
Demand-Aware Route Planning
for Shared Mobility Services

Jiachuan Wang †, Peng Cheng ∗, Libin Zheng †, Chao Feng ‡, Lei Chen †, Xuemin Lin #,∗, Zheng Wang ‡
†The Hong Kong University of Science and Technology, Hong Kong, China

{jwangey, lzhengab, leichen}@cse.ust.hk
∗East China Normal University, Shanghai, China

pcheng@sei.ecnu.edu.cn
#The University of New South Wales, Australia

lxue@cse.unsw.edu.au
‡AI Labs, DiDi Chuxing, Beijing, China

fengchaodavid@didichuxing.com, wangzhengzwang@didiglobal.com

ABSTRACT
The dramatic development of shared mobility in food delivery, ride-
sharing, and crowdsourced parcel delivery has drawn great con-
cerns. Specifically, shared mobility refers to transferring or deliver-
ing more than one passenger/package together when their traveling
routes have common sub-routes or can be shared. A core problem
for shared mobility is to plan a route for each driver to fulfill the re-
quests arriving dynamically with given objectives. Previous studies
greedily and incrementally insert each newly coming request to the
most suitable worker with a minimum travel cost increase, which
only considers the current situation and thus not optimal. In this pa-
per, we propose a demand-aware route planning (DARP) for shared
mobility services. Based on prediction, DARP tends to make op-
timal route planning with more information about requests in the
future. We prove that the DARP problem is NP-hard, and further
show that there is no polynomial-time deterministic algorithm with
a constant competitive ratio for the DARP problem unless P=NP.
Hence, we devise an approximation algorithm to realize the inser-
tion operation for our goal. With the insertion algorithm, we de-
vise a prediction based solution for the DARP problem. Extensive
experiment results on real datasets validate the effectiveness and
efficiency of our technique.

PVLDB Reference Format:
Jiachuan Wang, Peng Cheng, Libin Zheng, Chao Feng, Lei Chen, Xuemin
Lin, Zheng Wang. Demand-Aware Route Planning for Shared Mobility
Services. PVLDB, 13(7): 979-991, 2020.
DOI: https://doi.org/10.14778/3384345.3384348

1. INTRODUCTION
Recently, shared mobility provides transportation services shared

among users, such as food delivery, ride-sharing, and crowdsourced
parcel delivery [36], which is considered as an efficient and sus-
tainable way for transportation. With higher usage per worker, its
service saves energy, reduces air pollution, and handles last-mile
delivery [37].

To realize shared mobility on online platforms (e.g., DiDi Chux-
ing [1] and Meituan [3]), an essential issue is route planning. Given
This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 7
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3384345.3384348

a set of workers and requests, route planning designs a route con-
sisting of a sequence of pickup and drop off locations of assigned
requests for each worker. In shared mobility, workers and requests
arrive dynamically and are online arranged by platforms for dif-
ferent objectives. The objectives could be maxmizing the number
of served requests [14, 18, 27, 35, 44], minimizing the total tour
distance [7, 11, 20, 22, 23, 30, 32, 34, 35, 38], and maximizing
the unified revenue [9, 10, 40]. To solve such a dynamical prob-
lem, an operation called insertion shows great effectiveness and ef-
ficiency [30, 23, 38, 32, 35, 44, 12, 14, 40]. Insertion aims to serve
a newly coming request by inserting its origin and destination into
a worker’s route and greedily optimizing its objectives.

One key issue of the state-of-the-art route planning methods [10,
12, 40] is that insertion is a “greedy” operator, which means each
insertion operation only optimizes the objective function upon the
“current” arranged request leading to low performance during a
long period(e.g., one day). In this paper, we will improve the effec-
tiveness of route planning for shared mobility through taking the
demand in near future (e.g., future 90 minutes) into consideration
such that the objectives of the platforms can be improved for a rela-
tively long period (e.g., one day). We first illustrate our motivation
through the following example.

Figure 1: An Illustrative Example
Example 1. In this ridesharing example, we assume that one ve-
hicle w1 and three riders r1 ∼ r3 are on a road network as shown
in Figure 1. Specifically, there are five nodes in the road network
indicating five locations, and the numbers on the edges represent
their travel cost. For the vehicle and riders, they are located at
their current locations and the 4-tuple near to each one follows
the pattern of 〈release location, release time, destination, deadline
of delivery〉. For example, rider r1 is located at A and releases
his/her request at 7:50 indicating that he/she wants to be driven to
location E before 8:20. At 7:50, the driver can serve r1 to earn
a profit routed as A→B→E. However, at 8:00 two other riders r2

and r3 want to reach node C and D from B before 8:40 and 8:30,
respectively. If the vehicle w1 rejects rider r1, then riders r2 and

979

r3 can be served with another route A→B→D→C. Existing solu-
tions using greedy optimization objectives considering only current
benefits (i.e.,w1 will only pick up r1). The profit loss of these short-
sighted methods leads to a puzzle that most online models face:
how to consider the mobility of workers comprehensively in a more
reliable model with effective assignment strategies, which realizes
a spatial and temporal balance such that the global profit of the
dynamic assignment is maximized?

To address the issue illustrated in Example 1, we define a new
problem, namely Demand-Aware Route Planning (DARP) prob-
lem. Specifically, DARP takes into account the potential profits
from each assignment in the near future. The DARP problem has
the flexibility to adjust the optimization goals subjected to specific
requirements. We combine the mainstream optimization objectives
with the demand-supply balance situations and propose a compre-
hensive objective function. As each insertion can reversely affect
the demand-supply balance situation on the whole path, previous
insertion algorithms [12, 14, 40, 30, 23, 44] only consider the ef-
fects of each scheduling on the travel cost at each insertion position,
and thus can not be applied directly.

Based on previous studies on the hardness of route planning for
shared mobility [9, 40], we prove that the DARP problem is NP-
hard and there is no deterministic algorithm with constant com-
petitive ratio for it. To solve the DARP problem, we first pro-
pose novel structures, demand number map and supply number
map, to reflect and quantize the demand and supply in the partic-
ular spatiotemporal space based on the predicted distributions of
upcoming workers and requests. In addition, we further present
an indicator, Demand-Supply Balance Score, to guide the assign-
ment/scheduling of requests. To handle every single request, we
develop a demand-aware dynamic programing based insertion al-
gorithm, namely DA-DP Insertion, to quickly arrange the origin
and destination of the request considering the shift of supply on the
whole route of the assigned worker due to detours. What is more,
we design a demand-aware insertion based dual-phase framework
(DAIF) to solve DARP, which first decide whether to serve a new
request and then arrange the profitable request to the most suitable
worker such that the incremental demand-aware cost is minimized
and the overall serving rate is improved for a relatively long period.

Here we summarize our main contributions:
• We formulate a demand-aware route planning problem for shared

mobility. We prove its NP-hardness and no deterministic algo-
rithm can offer a constant competitive ratio for it in Section 3.
• Through detailed observations and analyses, we propose a new

indicator, named Demand-Supply Balance Score, to quantize the
potential profits of an assignment in Section 4.
• We devise a demand-aware dynamic programing based insertion

algorithm to handle a new request taking demand-supply balance
into account in Section 5. In addition, we develop a demand-
aware insertion based dual-phase framework (DAIF) to improve
the overall performance for a relatively long period in Section 6.
• We have conducted extensive experiments on synthetic and real

data sets to show the efficiency and effectiveness of proposed
algorithms in Section 7.

2. BACKGROUND AND RELATED WORK
Route planning for shared mobility (RPSM) is a variant of the

dial-a-ride problem, which has been widely studied since 1975 [41,
42] and drawn great attention recently [6, 33]. Along with the pop-
ularity of the car-hailing platforms (e.g., Uber [5]), online RPSM
problems without information of future workers requests in ad-
vance are studied in many recent papers [10, 14, 23, 30, 38, 44].

For online RPSM problems, previous solutions usually continu-
ously add each up-coming request into the local optimal route in-
stead of the global optimal. The objectives are mainly about: (i)
minimizing the total travel distance [7, 11, 20, 22, 23, 30, 32, 34,
35, 38]; (ii) maximal-served-request [14, 18, 27, 35, 44]; (iii) max-
imizing the total revenue [9, 10, 40]. Some other variants include
minimizing the finished time [8, 46], maximizing the score com-
bined with social utilities from both workers and requests [12, 19],
and minimizing the total delay time [34, 47].

Most solutions for dynamic RPSM problems are based on a core
operation called insertion [12, 14, 23, 25, 31, 32, 34, 35, 38]. Us-
ing the basic enumeration to find the best insertion positions in the
existing scheduling of a given vehicle will result in O(n3) time
complexity, where n is the number of the locations in the schedul-
ing. [12, 14, 23, 44]. Tong et al. improve the insertion operation
to O(n) time complexity by dynamically deriving the best position
for the pick-up location given a certain drop-off position [40]. Ota
et al. apply parallelism to speed up insertion [32]. Coslovich et
al. use a two-phase algorithm to enable negligible online time cost
by conducting most computation off-line [16]. Tong et al. adapte
the insertion operation for the optimization objective from the re-
quests perspective with O(n) time complexity [43]. However, in
the previous linear approaches [40, 43], only the arriving times of
destinations affect their objective function. It cannot be applied to
our problem as the demand-aware cost consists of an accumulation
of demand-and-supply balance scores of all the paths. Thus, we
propose a novel insertor for DARP with consideration of demand.

