Building Enclave-Native Storage Engines for Practical Encrypted
Databases

Yuanyuan Sun, Sheng Wang, Huorong Li, Feifei Li
Alibaba Group
{yuanyuan.sun,sh.wang,huorong.lhr lifeifei}@alibaba-inc.com

ABSTRACT

Data confidentiality is one of the biggest concerns that hinders
enterprise customers from moving their workloads to the cloud.
Thanks to the trusted execution environment (TEE), it is now fea-
sible to build encrypted databases in the enclave that can process
customers’ data while keeping it confidential to the cloud. Though
some enclave-based encrypted databases emerge recently, there re-
mains a large unexplored area in between about how confidentiality
can be achieved in different ways and what influences are implied
by them. In this paper, we first provide a broad exploration of possi-
ble design choices in building encrypted database storage engines,
rendering trade-offs in security, performance and functionality. We
observe that choices on different dimensions can be independent
and their combination determines the overall trade-off of the entire
storage. We then propose Enclage, an encrypted storage engine
that makes practical trade-offs. It adopts many enclave-native de-
signs, such as page-level encryption, reduced enclave interaction,
and hierarchical memory buffer, which offer high-level security
guarantee and high performance at the same time. To make better
use of the limited enclave memory, we derive the optimal page size
in enclave and adopt delta decryption to access large data pages
with low cost. Our experiments show that Enclage outperforms the
baseline, a common storage design in many encrypted databases,
by over 13x in throughput and about 5X in storage savings.

PVLDB Reference Format:

Yuanyuan Sun, Sheng Wang, Huorong Li, Feifei Li. Building
Enclave-Native Storage Engines for Practical Encrypted Databases. PVLDB,
14(6): 1019-1032, 2021.

doi:10.14778/3447689.3447705

1 INTRODUCTION

Due to the rapid advancement of cloud computing, many com-
panies have moved their enterprise workloads from on-premise
data centers to cloud services, who offer many attractive features,
such as elasticity, high availability, and low cost. From the security
perspective, the cloud tends to be less vulnerable than on-premise
deployments. The service provider can employ a large team of secu-
rity experts to adopt state-of-the-art protection mechanisms timely
and continuously to the entire infrastructure. In this case, even
huge security investments become affordable as they are amortized
over all customers. However, there exposes a new dimension of

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 6 ISSN 2150-8097.
doi:10.14778/3447689.3447705

1019

attacks — this outsourced infrastructure could be compromised by
insiders, such as malicious co-tenants and curious staffs, who might
look into the data (e.g., in databases) and cause data breaches. In
other words, anyone with privileges (or even physical access [31])
on that server can easily steal the data for his/her own interest.
However, customers have no control of administrative privileges
to the machines that host their data, which is completely different
from on-premise deployments. Given this serious situation, it is
critical to protect the confidentiality of customers’ data during the
operation of cloud databases. Note that existing database security
mechanisms, such as access control and data-at-rest encryption,
can be easily bypassed by attackers in this context [2].

In order to tackle this problem, many research works [5, 6, 25,
47, 49, 50, 58, 61] have built encrypted databases, which prevent
attackers with privileges on the database (or on the server that
hosts the database) from accessing users’ data in plaintext. One
line of work, e.g., CryptDB [49] and Arx [47], takes advantage
of special cryptographic primitives to support direct operations
over ciphertext (e.g., homomorphic encryption [28], searchable
encryption [54], and garbled circuit [63]). However, they usually
introduce significant overheads and only allow limited types of
operations [19, 36, 46, 47, 49]. This makes them unsuitable for
general-purpose cloud database infrastructures.

Instead, we follow another line of work that uses trusted execu-
tion environments (TEE), like Intel SGX and AMD SEV, to operate on
confidential data in an isolated enclave. Due to the recent advance-
ment of Intel SGX (software guard extensions), many enclave-based
encrypted databases and storage systems have emerged [5, 9, 25, 40,
42,50, 61, 64]. Although all these systems target data confidential-
ity, their protection strengths are sometimes either too “strong” or
too “weak”. Some of them make user data completely inaccessible
or indistinguishable from the server. For example, EnclaveDB [50]
puts all data in enclave-protected memory, and ObliDB [25] adopts
oblivious data access to untrusted memory. However, such a strong
protection significantly compromises either system capability or
performance. On the contrary, others offer confidentiality protec-
tion as add-on features to legacy database systems. For example,
Always-encrypted [5] and StealthDB [61] offer a few enclave-based
functions for computation over ciphertext with marginal modi-
fications to SQL Server and PostgreSQL. We observe that such a
non-intrusive design leads to severe information leakage and perfor-
mance degradation (Section 3.3). In summary, there still remains a
large unexplored area between above two extreme scenarios — how
confidentiality can be achieved in encrypted databases where users
have more practical considerations for trade-offs among security,
performance and functionality.

https://doi.org/10.14778/3447689.3447705
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3447689.3447705

In this paper, we consider the design of an encrypted storage
engine, which is a fundamental building block for full-fledged en-
crypted databases. Instead of proposing a concrete design directly,
we first provide a comprehensive exploration of possible design
choices for encrypted storage engines. These choices achieve dif-
ferent trade-offs among security, performance and functionality,
and can be further categorized into five dimensions (i.e., encryption
granularity, execution logic in enclave, memory access granularity,
enclave memory usage, record identity protection) as shown in
Table 1. We observe that the decision on each dimension can be
made independently, and their combination determines the overall
trade-off of the entire storage. Moreover, not all combinations are
equally useful in practice as we will discuss later. This analysis
should be able to help database practitioners to well understand
the effect of each decision, and guide them to find the best choices
for their own needs.

After exploring the design space, we further make choices on
each dimension, rendering a good trade-off for practical database
usage. Under this circumstance, we propose Enclage, an enclave-
native database storage engine that includes a B*-tree-like index
structure and a heap-m-like table store. It allows data to be securely
maintained in untrusted memory and disk by encrypting individual
index and data pages. This mitigates ciphertext amplifications and
prevents information leakage inside a page. To avoid unnecessary
context switches between enclave and non-enclave executions, we
carefully implement the main execution logic of index (i.e., entry
search and update) and table (i.e., record read and write) inside the
enclave. It is able to reduce the number of enclave entries per request
to one in most cases, and minimize it when external interactions
(e.g., I/Os) are required. We further utilize protected memory in
enclave to cache frequently accessed pages, relieving the pressure of
encryption/decryption overheads. However, enclave memory space
is extremely limited, and we have to decide what kind of data and
how much of it should be buffered to achieve the best performance.
For example, we find both theoretically and experimentally that
index pages of 1/2KB size outperforms those 4/8/16KB ones widely
used in existing databases. For data pages, instead of buffering them
in enclave, we adopt a delta decryption protocol to support fast
record access with low enclave memory consumption. Note that
many of our approaches and optimizations adopted in Enclage are
still applicable even when other design choices are made.

Our main contributions are summarized as follows:

o To the best of our knowledge, we are the first to provide a
comprehensive exploration of design choices for building
enclave-based encrypted database storage. We divide the
entire design space into five dimensions and discuss trade-
offs implied by each individual choice. This helps database
practitioners to find the best design for their own needs.
We propose an encrypted storage engine Enclage, rendering
practical design trade-offs. It adopts many enclave-native
designs, such as page-level encryption, reduced enclave in-
teraction, and hierarchical memory buffer, which offer high-
level security guarantee, high performance and low storage
at the same time.

To make better use of the limited enclave memory, we pro-
pose several optimizations. A cost model is built to analyze
the optimal index node size (i.e., 1-2KB), which is consistent

1020

with our experiments. A delta decryption protocol is applied
to access records in data pages efficiently, having no memory
contention against the index.

We conduct extensive experiments to evaluate the efficiency
of Enclage, as well as the effectiveness of individual designs
adopted by it. Enclage outperforms the baseline, a common
storage design in existing encrypted databases [5, 61], by
over 13X in throughput and about 5X in storage savings.

2 BACKGROUND

In this section, we brief the concept of trusted execution environ-
ment and Intel SGX, and then discuss the challenges in designing
SGX-based encrypted databases.

2.1 Trusted Execution Environment and SGX

A trusted execution environment (TEE) is a secure area, which
guarantees the confidentiality and integrity of computation and
data in it. It can be used to build secure applications in untrusted
environments (e.g., on a public cloud), where the host may conduct
malicious actions. Intel Software Guard Extensions (SGX) is a state-
of-the-art implementation of TEE, receiving broad attention from
both industry and academia. SGX is an extension of x86 instruction
set architecture, and it offers protections using a concept called
enclave. Readers can refer to [22, 33, 35] for more details on its
implementation and features, e.g., isolation, sealing and attestation.

An enclave is an isolated virtual address space in a process, where
both code and data are stored in protected memory pages called
enclave page caches (EPC) that cannot be accessed by the host,
i.e., the rest of the process outside the enclave. The data in EPC
is encrypted by a memory encryption engine (MEE), which only
decrypts data in the CPU cache. The host can only initialize the
enclave by loading a specially compiled library (e.g., *. signed. so
whose authenticity can be verified), and later interact with the en-
clave via well-defined functions (i.e., ECall/0Call). Note that the
enclave can access the entire address space of the process, while
the host cannot access enclave’s memory. This is an important
property that can be exploited for fast data fetching, compared
to co-processor TEE implementations (e.g., FPGA) where memory
access has to go through PCle. SGX provides remote attestation that
allows the client to verify the authenticity of an enclave and its
loaded code/data on a remote host. It facilitates the establishment
of a secure channel between the client and the enclave (e.g., to
pass secret keys). Note that AMD SEV [4, 38, 39] is a promising
alternative to SGX to ensure the confidentiality of user data hosted
by an untrusted server, but currently lacking of integrity protec-
tion [39, 53] and security-proven remote attestation [17]. The latter
is a necessity for secure key provision to encrypted databases on
the cloud.

2.2 Challenges for SGX-based Databases

SGX provides essential primitives for building encrypted databases.
However, there remain many critical challenges to achieve a robust
and performant design. They are attributed to both the nature of
TEE techniques and the limitations from SGX implementation.
Limited memory space in enclave. Due to hardware limita-
tions for securing the memory, the preserved memory region is
limited to 128MB [8, 9, 45] (or 256MB in the latest implementation)

and the actual EPC capacity is even slightly lower. Furthermore,
this capacity is shared by all enclaves running on that processor.
To hide this limitation, SGX provides a virtual memory abstraction
to evict recently unused EPC pages to the host memory. To en-
sure confidentiality and integrity, evicted pages are encrypted and
stored in a Merkle Tree [27, 56]. An EPC fault (i.e., loading a page
back) will cause significant penalty [8, 22], easily exceeding 40000
CPU cycles. In databases, many components (e.g., buffer pool) and
operations (e.g., join) are inherently memory-consuming, which
should be carefully re-designed. For example, a naive adaptation of
indexes in enclave memory could underperform by three orders of
magnitude [9].

