 − 1)( (S−sf )2w )2,

if using bitmap estimators.

(12)

• For rSkt2, variance in (8) can be approximately bounded as

Var (ŝf ) ≤
c2

m
(sf +

(S − sf )
w

)2 +
(S − sf )

w
(13)

where c is 1.04, 0.78, and 1/
√
2 if using HLL, FM, and bitmap estima-

tors, respectively.

Comparing (13) with (12), we can find the variance of spread
estimate produced by rSkt2 is smaller than that of rSkt. Consider

(13) for rSkt2.
S−sf
w can be interpreted as the average error in the

each pair of candidate estimators. When the spread of flow f is far

larger than the average error, the variance is bounded by c2

m (sf )2+
(S−sf )
w . When the spread of flow f is far smaller than the average

error, the variance is bounded by
(S−sf )
w .

5 PERFORMANCE EVALUATION

We evaluate the performance of the proposed rSkt and rSkt2 on
both hardware and software platforms through experiments based
on real-world data traces. We also compare them with the state of
the art under various performancemetrics. In addition, we perform
an application case study on super spread detection in comparison
with the prior art.

5.1 Implementation

We have implemented the following sketches: (1) the proposed
sketches, rSkt and rSkt2, (2) the state-of-the-art prior work
that performs per-flow spread estimation, bSkt [46] and cSkt-
CM [8, 46], and (3) the state-of-the-art prior work that per-
forms super spreader detection, SS [31]. SS uses multi-resolution
bitmaps [11]. The other sketches can work with bitmaps, FM
estimators, and HLL estimators, which are explained in Sec-
tion 2.2. With different estimators, they are denoted respectively as
rSkt(bitmap), rSkt(FM), and rSkt(HLL); rSkt2(bitmap), rSkt2(FM),
and rSkt2(HLL); bSkt(bit-map), bSkt(FM), and bSkt(HLL); cSkt-
CM(bitmap), cSkt-CM(FM), and cSkt-CM(HLL). Our implementa-
tion is done on three platforms.

• CPU Implementation: This is software implementation. The
experiments are performed on a computer with Intel Core Xeon
W-2135 3.7GHz and 32 GB memory.

• Implementation: GPU has become cheaper and widely avail-
able. We find that it serves well as a low-cost accelerator for soft-
ware implementation. With CUDA toolkit, all sketches are pro-
grammed to support parallel execution on a computer equipped
with GeForce GTX 1070, 8GB GDDR5 memory and 1920 CUDA
cores, each at a rate of 1506-1683 MHz clock rate.

• FPGA Implementation: This is hardware implementation. All
sketches are implemented on XILINX NEXYS 4DDR/A7 -100T
FPGA platform, with 128MB DDR2 DRAM, 4860Kb Block RAM,
and 100MHz clock rate.

5.2 Datasets

We conduct the evaluation using two real-world datasets.
CAIDA dataset:The data streams used in our evaluation are real
Internet traffic traces downloaded from CAIDA [32]. We use 10
traces, each of tens of millions of packets. Each experiment is per-
formed over these 10 data streams independently, and we present
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Figure 5: Accuracy comparison of rSkt(HLL), rSkt2(HLL), bSkt(HLL) and cSkt-CM(HLL) under CAIDA dataset. (a) Average

absolute error of all flows w.r.t memory size, (b)-(c) error distribution under a given memory size. Compared to the prior art

bSkt(HLL) and cSkt-CM(HLL), the proposed rSkt(HLL) and rSkt2(HLL) reduce absolute error by 73.6%-81.1% and 93.9%-97.8%,

respectively, in plot (a).
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Figure 6: Accuracy comparison of rSkt(FM), rSkt2(FM), bSkt(FM) and cSkt-CM(FM) under CAIDA dataset. (a) Average absolute

error of all flows w.r.t memory size, (b)-(c) error distribution under a given memory size. Compared to the prior art bSkt(FM)
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Figure 7: Accuracy comparison of rSkt(bitmap), rSkt2(bitmap), bSkt(bitmap) and cSkt-CM(bitmap) under CAIDA dataset. (a)