As an on-line problem, existing solutions for dynamic RPSM are
largely greedy-based. Zheng et al. [30, 38] use a grid index to filter
available workers to improve the speed of their algorithms. Huang
et al. [23] devise a kinetic data structure to store all possible routes
such that the new insertion can achieve the optimal schedule for
each selected single vehicle (but still not the global optimal). Zheng
et al. propose a batch-based solution to group similar riders into a
package and apply bipartite matching to the packages of grouped
riders and drivers [50]. However, these studies only consider the
locally maximal profit at every single insertion. In this paper, we
seeks for the global optimal through considering the effect of an
insertion operation in the short future.

To improve the results for dynamic cases, many previous studies
related to traffic propose various prediction models and strategies to
use them. He et al. [21] improve participant recruitment in crowd-
sourcing using predictable mobility. Tong et al. devise a method
to improve online task assignment using predicted information of
up-coming requests [39]. Prediction models to off-line predict the
demand of requests in given regions and periods are well-studied,
including demand-supply prediction of traffic [13, 29], and spatial-
temporal data prediction [17, 49]. Zhang et. al. [48] propose a
Deep ST model, which combines historical and geographical traf-
fic data to achieve accurate prediction results. To the best of our
knowledge, the existing studies cannot be directly applied to the
demand-aware based route planning problems for shareable mobil-
ity services, and thus we propose our demand-aware route planning
solutions to solve it.

3. PROBLEM DEFINITION
3.1 Basic Notations

The road network is represented as a graph G = 〈V,E〉, where
V and E indicate a set of vertices and a set of edges, respectively.
Each edge, (u, v) ∈ E, is associated with a weight dis(u, v) indi-
cating the travel distance from u to v. A sequence of adjacent ver-
tices can form a path. From source u to v, the path with the shortest
total distance is called the shortest path. We also use dis(u, v) to

980

indicate the length of the shortest path from u to v in the remaining
part of the paper.

Definition 1. (Workers) Let W = {w1, w2, , wn} be a set of n
workers that can provide transportation services. Each worker wi
is located at the current location li and has a capacity ai.

At any time, the number of the passengers in a taxi or the number
of parcels for a worker wi must not exceed its capacity ai.

Definition 2. (Time-Constrained Requests) LetR = {r1, r2, , rm}
be a set of m requests. Each request rj has its source location sj ,
destination location ej , release time trj , deadline for the destina-
tion tdj , rejection penalty pj , and a capacity aj .

A request rj can be served by worker wi only if: (a) the remain-
ing capacity of wi is larger than aj when he/she arrives at sj ; (b)
wi can drop rj at ej before tdj .

Note that the request with a tight deadline may not be served,
which leads to the unavoidable rejections of the “urgent” requests
on a platform, especially at rush hours. The monetary loss from
rejecting rj incurs a penalty pj . Furthermore, we denote all the re-
quests served by worker wi as Rwi . In addition, R̂ = ∪wi∈WRwi
and R̄ = R/R̂ refers to the total served and unserved requests,
respectively.

Definition 3. (Route) For a worker wi, his/her schedule is a se-
quence of locations represented as Swi = [li, lx1 , lx2 lxk , ...], where
each lxk is an origin or a destination of a request rj ∈ Rwi .

A feasible scheduling route Swi must satisfy: (a) ∀rj ∈ Rwi , the
arriving time of ej is earlier than tdj ; (b) ∀rj ∈ Rwi , its destination
ej is behind its origin sj in Swi ; (c) the summation of the capacities
of the requests is less than the capacity ai of workerwi at any time.
We denote the summation of the shortest travel distances to finish
Swi as D(Swi) = dis(li, lx1) +

∑|Swi |−2

k=1 dis(lxk , lxk+1). In
addition, let S = ∪wi∈WSwi be the overall set of scheduled routes
for all workers.

Definition 4 (Spatial Temporal Cell). LetCxy be a spatial temporal
cell of area Nx and time span Ty . A worker wi appears in Cxy
indicates that wi is in Nx during whole or part of time span Ty .

Definition 5. (Demand Number Map) Given a time span set T =
{T1, T2, · · · , T|T |} and each T with T+ and T− referring to the
start and end time respectively, a set of transportation areas of in-
terest N = {N1, N2, ..., N|N|}, and a prediction model M , the
demand number map is the set of predicted numbers of upcoming
requests for each spatial temporal cell Cab = 〈Na, Tb〉, ∀Na ∈
N , Tb ∈ T using model M .

The demand number map can be represented by a mapping func-
tion asDN (Na, Tb)→ dn, whereNa ∈ N , Tb ∈ T and dn is the
predicted number of upcoming requests in areaNa in time span Tb.
One critical parameter for the demand number prediction model is
the grid-size of areas. A prediction model with a too large gird-size
will provide no suggestion to route planning with vanished local
properties while a model with too small grid-size will lead to unre-
liable results. In this paper, we follow the existing work [39] to use
a block sized 2000m × 2000m to grid the whole area of interest.

Based on the demand number map DN and the overall route S
in the areas of interest, the Demand-Supply Balance Score (DS-
BScore), DSB(S,DN), is proposed to measure how much the
underlying profit will be achieved through suiting the supply and
potential demand for each newly served request. We go through
the detail of the Demand-Supply Balance score in Section 4.

3.2 Demand-Aware Route Planning Problem
Definition 6. (Demand-Aware Route Planning Problem) Given a
transportation networkG, a set of workersW , a set of dynamically
arriving requests R, a demand number map DN , a distance cost
coefficient α, and a set of balance coefficients β associated with
time spans, the DARP Problem is to find the sets of routes S =
{Sw1 , Sw2 , ..., Sw|W |} for all the workers to minimize Demand-
Aware Cost:
DAC(W,R,DN) = α

∑
wi∈W

D(Swi)−DSB(β, S,DN)+
∑
rj∈R̄

pj (1)

where R̄ is the set of rejected requests and pj is the penalty to re-
ject request rj . The later a time span is, the weaker the prediction
is, which is represented by the decayed β. In addition, the follow-
ing constraints must be satisfied: (a) Feasibility constraint: each
worker is assigned with a feasible route; (b) Non-undo constraint:
if a request is assigned in a route, it cannot be canceled or assigned
to another route; if it is rejected, it is unable to be revoked.

In the real-world application, our demand-aware cost can be re-
garded as an equivalent money cost of the platform. To be more
specific, α is the money paid to workers for every second they
spend to serve requests; β is the money loss from one potentially
unservable request; and pj is the lost money for rejecting a request.
Note that rejection affects not only the monetary profit but also the
dissatisfaction of the rejected requester, who may leave the plat-
form forever. In real applications, companies usually want to serve
as many requests as possible. Thus, the penalty of rejection is usu-
ally set to be a large factor.

3.3 Hardness Analysis
The basic route planning problem for shareable mobility ser-

vices [30, 40] is reducible to the DARP problem by setting α = 1
and β = 0. Since the basic route planning problem is NP-hard [30,
40], the DARP problem is also an NP-hard problem.

To analyze online problems, a commonly used metric is the Com-
petitive Ratio (CR), which is defined as the ratio between the result
achieved by the proposed online algorithm to the optimal offline
result. The existing studies proved that there is no constant CR to
maximize the total revenue for the basic route planning problem us-
ing neither deterministic nor randomized algorithms [9, 40]. As we
discussed above, the DARP problem is a variant of the basic route
planning problem for shareable mobility services. Thus, no ran-
domized or deterministic algorithm guarantees a constant CP for
the DARP problem.

We will first introduce the details of the grid-based demand num-
ber map and the demand-supply balance score. Then propose our
methods to solve the DARP problem.

4. DEMAND-SUPPLY BALANCE SCORE
To realize the approximation of global optimal arrangement in

the DARP problem, we introduce Demand-Supply Balance Score
(DSBScore) for a better assignment. In this section, we first pro-
pose the spatiotemporal prediction model, namely Grid-Based De-
mand Number Map, then we devise a reliable method to generate
our DSBScore based on the prediction model.

4.1 The Grid-Based Demand Number Map
The DSBScore is based on the mobility calculated from the route

of current workers and the predicted demand for “future” requests.
One critical issue is to generate the Demand Number Map with
high accuracy.

In practice, the accurate location and timestamp of a particular
upcoming rider are hard to predict due to the uncertain personal
and environmental factors. In this paper, we predict the number of
riders for a given region (i.e., a spatial range of area, such as square

981

regions or hexagon regions) in a given period (i.e., next 15 min-
utes). We apply the state-of-the-art prediction model, DeepST [48],
on the real-world taxi demand-supply data set to generate our de-
mand number map offline. Specifically, DeepST uses previous or-
der numbers from three different time scales: closeness, period,
trend. Here, closeness means the previous N time slots; period
indicates the same time in previous N days; trend refers to the
same time in previous N weeks. Meanwhile, it also uses other
features (e.g., weather information) to make a good prediction by
using Convolutional Neural Network [28]. Note that, the DeepST
model is trained offline, which is time-consuming (i.e., using sev-
eral hours to train a DeepST model on one-month taxi order data
set of NYC). However, when conducting online prediction, it can
generate the demand numbers of all the regions for a particular time
period within 10 microseconds on a normal GPU server, which can
be ignored in real applications.

4.2 Supply Number Map
We first introduce some preliminary concepts.

Definition 7 (Arriving Time). Given a worker wi and his/her route
Swi relabeled here for clearness to Swi = [l1, l2, · · · , l|Swi |] at
time t0, we denote arriving time arr for each lk as:

arri[lk] =

{
t0, if k = 0
arri[lk−1] + dis(lk−1, lk), if k > 0

which indicates the time when worker wi arrives each lk.