Huge cost from enclave interaction. The host process can
only invoke enclave via pre-defined function calls (ECall). Since an
enclave runs in user mode (ring 3), it cannot execute system calls,
which instead requires to temporally exit the enclave (0Call). The
cost of ECall/0Call is expensive, i.e., about 8000 cycles as previ-
ously reported [45, 62]. Due to recent patches on SGX driver and
microcode, we observe that this cost reaches 15000 cycles. SGX now
supports a switchless mode for relatively efficient (asynchronous)
calls [34, 57]. Nevertheless, frequent context switches between the
enclave and host must be prevented. This raises a challenge to
existing database kernels that are unaware of this issue.

Dilemma of TCB size. The size of trusted computing base
(TCB) is always a issue in TEEs. In the context of SGX, it includes
the processor, microcode and loaded library. Any vulnerabilities
in the loaded code will compromise the security of the entire sys-
tem. Hence, reducing TCB size (i.e., codebase size) makes it more
robust, where an exhaustive examination of codebase becomes fea-
sible. However, this inherently leads to frequent context switches
between enclave and host (degrading performance as discussed
above), and leaves most of the execution logic unprotected (suf-
fering from leakage-abuse attacks [18, 29]). Enlarging the TCB
size resolves these issues. However, importing complex database
functionality into the enclave inherits all vulnerabilities from the
original codebase. It results in a cumbersome patching process and
makes TCB less reusable by different database implementations.
Hence, the choice of TCB size is extremely critical.

3 ENCLAVE-BASED ENCRYPTED STORAGE

In this section, we first define our data model and threat model, and
then introduce a strawman design [5, 61] as a stepping stone to the
subsequent design space exploration. At last, we discuss different
design choices categorized into five dimensions.

3.1 Data Model and Abstraction

3.1.1 Data model. We consider a relational data model, where a ta-
ble T contains n columns (i.e., attributes) COL = {Cy, C1, ..., Cn—1}
and has a primary key PK € COL. Data in all columns are consid-
ered confidential, such that each value must be encrypted using
a data encryption key (DEK) before the value can be sent to the
database. This DEK will be later provisioned to the enclave when
computation over plaintext is needed. For a record (i.e., a row) r, its
value v; stored in column C; is the ciphertext E(v;), where E(x)
represents the encryption scheme used by the data owner. To en-
sure high-level security guarantee, encryption schemes that provide
indistinguishability under chosen-plaintext attack (IND-CPA) are

1021

preferred, e.g., AES CBC/GCM modes. Columns can be encrypted
by different DEKs to further strengthen the security. Note that it is
feasible to have plaintext columns, but this may cause unexpected
information leakage from cross-column correlations [6, 13].

3.1.2 Encrypted Storage Abstraction. Without the loss of general-
ity, we use a simple case to demonstrate functions that should be
supported by an encrypted storage engine. Assume there is a single
table T with n columns {Cy, Cy, ...,Cp—1}, where PK = Cy and is
indexed. We denote a record r as [E(k), E(v1), ..., E(up—1)], where
k, v;, are values for Cy, C;, respectively. To ensure confidentiality,
data involved in all storage operations must be ciphertext:

e Put(r): insert a row to T if its key k does not exist.
Get(E(k)) — r:getthe row from T given a key k.
Update(r): update the row from T given a key k.
Delete(E(k)): delete the row from T given a key k.
RangeScan(E(k1),E(k2)) — {ri,...,rj}: retrieve all rows
from T whose keys are between k; and k.

e FullScan() — {ri,ro,...,rm}: retrieve all rows from T.

Note that retrievals on non-key columns are also supported. We
can either conduct a FullScan to exact qualified records or build
secondary indexes on them.

3.1.3 Index and Table Store. We consider the storage architecture
that consists of a B -tree [24] index and a heap-file table store. Data
in both the index and table store is organized as many index or
data pages (e.g., of 4KB size). A new record is first appended to
the heap file of the table store, and is assigned a record identifier
(rid for short). The rid can be used to retrieve the corresponding
record from the table store. An index stores a pair of index key
(i.e., value in the indexed column) and rid for each record. In this
case, indexes on both primary-key column and non-key columns
are unclustered. Some sophisticated databases, such as PostgreSQL,
follow similar settings. Note that rids passed between indexes and
table store might be either ciphertext or plaintext, which affects the
information leakage inside the database. We denote an optionally
encrypted rid as OE(rid), which is either rid or E(rid). To support
storage operations above, the table store TS has to support:

e TPut(r) — OE(rid): insert a row to TS.

TGet(OE(rid)) — r: get the row from TS given a rid.
TUpdate(OE(rid),r): update the row from TS given a rid.
TDelete(OE(rid)): delete the row from T'S given a rid.
TFullScan() — {ri,r2,...,rm}: retrieve all rows from TS.

[]
[]
(]
The primary index PI has to support:

e IInsert(E(k),OE(rid)): insert an entry with key k to PI.
ISearch(E(k)) — OE(rid): search the entry with key k.
IReplace(E(k),0E(rid)): replace the entry with key k.
IRemove (E(k)): remove the entry from PI with key k.
IRangeSearch(E(k1),E(k2)) — {rid;,...,rid;}: searchall
entries from PI whose keys are between k; and k.

The secondary index is similar and we omit its functions here. We
follow the separation of table store and unclustered indexes, because
it enables the discussion of more design choices (Section 3.4). It
already covers the case for clustered indexes, i.e., we can replace
rids with records in the primary index and have primary key’s
ciphertext in secondary indexes.

3.2 Threat Model

Our major goal is to ensure the confidentiality of user data hosted
by an untrusted database server. Similar to [5], we target a strong
adversary with privileged access to OS and database, who can not
only monitor the content of all server’s memory, disk and communi-
cation, but also actively tamper with it (e.g., attaching a debugger to
database). However, the adversary cannot access enclaves provided
by SGX (or any TEE with capabilities similar to SGX). In particular,
data and computation inside an enclave are protected with respect
to the confidentiality and integrity. The communication between
enclave and host (e.g., ECall/0Call, direct access to host memory
inside an enclave) is still exposed to the adversary. We exclude
SGX side-channel attacks [44, 59] from our scope, since these vul-
nerabilities are implementation specific and we can adopt more
secure TEEs when needed. Note that this adversary is stronger than
common honest-but-curious adversary [3, 7, 10, 48, 49, 58], who
only observes passively.

We do not consider the confidentiality of metadata and coarse sta-
tistical properties, such as the name of tables/columns, the volume
of tables/indexes, the length of values. In addition, we do not pursue
strict indistinguishability of encrypted data and storage operations,
since it usually leads to impractical performance penalty [25, 42].
Instead, we aim to provide operational data confidentiality as has
been discussed in prior work [5, 7, 49], where the information that
the adversary learns is a function of data operations that have been
performed. Since the adversary do not have the DEK, it cannot per-
form arbitrary data operations of its choice. The actual information
leakage depends on the design choices, as listed in Table 1 Security
column. For example, key comparisons in enclave leaks the order-
ing of individual keys, while index node accesses in enclave hides
this information but still leaks parent-child node relationships.

Note that other security guarantees, such as data integrity and
protection from denial of service, are out of our focus. In fact, the
complexity of additionally protecting data integrity also depends
on the design choices. Nevertheless, we will discuss how to make
our design integrity-protected (Section 4.6).

3.3 Strawman: B*-tree with Encrypted Keys

B*-tree [24] is the most widely used index structure in relational
databases. Here we introduce the design of a simple encrypted
B*-tree in existing work [5, 61].

3.3.1 Structure Overview. Figure 1 shows the structure, which is
almost the same as a normal B* -tree, except that index keys in gray
blocks are ciphertext. Other fields, such as node pointers and rids,
are in plaintext. Its logical semantics and representations remain
unchanged, i.e, index keys are still ordered by their corresponding
plaintext. To support index lookups and updates, comparisons on
encrypted keys are processed by the enclave. We load the search
key and compared key into enclave, which decrypts them and
passes back the comparison result in plaintext (e.g., if X < Y is true
or false). For example, to lookup the search key E(42) shown in
Figure 1, other keys encountered during the tree traversal are sent
to enclave one by one (from root to the target leaf node).

The advantage of this approach is that most index processing
logic, e.g., node split and merge, remains unaffected outside the
enclave. Furthermore, the table store works without enclave, and
uses plaintext rids to retrieve records.

1022

Ps

i ISearch(E(42))
Ciphertext |:|) Enclave
Plaintext |:| P, | Ps
P,
6 |15 38 [70
Py | P, | Ps P, | P,
Py Py P; Py P, Py
1| 6 || [15]n] [29]n]| [38]n] [70] K
3 [r 10| 17 |1 30| =42 «77]r
4 | n, Bl | (28] 33| [55]n][9]

Figure 1: B -tree with encrypted keys. Node ids (py-ps) and
record ids (rp-r) are plaintext.

3.3.2 Limitations. The above approach is easy to adopt but suffers
from several severe issues:

Frequent enclave interaction. Putting each individual com-
parison into the enclave results in frequent ECalls, affecting per-
formance significantly (Section 2.2). For example in Figure 1, five
ECalls are required for a single index lookup.

High ciphertext overhead on computation and storage. En-
cryption schemes are unfriendly to small ciphertext due to the ini-
tialization cost. Processing many pieces of small cipher is much
more expensive than processing a single piece of large cipher with
respect to the same volume of plaintext. Second, each ciphertext
has a metadata field, whose size is constant (32 bytes in our case)
regardless of the cipher length. Hence, the smaller the encryption
granularity is, the higher the ciphertext amplification will be. For
example, comparing a single int (4 bytes) and a data page (4KB),
their ciphertext amplifications are 8x and 1%, respectively. More-
over, a higher amplification factor means smaller node fanouts and
lower index efficiency.

Severe information leakage. Since this design keeps B -tree’s
internal states in plaintext, even a snapshot adversary [11, 16, 26,
51, 60] can learn its structure, such as key orders and parent-child
relationships. This lowers the security strength of any encryption
scheme to the similar level of order-preserving encryption [14].
During an index lookup, the placement and traversal path of the
search key is leaked, making it vulnerable to most leakage-abuse
attacks [18, 29].