Average absolute error of all flows w.r.t memory size, (b)-(c) error distribution under a given memory size. Compared to the

prior art bSkt(bitmap) and cSkt-CM(bitmap), the proposed rSkt(bitmap) and rSkt2(bitmap) reduce absolute error by 83.0%-

84.5% and 98.7%-99.5%, respectively, in plot (a).

the average results. Flow label f is defined as destination address
carried in each packet’s header. Each trace contains around 110k
flows and around 400k distinct data items. Element e is source
address also from packet header. All packets toward the same des-
tination form a flow. Flow spread is the number of distinct sources
that communicate with a destination. Anomaly in flow spread may
signal flash crowd in service requests or denial-of-service attack
against a destination service (which could be judged in conjunc-
tion with flow size); both cases will require immediate attention
from service admin.

E-commerce dataset: The dataset is collected from a real-world
e-commerce website [1], which contains three files and we use the
visitor behavior data. Each row in the file is a product view record
with particular properties: visitor ID, timestamp, item ID and so on.
There are totally about 1.4M visitors, and 235k items. Flow label f
is defined as item ID and element e is visitor ID. The number of
distinct items 〈f , e〉 is about 1.2M. All view records of the same
item form a flow. Flow spread is the number of distinct visitors
viewing the item, which reflects the popularity of the product.
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Figure 8: Average absolute error of rSkt, rSkt2, bSkt and cSkt-CM w.r.t. memory size using bitmap, FM, and HLL estimators,

respectively, under E-commerce dataset. Compared to the prior art bSkt and cSkt-CM, the proposed rSkt and rSkt2 reduce

absolute error by 74.4%-97.3% and 96.5%-99.7%, respectively.

5.3 Experimental Setting

For rSkt(bitmap), rSkt2(bitmap), bSkt(bitmap) and cSkt-CM(bit-
map), we set the bitmap size to be 5000 bits, which produces a
spread estimation range that covers all flows in the traces. The
bitmap size of SS is chosen according to the original paper [31]. For
rSkt(FM), rSkt2(FM), bSkt(FM) and cSkt-CM(FM), each register is
32 bits. For rSkt(HLL), rSkt2(HLL), bSkt(HLL) and cSkt-CM(HLL),
each register is 5 bits. The number of registers in each estimator
is 128. For rSkt, bSkt and cSkt-CM, d = 4. Namely, each data item
is recorded in four estimators and each query requires estimation
from four estimators; see Section 3.2. The above parameter setting
is in line with those in [46].

The sketches are evaluated and compared under the following
three performance metrics.

• Estimation Accuracy. We use absolute error to measure esti-
mation accuracy. Let ŝf be the estimated spread of flow f , and
sf be the actual spread of flow f . The absolute error is calcu-
lated as |ŝf − sf |, and the average absolute error is defined as∑
f |ŝf − sf |/N , where N is the number of flows in the data stream.
• Recording Throughput. We measure the rate at which the

data items 〈f , e〉 are recorded by each sketch on any given soft-
ware/hardware platform. The unit is million data per second, ab-
breviated as Mdps.

• Online Query Throughput. We measure the rate at which the
queries can be performed on f after each item 〈f , e〉 from a stream
is recorded. For each query, we produce an estimate of f ’s spread
up to the time when the query is performed.

5.4 Estimation Accuracy

Our first set of experiments compare the proposed sketches with
the state of the art in terms of estimation accuracy. Note that
accuracy is the same across different implementation platforms,
which only affect throughput. We begin by comparing rSkt(HLL),
rSkt2(H-LL), bSkt(HLL) and cSkt-CM(HLL) using CAIDA dataset.
Figure 5 (a) shows the average absolute error among all flows un-
der 1Mb-16Mb memory allocations to each sketch. In contrast,
if we ideally assign each flow a single-flow spread estimator, it
needs 70Mb/450Mb/550Mb memory using HLL, FM, and bitmap
estimators, respectively. bSkt(HLL) and cSkt-CM(HLL) performs
similarly. Compared to the better one of them, rSkt(HLL) reduces
average error by more than 73.6%, and rSkt2(HLL) reduces aver-
age error by more than 93.9%. Figures 5(b)-5(c) show the detailed