Definition 8 (Supply Contribution). Given a start location u, an
end location v and a timestamp to, we assume that at time to an
imaginary vehicle wo moves from u to v going the shortest path.
LetC(u, v, to) be the set of spatial temporal cells thatwo visits dur-
ing the move. In addition, let CTxy(u, v, to) be the duration time
of wo staying in area Nx in time span Ty when it moves from u to
v at time to. Then, the supply contribution of wo for spatial tem-
poral cell Cxy is denoted as SCxy(u, v, to) = γ · CTxy(u, v, to),
where the parameter γ refers to the ratio of the equivalent number
of workers to the total time all the workers cost in a region during
a certain time span.

In addition, an imaginary vehicle would stay at the destination at
last. This also contributes for this area and those time spans. The
supply contribution of wo for spatial temporal cell Cxy is denoted
as SCxy(ln,−1, arro[ln]) where ln is the destination of Swo .

Weight parameter γ is a ratio of the equivalent number of work-
ers to the duration time of workers appearing in a spatial-temporal
cell. For example, if the total duration time of vehicles in a spatial-
temporal cell Cxy equals to k ∗ γ, we assume k requests can be
served by the passing vehicles. Note that in the setting of shared
mobility, one worker can serve more than one request simultane-
ously. In the supply number map, one imaginary worker refers to
the ability to serve one request.

Next, we define the supply number map as follows.

Definition 9 (Supply Number Map). Given a set of time spans T
and a set workers W , the supply number map is the set of esti-
mated supply contribution numbers for each spatial temporal cell
Cxy denoted as:

SN(Nx, Ty) =
∑
wi∈W

|Swi |−1∑
k=1

SCxy(lk, lk+1, arri[lk]) (2)

With a supply number map, we can estimate the equivalent num-
ber of workers in a certain period. According to the dataset of New
York City Taxi [4], only 0.05% requests cost more than 1.5 hour
among all requests during Dec. 2013. In this paper, we keep updat-
ing the supply number map with a total time span of the upcoming
1.5 hours. To guide route planning, we divide 1.5 hours into 6 inter-
vals each with 15 minutes because: (a) Too long intervals such as

30 minutes cannot provide useful guidance with the short waiting
time of requests, such that several workers arrive a place with one
request in the same interval but 20 minutes earlier than them lead-
ing to a canceled request and failed matching. (b) If the intervals
are too short, the accuracy of Demand Number Map is poor. Be-
sides, the computation complexity will greatly increase for further
operations in Section 5.

4.3 Demand-Supply Balance Score
Given a specific time span T =

{
T+, T−

}
, the prediction model

provides us with the correspondingDN = {dn1, dn2, · · · , dn|N|}
as the number of requests in each region. As a classical discrete
statistic case, we assume the number of requests in each area fol-
lows the Poisson distribution. We set the unit time as T+ − T−,
thus the characteristic value λ = dn, which means the number of
requests in one unit time. Then, the distribution is expressed as:

P (X = k) =
λk

k!
e−λ, k = 0, 1, · · ·

Next, given a certain area with supply number sn, we can de-
fine a local balance score LB as the expected number of matched
worker-and-request pairs Y , which can be derived as:

LB(λ, sn) = E(Y) =

bsnc−1∑
k=0

k
λk

k!
e
−λ

+

∞∑
k=bsnc

bsnc
λk

k!
e
−λ (3)

=

bsnc−1∑
k=0

(k − bsnc)
λk

k!
e
−λ

+

∞∑
k=0

bsnc
λk

k!
e
−λ

=

bsnc−1∑
k=0

(k − bsnc)
λk

k!
e
−λ

+ bsnc

In Equation 3, the first term refers to the situation that the num-
ber of requests k is smaller than that of workers, thus the expected
matching pairs is k; the second term indicates that the number of
requests k is larger than that of workers, thus the matching pairs
will be rounded down to bsnc as the number of served requests
must be integer. If one more sn appears, we can derive the ex-
pected increased matching number as ∆LB(λ, sn) = LB(λ, sn+
1)− LB(λ, sn).

Then, we formally define our Demand-Supply Balance Score for
route planning using an incremental function below.

Definition 10 (Demand-Supply Balance Score). For a set of or-
dered time spans T and a set of areas N , we maintain the demand
number map DN and supply number map SN . Then the Deman-
Supply Balance Score (DSBScore) for an insertion operation is:

DSB =

|N|∑
x=1

|T |∑
y=1

βy
(
sn
′
xy − snxy

)
·∆LB(λxy, snxy) (4)

where snxy = SN(Nx, Ty) as the original supply number of cell
Cxy and sn′ is the updated one after insertion, λxy = DN(Nx, Ty),
and βx is the weight parameter for the xth time span. We assume
that the earlier a time span is, the larger its β is, due to decay effect.

In summary, to derive DSBScore, we save all the prediction re-
sults of demand information in DN and mobility supply number
based on all the scheduled routes in SN . DN will be updated
according to the prediction model (e.g., every 15 minutes) and
SN will be updated after every successful request insertion. The
demand-supply score will be used to guide our assignment for each
newly arrived request.

5. DEMAND-AWARE INSERTION
As proved in Section 3, there is no polynomial-time algorithm

to achieve the optimal solution for DARP problem. Many existing
studies show that Insertion is a practical approach to greedily deal
with the shareable mobility problem. Comparing to the basic ob-
jective, our optimization goal considers a balance score such that

982

(a) Route and requests before insertion (b) One possible new route after insertion
Figure 2: Example For Insertion

the insertion based framework can achieve better results in a rela-
tively long time period, however, the existing Insertion algorithms
cannot be applied directly for our DARP problem. In this sec-
tion, we first define the demand-aware insertion operation formally
and introduce a basic insertion algorithm for our prediction-based
insertion with O(n3) complexity. Then, we propose a dynamic-
programming algorithm to reduce the time complexity to O(n2).

5.1 Insertion Operation
To extend Insertion [12, 23, 24, 25, 26, 30, 40] for the DARP

problem, we follow the idea to search each route and locally opti-
mally insert new vertex (or vertices) into a route. In our problem,
there are two vertices (e.g. locations of source and destination) to
be inserted for each request. We formally introduce the insertion
operation [12, 23, 30, 40] as follows.

Definition 11 (Insertion). Given a workerwi with the current route
Swi and a new request rj , the insertion operation aims to find a
new feasible route S′wi by inserting sj and ej into Swi with the
minimum increased cost while maintaining the order of vertices in
Swi unchanged in S′wi .

In DARP we need to maintain the supply number map. Any
insertion will violate the balance of demand and supply since all
of the arriving time of vertices behind the insertion place will be
changed. We illustrate the challenge of updating the supply number
map for DARP in the following example.

Example 2. Let us consider an example of ridesharing in Fig-
ure 2. At timestamp 0, assume that a ride request r1 is released
with with s1 and e1 as its origin and destination, and its dead-
line of delivery is timestamp 11. Driver w1 is assigned to serve
r1 with a scheduled route Sw1 = [l1, s1, e1]. As shown in Figure
2(a), at timestamp 1, the current location of w1 is l1 = (1, 3); a
new request r2 is released with s2 and e2 as its origin and des-
tination, and its deadline of delivery is timestamp 11. The travel
cost is equal to the Euclidean distance between any pair of lo-
cations. Assume that the capacity of w1 is enough to carry r1

and r2 at the same time. We set the length of time spans to be
3. Then, T = {T1 = {3, 6} , · · ·T6 = {15, 18}}. We have six re-
gions N1 ∼ N6 with grid size of 2. The supply number map is
shown in Table.1. The demand number map is shown in Table.2.

Figure 2(b) shows a possible new route S′w1
= [l1, s1, s2, e1, e2]

after insert r2 to Sw1 . It is feasible with arriving times arr1[e1] =
1 + 2 + 2 + 2 = 7 ≤ 11 and similarly arr1[e2] = 9 ≤ 11. In this
example, α = 1, β =

{
10, 10

e
, · · · , , 10

e5

}
, and γ = 0.1.

After insertion, the supply will change for each spatial tempo-
ral cell Cxy . For example, before insertion of r2, the total supply
contribution of Sw1 to C5,1 is SC5,1(l1, s1, 1) + SC5,1(s1, e1, 3) +

SC5,1(s1,−1, 5.8) = 0.14. After the insertion, the total supply con-
tribution of S′w1

changes to SC5,1(l1, s1, 1) + SC5,1(s1, s2, 3) +

SC5,1(s2, e1, 5) + SC5,1(e1, e2, 7) + SC5,1(e2,−1, 9) = 0.1. If we
insert r2, the value of C5,1 in the supply number map will be up-
dated to 0.5− 0.14 + 0.1 = 0.46.

5.2 Basic Insertion
We first introduce the general steps of the extended basic inser-

tion algorithm [25, 26] to handle each new request in our DARP

Table 1: Supply Number Map

T
N

N1 N2 N3 N4 N5 N6

T1 1.7 3.8 2.5 2.3 0.5 1.3
T2 3.3 2.1 1.7 1.1 3.2 2.9
T3 3.5 3.3 2.0 0.7 3.8 1.4
T4 3.6 1.3 2.4 3.0 1.2 2.6
T5 0.5 2.5 1.4 1.3 1.6 2.3
T6 3.4 2.0 1.0 3.7 2.2 3.8

Table 2: Demand Number Map

T
N

N1 N2 N3 N4 N5 N6

T1 2 3 5 2 4 3
T2 3 2 4 2 3 2
T3 3 3 4 2 2 2
T4 3 1 4 3 2 2
T5 4 2 4 3 1 3
T6 3 2 3 4 2 2

problem. Specifically, for a new request rj , the basic insertion al-
gorithm checks every possible position to insert the origin and des-
tination locations and return the positions such that the incremental
cost is minimized. Note that, as the Example 2 shows, different
insertions may cause different updates on the supply number map.
Thus, when we check every origin and destination insertion posi-
tions, we need to evaluate the effect of the updated schedule on
the supply number map, and then calculate the consequent cost for
each different insertion. We illustrate the basic insertion as follows:

Example 3 (Basic Insertion Example). Let us continue the setting
in Example.2. We need to find the insertion positions in the cur-
rently scheduled route Sw1 with minimum increasing cost.