3.4 Exploration to a Broader Design Space

There are other enclave-based encrypted storage systems that
provide much stronger confidentiality protection [25, 42, 50]. En-
claveDB [50] puts all data in enclave, but it requires large EPC
capacity. ObliDB [25] and Oblix [42] leverage oblivious structures
to make data access indistinguishable, but their costs are prohibitive
in practice. In summary, there is no discussion on how confiden-
tiality can be achieved in different ways, and what influences are
implied by them.

Here we provide a comprehensive exploration of many choices
for designing an encrypted storage, rendering a broader design
space. Table 1 lists all design choices that we have explored, which
are further categorized into five dimensions. This table also summa-
rizes the influence of each choice in terms of security, performance
and functionality. We observe that the choice made on each di-
mension can be independent in a sub-system (e.g., index or table

Table 1: Possible design choices for encrypted storage categorized in five dimensions. The choices made for Enclage Index are

bolded and the choices for Enclage Store are tagged with an asterisk mark (*).
Design Dimension Design Choice Influence
Security (Information Leakage) Performance Functionality
. . item-level encryption leak structural information high storage overhead; fast for a single read can fetch data w/o enclave
Encryption Granularity — -
page-level encryption leak data volume only low storage overhead; fast for batched small reads | all data access must be in enclave
index: key comparison leak key ordering and search path low performance from massive ECalls can split or merge node w/o enclave
Execution Logic in Enclave index: index node access leak node-level search path high performance from a few ECalls all index access must be in enclave
table: none leak record-level identity and location | high performance from no ECall can fetch or scan record(s) w/o enclave
table: data page access * leak page-level identity and location medium performance from a few ECalls all record access must be in enclave
M . item-level access * leak item-level access pattern high performance from on-demand read require small footprint in enclave
emory Access Granularity - - - —
page-level access leak page-level access pattern moderate performance from page copy require large footprint in enclave
minimum usage * no additional access protection low performance from active data fetching no EPC capacity requirement
Enclave Memory Usage fixed usage hide a few frequently accessed items medium performance from data caching Tow EPC capacity requirement
; proportional usage hide many frequently accessed items medium performance from data caching high EPC capacity requirement
unlimited usage hide access to all items high performance from data caching high EPC capacity requirement
no action leak record identity among queries no influence no influence
Record Identity Protection rid encryption * hide linkage between rid and record Tittle influence only useful in some settings
ciphertext re-encryption * | hide cipher identity among queries Tittle influence only useful in some settings

store), while the choices made by different sub-systems can also be
independent. In fact, the combination of all choices determines the
overall trade-off of the entire system. In the following, we elaborate
on major design choices available in each dimension.

3.4.1 Encryption Granularity. To prevent the adversary from see-
ing plaintext, data can be encrypted at different granularities: at
item level (e.g., an index key or a column value) or at page level (e.g.,
a data page). Overall, item-level encryption suffers from high com-
putation and storage overhead, as well as structural information
leakage (Section 3.3.2). We call this offline leakage as it is leaked
even when the database is offline. Note that metadata can be op-
tionally encrypted to mitigate this leakage, e.g., encrypting node
pointers helps to hide parent-child relationships. The advantage of
item-level encryption is its flexibility and portability, allowing many
operations to bypass enclave, such as record access and node split.
In contrast, page-level encryption has marginal offline leakage and
negligible ciphertext amplification. The encryption and decryption
costs are amortized to all items inside a page, especially suitable for
accesses with high data locality. However, it relies on enclave for
all data manipulation. Whenever a single byte needs to be accessed,
the entire page must be decrypted to enclave’s memory.

3.4.2 Execution Logic in Enclave. Putting execution logic in enclave
prevents the adversary from observing the online status (i.e., plain-
text data and execution flow) during the processing over indexes
and tables. There is always a dilemma in the choice of TCB size
(Section 2.2). In our context, the minimum operations that must
be processed by the enclave are key comparisons in indexes. The
rest of executions, such as table store management, are feasible
to be entirely out of the TCB. For the index, key comparison in
enclave leaks entry-level search path of each lookup and requires
massive ECalls. Its advantage is that complex logic, such as node
split and merge, remains unaffected in the host. Index node access
in enclave hides the sequence of key comparisons in the same node
via a single ECall, reducing search path leakage to the node level.
For the table store, none in enclave is fast, but leaks record-level
data location from each request, i.e., identities of returned records
are exposed among issued requests. Data page access in enclave can
reduce above identity leakage to the page level, but relies on the
enclave to achieve this protection.

3.4.3 Memory Access Granularity. Recall that the enclave can ac-
cess the entire address space of the process, including unprotected
memory in the host (Section 2.1). However, such memory access, as

1023

well as 0Calls, can be monitored by the adversary. It leaks access
patterns when the enclave execution involves access to host mem-
ory. Item-level access reads each item into the enclave on demand,
e.g., read the index key to compare with. This approach leaks item-
level access patterns, but is fast. Page-level access loads the entire
page into the enclave whenever a single byte is needed. It hides
the exact item used by the enclave at the cost of a page copy. Note
that oblivious structures [21, 25, 30, 52, 55] are designed to protect
such patterns by introducing additional accesses. They are rather
orthogonal and can be further adopted.

3.4.4 Enclave Memory Usage. Recall that the EPC capacity is ex-
tremely limited (Section 2.1). The performance of the enclave ex-
ecution heavily depends on its local EPC usage and the global
EPC usage from all concurrent enclaves running on that processor.
When unused EPC space is available, it could be used to cache
frequently accessed data (either items or pages), which avoids ex-
pensive decryption costs from repeated accesses. Moreover, the
access to cached data is protected, i.e., the adversary cannot tell
whether and how many times an item has been recently accessed.
One can choose to either reserve a fixed size of EPC to each storage
or make the reserved size proportional to the storage volume. In
an extreme case, pre-loading all data in unlimited EPC can com-
pletely eliminate the decryption cost and access pattern leakage of
subsequent accesses.

3.4.5 Record Identity Protection. For two Get requests initiated
by upper-layer database components (e.g., query executor) at the
untrusted server, their equality will be exposed if the adversary can
observe that they retrieve the same record. To avoid such query
pattern leakage, the record identity must be hidden during process-
ing. In particular, it involves the protection on both rids obtained
from the index and records retrieved from the table store. When
the rid is in plaintext, its record identity is already exposed. Hence,
rid encryption is necessary to hide the identity, but it is still far from
enough. If the returned ciphertext of the same rid (or record) is
consistently identical, the identity is still exposed. The dynamic
ciphertext re-encryption can solve this problem by returning a dis-
tinct ciphertext each time for both rids and records. However, the
complete record identity protection still requires the assistance
from choices in other dimensions. For example, key comparison in
enclave already leaks entry identity, where re-encryption on neither
rid nor record will be useful then.

3.4.6 Discussion of Combinations’ Effectiveness and Information
Leakage. We have discussed many choices on five design dimen-
sions, but not all their combinations are valid or equally useful in
practice. For example, a table store with none in enclave cannot
work when page-level encryption is chosen. From the perspective of
information leakage, the overall leakage depends on the weakest
aspects in all dimensions, as listed in Table 1. For example, cipher-
text re-encryption becomes useless if key comparison in enclave is
chosen, as the index lookup process already leaks rid identity. How
to exploit leaked information to conduct leakage abuse attacks has
been well studied [13, 18, 29, 49]. We leave the evaluation of exhaus-
tive combinations to the database practitioners, who can assemble
choices that best fit for their own needs.

4 DESIGN OF ENCLAGE

After exploring the entire design space, we introduce Enclage, an
enclave-native encrypted storage engine for practical usage. It con-
sists of two major components: Enclage Index, a B* -tree-like index;
and Enclage Store, a heap-file-like table store.

4.1 Design Choices Made in Enclage

Different design choices render trade-offs among security, perfor-
mance and functionality. Whether a choice is practical highly de-
pends on the application scenario, e.g., leakages that must be pre-
vented and functions that must be supported. Here we explain
design considerations behind Enclage for practical usage. Enclage
makes different choices for its index and table store, as marked
in Table 1. In a nutshell, Enclage applies page-level encryption for
both components to benefit from its security advantage and storage
efficiency. However, due to the limited EPC capacity and costly
encryption overhead, we find that the page size must be carefully
tuned to achieve the best performance (Section 4.3), and hence set
different sizes for index nodes and data pages. Except for the en-
cryption granularity, Enclage Index and Enclage Store make distinct
choices on other design dimensions. For Enclage Index (Section 4.2),
it puts index node access in enclave to minimize ECalls and follows
page-level access to load demanded nodes in host memory. Since
the index efficiency is critical to the entire storage and few effec-
tive data locality exists in heap-file-based table store (especially
for range queries), we reserve most EPC space to cache Enclage
Index nodes with fixed EPC usage. For Enclage Store (Section 4.4),
it puts data page access in enclave to leverage data-page encryp-
tion. We observe that, in most cases, data locality in the heap file
is much lower than that in the index. Hence, Enclage Store prefers
to not cache data pages in enclave, i.e., with minimal EPC usage,
conceding most EPC memory to Enclage Index. Instead, it adopts a
delta decryption protocol to enable item-level access to target record,
which significantly lowers encryption cost. Note that rid encryption
and ciphertext re-encryption is inherently effective and efficient in
Enclage, and we enable them by default. Enclage hence achieves
indistinguishability for entry/record access inside a page.

4.2 Enclage Index

4.2.1 Overview. Figure 2 shows the overall design of Enclage Index.
It adopts a three-tier storage hierarchy, including a EBuffer tier, a
MBuffer tier and an external storage tier. As Enclage Index resembles
a B*-tree, index nodes are organized as pages and are placed at
any of these tiers. Unlike in conventional B*-tree where each page

1024

‘ Database Engine
OE(rid) T i ISearch(E(key))
|+

Enclave

Hash map
Buffer id
putler

1 ... O [Terl:
rrrrrrrrrrrrrrrrrrrr EBuffer [T T T |1] [T] ppuffer descriptors
. ' . : : Buffer id
Tior2 5 [INode] — [Node[]| Buffer pool
lerl: —
MBuffer | Pagel | Page2| Page3
- ; ~ OCall emeemeem e
: 58 i [1 Ciphertext

Plaintext §
Tier3: —— Data flow !