error distribution at a given memory allocation, 1Mb and 4Mb, re-
spectively. The flows are placed in bins based on their true spreads
(which can be found directly from the traffic traces). The spread
bins are [2i , 2i+1] for i ≥ 0. We average the absolute error of flows
in each bin and plot a point in the figure.

In Figure 5(a), when memory allocation increases, the aver-
age absolute error of rSkt(HLL), rSkt2(HLL), bSkt(HLL) or cSkt-
CM(H-LL) decreases, which is expected because the probability of
hash collision decreases. The figure shows that rSkt and rSkt2 are
muchmore accurate than bSkt(HLL) and cSkt-CM(HLL), especially
under tight memory. For example, when 1Mb memory is used,
rSkt(H-LL) and rSkt2(HLL) reduce the average absolute error by
81.1% and 97.8%, respectively, compared to bSkt(HLL). Figure 5(a)
also shows the error bars of average absolute error of rSkt(HLL),
rSkt2(HLL), bSkt(HLL) and cSkt-CM(HLL) under 10 traces. As we
can see, the advantages of rSkt(HLL), rSkt2(HLL) over bSkt(HLL)
and cSkt-CM(HLL) in terms of estimation accuracy hold under dif-
ferent traces.

Figures 5(b)-5(c) show that absolute error is larger for flows of
larger spreads. The proposed rSkt(HLL) and rSkt2(HLL) have much
smaller error distributions than bSkt(HLL) and cSkt-CM(HLL), tha-
nks to their randomized error reduction design. rSkt2(HLL) ismore
accurate than rSkt(HLL) due to its logical estimator design that
splits noise flows into pieces. Its improvement over rSkt will be
more pronounced when we use FM estimators and bitmaps below
and when we consider throughput shortly.

The experimental results that compare rSkt(FM), rSkt2(FM),
bSkt-(FM) and cSkt-CM(FM) are shown in Figure 6. The results
that compare rSkt(bitmap), rSkt2(bitmap), bSkt(bitmap) and cSkt-
CM(bit-map) are shown in Figure 7. Similar conclusion can be
drawn as those from Figure 5. For example, from Figure 6(a), us-
ing bSkt(FM) as a baseline, rSkt(FM) reduces average error by
more than 83.5%, and rSkt2(FM) reduces average error by more
than 97.9%. From Figure 7 (a), using bSkt(bitmap) as a base-
line, rSkt(bitmap) reduces average error by more than 83.0%, and
rSkt2(bitmap) reduces average error by more than 98.7%. From er-
ror distributions in Figure 6 (b)-(c) and Figure 7(b)-(c), rSkt2 per-
forms consistently better than rSkt, which is in turn much better
than bSkt and cSkt-CM.

We also conduct experiments using the E-commerce dataset.
The average absolute errors of rSkt, rSkt2, bSkt, and cSkt-CM using
bitmap, FM, and HLL estimators respectively are shown in Figures
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Figure 9: Recording throughput on CPU, GPU and FPGA platforms. Mdps stands for Mega data-item per second.
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Figure 10: Online query throughput on CPU, GPU and FPGA platforms.

8(a)-(c). Similar to the results under the CAIDA dataset, the results
in Figure 8 also show that the proposed randomized sketches, es-
pecially rSkt2, can significantly reduce the average absolute error
compared to bSkt and cSkt-CM. The figures that show the detailed
error distribution with respect to actual flow spread are similar to
those under the CAIDA dataset and we do not repeatedly display
them due to space limit.