If we insert the new request r2 to Sw1 = [l1, s1, e1] to achieve
the new scheduled route as S′w1

= [l1, s1, s2, e1, e2] as Figure
2(b). The new cost S′w1

can be calculated as 1 · (2 + 2 + 2 +
2)− (10 · 0.1 ·∆LB(4, 0.5) + 10 · 0.2 ·∆LB(3, 3.8) + 10/e · 0.2 ·
∆LB(4, 1.7)+10/e·0.1·∆LB(2, 2.9)+10/e2·0.3·∆LB(2, 1.4)+
10/e3 ·0.3 ·∆LB(2, 2.6)+10/e4 ·0.3 ·∆LB(3, 2.3)+10/e5 ·0.3 ·
∆LB(2, 3.8)) = 8−(1.0+0.7+0.7+0.1+0.2+0+0+0) = 5.3.

For every new route, we calculate their cost. Besides, we derive
the cost of the original route to calculate increased costs. We list
all the costs and the increased costs in Table 3. For simplification,
we use notation (X,Y) to indicate the insertion positions of the
origin and destination on the original route Sw1 . For example,
S′w1

= [l1, s1, s2, e1, e2] can be expressed as insertion position
(2, 3). The cost of infeasible route (e.g. (1, 1)) is set to∞.

From Table 3, to achieve the lowest increased cost is to insert s2

after position 2 (s1) and e2 after position 3 (e1). Then, we return
S′w1

as the optimal local planning for inserting r2 into Sw1 .

Table 3: Cost of New Route and Increased Cost
Insertion Position (x,y) (1, 1) (1, 2) (1, 3) (2, 2) (2, 3) (3, 3)

Cost ∞ 6.2 6.8 6.3 5.3 6.1
Increased Cost ∞ 5.6 6.2 5.7 4.7 5.5

Complexity Analysis. As the basic insertion algorithm needs
to check every possible insertion position, which is O(n2). For
every insertion position pair, we need to calculate the new cost of
the new route based on the updated supply number map. However,
each insertion location may update O(n) spatial-temporal cells in
the supply number map. Then, the overall time complexity of the
basic insertion algorithm is O(n3).

5.3 Dynamic Programming Based Insertion
In this section, we propose a DP-based insertion algorithm, which

reduces the time complexity of Basic Insertion fromO(n3) toO(n2).
The idea is to enumerate all possible pairs of inserting positions, but
check whether a new route violates the constraints and calculate the
increased cost ∆wi in O(1) time rather than O(n) time. We first
introduce a way to check route feasibility because its definition is
needed in the following section.

983

5.3.1 Check Route Feasibility in O(1) time
Two conditions should be satisfied for a feasible route: (i) dead-

line constraint and (ii) capacity constraint in Definition 3.
For a route Swi , deadline of each location ddli[lk] can be derived

as:
ddli[lk] =

{
tdj − dis (sj , ej) , if lk is sj
tdj , if lk is ej

We borrow the idea of [25] and denote that slacki[lk] is the max-
imal time for wi to delay (e.g. slack time) in order to arrive a des-
tination lk in time. slacki[lk] can be derived as:

slacki[lk] = min
k′>k

(
ddl
[
k
′]− arri [k′])

= min{slacki[lk+1], ddli[lk+1]− arri[lk+1]}
(5)

Note that the slack time of two location lx and ly always satisfies
slacki[lx] ≤ slacki[ly] if x < y [25].

Whenever a source or destination of rj is inserted in a route Swi
at lw between lx and ly , it will cause a detour as det(lx, lw, ly) =
dis(lx, lw) + dis(lw, ly)− dis(lx, ly).

In many previous studies, the objective function only consists of
distance [16, 23, 40]. Thus, the calculation of increased cost ∆wi
only occurs at inserted positions. We define the increased distance
cost as:

∆
d
x,y =


dis (ln, sj) + dis (sj , ej) , if x = y = n
dis (lx, sj) + dis (sj , ej)

+dis (ej , lx+1)− dis (lx, lx+1) , if x = y < n
det (lx, sj , lx+1) + dis (ly, ej) , if x < y = n
det (lx, sj , lx+1) + det (ly, ej , ly+1) , otherwise

However, in this paper, the demand-aware cost consists of the
increased distance and the shift of balance score. We will discuss
how to derive the shift of balance score in O(1) in Section 5.3.2.

Lemma 5.1. The deadline constraint will be satisfied if and only if
(a) arri[lx] + dis(lx, sj) ≤ tdj − dis(sj , ej); (b) det(lx, sj , lx+1) ≤
slacki[lx+1]; (c) arri[lx] + dis(lx, sj) + dis(sj , ej) ≤ tdj when
x = y or arri[ly]+det(lx, sj , lx+1)+dis(ly , ej) ≤ tdjwhen x < y;
and (d) ∆d

x,y ≤ slacki[ly+1].

Proof. With sj of request rj inserted at the xth position, condition
(a) checks whether the deadline constraint of the new request rj
and condition (b) checks whether any deadline constraint of all the
other requests is violated; with ej of request rj inserted at the yth
position, condition (c) checks whether the deadline constraint of
rj is violated and condition (d) checks whether any deadline con-
straint of all the other requests is violated.

Then we check the capacity constraint in O(1) time. We define
picked request pickedi[lk] which refers to the total capacity of the
requests that are still on the route of wi when the worker arrives at
location lk. Then, we have:

pickedi[lk] =

{
pickedi[lk−1] + aj , if lk is sj
pickedi[lk−1]− aj , if lk is ej

(6)

In addition, if we insert the destination after position k, we define
the smallest position to insert origin without violating the capacity
constraint as psoi[k]. Then, we have the lemma below to guarantee
checking the capacity constraint in O(1) complexity.
Lemma 5.2. The capacity constraint of worker w will be satisfied
if and only if psoi[y] ≤ x.

Proof. Since sj is inserted at the xth position, and ej is inserted
at the yth position, we need to guarantee whether there exists any
k ∈ {x, y} such that pickedi[lk] is greater than ai − aj . If there
exists, at position k, psoi[x] ≥ psoi[k] = k > x and it will never
change. Or else, psoi[y] = psoi[x] ≤ x will be satisfied.

5.3.2 Derive Increased Cost ∆wi in O(1) time
To realize a constant-time cost calculation in DARP, we propose

a list to pre-derive all the needed cases such that any situation can
look up the list to find the increased cost in constant time. Based
on the granularity of time values (e.g. at least 30 seconds as the
unit time for drop-off time tdj), we can dynamically derive all the
situations according to finite cases of time delay after insertion.

Definition 12 (Supply-Shift). Given two adjacent vertices lk, lk+1

in a route sequence, the Supply-Shift (SS) is the change of supply
contribution of sub-route (lk, lk+1) if delay ∆t occurs before lk.

SS is a double-key dictionary labeled by area Nx and time inter-
val Ty . To derive it, we need to calculate SC for (lk, lk+1) with ar-
riving time arri[lk] and a new SC’ with arriving time arri[lk]+∆t.
Then we have: SS(lk, lk+1, arri[lk],∆t) = SC′−SC. Here, SC
and SC’ are dictionaries, and the operator “−” refers to the differ-
ence of values of two dictionaries on each common key. If any key
does not belong to one dictionary, the corresponding value of the
dictionary is set as 0.

The slack time is limited and ∆t ≤ slacki[lk],∀lk ∈ Swi .
We denote the maximal time to delay as slack+. Here, we di-
vide the delayed time range (0, slack+] into a discretized space
[(0, δt], (δt, 2δt], · · · , ((m − 1)δt,mδt]], where m is an integer
constant and δt = slack+

m
. Then, for a given ∆t, if (x − 1)δt <

∆t ≤ xδt, we use the discretized delay ∆′t = (x+ 1)δt instead of
∆t to calculate the corresponding supply shift.

Given a route Swi , we can calculate SS(lk, lk+1, arri[lk],∆′t)

for all pairs of adjacent vertices (lk, lk+1) by looking up the pre-
derived supply-shift table quickly. This process costsO(nm) time.
We further introduce Total-Supply-Shift TSS as follows:

Definition 13 (Total-Supply-Shift). Given a route Swi , the Total-
Supply-Shift TSS(k,∆t) refers to the total shift of supply number
after an insertion occurs at the kth position with detour ∆t.