[External storage

Figure 2: Three-tier architecture of Enclage Index.

contains a single node, a page in Enclage Index might hold several
nodes to reduce encryption cost. We construct a buffer manager
(called EBuffer) in the enclave to manage page transfers between
unprotected host memory and protected enclave memory. Each
EBuffer page contains a single index node and is not encrypted.
Another buffer manager (called MBuffer) is constructed to manage
page transfers between host memory and external storage. Each
MBuffer page contains multiple encrypted EBuffer pages. To make
the presentation more concise, we call a EBuffer page as a node and
an MBuffer page as a page in following sections.

EBuffer and MBuffer are different in terms of the encryption sta-
tus, placement and capacity. For example, EBuffer manages plaintext
nodes in limited enclave memory, while MBuffer manages cipher-
text pages in large host memory. Apart from these, both buffer
managers have the same structure. Each buffer manager comprises
three components, namely, a hash map, a buffer descriptor, and a
buffer pool (detailed in Section 5.2.1). Moreover, the address trans-
lation is needed between any two adjacent tiers in the memory
hierarchy, in order to convert upper layer representations to lower
layer representations (e.g., nodelID to a pair of pageID and offset,
and pagelD to physical address).

We carefully implement the main execution logic of index, EBuffer

and MBuffer inside the enclave. When executing an ISearch op-
eration (Section 3.1.2), the tree is traversed starting from the root
to leaf node. When a node does not exist in EBuffer, it has to be
fetched from MBuffer or even external storage through 0OCall. A
node might be evicted from EBuffer to make room for other nodes.
Moreover, node modifications in EBuffer will not be written through
to MBuffer immediately. If the evicted node has been modified, it
will be encrypted and written back to the MBuffer. More details
about the working process are discussed in Section 5.2.3.
4.2.2 Optimizations. Though the direct porting of B*-trees shall
work with our three-tier hierarchy, there remain several critical
issues that significantly affect the performance. Enclage Index ad-
dresses following issues with its own optimization:

Reduction of EPC page swapping overhead. Recall that built-
in EPC page swapping is prohibitive (Section 2.2). To resolve this
issue, we need to ensure that the EPC usage from EBuffer and all
other components will not exceed the limit. In Enclage, we leave
most of EPC quota to EBuffer and minimize EPC usage from other
components, such as Enclage Store. In this case, the EBuffer acts as
a faster EPC swapping protocol dedicated for index nodes, since it
only ensures confidentiality but ignores integrity. More details of
EBuffer page swapping are discussed in Section 5.2.3.

Table 2: Major notations used in cost model.

Notation | Description Notation | Description (in bytes)
h tree height P node size
N total # of indexed keys Lneta node metadata length
ne total # of entries in EBuffer Liey key length
Nm total # of entries in MBuffer Lypia nodelD length
fo; max fanout of leaf node Lyia rid length
fo; max fanout of internal node Se EBuffer size

Mitigation of encryption and decryption cost. Due to the
node-level encryption, the node size significantly affects the EBuffer
hit ratio, which further affects the frequency of encryption and
decryption. We observe that this decryption cost dominates the
overall performance. Hence, we build a cost model to analyze the
influence of different node sizes to the overall Enclage Index, in
order to derive the optimal node size. We observe that the optimal
node size for EBuffer is 1KB, which is different from those in existing
databases that only consider I/Os (e.g., 4/8/16KB). More details are
provided in Section 4.3.

Avoidance of unnecessary 0Calls. MBuffer maintains encrypted

pages and the simplest way is to build it as an independent module
outside the enclave. Whenever a target index node is not in EBuffer,
we exit the enclave via 0Call and let the MBuffer prepare the page
from either its buffer pool or external storage. However, this inher-
ently results in frequent OCalls. Since an enclave has direct access
to host memory, we can get a page from MBuffer without 0Call,
as long as that page is already in host memory and its placement
is known to the enclave. Hence, we implement part of MBuffer’s
execution logic in enclave to avoid unnecessary 0Calls. Only when
the page is on external storage, will an 0Call is invoked. More
details are provided in Section 5.2.3.

4.3 Cost Model for Optimal Node Size

The choice of index node size affects many aspects of Enclage Index,
such as the encryption/decryption cost, node fanout, and EBuffer
hit ratio. Here we build a cost model to derive the optimal node
size to improve overall performance. According to the following
analysis, the optimal performance is achieved when the node size
is between 1KB and 2KB (in common settings). This is consistent
with our experiment results in Section 6.2.4.

4.3.1 Assumptions. To simplify the model, we make several as-
sumptions: 1) Query distribution - we assume that all keys are uni-
formly queried. 2) EBuffer size - we assume that only the bottom two
levels, i.e., leaf nodes and their parent nodes, will be evicted from
EBuffer to MBuffer. We observe that 10MB is enough to achieve this
goal in our experiments. 3) MBuffer size - we assume that MBuffer
is large enough to accommodate all nodes, i.e., no I/O occurs during
index lookup. This allows us to focus on overheads introduced by
Enclage Index. 4) Write-back probability - we assume that when a
node is evicted from EBuffer, the write-back probability is a con-
stant rp ¢k, i.e., the chance it has been modified while in EBuffer.
This is mainly affected by the write ratio in the workload. Above
assumptions will not affect the generality of our analysis, and it
can be extended accordingly when other assumptions are made.
4.3.2 Notations. Table 2 summarizes major notations used in the
analysis. Note that node size p is the only variable to be determined
and all capital-letter notations are environment-specific constants.
The rest notations can be derived from them. For example, the
maximum number of entry slots in EBuffer is n, = % We assume

1025

that rid and nodelD (nid) have the same length L,.;y = L,,;4 (unified
as L;4), resulting in fo; = fo; (unified as fo). In addition, since
Lmetq is usually much less than p, we have

fox —L
Lkey +Lig
In a B*-tree, each node has at most fo and at least [%] entries.

1)

Assume that the tree height is h and each node contains [%1 keys,
which is the worst case. We say that the root is at 1-st level, and
leaves are at h-th level. For i-th level, the number of nodes num; is

num; = [21"—1(1 <i<h). ()
The number of nodes from the root to the (h — 2)-th level is then:

foqh-2
0 o s [F1"75-1
num(y p—2] :1+|'f7‘|+...+|-f; -lh 3 _ 2f0 3)
which are all stored in EBuffer. The nodes in last tvzvo levels is
0_p_ 0.,
gy = 114 (00 @)

Since each leaf node contains [%] entries, we have |—f70-|h > N,
and hence h = [logs, N1.
2

4.3.3 Cost Model. Based on above notations, we model different
types of cost as follows.

EBuffer miss ratio. In EBuffer, the number of entry slots re-
served for nodes at last two levels is ne — numyy _). With uniform
accesses, the probability of an EBuffer miss rpiss is

Ne — NUM[1 p—2]
Tmiss & 1 — ——————

®)
num[h_l’h]
For each index lookup, the expected number of EBuffer misses is
Emiss = 2 rmiss (from nodes in last two levels).

EBuffer lookup cost. During an index lookup, a sequence of
nodes from root to leaf should be accessed in EBuffer. To locate
a node in EBuffer, a hash is calculated to locate the target bucket,
costing Tgp4sph- Then, a chain of nodes are checked until the target
node is found, whose cost is proportional to the total number of
entries in EBuffer, costing Tg¢p4in - Ne- The EBuffer lookup cost per
node is hence Cgpyffer = Tgchain * e + TEhash» Where two T's are
implementation-specific constants. Moreover, EBuffer is accessed h
times per query.

MBuffer lookup cost. When an EBuffer miss occurs, the node
must be first fetched from MBuffer. Similar to EBuffer, the MBuffer
access cost depends on counterparts Tyicpain and Tarpash, i€,
CumBuffer = TMchain - "'m + Tphash- For a query, the expected num-
ber of MBuffer access is equal to EBuffer misses Ejss.

Node decryption cost. The number of nodes to be decrypted
per query is Ess, equaling to the number of EBuffer misses. To
decrypt a node, the preparation cost is Ty;,;; and the decryption
cost is proportional to the node size, i.e., Ty, - p. Hence, the node
decryption costis Cgee = Tgee - P + Tginiz» Where Tge. and Tgip;s
are scheme-specific constants.

Node encryption cost. Similarly, the node encryption cost is
Cenc = Tenc - p+Teinit, where Tepe and Tejpnir are scheme-specific
constants. However, the number of encryption is additionally af-
fected by the write-back probability, i.e., Emiss * "pack-

Key comparison cost. Many keys in a node are compared with
the search key before the target one can be located. The cost of a

Nonce + Counter 4

|

Offset, Offset,

|

A 4

T
|
Key — AES-CTR Cipher |1y | 1} | 1, | 13
|
v 0 32 64
Ciphertext 4’69
v Data page
Plaintext

Figure 3: The delta encryption protocol.
single key comparison is T¢pmp. With binary search, the cost of key

comparisons per node is Cemp = Temp - lg(f%]).

Total cost of Enclage Index lookup. The index lookup cost in
Enclage can be derived from accumulating the cost from individual
steps discussed above:

Crotar = h- (CEBuﬂer + Ccmp) ©
+ Emiss - (CuBuffer + Tback * Cenc + Ciec)
In our setting, the constant values are: S, = 80MB, N = 10M,
Likey = 8B, Lmera = 24B, and L;y = 8B. We observe that when
the node size changes from 0.5KB to 16KB, the total cost first de-
creases and then increases, and reaches the minimum cost when
p € [1KB, 2KB]. Since the node size has to be a power of 2, the best
choice should be 1KB (slightly better in our experiment) or 2KB. In
addition, we found that the key length Ly, is the most dominant
factor that affects the choice of p. For example, when Ly, changes
from 8B to 4B, the optimal p shifts to [2KB, 4KB].

4.4 Enclage Store and Delta decryption

4.4.1 Overview. Enclage Store is a heap-file-like table store, in
which each new record is appended to a heap file and get a unique
rid. After that, a <key, rid> pair is inserted to Enclage Index. This rid
contains the record location (i.e., page identifier, offset and record
length), and can be used to retrieve, update and delete the corre-
sponding record later. Unlike in conventional heap file where a
record can be simply appended, Enclage Store has to encrypt each
individual data page. To achieve this, we maintain an active data
page in enclave memory to hold recently arrived records. When the
page is full, it will be encrypted and flushed to MBuffer. Recall that
arrived records are value-wise encrypted (Section 3.1.2). To reduce
their memory footprint, we first safely decrypt them in enclave
before appending them to the active page.