5.5 Recording Throughput

Our second set of experiments compare the proposed sketches
with the state of the art in terms of recording throughput (at which
rate the incoming data items can be processed on different plat-
forms). The experimental results of recording throughput on the
CPU platform are shown in Figure 9(a). The recording through-
put of rSkt2 is highest for any type of estimators (i.e., bitmap, FM
and HLL) because it records each data item just once, whereas the
other three sketches records each item d times. The throughputs
of bSkt and rSkt are similar, while that of rSkt is slightly lower due
to computing an additional function д. As example, the through-
put of rSkt2(HLL) is 2.26 times that of bSkt(HLL) or cSkt-CM(HLL),
and it is 3.88 times that of rSkt(HLL). For all sketches, the highest
throughput is achieved when bitmaps are used. That is because
FM and HLL require an additional geometric hash operation; see
Section 2.2. The throughput is lowest when HLL is used because it
incurs more memory accesses.

The experimental results of recording throughput on the GPU
platform are shown in Figure 9(b). All sketches achieve much
higher throughput on GPU than on CPU due to massive paral-
lelism. Still, rSkt2 achieves much higher throughput, around 600
Mdps, about three that of bSkt or cSkt-CM and about four times
that of rSkt.

The recording throughput of the sketches on FPGA is shown in
Figure 9(c). The proposed rSkt2 achieves a throughput of 100Mdps,
while bSkt and rSkt only support a throughput of 25 Mdps. This

is because bSkt and rSkt record each data item four times in the
same memory block, which consumes four clock cycles, whereas
rSkt2 records each data item once in one clock cycle (with hard-
ware pipelining). Interestingly, cSkt-CM also achieves 100 Mdps
because it uses d arrays, which can be placed on different mem-
ory blocks, allowing parallel access. Due to pipelining, each sketch
achieves the same throughput under different estimator types (bit-
map, FM and HLL). One may observe that hardware implemen-
tation on FPGA achieves smaller throughput than software im-
plementation on GPU. There are two reasons. First, GPU allows
massive parallelismwhich compensates the software disadvantage.
Second, our FPGA is a cheap one. Throughput will be higher if a
high-end FPGA is used. We conclude that GPU is a viable alterna-
tive to hardware implementation for high throughput.

5.6 Query Throughput

Our third set of experiments compare the proposed sketches with
the state of the art in terms of query throughput.We want to stress
that the computation of spread estimation is nothing similar to that
of size estimation [17, 21, 22, 45]. The latter incurs similar over-
head as recording, and therefore its query throughput is similar to
recording throughput. But spread estimation is much more com-
putation intensive than recording, and spread query throughput is
much smaller than recording throughput. Queries cannot be per-
formed on per data item basis, which makes it practically impor-
tant to design novel sketches that improve on query throughput.

The experimental results of query throughput on the CPU plat-
form are shown in Figure 10(a). As is expected, the query through-
put of rSkt2 is highest for any type of estimators (i.e., bitmap,
FM and HLL) because it computes two estimators per query, whe-
reas bSkt and cSkt-CM each compute from d estimators per query,
while rSkt computes 2d estimators. Because d = 4 in our experi-
ments, the throughput of rSkt2 is expected to be about twice that
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Table 3: Number of true super spreaders under different su-

per spreader threshold.

Threshold 200 300 400 500 600 700 800
Number 146 88 55 49 36 34 32

Table 4: Number of false positives.

Threshold 200 300 400 500 600 700 800
rSkt2(bitmap) 43 15 9 3 4 2 0

SS 1122 113 67 27 19 15 6
Table 5: Number of false negatives.

Threshold 200 300 400 500 600 700 800
rSkt2(bitmap) 6 2 1 0 0 0 0

SS 12 6 2 1 0 0 0

of bSkt (or cSkt-CM) and about four times that of rSkt, matching
well with the experimental results.

The experimental results of recording throughput on the GPU
platform are shown in Figure 10(b). Again, GPU is a great accel-
erator thanks to its numerous cores that process in parallel. The
query throughput on GPU is more than an order of magnitude
higher than that on CPU across different sketches and different
types of estimators. Yet, relative performance between sketches re-
main similar. The query throughput of rSkt2 is about twice that of
bSkt (or cSkt-CM) and about four times that of rSkt.