Assume that the length of the route |Swi | = n. With lim-
ited cases of time delay, we can derive TSS[k,∆′t] dynamically
by starting with TSS[n,∆′t] = SC(ln,−1, arri[ln] + ∆′t) −
SC(ln,−1, arri[ln]) followed by: TSS[k,∆′t] = TSS[k+1,∆′t]+

SS(lk, lk+1, arri[lk],∆′t)
Note that any x < y satisfies slack[x] ≤ slack[y], which indi-

cates that TSS[k + 1,∆′t] always exits if ∆′t delay is feasible for
kth. Now, given the insertion positions at x and y, we can derive
all the additional supply shift generated from this insertion, named
the Incremental Supply Shift (ISS) as follows:

ISSx,y (7)

=



SC(ln, sj , arri[ln]) + SC(sj , ej , arri[s])

+ SC(ej ,−1, arri[e])− SC(ln,−1, arri[ln]), if x = y = n

SC(lx, sj , arri[lx]) + SC(sj , ej , arri[s])

+ SC(ej , lx+1, arri[e])

− SC(lx, lx+1, arri[lx]) + TSS(x+ 1,∆
d
x,y), if x = y < n

SC(lx, sj , arri[lx]) + SC(sj , lx+1, arri[s])

− SC(lx, lx+1, arri[lx])

+ SC(ln, ej , arri[ln] + det(lx, sj , lx+1))

+ SC(ej ,−1, arri[e])− SC(ln,−1, arri[ln])

+ TSS(x+ 1, det(lx, sj , lx+1))

− TSS(n, det(lx, sj , lx+1)), if x < y = n

SC(lx, sj , arri[lx]) + SC(sj , lx+1, arri[s])

− SC(lx, lx+1, arri[lx])

+ SC(ly, ej , arri[ly] + det(lx, sj , lx+1))

+ SC(ej , ly+1, arri[e])− SC(ly, ly+1, arri[ly])

+ TSS(x+ 1, det(lx, sj , lx+1))

− TSS(y, det(lx, sj , lx+1))+TSS(y + 1,∆
d
x,y), otherwise

where arri[s] and arri[e] denote the arriving times of sj and
ej after insertion. All the detour times ∆t in TSS are substi-
tuted with ∆′t = k · δt where (k − 1) · δt < ∆t ≤ k · δt.
There are four cases of calculating ISSx,y: (i) If the new rj is
picked and served after finishing all the other requests, two new
paths, ln → sj and sj → ej , are added. Their supply contri-
butions are SC(ln, sj , arri[ln]) and SC(sj , ej , arri[s]), where

984

Algorithm 1: DA-DP Insertion.
Input: a worker wi and its current route Swi , a request rj ,

current time tnow, time intervals T and grid areaN
with the demand and supply number map DN and
SN

Output: an optimal route S′wi after insertion with cost ∆w

1 S′wi := Swi , ∆w := +∞, ISS′ := ∅
2 get arri[·], slack[·], TSS according to definition 7 and

Equations 5 and 13
3 foreach x in 1 to |Swi | do
4 foreach y in x to |Swi | do
5 Stwi := insert ls at x-th and ld at y-th in Swi
6 if Stwi is feasible then
7 get ISS according to Equation 7
8 ∆t

w := α∆d
w

9 foreach key[N,T] ∈ ISS do
10 ∆t

w := ∆t
w − βT · ISS[N,T] ·

∆LB(DN(N,T), SN [N,T])

11 if ∆t
w < ∆w then

12 ∆w := ∆t
w S
′
wi := Stwi ISS

′ := ISS

13 return S′wi , ∆wi , and ISS′

arri[s] = arri[ln] + dis(ln, sj). The original SC from stay-
ing at ln after finishing the route is removed and the new one is
added, that is, SC(ej ,−1, arri[e])− SC(ln,−1, arri[ln]) where
arri[e] = arri[ln] + ∆d

x,y; (ii) If the new rj is finished right af-
ter picked (e.g. x = y) but not the last one to serve, three parts
of new contributions are added and the previous one from lx to
lx+1 is removed (i.e., SC(lx, sj , arri[lx])+SC(sj , ej , arri[s])+
SC(ej , lx+1, arri[e]) − SC(lx, lx+1, arri[lx]), where arri[s] =
arri[lx] + dis(lx, sj) and arri[e] = arri[lx] + dis(lx, sj) +

dis(sj , ej)). Every vertex after (x+ 1)th gets a detour ∆d
x,y so

supply number shift TSS(x + 1,∆d
x,y) occurs; (iii) If the rj is

picked earlier but finished at last, two new paths, lx → sj and
sj → lx+1, from inserting sj and one new path, ln → ej from fin-
ishing ej are added. One old path from lx to lx+1 is removed. Note
that arri[s] = arri[lx] + dis(lx, sj) and arri[e] = arri[ln] +
det(lx, sj , lx+1) + dis(ln, ej). After deriving these supply contri-
butions, all paths between x+1 to n are delayed by det(lx, sj , lx+1,
then we add TSS(x+ 1, det(lx, sj , lx+1))−TSS(n, det(lx, sj , lx+1)).
The destination has been changed to ej , thus we have SC(ej ,−1,

arri[e]) − SC(ln,−1, arri[ln]) in addition; (iv) Otherwise, we add
new contributions, lx → sj , sj → lx+1, ly → ej and ej → ly+1,
and distract former ones, lx → lx+1 and ly → ly+1 first. In this
case, arri[s] = arri[lx] + dis(lx, sj) and arri[e] = arri[ly] +
det(lx, sj , lx+1) + dis(ly, ej). Then we add TSS from x+ 1 to y
with detour det(lx, sj , lx+1) by TSS(x + 1, det(lx, sj , lx+1)) −
TSS(y, det(lx, sj , lx+1)). Finally, all paths after y+1 are delayed
by ∆d

x,y so we have TSS(y + 1,∆d
x,y).

5.3.3 Demand-Aware Dynamic Programming based
Insertion Algorithm

Algorithm 1 illustrate the Demand-Aware Dynamic Program-
ming based Insertion (DA-DP Insertion) algorithm. Lines 1-2 ini-
tialize S′wi and ∆wi and derive needed parameters for Equation 7.
Lines 3-5 check all possible insertion positions and generate new
routes. Line 6 checks feasibility according to Section 5.3.1. Line 7
gets dictionary ISS and lines 8-12 adds up all the costs for insertion.
Lines 11-12 save the result with the least increased cost.

Table 4: Values After Pre-calculation
Positions 1(l1) 2(s1) 3(e1)
arri(·) 1 3 5.8
ddli(·) ∞ 8.2 11
slacki(·) ∞ 5.2 5.2

Table 5: Increased Distance Cost ∆d
x,y in Example.4

Insertion Position (x,y) (1, 1) (1, 2) (1, 3) (2, 2) (2, 3) (3, 3)
∆d
x,y -1 4 4.8 4 3.2 4.8

Table 6: Values of Supply Shift SS
∆′t SS(l2, l3, 3,∆

′
t)

1 {(N3, T1)→ −0.08, (N3, T2)→ 0.08}

2
{ (N5, T1)→ −0.04, (N5, T2)→ 0.04,

(N3, T1)→ −0.14, (N3, T2)→ 0.14 }

3
{ (N5, T2)→ 0.14, (N3, T2)→ 0.14,

(N5, T1)→ −0.14, (N3, T1)→ −0.14 }

4
{ (N5, T2)→ 0.14, (N3, T2)→ 0.06, (N3, T3)→ 0.08,

(N5, T1)→ −0.14, (N3, T1)→ −0.14 }

5
{ (N5, T1)→ −0.14, (N5, T2)→ 0.10, (N5, T3)→ 0.04,

(N3, T3)→ 0.14, (N3, T1)→ −0.14 }

6
{ (N5, T3)→ 0.14, (N3, T3)→ 0.14,

(N5, T1)→ −0.14, (N3, T1)→ −0.14 }

Table 7: Values of Total Supply Shift TSS
k ∆′t TSS(k,∆′t)

3

1 {(N3, T1)→ −0.02, (N3, T2)→ −0.08}
2 {(N3, T1)→ −0.02, (N3, T2)→ −0.18}
3 {(N3, T1)→ −0.02, (N3, T2)→ −0.28}
4 {(N3, T1)→ −0.02, (N3, T2)→ −0.30, (N3, T3)→ −0.08}
5 {(N3, T1)→ −0.02, (N3, T2)→ −0.30, (N3, T3)→ −0.18}
6 {(N3, T1)→ −0.02, (N3, T2)→ −0.30, (N3, T3)→ −0.28}

2

1 {(N3, T1)→ −0.1}

2
{ (N5, T2)→ 0.04, (N5, T1)→ −0.04,

(N3, T1)→ −0.16, (N3, T2)→ −0.04 }

3
{ (N5, T2)→ 0.14, (N5, T1)→ −0.14,

(N3, T1)→ −0.16, (N3, T2)→ −0.14 }

4
{ (N5, T2)→ 0.14, (N5, T1)→ −0.14,

(N3, T1)→ −0.16, (N3, T2)→ −0.24 }

5
{ (N5, T3)→ 0.04, (N5, T2)→ 0.1, (N5, T1)→ −0.14,

(N3, T1)→ −0.16, (N3, T2)→ −0.3, (N3, T3)→ −0.04 }

6
{ (N5, T3)→ 0.14, (N5, T1)→ −0.14, (N3, T3)→ −0.14,

(N3, T2)→ −0.3, (N3, T1)→ −0.16 }

Example 4. Let us continue the setting in Example.2. Our goal is
to find the positions for insertion with minimum increasing demand-
aware cost. The pre-calculated parameters are shown in Table 4
and incremental distances ∆d

x,y are shown in Table 5. ∆d
x,y = −1

means the case violates the constraints. We choose δt = 1 and
show SS with position 1 < k ≤ 3 − 1 in Table.6. Note that
d slack1[l2]

1
e = d slack1[l3]

1
e = 6, thus we have 6 possible ranges

for ∆′t. Then, TSS can be derived dynamically shown in Table.7.
Then we go through all pairs of (x, y) for insertion. (1, 1) vi-

olates the deadline constraints. (1, 2) follows the case 4 (1 <
2 < 3). Thus, its ISS1,2 = SC(l1, s2, 1) + SC(s2, s1, 3.8) −
SC(l1, s2, 1)+SC(s1, e2, 5.8)+SC(e2, e1, 7.8)−SC(s1, e1, 3)+
TSS(2, 3) − TSS(2, 3) + TSS(3, 4); (1, 3) belongs to the case
3 (1 < 3 = 3). Its ISS1,3 = SC(l1, s2, 1) + SC(s2, s1, 3.8) −
SC(l1, s1, 1)+SC(e1, e2, 8.6)+SC(e2,−1, 10.6)−SC(e2,−1, 5.8)+

TSS(2, 3) − TSS(3, 3) ;(2, 2) belongs to the case 2 (2 = 2 < 3)
with ISS2,2 = SC(s1, s2, 3) + SC(s2, e2, 5)+SC(e2, e1, 7.8)−
SC(s1, e1, 3)+TSS(3, 4);(2, 3) follows the case 3 as well with a
result ISS2,3 = SC(s1, s2, 3)+SC(s2, e1, 5)−SC(s1, e1, 3)+
SC(e1, e2, 7)+SC(e2,−1, 9)−SC(e1,−1, 5.8)+TSS(3, 2)−
TSS(3, 2); (3, 3) belongs to the case 1 (3 = 3 = 3) and results in
ISS3,3 = SC(e1, s2, 5.8)+SC(s2, e2, 7.8)+SC(e2,−1, 10.6)−
SC(e1,−1, 5.8).