Due to the nature of append-only strategy, data locality in En-
clage Store is much lower than that in Enclage Index. We choose
to not cache data pages (except the active page) in EBuffer. Hence,
most EPC memory can be reserved to accelerate Enclage Index
lookup. Instead, to retrieve a record, we have to load the entire page
into enclave, decrypt it and extract the target record. To reduce
the record exaction cost, we adopt a delta decryption protocol (Sec-
tion 4.4.2) that enables direct access to the target record without
encrypting the entire page. As a result, different from Enclage Index
whose optimal node size is 1KB, the data page size in Enclage Store
can be aligned with sophisticated choices (e.g., 4/8/16KB) without
affecting the performance. In our implementation, MBuffer man-
ages both index and data pages of 4KB size, while EBuffer manages
only index nodes of 1KB size.

4.4.2 Delta Decryption Protocol. The delta decryption protocol is
built on top of the AES counter mode (AES-CTR), which allows a

1026

small block within a large cipher be solely decrypted. AES-CTR
utilizes a monotonous counter, whose value is different for each
block, to initialize the decryption. As shown in Figure 3, though
the page is encrypted as a whole using AES-CTR, the IV of each
individual record can be derived by concatenating a 12B page-wise
nonce and a 4B counter. Each data page keeps its nonce in the
metadata, while the counter is calculated based on the offset of the
target record. To be compatible with CTR, this offset must be aligned
to 16B. Hence, the counter of record r; becomes |of fset;/16]. For
example, the counter for Of fsets in Figure 3 is 64/16 = 4. Note
that if the record boundaries are not aligned to 16B, additional bytes
need be decrypted. For example, to extract ry in Figure 3, part of r;
shall be decrypted as well.

When executing a TGet operation (Section 3.1.2), we first locate
the page in MBuffer via its pagelD and load it to enclave (for hiding
record-level access patterns). We then calculate the counter for the
record, and construct the IV using the counter and the page-wise
nonce. Now we are able to decrypt the target record with low cost.
Note that the extracted record needs be value-wisely encrypted
before it leaves the enclave.

4.5 Scalability

The SGX supports multi-threading and provides thread synchro-
nization primitives [34]. The concurrency control mechanisms of
in-enclave data structures can be implemented almost the same as
its counterpart in untrusted world, sustaining similar scalability ca-
pacity. Hence, the scalability issue is almost orthogonal to Enclage’s
design considerations, which focus on resolving performance and
security issues from enclave-specific limitations. Those scalable
B-tree variants and lock-free data structures [12, 15, 23, 32, 37, 43]
can be further adopted to achieve better scalability.

4.6 Integrity Protection

Apart from confidential protection, it is feasible to further enhance
Enclage with integrity protection if needed. For Enclage Index, we
can replace the B*-tree structure with a Merkle B-tree [41] that
provides resiliency to tampering and replay attacks [27, 56]. In a
Merkle B-tree, each index node additionally contains the digest of
its child nodes, where updating a node requires cascaded digest
re-calculation back to the root. Fortunately, with the help of enclave,
we can delay the digest re-calculation of an EBuffer-cached node
until it is to be evicted. This significantly reduces computation cost
and improves concurrency. In our implementation, these digests
are stored in a separate file, so that it can be made optional and
the Enclage Index structure remains unchanged. For Enclage Store,
heap pages can be protected by Merkle-tree similarly. Alternatively,
if we can make heap pages immutable, authenticated encryption
schemes (e.g., AES GCM) are more than enough.

5 SYSTEM IMPLEMENTATION

In this section, we provide our implementation details, including
the internal data structures and the buffer manager.

5.1 Structure Format

We briefly introduce the format of major data structures imple-
mented in Enclage. 1) Cipher. The metadata of a Cipher includes: IV
and MAC needed in decryption, and the length of ciphertext, which
could be either an index node or a data page in our context. 2) Index

node. The metadata of an index node includes: its unique identifier
(nodelD), nodeIDs of adjacent nodes (i.e., parent and two siblings),
and its type (leaf or internal). Each entry contains a rid in a leaf
node or a child nodeID in an internal node. 3) MBuffer entry. Its
metadata includes: the unique identifier in its data file (pagelID), the
dirty bit (dirty), and the number of components accessing the page
(refcount). Recall that each MBuffer page could contain multiple
index nodes, there is a exists field to indicate whether each node
is valid. 4) EBuffer entry. Its format is similar to that of a MBuffer
entry. The only difference is that the stored node is plaintext.

5.2 Buffer Management

5.2.1 Buffer Manager Structure. A buffer manager has three major
components. A buffer pool contains an array of entry slots, each of
which can store an index node (for EBuffer) or a page (for MBuffer).
Each entry can be directly located by its index (i.e., buffer slot id).
A buffer descriptor contains an array of entry metadata descrip-
tors, each of which holds the metadata (Section 5.1) of the page
stored in corresponding buffer pool slot. A hash map is built to
fast lookup the node or page in the buffer pool given its nodelID or
pagelD, respectively. We adopt external chaining to resolve hash
collisions. The hash function used is MurmurHash [1], which a
practical approach used in many systems.

5.2.2 Address Translation. Recall that the choice of node size is
critical for enclave-based indexes (Section 4.3). Hence, we decouple
the sizes of index node and disk page, and this additionally needs
an address translation function to fill in the gap among three layers
in the memory hierarchy. In particular, for EBuffer and MBuffer,
we have nodeID = pagelD * X + Y, where the X is the number of
index nodes per page, and Y € [0, X) is the node ranking in that
page. For MBuffer and external storage, we have physical Address =
pagelD x pageSize + of fset.

5.2.3 Working Procedure. Here we explain the procedures of buffer-
related operations. When a node is accessed, there are three cases:
1) It is already in EBuffer. In this case, we simply lookup the hash
map to obtain the EBuffer entry containing that node; 2) It is not in
EBuffer, but in MBuffer. We need to allocate a buffer entry in EBuffer,
and then calculate its pageID and offset. With this information, we
can find the node in MBuffer and decrypt it to the allocated entry
in EBuffer. Meanwhile, we need to increase that MBuffer page’s
refcount by one; 3) It is not in EBuffer and MBuffer, but in the disk.
In this case, we have to allocate a buffer entry in MBuffer, and load
the corresponding page from disk before loading it to EBuffer. Note
that this is the only occasion that an 0Call is invoked, and hence
we minimize the enclave interaction.

Write back a victim from EBuffer. When EBuffer is full, a victim
node has to be selected through LRU strategy before we can load a
new node. If the victim has not been modified, it is simply dropped
and the refcount of corresponding page in MBuffer is decreased
by one. When it is dirty (i.e., has been modified or is a new node),
we need to write it back to corresponding page in MBuffer: When
the node is an existing node, the page should be pinned in MBuffer
(i.e, refcount > 0). In this case, we simply encrypt and write it
back, then set that page’s dirty bit; When the node is a new node,
there are two different cases. If the page is in MBuffer, we encrypt
and write it back similar as an existing node. If the page is not in
MBuffer, we compare the pagelD with a diskMaxPagelD in order

1027

to know whether the page already exists. If so, it has to be first
reloaded to avoid losing other nodes on that page.

6 EVALUATION

In this section, we evaluate the performance of Enclage against
several baseline approaches. We show that Enclage outperforms
baselines on both efficiency and storage savings, and it brings in
acceptable overhead compared with vanilla plaintext storage.

6.1 Experimental Setup

Environment. We run experiments on a machine consisting of an
Intel(R) Xeon(R) CPU E3-1270 v6 with 3.80GHz processor, which
has 4 physical cores (8 logical threads in total). The machine has
64GB RAM capacity, and runs Red Hat 6.4.0 with Linux 4.9.135
kernel. The processor has 32KB data and instruction caches, 256KB
L2 cache, and 8MB L3 cache. Moreover, our implementation is based
on Intel SGX SDK 2.6.

Workloads. We use YCSB [20] to generate six core workloads
with a zipfian distribution of skewness 0.99, each of which contains
10 million key-value pairs (i.e., records in the table store). For each
record, its entire length is 128B and its index key length is 8B.

Baselines. For Enclage Index, we implement two variants of
item-based encryption indexes as baselines. The first one (called
Baseline) is the implementation of a common design used by
Azure Always-encrypted [5] and StealthDB [61] (Section 3.3). The
other one (called ItemEnc) puts the execution of Baseline entirely
in enclave. In other words, the index structure is still maintained in
host memory, but costly enclave interactions are eliminated. For
Enclage Store, we implement two baselines with different encryp-
tion granularities (Section 3.4.1). The first one (called I'tem-level)
manages an unmodified heap file containing encrypted records
as used in [5, 61]. The second one (called Page-level) manages
a heap file containing encrypted pages. Our Enclage Store adopts
delta decryption on top of Page-level and is called Delta-enc.

Default parameters. There are a number of parameters that are
set to default values if not otherwise specified. The default settings
are: EBuffer size is 80MB, MBuffer size is 350MB for Enclage Index
and 2GB for Enclage Store (i.e., large enough to hold the entire file in
host memory), node size is 1KB, page size is 4KB, and the rid length
is 8B. Note that all experiments are performed in a single-thread
setting, and the scalability issue is discussed in Section 4.5.

6.2 Performance Evaluation for Indexes

We first evaluate the performance of Enclage Index, and demonstrate
how its efficiency is affected by different factors.

6.2.1 Overall Performance. There exist two phases (i.e., load and
run) in the YCSB benchmark. During the load phase, there are only
Put operations to construct the storage. We conduct the test with
ECalls in both switch and switchless mode.

Switch mode. Different operations are executed according to
corresponding workloads in the run phase. As shown in Figure 4(a),
Enclage Index achieves about 100 Kops/s, and outperforms Baseline
(20.04x) and ItemEnc (5.34%). It is because that Enclage Index only
needs one ECall during each operation, and each accessed node is
encrypted at most once only when it is not in EBuffer. In contrast,
Baseline invokes an ECall for each key comparison, accompanied
by decrypting two keys that need to be operated on. This results in a
huge performance degradation. Similarly, frequent key decryption

= Baseline ItemEnc mm Bascline ItemEnc
__ mmEnclage Index Ratio __ mmEnclage Index eAShieldStore
23 24 < ti
Z 2 300t 18
2 g N\
=200 1 2.2 L0 l J 16 o
2 < =1 =
g sz | :
£ 100 20 < 100 I 14 %
= =
£ I I) 12
ER) 18 g
= A E F =

B C D A B C D E F
YCSB workloads YCSB workloads

(a) Switch mode. (b) Switchless mode.

s)

Throughput (Kops/

—s—Baseline ItemEnc -e-Enclage Index

Figure 4: Overall throughput in different modes.