The complexity of query computation is far greater than that
of recording, particularly for FM estimators and HLL estimators,
which prevent us from implementing query solely on the FPGA
board that we have. Instead, we implement a module that, upon
query, will output the estimators of the flow, from which one can
compute spread estimation off-board by software (which may be
GPU-accelerated) or by ASIC hardware. The throughput of this
FPGA module is shown in Figure 10(c). Both cSkt-CM and rSkt2
achieve higher throughput, thanks to pipelining, as the design
of cSkt-CM allows parallel access to its d estimators per flow on
FPGA, while rSkt2 also allows parallel access to its 2 estimators
per flow. Both bSkt and rSkt have lower throughput because their
designs do not allow fully parallelized access tomultiple estimators
per flow on FPGA.
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Figure 11: rSkt2(bitmap) incurs much smaller relative error

than SS, particularly when memory allocation is small

5.7 Case Study: Super Spreader Detection

We use a case study to investigate how the proposed sketches per-
form in detecting super spreaders, which are defined as the flows
whose spreads exceed a threshold k that the user chooses based on
application need. We have shown that the proposed rSkt2 outper-
forms the state of the art on per-flow spread estimation. This case

study is different. It is to identify super spreaders only and esti-
mate their spreads. In this experiment, we compare rSkt2(bitmap)
with the state-of-the-art sketch for this purpose, SpreadSketch (SS)
[31], which use multi-resolution bitmaps. It is a modified version
of cSkt-CM, with each estimator expanded for storing a flow la-
bel. With online queries, if the estimated spread of a flow after
element record exceeds k , we keep the flow label in a hash map.
The parameter setting can be found in Section 5.3. We evaluate the
performance with three metrics.

• Average relative error, which is defined as
∑
f ∈Γs

|ŝf −sf |
sf · |Γs | ,

where Γs is the set of super spreaders detected.
• Number of false positives, i.e., the number of detected “super

spreaders" whose true spreads are below k .
•Number of false negatives, i.e., the number of real super spread-

ers that are not detected.
We perform two experiments with different memory alloca-

tions, 16Mb and 2Mb, respectively. Figure 11(a) shows the results
under 16Mb. The relative error of SS is between 9.0% and 11.2%
when the threshold ranges from 200 to 800, whereas rSkt2(bitmap)
performs better with relative error between 1.0% and 3.3%. Fig-
ure 11(b) shows the results under 2Mb. The relative error of SS
is between 17.3% and 51.0%, whereas rSkt2(bitmap) performs bet-
ter with relative error between 2.8% and 10.0%. We find that
rSkt2(bitmap) works well under tight memory when the perfor-
mance of SS deteriorates. This is also true in terms of false posi-
tives and false negatives. Table 3 shows the true number of super
spreaders in the packet traces that we use in this experiment. Un-
der 2Mb, Table 4 shows that SS reports much more false positives
than rSkt2(bitmap). In practice, more false positives may lead to
additional false alarms and take extra time from system admin to
investigate. Table 5 shows that SS also produces more false neg-
atives than rSkt2(bitmap). In practice, more false negatives may
allow some true offenders to escape timely detection.

6 CONCLUSION

In this paper, we have proposed two randomized error-reduction
sketches for online measurement of flow spread. They provide an
implementation framework with bitmaps, FM estimators or HLL
estimators as plug-ins to meet different performance-overhead re-
quirements. The new sketch designs split error (introduced by
other flows due to estimator sharing) into two halves, one stored
with the flow of interest in a primary estimator and the other half
stored separately in a complement estimator. By subtracting the
complement from the primary estimator, we are able to statistically
remove the error and achieve an accuracy one order of magnitude
better than the prior art. Through theoretical analysis and experi-
mental studies, we show that our randomized sketches work well
on both software platform and hardware platform, producing accu-
rate spread estimates in tight memory at low processing overhead
for online queries.
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