Finally, we derive all these ISSs and calculate the increased
cost for each pair of insertion positions. The values of them are
shown in Table.8. As the increased cost, 4.7, of insertion at (2, 3)
is the lowest, we return it as the optimal way to insert r2 into Swi .

985

Table 8: Insertion Cost in Example.4
Insertion Index (x,y) (1, 1) (1, 2) (1, 3) (2, 2) (2, 3) (3, 3)

∆d
x,y ∞ 5.6 6.3 5.7 4.7 5.5

Note that, comparing to the basic insertion in Example 3, the in-
creased costs of pair (1, 2) (6.3) is different (6.2 in previous one).
This is because that we use TSS(2, 3) and TSS(3, 3) to approxi-
mate TSS(2, 2.8) and TSS(3, 2.8).

Complexity Analysis. It cost O(n) time to compute arri[·],
slacki[·] and O(nm) time to calculate TSS at line 2. The number
of possible insertion pairs is O(n2) in lines 6-10. It takes O(1)
time to check feasibility and O(1) time to evaluate the increased
cost. The other lines cost O(1) time. Thus, the total time cost of
Algorithm 1 is O(n2).

6. DEMAND-AWARE INSERTION BASED
DUAL-PHASE FRAMEWORK

In this section, we introduce an efficient and effective frame-
work, namely demand-aware insertion based dual-phase framework
(DAIF) for the DARP problem. DAIF consists of two phases. The
first one is the decision phase, which decides whether to serve a
new request rj or not. The second is the planning phase, which
inserts rj into the route of the selected worker.

6.1 Decision Phase
To minimize our objective function, we can reject a request when

its penalty is smaller than the increased cost to serve it. A previous
study proposes a lower bound of the minimum increased distance
as the metric to make a fast decision about request rejection [40].
However, this is applicable only for the distance-based objective
function. In this paper, we need to derive the new lower bound also
considering the cost from the balance score. The decision phase
can be completed inO(n) time, where n is the number of locations
in the scheduled route of the given worker.

6.1.1 Lower Bound of Minimum Increased Cost ∆

We use ∆ to indicate the minimum cost to handle a new request
rj among all the workers. We denote the lower bound of ∆ as
∆−. ∆− consists of the lower bound of increased distance cost
∆d
− and increased balance cost ∆b

−. For the lower bound of the
increased distance cost ∆d

−, we borrow the idea of using dynamic
programming to derive ∆d

− inO(n) time [40]. For the lower bound
of the increased balance cost ∆b

−, we propose a novel method to
calculate it also in O(n) time.
Lower Bound of Distance Cost ∆d

−. We briefly introduce the
method to derive ∆d

− [40]. The key point is that once two vertices
are inserted nonadjacent, the two increased distances will not affect
each other. The main idea is to enumerate the destinations (y) in-
stead of both origin and destination locations (x, y) to find the mini-
mum increased distance. We denote ∆d

y as the minimum increased
cost for a given destination position y. ∆d

y = det(ly, ej , ly+1) +
minx<y det(lx, sj , lx+1). We define the second part as Dio[y] =
minx<y det(lx, sj , lx+1) to indicate the minimum detour for in-
serting sj with ej at the yth position of a given route sequence. It
can be derived in a dynamic programming style:

Dio[y] =

 ∞, if picked[y − 1] > ai − aj
Dio[y − 1], if det (ly−1, sj , ly) > slacki[ly−1]
min {Dio[y − 1], det (ly−1, sj , ly)} , otherwise

(8)

Two methods can be further applied to achieve a lower bound
∆−: (i) using Euclidean distance instead of the shortest path query,
which usually has smaller value and less computation time; (ii) us-
ing the pre-calculated arri[·] to derive travel time.

By denoting the Euclidean distance of u and v as eu(u, v), we
can estimate the lower bound of detour from inserting v between
u and w as ld(u, v, w) = eu(u, v) + eu(v, w) − dis(u,w) ≤
det(u, v, w).

In addition, after calculating arri[·], all the dis[lk, lk+1] can be
substituted by arri[lk+1]− arri[lk]. Hence:
ld (lx, sj , lx+1) = eu (lx, sj) + eu (sj , lx+1)− (arri[lx+1]− arri[lI])

ld (ly, ej , ly+1) = eu (ly, ej) + eu (ej , ly+1)− (arri[ly+1]− arri[lJ])

Then we use above lower bound for Equation 8 to calculate
DioE as Euclidean distance based lower bound of Dio[].

DioE [y] =

 ∞, if picked[y − 1] > ai − aj
DioE [y − 1], if ld (ly−1, sj , ly) > slacki[ly−1]
min {DioE [y − 1], ld (ly−1, sj , ly)} , otherwise

(9)

Now we have the lower bound of minimum increased cost ∆d
−:

∆
d
− = min

x≤y,y=0:n


eu (ln, sj) + L, if x = y = n
eu (lx, sj) + L+ eu (ej , lx+1)

−(arri[lx+1] + arri[lI]), if x = y < n
ld (ly, ej , ly+1) +DioE [y] if x < y

(10)where L = dis(sj , ej).
Lower Bound of Balance Cost ∆b

−. We first propose a lemma:
Lemma 6.1. Given an supply number map SN and an demand
number map DN, let us consider a particular spatial temporal cell
Cxy of areaNx and time span Ty . If the demand exceeds the supply
(i.e., DN(Nx, Ty) > SN(Nx, Ty)), the greater DN [Nx, Ty] is
(or the lesser SN [Nx, Ty] is), the more sensitive DSB is to the
change of SN(Nx, Ty) (i.e., DSB will increase or decrease faster
when SN(Nx, Ty) increases or decreases).

Proof. Here we denote DN [Nx, Ty] as λ and SN [Nx, Ty] as µ.
Suppose that serving a new request with a worker updates the value
of cell Cxy in the SN to µ∗. We demote ∆µ = µ∗ − µ as the
increment. The DSB can be treated as a function of ∆mu according
to its definition. We want to show that with a larger λ and a smaller
µ, ∂DSB

∂∆µ
is laerger. Recall the definition of DSB, for Nx and Ty

we have: ∂DSB

∂∆µ

=βy ·∆LB (λ, µ)

=βy · (LB(λ, µ+ 1)− LB(λ, µ))

=βy · (1−
bsnc∑
k=0

λk

k!
e
−λ

)

The second part is going larger with higher µ. For a single com-
ponent in the sum function f(λ) = λk

k!
e−λ, we take a derivative

with respect to λ:
∂f(λ)

∂λ
=

λk−1

(k − 1)!
e
−λ −

λk

k!
e
−λ

=
λk−1 · (k − λ)

k!
e
−λ

With the situation that demand exceeds supply, we can get k ≤
bµc < λ such that ∂f(λ)

∂λ
< 0. Thus, whenever we want a higher

DSB with an increased µ, we need the second part as small as pos-
sible, that is, higher λ and lower µ.

With Lemma 6.1, if the greatest/lowest value in DN [·, T] are
λ+/λ− and the greatest/lowest value in SN [·, T] is µ+/µ− given
certain time interval T , a reorder with dt long new paths in place
of old paths may have at most:

DSB[T]+ = βT · γ · dt · (∆LB(λ+, µ−)−∆LB(λ−, µ+)) (11)

Recall the definition of the largest tolerable detour slacki[·] for
each vertex in a route. We check which time interval each vertex
belongs to by its arri[·]. For a set of vertices finished in same
interval, the longest replaced paths can be slacki[ln] where n is
the last arrived vertices as proof in 5.3.1. Hence, the lower bound
of balance cost ∆b

− can be derived as: ∆b
− = −

∑
T∈T DSB[T]+

6.1.2 Demand-Aware Decision Algorithm
Algorithm 2 illustrates the decision phase. We enumerate all the

workers to find their lower bounds ∆−. Lines 7-18 find the lower
bound by traversing all paths. In lines 5-11 and 14-17 we track the
time span to update ∆b

− according to Equation 12. lines 12 and 18
update DioE to derive ∆b

−. We store the value of bounded cost for
each worker which will be further used in the planning process.

986

Algorithm 2: Demand-Aware Decision Algorithm.
Input: α, β, workers W ,a request rj , supply number map

SN and demand number map DN
Output: a set of lower bound ∆̃− for each w

1 ∆̃− := ∅
2 foreach w ∈W do
3 ∆b

− := 0,∆d
− :=∞, DioE :=∞

4 Initialize ddl, arr, slack
5 Denote T as the interval contains arri[l1]
6 foreach y in 0 to |Sw| do
7 Denote T ′ as the interval contains arri[ly]
8 if T ′ 6= T then
9 dt := slacki[ly−1]

10 Update DSB[T]+ according to Equation 11
11 ∆b

− := ∆b
− −DSB[T]+

12 Get ∆d
y as the case x = y in Equation 10

13 if y > 0 then
14 ∆d

y := min(ld(ly, ej , ly+1) +DioE [y],∆d
y)

15 ∆d
− := min ∆d

y,∆−
16 if arri[ly] + dis(sj , ej) > tdj then
17 Derive DSB[T]+ with rest of T using dt

∆b
− := ∆b

− −
∑
T∈ rest T DSB[T]+ break;

18 Update DioE [y + 1] according to Equation 9

19 ∆̃−[w] := α∆d
− + β∆b

−

20 if pj < min ∆̃− then
21 reject rj

22 return ∆̃−

Complexity Analysis. Lines 4 and 6 take O(|R|) time. Line 20
takes O(|W |) time. The other lines are in the loop of line 2 which
all take O(1) and thus O(|W |) in total. The only shortest path
query is L = dis(sj , ej). If the shortest path query takes O(q)
time, the time complexity is O(|W |+ |R|+ q).