Table 3: The response time in different modes.

Enclage Index (u1s) | Avg latency | P50 latency | P95 latency | P99 latency
Switch mode 10.44 10 14 16
Switchless mode 5.03 4 9 10

is the main reason for the poor performance in I'temEnc. Moreover,
item-grained encryption leads to fewer keys per node, and then
stretches the tree height.

Switchless mode. Compared to Baseline in the switchless mode,
Enclage Index also achieves better performance in throughput under
all workloads. As shown in Figure 4(b), Enclage Index achieves more
than 182 Kops/s, and outperforms Baseline (13.19x) and ItemEnc
(9.69x). The more frequent the ECall is invoked, the greater the per-
formance gain from the switchless mode. Baseline executes massive
ECalls for key comparisons, and hence yields greater performance
improvement (3.18%) than Enclage Index (2.2X) and ItemEnc (1.1X).
We also evaluate the performance on uniform workloads in Fig-
ure 4(c). Enclage Index sustains superior performance compared to
Baseline (10.85X) and I'temEnc (8.32X), but the performance gap
slightly narrows compared to zipfian distribution in Figure 4(b). Fur-
thermore, we compare Enclage Index with ShieldStore [40], which
is a SGX-based in-memory key-value store. Note that ShieldStore
is hash-based scheme and therefore cannot support range queries.
As can be seen, the throughput of Enclage Index is 7-12X higher
than that of ShieldStore. It is because ShieldStore has to decrypt
entries in the target hash bucket one by one during index lookup,
requiring costly decryption on many small items.

Skewness. We evaluate the impact of workload skewness in
Figure 4(d). We generate Workload A following a zipfian distribu-
tion with varying skewness (from 0.5 to 0.99). As can be seen, the
performance of Baseline and ItemEnc are almost unaffected, as
they have to decrypt data for each access. In contrast, Enclage Index
performs better with higher skewness, due to its EBuffer design.

Latency. Table 3 shows the response time of Enclage Index on
Workload A with both switch and switchless modes. With the help
of switchless mode, the average latency is improved by 51.8%, while
the 99-percentile latency is improved by 37.5%.

6.2.2 EBuffer Size. Recall that when the EPC usage exceeds the
limit, its page swapping will cause significant performance penalty.
Figure 5(a) shows the overall throughput with increasing EBuffer
size, which achieves the best performance at the size of 80MB.
When the size keeps growing, the throughput degrades rapidly, due
to huge page swapping overheads. When the size reaches 100MB,
the throughput of Enclage Index is about 2.42X worse than that at
80MB. Hence, we set 80MB as our default EBuffer size.

6.2.3 EBuffer Hit Ratio. Figure 5(b) shows the EBuffer hit ratio,
which increases steadily from 0.8 to 0.9 as the EBuffer size increases.

mm Baseline ItemEnc
mmEnclage Index Ratio = 300
3 14 2
FRENRN L E
200 - = = m e T
H 1235 2 L
~ & 100
100 ')
H 11 =
g o LE== s s * *
0 Lol ol el ol ol 10 £ o
A B C D E F 0.5 0.6 0.7 08 09 0.9
YCSB workloads Zipfian factor
(c) Uniform distribution. (d) Skewness.
——Workload A ~~Workload B ~~Workload C —-Workload A ~Workload B ~-Workload D

—~~Workload D —~Workload E —-~Workload F
00

2095 |
__,__———-—\ 205 /,/—‘”
| 2085 ¢
10 20 30 40 50 60 70 80 90 100
EBuffer size (MB)
(a) Throughput. (b) Hit ratio.
Figure 5: The impact of EBuffer size.

W?rkload E —Workload F —~Workload C

200

=)
S

Throughput (Kops/s
w

10 20 30 40 50 60 70 80 90 100
EBuffer size (MB)

——Workload A ——Workload B ~~Workload C ~ ——Workload A =—Workload B —Workload C
Az%orkload D —Workload E —=—Workload F ‘Workload D =——Workload E —Workload F
KKd > 300
2z %
I=) L i=3
g 180 Z 200
3140 =
o =
= £ 100
2100)
2 3
Z 60 S
0.5 6 E 350 300 250 200 150 100

! Nodezsize (l‘éB) 8 MBuffer size (MB)
(b) MBuffer size.
Figure 6: The impact of node and MBuffer sizes.

The initial hit ratio is already quite high. This is because 10MB of en-
clave memory is more than enough to accommodate most internal
nodes in EBuffer. We observe that at most two node replacements
are needed during an index operation, and hence we take it as one
assumption of our theoretical analysis in Section 4.3.1.

(a) Node size.

6.2.4 Node Size. Figure 6(a) shows how the node size affects the
throughput of the entire index. In this experiment, YCSB workloads
follow a uniform distribution, which is consistent with the assump-
tion in Section 4.3.1, and the fixed page size is 16KB. As can be
seen, the throughput of Enclage Index first improves as node size
grows, and then begins to decline after reaching its peak at 1KB. It is
because that the node size has complex impact on many aspects of
the index, such as encryption/decryption cost and EBuffer hit ratio.
Intuitively, as node size increases, the node decryption cost grows
as well, but its amortized cost on each item can either decrease
(when many items are accessed together) or increase (when only a
few items are accessed). Hence, the optimal choice is determined
by the combination of many factors, and 1KB is consistent with the
findings from our cost model built in Section 4.3.3.

6.2.5 MBuffer Size. It directly reflects the impact of disk I/Os. As
shown in Figure 6(b), when the size is still larger than 250MB, the
entire index file is cached in memory. As the MBuffer size keeps re-
ducing, the I/O cost rapidly dominates the overall performance, due
to frequent page loading from the external storage. That is to say,
for aI/O heavy workload, any overhead of in-memory computation
(e.g., enclave execution in our case) becomes marginal.

6.2.6 Benefits of Optimization. Figure 8(a) demonstrates the effec-
tiveness of Enclage Index optimization introduced in Section 4.2.2.

1028

Table 4: Space consumption of indexes.

A B C D E F
Baseline (GB) 1.34 1.34 | 1.34 1.41 1.41 1.34
Enclage Index (GB) | 0.23 | 0.23 | 0.23 | 0.24 | 0.24 | 0.23

Table 5: Performance penalty from integrity protection.

(Kops/s) A B C D E F
W/O integrity 206.92 | 225.11 | 231.72 | 253.88 | 182.99 | 252.83
With integrity 192.83 | 214.67 | 218.44 | 241.46 | 176.67 | 241.37
Degradation ratio 7% 5% 6% 5% 3% 5%
SGX B Enc/Dec u EBuffer SGX ® Enc/Dec m EBuffer
= Mbuffer Comparison = Other B Mbuffer Comparison ® Other
7 600 7 300
= = 2
S S
§4oo—i - = | gzoo—_ = B
S - EE] - I I
F 200 | z 100 - I . l B
Z Z 9 . .
© A F © A

B C D E B C D E
YCSB workloads YCSB workloads
(a) Switch mode. (b) Switchless mode.

Figure 7: Break-down cost of index operations.

In particular, we take advantage of enclave memory to speed up in-
dex lookup while carefully avoiding EPC swaps. We also eliminate
unnecessary 0Calls when accessing MBuffer. In this test, the mini-
mum EBuffer size is set to 5KB (i.e., 5 nodes). In the figure, Enclage
Index (no opt) indicates the vanilla Enclage Index without any
optimizations; Min_0Call is the variant that avoids unnecessary
0Calls; Enclage Index is the default variant that additionally utilizes
large enclave memory (i.e., 80MB) on top of Min_0Call. As can be
seen, Min_0Call achieves a 3.74X improvement in throughput and
Enclage Index gains an additional 1.74X improvement.

6.2.7 Break-down Cost. Figure 7 shows the break-down cost of
major functions in Enclage Index. We accumulate all CPU cycles con-
sumed by corresponding functions during the workload execution.
SGX is the cost of the enclave environment, mainly from enclave
interactions (i.e., ECall/0Call); EBuffer is the cost to maintain the
buffer manager of EBuffer; MBuffer is the cost to maintain the buffer
manager of MBuffer; Enc/Dec is the total cost of encryption and
decryption, which includes the cost to encrypt nodes when writing
them back to MBuffer, to decrypt nodes when loading them into
EBuffer from MBuffer, and to decrypt input keys before executing
corresponding operations; Comparison is the cost to execute key
comparisons over search paths from the root to the target leaf node;
and Other is all other miscellaneous cost, such as LRU maintenance,
data copy, pagelD assignment. As can be observed, the cost under
switch mode is mainly dominated by SGX, which is more than 72%.
This cost is reduced to about 43% under switchless mode.

6.2.8 Space Consumption. We measure the size of index files to
compare their space consumption. As shown in Table 4, we observe
that the file size of Enclage Index is about 0.23GB and the one
Baseline is 1.40GB, achieving a 5.76x reduction. It is because that
Baseline has to maintain cipher metadata for each key or rid,
which causes huge space amplification. In contrast, Enclage Index
only needs per-node metadata, which becomes negligible. Note that
there are encryption schemes that has no space amplification, such
as AES ECB mode, but they are insecure for practical usage.

6.2.9 Performance Penalty. Figure 8(b) evaluates the performance
penalty from both SGX and encryption. We implement two Enclage
Index variants without SGX environment, i.e., Enclage Index with

1029

® Enclage Index (no opt) ® Min_OCall m Enclave Index ~ ® B+tree ® Encrypted B+tree ® Enclage Index
= 300 2 800

£ &

g 200 L > 600

é 0 5400

e [2200

2 2

£ 0 E oo

A A E F

B C D B C D
YCSB workloads YCSB workloads

(a) Optimization benefit. (b) Performance penalty.

Figure 8: Optimization benefits and performance penalty.

——Workload A ~~Workload B —Workload C ~——Waorkload A —Workload B —Workload C
—~Workload D —Workload E —Workload F Workload D —-Workload E —Workload F
2500 2 600

5 400 g

<300 ¥ 400 -

2 L 5

g 200 Z200 |

5100 |- El

g o 2 0

= =

1 23 456 7 8 910

Threads

1 2 3 4 5 6 7
Untrusted caller threads

(a) Switch mode. (b) Switchless mode.
Figure 9: Scalability to multiple cores.

SGX-disabled called Encrypted B*-tree and a vanillaB*-tree. As
can be seen, there is about 33% degradation from encryption and 30%
from SGX. Note that when the caller (e.g., query execution engine)
of Enclage is also in enclave, the dominating 0Call cost from SGX
can be eliminated. In this case, Enclage Index retains 67% of B*-
tree’s performance, while effectively ensures the confidentiality of
sensitive data hosted on an untrusted database server.

6.2.10 Overhead of Integrity Protection. We also evaluate the over-
head of the optional integrity protection in Enclage Index. The
corresponding performance degradation is shown in Table 5. As
can be seen, the integrity protection comes with an average per-
formance loss of 5%. It is mainly from two processes: verifying the
digest when a node is loaded to EBuffer; re-calculating the digest
when a node is written back to MBuffer.

6.2.11 Scalability. Figure 9 presents the multi-core scalability of
Enclage Index in switch and switchless modes with uniform YCSB
workloads. In particular, our SGX-supported machines have only 4
physical cores (i.e., 8 logical cores) in total. In the switch mode as
shown in Figure 9(a), the throughput improves almost linearly from
1 to 4 threads, then slows down from 4 to 8 threads due to resource
contention, and eventually gets saturated. In the switchless mode,
we assign 1 untrusted worker (i.e., uworker for 0Call) thread and
4 trusted worker (i.e., tworker for ECall) threads. This setting gets
the best performance among all combinations in our test. As shown
in Figure 9(b), the throughput reaches its peak when there are
4 caller threads (with full 800% CPU utilization). After that, the
performance degrades because more caller threads will busy wait
for enclave responses, consuming extra CPU resources.

6.3 Performance Evaluation for Table Store

We then evaluate the overall performance of the complete En-
clage, i.e., plugging-in Enclage Store beneath Enclage Index. Con-
sidering security and performance tradeoffs, we adopt the delta
decryption protocol in Enclage Store and call this version of En-
clage as Delta-enc. In addition, we implement two baselines (i.e.,
Item-level and Page-level) as explained in Section 6.1.

6.3.1 EBuffer Size for Table Store. According to our result in Sec-
tion 6.2.2, the optimal size of EBuffer is 80MB. It is only true when

Table 6: Space overhead with different encryption protocols.

16B 32B 64B 128B | 256B
Item-level (GB) | 0.67 | 0.89 1.36 2.29 4.09
Page-level (GB) | 0.23 | 0.45 | 0.91 1.85 3.81
Ratio 2.99 | 1.98 1.50 1.24 1.07
——Workload A —<Workload B ~~Workload C Page-level m Delta-enc

= [tem-level
Workload D =—Workload E —=—Workload F 350

270
2 4 6 8 10 12 14 16 18 20
MBuffer size (MB)

(SR
@ G
S S

=)
=S

o
S

Throughput (Kops/s)

A B C D

YCSB workloads

E F

(a) Enclave memory allocation. (b) Overall throughput.

Figure 10: The impact of encryption protocols.

there is only one enclave and its memory is exclusively used by
the index. Here we investigate how the enclave memory should
be assigned when both index and table store exist. First of all, we
assume that there exist 4 enclaves at the same time, each with
20MB of available memory. We evaluate the overall performance
by re-sizing the EBuffer size for index, while fixing the enclave
memory usage (i.e., 20MB in total). When the EBuffer is 20MB, the
memory footprint for table store is only two pages: one active page
called WPage for TPut; and another page called RPage for TGet. In
this case, each TGet requires to fetch the data page from MBuffer.
When EBuffer shrinks, more data pages can be cached in enclave. As
shown in Figure 10(a), the optimal system performance is achieved
when the EBuffer is 20MB in all workloads. It is because that the
data locality in data pages is lower than that in index nodes. Hence,
to achieve high system performance, it is better to allocate most of
the enclave memory to Enclage Index, and it is enough to leave two
pages of enclave memory to Enclage Store.

6.3.2 Overall Performance. Figure 10(b) shows the overall through-
put of Enclage with three Enclage Store variants. Page-level per-
forms the worst. It is because every time a access miss (i.e., the
desired page is not in the enclave) occurs, Page-1level has to load
and decrypt the desired page, which is inherently costly. In contrast,
the throughput of Delta-enc is about 1.40X that of Page-level.
It is because when a access miss occurs, Delta-enc can extract the
desired record without decrypting the entire page. As can be seen,
Item-level achieves the best performance, which is about 1.57%
that of Page-level. It can directly extract the encrypted record
from MBuffer, where no encryption and decryption are needed.
However, it has much larger storage footprint and leaks record
identities to the host.

6.3.3 Space Consumption. Different Enclage Store variants bring
in different degrees of storage overhead, which also depends on
the record size. Table 6 shows their storage consumption with
different record sizes under Workload A. Since Delta-enc has the
same physical layout as Page-level with no difference in storage
consumption, we omit it in the table. Due to the cipher amplification,
Item-level introduces significant storage overhead. For example,
its space consumption is 2.99% that of Page-1level when the record
size is 16B. As the record size increases, the space amplification of
Item-level is gradually alleviated. When the record size reaches
256B, the space overhead of it is only 1.07X that of Page-level.

1030

7 RELATED WORK
Existing encrypted databases in the literature are mainly built on
top of either cryptographic primitives or TEE implementations.
Crypto-based encrypted databases. CryptDB [49] utilizes spe-
cial cryptographic primitives to support direct operations over ci-
phertext, e.g., homomorphic encryption [28] for arithmetic oper-
ation, searchable encryption [54] for keyword search, and order-
preserving encryption [14] for comparison. Arx [47] encrypts data
with only provable encryption schemes and utilizes garbled cir-
cuit [63] to allow better protection. MONOMI [58] introduces client-
server-split query execution protocol to efficiently process analyti-
cal queries over encrypted data. However, these systems introduce
prohibitive overheads and only support a limited set of operations,
which are unsuitable for general-purpose database infrastructures.
TEE-based encrypted databases. Since TEEs, such as Intel
SGX and AMD SEV, are able to protect both confidentiality of data
and execution inside the enclave, it drives the emergence of many
TEE-based encrypted databases [5, 9, 25, 40, 42, 50, 61, 64]. Some of
them provide strong protection to confidentiality. EnclaveDB [50]
makes user data completely inaccessible by implementing an in-
memory storage and query engine inside the enclave, which only
allows pre-compiled queries and assumes that all data can fit in the
memory. ObliDB [25] hides the access pattern via oblivious query
processing for data in both B*-trees and linear arrays. Oblix [42]
relies on a combination of novel doubly-oblivious data structures
and enclave to construct a search index for encrypted data. These
designs usually lead to limited capacity or prohibitive overheads,
making them less practical. In contrast, other systems provide
simple-but-weak protection to confidentiality. Speicher [9] and
ShieldStore [40] are key-value stores that place data outside enclave
with record-grained encryption and integrity checking. Always-
encrypted [5] and StealthDB [61], provide confidentiality as add-on
features to legacy database systems, using a few enclave-based small
functions (e.g., <, >, and =) for computation over ciphertext. How-
ever, such non-intrusive design leads to severe information leakage
and performance degradation. In summary, there still remains a
large unexplored area between above two extreme scenarios, i.e.,
how confidentiality can be achieved in different ways with practical
trade-offs among security, performance and functionality.

8 CONCLUSION

Though trusted execution environments provide a powerful build-
ing block to construct encrypted databases, practical designs of
TEE-based encrypted databases have not been well explored. We
provide a comprehensive exploration of possible design choices for
building an enclave-based encrypted database storage, and discuss
how these choices affect security, performance and functionality.
We then propose Enclage, an enclave-native storage engine that
makes practical trade-offs under this design space. It contains a
B*-tree-like index structure and a heap-file-like table store, and
leverages many enclave-friendly designs to offer both high-level
security guarantee and good performance. Many designs adopted
in Enclage are generally applicable for encrypted storage even when
other design choices are made. From extensive experimental evalu-
ation, we observe that Enclage significantly outperforms state-of-
the-art approaches in real-world encrypted databases. It improves
the throughput by 13X and the storage efficiency by 5x.

REFERENCES

w
=

8

=

[12

[13

[14]

[15

[16]

[17]

[18]

[19

[20

[21]

[22

[23]

[24

2008. MurmurHash. https://sites.google.com/site/murmurhash/

2010. Google fired engineer for privacy breach. https://www.cnet.com/news/
google-fired-engineer-for-privacy-breach/

2019. Google Encrypted BigQuery client. https://github.com/google/encrypted-
bigquery-client

2020. SEV Secure Encrypted Virtualization API Version 0.24. https://www.amd.
com/system/files/TechDocs/55766_SEV-KM_API_Specification.pdf

Panagiotis Antonopoulos, Arvind Arasu, Kunal D Singh, Ken Eguro, Nitish Gupta,
Rajat Jain, Raghav Kaushik, Hanuma Kodavalla, Donald Kossmann, Nikolas Ogg,
et al. 2020. Azure SQL Database Always Encrypted. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 1511-1525.
Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann,
Ravishankar Ramamurthy, and Ramarathnam Venkatesan. 2013. Orthogonal
Security with Cipherbase.. In CIDR.

Arvind Arasu, Ken Eguro, Manas Joglekar, Raghav Kaushik, Donald Kossmann,
and Ravi Ramamurthy. 2015. Transaction Processing on Confidential Data using
Cipherbase. In Proceedings of the IEEE 31st International Conference on Data
Engineering (ICDE’15). IEEE, 435-446.

Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, Dave Eyers, Riidiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In
Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’16). USENIX Association, 689-703.

Maurice Bailleu, Jorg Thalheim, Pramod Bhatotia, Christof Fetzer, Michio Honda,
and Kapil Vaswani. 2019. SPEICHER: Securing LSM-based Key-Value Stores
using Shielded Execution. In Proceedings of the 17th USENIX Conference on File
and Storage Technologies (FAST’19). USENIX Association, 173-190.

Sumeet Bajaj and Radu Sion. 2013. TrustedDB: A Trusted Hardware-Based
Database with Privacy and Data Confidentiality. IEEE Transactions on Knowledge
and Data Engineering 26, 3 (2013), 752-765.

Marco Balduzzi, Jonas Zaddach, Davide Balzarotti, Engin Kirda, and Sergio
Loureiro. 2012. A Security Analysis of Amazon’s Elastic Compute Cloud Service.
In Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC’12).
1427-1434.