6.2 Planning Phase
Given the set of lower bounds ∆̃− for all workers, we apply an

efficient branch-and-bound pruning strategy to save the computa-
tion time. It first prunes candidate workers and then greedily adds
the new request into the route of the local optimal worker.

6.2.1 Pruning Candidate Workers
Many pruning strategies rely on the bounded deadlines and grid

indices to realize a filter for candidate workers [9, 12, 23, 38]. Be-
sides, the branch-and-bound pruning strategy is also applied in pre-
vious work using lower bounds (LB) of cost for all the workers [40,
15]. In this paper, we derive our LB in the decision phase. This
strategy can greatly cut the time cost because given all the workers
sorted according to ∆− in ∆̃−, if wx is ahead of wy and ∆wx is
smaller than ∆− of wy , we can safely ignore all workers after wx.

6.2.2 Algorithm Sketch
Algorithm 3 illustrates the DAIF algorithm. In lines 1-2, we

build a grid index and initialize R̄ and DAC. For each new request,
we first filter a set of candidate workers in line 4 and then start the
decision phase in line 5. If at least one worker has the possibil-
ity to serve the request, we can insert it into a route in lines 7-17.
Iterations in lines 8-10 are using the aforementioned pruning strat-
egy. Then we use DA-DP insertion to calculate ∆wi and update
the best worker w′ if current cost is minimal. If a feasible worker
w′ is found at the end of an iteration, we update Swi and SN map

Algorithm 3: DAIF Framework.
Input: α, β, workers W , requests R, supply number map

SN and demand number map DN
Output: a set of route S and demand-aware cost DAC

1 Build grid index and initialize R̄ := ∅
2 DAC := 0
3 foreach new request rj ∈ R do
4 Cand := filter the candidate using grid index and

deadline
5 Get ∆̃− according to Algorithm 2
6 if rj is not rejected then
7 w′ := NIL, ∆w′ :=∞, SSA′ := ∅
8 foreach wi : ∆− in sorted ∆̃− do
9 if ∆w′ < ∆− then

10 break

11 ∆wi := result of DA-DP Insertion
12 if ∆wi < ∆w′ then
13 w′ := wi, ∆w′ := ∆wi , SSA

′ := SSA

14 if w′ 6= NIL then
15 Update Sw′ and arr of wi accordingly
16 Update SN according to SSA
17 DAC := DAC + ∆w′

18 else
19 Add rj to R̄, DAC := DAC + pj

20 return S and DAC

accordingly. The corresponding cost is added to DAC. If it is
rejected, the cost from penalty pj will be added.

Complexity Analysis. Line 3 has O(|R|) iterations. Line 4
takes O(|W |) and line 5 takes O(|W |+ |R|) time proved after Al-
gorithm 2. The total time complexity of lines 4-5 is O(|R| |W | +
|R|2). The sorting in line 8 takesO(|W | log |W |) time and lines 9-
15 takesO(|W |+ |R|2) in total with a square time DP-based inser-
tion algorithm (e.g. workers with no served requests takes O(|W |)
time and one worker with all requests takes O(|R|2) time). The
total time complexity of lines 8-17 is O(|R|3 + |R| |W | log |W |).
Line 19 takes O(|R| + |W |). Thus, Algorithm 3 takes O(|R|3 +
|R| |W | log |W |) time.

7. EXPERIMENTAL STUDY
7.1 Experimental Methodology
Data set. We use both real and synthetic data to test our proposed
DARP approaches. Specifically, for the real data, we use a pub-
lic data set NYC [4] collected from two types of taxis (yellow
and green) in 2013 in New York City, USA. We choose the data
from November 1st to 30th to train the prediction model. Then,
we utilize the model to predict demands on December 2nd and use
the real requests to simulate the ridesharing requests in our exper-
iments. For each taxi request in NYC, we initialize a correspond-
ing ridesharing request with its pick-up and drop-off locations, and
configure the release time as the timestamp of the taxi request. We
assume that each request contains only one rider and thus set the
default capacity of a request as 1. We utilize the road network of
NYC from Geofabrik [2]. This data set has been widely used as a
benchmark for ride-sharing studies [40].

To generate the synthetic data, we derive the distribution of re-
quests of all the NYC requests in December and generate a syn-
thetic dataset (SYN) following the existing synthetic method [30].

For the prediction model, DeepST, we set the default grid size as
2km×2km and the time interval as 15 minutes.

987

Table 9: Setting of Dataset and Model
Parameters Settings

Number of vertices in NYC 61298
Number of edges in NYC 141372

Number of requests of NYC 427093
Number of requests of SYN 452116

Grid size 2km×2km
Time interval 15 minutes

We summarize the experimental settings for the dataset and the
spatial temporal prediction model in Table 9.

Implementation. In general, we follow the settings of the existing
studies [9, 23, 40]. While building the graph for the road network,
we set the weights of edges as their time costs (divide the distance
of Geofabric by the velocity of its road type). The vertices are in-
dexed with an R-tree. Then, we map the origin and the destination
in NYC of each request to the closest vertex in the road network.
The initial location of each worker is randomly chosen from the
vertexes of the road network . We summarize the major parame-
ters in Table 10 and the default values are in bold font. We set grid
size as 2km for both prediction and prune algorithm. The delivery
deadline of each request is calculated by adding the release time
of a request with the time cost of the shortest path times Deadline
Coefficient er . For example, the deadline ej for request rj with re-
lease time trj is trj+(1+er)·dis(sj , ej). The capacity of workers
ai is varied from 2 to 10. We use unit time cost as the unit cost for
DSB (i.e., α = 1). As we mentioned before, our unified cost can
be treated as the monetary loss of the platform. Thus, we need to
define the unit of money. We set travel fees paid for one second of
time cost as the smallest element, that is, α = 1. The other parame-
ters are converted based on it. The penalty pj of request rj is set as
po · dis(sj , ej) by default. In real applications, the penalty can be
treated mainly as the money lost from a request on rejection, which
is usually proportional to the length of the trip. The penalty pj is
usually much larger than the incremental cost from the allowed de-
tour, thus request rj will always be served if it can be delivered
before the deadline tdj . Different pj will not affect the served rate,
thus we do not need to compare it. In our experiments, the balance
weight β and supply coefficient γ are derived based on their values
in real applications.

The experiments are conducted on a server with Intel(R) Xeon(R)
E5 2.30GHz processors with hyper-threading enabled and 128GB
memory. The simulation implementation is single-threaded, and
the total running time (excluding the time to construct grid index
and initialize LRU for shortest path and distance query) is limited to
14 hours for NYC. In reality, a real-time solution should stop before
its time limit which is 24 hours here [23, 40]. All the algorithms
are implemented in Java 11. We store the vertices and weighted
edges of the road network (i.e., directed graph and distances used
for grid). According to the setting of previous studies [23, 40], an
LRU cache is maintained for shortest path queries.
Parameter Derivation. Equivalent supply number can be derived
as Supply Coefficient γ multiplied by the sum of time (seconds)
that all the workers stay in a particular area and time period. We
derive γ = 0.0016 using the real ride-sharing data, which has
6576.87 workers at the rush hour to serve 465703.97 requests on
average. A worker can serve a request if he/she stays in a region
for 6576.87·86400

465703.97
= 1220 seconds. In other times except for the

rush hours, the platform just needs fewer cars. Besides, each ride-
sharing vehicle can serve more than one request. Thus, we use a
compensation factor f = 2 to derive that γ = f

1220
= 0.0016.

When DSBScore decreases by 1, we would have a potential un-
served request in the future. The average travel time for each trip
is 789.40 seconds. Thus, potentially losing a request would cost
789.40 · pr = 23682. We define this value as the optimal equiva-
lent lose factor p∗r = 23682, which is used to derive balance weight

Table 10: Parameter Settings.
Parameters Settings

Deadline Coefficient er 0.1, 0.2, 0.3, 0.4, 0.5
Capacity ai 2, 3, 4, 7, 10

Distance Weight α 1

Balance Weight β
[
p∗
r ,

p∗
r
e ,

p∗
r

e2
, · · ·, p∗

r
e5

]
Supply Coefficient γ 0.0016

Penalty ratio po 30
Number of workers |W | 500, 1k, 3k, 5k, 10k

Grid size g 1k×1k, 2k×2k, 4k×4k

8 16 32 64 128
(×10 4)

100k

120k

140k

160k

180k

200k

Se
rv

ed
 R

eq
ue

st
s (

|R
|)

171k

195k

187k

152k

118k

|R|

1.20B

1.35B

1.50B

1.65B

1.80B

Un
ifi

ed
 C

os
t (

DA
C)

1.32B 1.32B

1.40B

1.50B

1.60B

DAC

(a) Varying γ

103 104 23682 10550k

90k

130k

170k

210k

Se
rv

ed
 R

eq
ue

st
s (

|R
|)

71k

152k

195k 195k|R|

1.20B

1.40B

1.60B

1.80B

2.00B

Un
ifi

ed
 C

os
t (

DA
C)

1.75B

1.39B

1.32B
1.38B

DAC

(b) Varying β
Figure 3: Performance of varying γ and β

β in Table.10. The later a period is, the more imprecise its predic-
tion result is. Thus, the weights decrease at the ratio of natural
logarithm e per time span.