Michael A Bender, Jeremy T Fineman, Seth Gilbert, and Bradley C Kuszmaul.
2005. Concurrent Cache-Oblivious B-Trees. In Proceedings of the seventeenth
annual ACM symposium on Parallelism in algorithms and architectures. 228-237.
Vincent Bindschaedler, Paul Grubbs, David Cash, Thomas Ristenpart, and Vitaly
Shmatikov. 2018. The tao of inference in privacy-protected databases. Proceedings
of the VLDB Endowment 11, 11 (2018), 1715-1728.

Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. 2011. Order-
Preserving Encryption Revisited: Improved Security Analysis and Alternative
Solutions. In Proceedings of the Annual Cryptology Conference. Springer, 578-595.
Anastasia Braginsky and Erez Petrank. 2012. A Lock-Free B+Tree. In Proceedings
of the twenty-fourth annual ACM symposium on Parallelism in algorithms and
architectures. 58—67.

Sven Bugiel, Stefan Niirnberger, Thomas Péppelmann, Ahmad-Reza Sadeghi, and
Thomas Schneider. 2011. AmazonIA: When Elasticity Snaps Back. In Proceedings
of the 18th ACM Conference on Computer and Communications Security (CCS’11).
389-400.

Robert Buhren, Christian Werling, and Jean-Pierre Seifert. 2019. Insecure Until
Proven Updated: Analyzing AMD SEV’s Remote Attestation. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security.
1087-1099.

David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-
Abuse Attacks Against Searchable Encryption. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. 668—679.

David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Catalin
Rosu, and Michael Steiner. 2013. Highly-Scalable Searchable Symmetric Encryp-
tion with Support for Boolean Queries. In Proceedings of the Annual Cryptology
Conference. Springer, 353-373.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing (SoCC’10). 143-154.

Manuel Costa, Lawrence Esswood, Olga Ohrimenko, Felix Schuster, and Sameer
Wagh. 2017. The Pyramid Scheme: Oblivious RAM for Trusted Processors. arXiv
preprint arXiv:1712.07882 (2017).

Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016, 86 (2016), 1-118.

Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. 2010. Non-
Blocking Binary Search Trees. In Proceedings of the 29th ACM SIGACT-SIGOPS
symposium on Principles of distributed computing. 131-140.

Ramez Elmasri. 2008. Fundamentals of Database Systems. Pearson Education
India.

1031

[25

[26

[27

(28]

™
20,

[30

[31

[32

@
&

[34

[35

[36

[37

[38

@
20,

[40

[41

[42

[43

S
&

[45

[46

[47

=
&

[49

[50

[51

Saba Eskandarian and Matei Zaharia. 2019. ObliDB: Oblivious Query Processing
for Secure Databases. Proceedings of the VLDB Endowment 13, 2 (2019), 169-183.
Tal Garfinkel and Mendel Rosenblum. 2005. When Virtual Is Harder than Real:
Security Challenges in Virtual Machine Based Computing Environments. In
HotOS.

Blaise Gassend, G Edward Suh, Dwaine Clarke, Marten Van Dijk, and Srinivas
Devadas. 2003. Caches and Hash Trees for Efficient Memory Integrity Verification.
In Proceedings of the 9th International Symposium on High-Performance Computer
Architecture (HPCA’03). IEEE, 295-306.

Craig Gentry. 2009. Fully Homomorphic Encryption Using Ideal Lattices. In
Proceedings of the forty-first annual ACM symposium on Theory of computing.
169-178.

Matthieu Giraud, Alexandre Anzala-Yamajako, Olivier Bernard, and Pascal Lafour-
cade. 2017. Practical Passive Leakage-abuse Attacks Against Symmetric Search-
able Encryption. In Proceedings of the 14th International Conference on Security
and Cryptography SECRYPT 2017. 200-211.

Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation
on Oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431-473.

J Alex Halderman, Seth D Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A Calandrino, Ariel] Feldman, Jacob Appelbaum, and Edward W Fel-
ten. 2009. Lest We Remember: Cold-Boot Attacks on Encryption Keys. Commun.
ACM 52, 5 (2009), 91-98.

Shane V Howley and Jeremy Jones. 2012. A Non-Blocking Internal Binary Search
Tree. In Proceedings of the twenty-fourth annual ACM symposium on Parallelism
in algorithms and architectures. 161-171.

Intel. 2014. Intel(R) Software Guard Extensions Programming Reference. https:
//software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

Intel. 2018. Intel(R) Software Guard Extensions SDK for Linux* OS.
https://download.01.org/intel-sgx/linux-2.2/docs/Intel_SGX_Developer_
Reference_Linux_2.2_Open_Source.pdf

Intel. June 2015. Intel(R) Software Guard Extensions (Intel SGX). https://software.
intel.com/sites/default/files/332680-002.pdf

Yuval Ishai, Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. 2016. Private
Large-Scale Databases with Distributed Searchable Symmetric Encryption. In
Proceedings of the Cryptographers’ Track at the RSA Conference. Springer, 90-107.
Ibrahim Jaluta, Seppo Sippu, and Eljas Soisalon-Soininen. 2005. Concurrency
Control and Recovery for Balanced B-link Trees. The VLDB journal 14, 2 (2005),
257-2717.

David Kaplan. 2016. AMD x86 Memory Encryption Technologies. In Proceedings
of the 25th USENIX Security Symposium (SEC’16).

David Kaplan. 2017. Protecting VM Register State with SEV-ES. White paper, Feb
(2017).

Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun Jeon, and Jaechyuk Huh.
2019. ShieldStore: Shielded In-memory Key-value Storage with SGX. In Proceed-
ings of the European Conference on Computer Systems (EuroSys’19). 1-15.

Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. 2006. Dy-
namic Authenticated Index Structures for Outsourced Databases. In Proceedings of
the 2006 ACM SIGMOD international conference on Management of data. 121-132.
Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada
Popa. 2018. Oblix: An Efficient Oblivious Search Index. In 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 279-296.

Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-Free Binary
Search Trees. In Proceedings of the 19th ACM SIGPLAN symposium on Principles
and practice of parallel programming. 317-328.

Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. 2020. A Survey
of Published Attacks on Intel SGX. Technical Report. Tech. rep.

Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. 2017. Eleos:
ExitLess OS Services for SGX Enclaves. In Proceedings of the Twelfth European
Conference on Computer Systems (EuroSys’17). 238-253.

Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Se-
ung Geol Choi, Wesley George, Angelos Keromytis, and Steve Bellovin. 2014.
Blind Seer: A Scalable Private DBMS. In Proceedings of the 2014 IEEE Symposium
on Security and Privacy. IEEE, 359-374.

Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2016. Arx: A Strongly
Encrypted Database System. IACR Cryptology ePrint Archive 2016 (2016), 591.
Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2019. Arx: An Encrypted
Database using Semantically Secure Encryption. Proceedings of the VLDB Endow-
ment 12, 11 (2019), 1664-1678.

Raluca Ada Popa, Catherine MS Redfield, Nickolai Zeldovich, and Hari Balakr-
ishnan. 2011. CryptDB: protecting confidentiality with encrypted query process-
ing. In Proceedings of the 23rd ACM Symposium on Operating Systems Principles
(SOSP’11). 85-100.

Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB: A Secure
Database Using SGX. In Proceedings of the IEEE Symposium on Security and Privacy
(SP’18). IEEE, 264-278.

Thomas Ristenpart and Scott Yilek. 2010. When Good Randomness Goes Bad:
Virtual Machine Reset Vulnerabilities and Hedging Deployed Cryptography. In
NDSS.

https://sites.google.com/site/murmurhash/
https://www.cnet.com/news/google-fired-engineer-for-privacy-breach/
https://www.cnet.com/news/google-fired-engineer-for-privacy-breach/
https://github.com/google/encrypted-bigquery-client
https://github.com/google/encrypted-bigquery-client
https://www.amd.com/system/files/TechDocs/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/system/files/TechDocs/55766_SEV-KM_API_Specification.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://download.01.org/intel-sgx/linux-2.2/docs/Intel_SGX_Developer_Reference_Linux_2.2_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.2/docs/Intel_SGX_Developer_Reference_Linux_2.2_Open_Source.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf

(52

[53

[54]

[55

[57]

Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro.
2016. TaoStore: Overcoming Asynchronicity in Oblivious Data Storage. In 2016
IEEE Symposium on Security and Privacy (SP). IEEE, 198-217.

AMD SEV-SNP. 2020. Strengthening VM isolation with integrity protection and
more. White Paper, January (2020).

Dawn Xiaoding Song, David Wagner, and Adrian Perrig. 2000. Practical Tech-
niques for Searches on Encrypted Data. In Proceeding 2000 IEEE Symposium on
Security and Privacy. S&P 2000. IEEE, 44-55.

Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: An Extremely Simple
Oblivious RAM Protocol. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. 299-310.

G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srinivas
Devadas. 2003. AEGIS: Architecture for Tamper-Evident and Tamper-Resistant
Processing. In Proceedings of the 17th Annula International Conference on Super-
computing (ICS’03). 160-171.

Hongliang Tian, Qiong Zhang, Shoumeng Yan, Alex Rudnitsky, Liron Shacham,
Ron Yariv, and Noam Milshten. 2018. Switchless Calls Made Practical in Intel
SGX. In Proceedings of the 3rd Workshop on System Software for Trusted Execution
(SysTEX’18). 22-27.

1032

[58

[59

[60

[61

(63

[64

Stephen Lyle Tu, M Frans Kaashoek, Samuel R Madden, and Nickolai Zeldovich.
2013. Processing Analytical Queries over Encrypted Data. Proceedings of the
VLDB Endowment 6, 5 (2013), 289-300.

Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yu-
val Yarom. 2020. CacheOut: Leaking Data on Intel CPUs via Cache Evictions.
http://cacheoutattack. com/ (2020).

Verizon. 2018. 2016 Data Breach Investigations Report. https://regmedia.co.uk/
2016/05/12/dbir_2016.pdf

Dhinakaran Vinayagamurthy, Alexey Gribov, and Sergey Gorbunov. 2019.
Stealthdb: a scalable encrypted database with full SQL query support. Proceedings
on Privacy Enhancing Technologies 2019, 3, 370-388.

Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves. ACM SIGARCH Computer
Architecture News 45, 2 (2017), 81-93.

Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986). IEEE, 162-167.
Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E
Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed
Analytics Platform. In Proceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI'17). 283-298.

https://regmedia.co.uk/2016/05/12/dbir_2016.pdf
https://regmedia.co.uk/2016/05/12/dbir_2016.pdf