We show the experimental results of varying γ and β in Fig-
ure 3. The left axis is the number of total served requests rep-
resented in the red histogram. The right axis is for the unified
cost, displayed in blue. Note that the x-axis for β is the weight
for its first time span. For example, value 1000 means that β =[
1000, 1000

e
, 1000
e2

, · · · , 1000
e5

]
. With higher γ and β, the algorithm

will focus more on serving more requests rather than reducing travel
costs. We want to set the values of γ and β to serve as many re-
quests with as small unified cost as possible. Through observing
Figure 3(a), we confirm our setting γ = 0.0016. By Figure 3(b),
we set β = 23682.
Compared Algorithms. We compare our DAIF framework (DAIF-
B indicates using basic insertion algorithm and DAIF-DP denote
using dynamic programming based insertion algorithm) with the
state-of-the-art algorithms for route planning of shareable mobility
services.
• GreedyDP [40]. It bases on the dynamic property of the ride-

sharing problem to insert each coming request into a route of a
worker with minimal increased distance.
• SHARE [45]. It uses historical information of nodes to choose a

route with a higher possibility to pick passengers along the route.
The algorithm is executed every 1 minute instead of a real-time
assignment. It also requires k1 minutes to wait for newly arrived
requests and allows k2 minutes of holding time before rejecting
a request. To conduct a fair comparison, we set k1 = 0 and
k2 = 1 to simulate an approximate real-time assignment.

Metrics. All the algorithms are evaluated in terms of total unified
cost, served requests

∣∣∣R̂∣∣∣ and response time (average waiting time
to arrange a request). The metrics are widely used in the existing
large-scale online ride-sharing studies [23, 30, 40].

7.2 Experimental Results
In this section, we show the experimental results. We propose

a prune strategy in Section 6 and implement it in all the follow-
ing experiments. Compared with the DAIF framework without
pruning, our solution prunes 37.8% (136151416 out of 360328505)
candidates on default setting and prunes 51.5% (24123477 out of
46825174) candidates on non-prediction setting (β = 0).
Impact of Number of Workers |W |. Figure 4 presents the results
with different numbers of workers. Overall, DAIF outperforms
the other algorithms in terms of the number of served requests by
165.5% to 815.5% on SYN and 47.0% to 624.3% on NYC. With

988

1 3 5 10
|W|(×103)

0k

100k

200k

300k

400k
Se

rv
ed

 R
eq

ue
st

s
DAIF-B
DAIF-DP

GreedyDP
SHARE

(a) Served requests (NYC)

1 3 5 10
|W|(×103)

0k

100k

200k

300k

Se
rv

ed
 R

eq
ue

st
s

DAIF-B
DAIF-DP
GreedyDP
SHARE

(b) Served requests (SYN)

1 3 5 10
|W|(×103)

0.0

0.5

1.0

1.5

2.0

2.5

Un
ifi

ed
 C

os
t

1e9

DAIF-B
DAIF-DP
GreedyDP
SHARE

(c) Unified cost (NYC)

1 3 5 10
|W|(×103)

0.0

0.5

1.0

1.5

2.0

2.5

Un
ifi

ed
 C

os
t

1e9

DAIF-B
DAIF-DP

GreedyDP
SHARE

(d) Unified cost (SYN)

1 3 5 10
|W|(×103)

0.0

0.1

0.2

0.3

0.4

0.5

Re
sp

on
se

 T
im

e(
se

cs
)

DAIF-B
DAIF-DP
GreedyDP
SHARE

(e) Response time (NYC)

1 3 5 10
|W|(×103)

0.0

0.1

0.2

0.3

0.4

Re
sp

on
se

 T
im

e(
se

cs
) DAIF-B

DAIF-DP
GreedyDP
SHARE

(f) Response time (SYN)
Figure 4: Performance of varying workers |W |

more available workers, more requests are served, leading to a de-
crease in unified costs and an increase in the served rates of all
the algorithms. Using a time slot (δt = 1 minute in our experi-
ments) for DAIF-DP, there is some little difference to the results of
DAIF-B. The performances of DAIF-DP and DAIF-B are similar
for unified cost and number of served requests. As we mentioned,
we focus on the situation of rush hour, which has more requests
and fewer riders. Most of the requests are not served, leading to
a large value of unified cost and DAIF decreases it by 10.8% to
56.3% on NYC and 26.3% to 66.5% on SYN. GreedyDP runs the
fastest. DAIF-B runs slower with an increasing number of work-
ers than DAIF-DP. SHARE rejects many more requests compared
with other methods. The reason is that SHARE uses a rough com-
putation to first assign each request to a worker, which would be
canceled if it violates the detour constraints. If this failed, the re-
quest would not be assigned in this round. SHARE works well
when the waiting time of request is 15 min [45]. However, in on-
line ridesharing, wait too long will break the deadline constraint of
delivery. Thus, SHARE can serve fewer requests than other algo-
rithms. As the synthetic data follows the distribution strictly, ex-
cept the traditional method GreedyDP, all the other methods with
this perfect “prediction” perform better than on NYC data set.
Impact of Capacity of Workers ai. Figure 5 presents the effect
of different capacities of workers. DAIF serves 259.3% to 509.7%
more requests than the other algorithms on NYC and 470.3% to
521.1% more requests on SYN. Unified cost is decreased by 27.6%
to 37.2% on NYC and 54.1% to 57.6% on SYN. At rush hour
(workers are much fewer than requests), with a tight deadline co-
efficient, most of the workers can serve two or three requests. We
can observe that increasing capacity does not lead to an increase
but kind of fluctuation. However, when the capacity increases from
2 to 4, the number of served requests increases for DAIF and keeps
still for GreedyDP. The reason is that routes are more suitable to

2 3 4 7 10
ai

0k

50k

100k

150k

200k

Se
rv

ed
 R

eq
ue

st
s

DAIF-B
DAIF-DP

GreedyDP
SHARE

(a) Served requests (NYC)

2 3 4 7 10
ai

0k

50k

100k

150k

200k

250k

300k

Se
rv

ed
 R

eq
ue

st
s

DAIF-B
DAIF-DP

GreedyDP
SHARE

(b) Served requests (SYN)

2 3 4 7 10
ai

0.0

0.5

1.0

1.5

2.0

2.5

Un
ifi

ed
 C

os
t

1e9

DAIF-B
DAIF-DP
GreedyDP
SHARE

(c) Unified cost (NYC)

2 3 4 7 10
ai

0.0

0.5

1.0

1.5

2.0

Un
ifi

ed
 C

os
t

1e9

DAIF-B
DAIF-DP
GreedyDP
SHARE

(d) Unified cost (SYN)

2 3 4 7 10
ai

0.0

0.1

0.2

0.3

Re
sp

on
se

 T
im

e(
se

cs
)

DAIF-B
DAIF-DP
GreedyDP
SHARE

(e) Response time (NYC)

2 3 4 7 10
ai

0.00

0.05

0.10

0.15

0.20

Re
sp

on
se

 T
im

e(
se

cs
) DAIF-B
DAIF-DP
GreedyDP
SHARE

(f) Response time (SYN)
Figure 5: Performance of varying capacity ai

serve more requests simultaneously for DAIF but GreedyDP only
focuses on the current cost. For SHARE, capacity is limited to 3
because its algorithm only supports the cases with capacity 1, 2
and 3. When the capacity becomes larger than 3, most of the ex-
tra spaces are wasted and the number of served requests does not
increase. Unified cost decreases when more requests are served.
As for response time, GreedyDP still runs faster. DAIF-DP costs
less time than DAIF-B, and the cost of DAIF-DP increases slower
with larger capacity than that of DAIF-B. Prediction based methods
(DAIF and SHARE) perform better on SYN than on NYC. For ex-
ample, SHARE can only serves less than 50% requests compared
with GreedyDP, but they perform similarly on SYN.
Impact of Deadline Coefficient er . Figure 6 shows the results
of varying the deadline coefficient er . With a larger er , all the
algorithms serve more requests with a lower unified cost. DAIF-B
and DAIF-DP still perform similarly on served requests and unified
cost. They serve 161.7% to 718.1% more requests than the others
on NYC and 216.5% to 712.8% more on SYN. Compared with
GreedyDP and SHARE, the unified cost of DAIF-B and DAIF-DP
is decreased by 11.4% to 55.9% on NYC and 25.2% to 74.0% on
SYN. With a larger deadline coefficient er , it is easier for requesters
to share vehicles with other requesters. The serving rate of DAIF
thus increases faster than that of GreedyDP with a powerful assign-
ment strategy to achieve higher flexibility to carpool. The serving
rate of SHARE increases slowly and the main barrier is the time
for waiting is pretty short in our setting to perform an online ser-
vice. Time cost increases for all the algorithms with a larger er .
GreedyDP still runs the fastest and DAIF-DP is faster than DAIF-B.
Similarly, the performances of prediction-based methods become
better on SYN.
Impact of Grid Size g. Figure 7 shows the results of varying the
grid size g. SHARE does not use a grid, thus we show results
of SHARE with the default value of g for comparison. When g

989

0.1 0.2 0.3 0.4 0.5
er

0k

50k

100k

150k

200k

250k

300k
Se

rv
ed

 R
eq

ue
st

s

DAIF-B
DAIF-DP
GreedyDP
SHARE

(a) Served requests (NYC)

0.1 0.2 0.3 0.4 0.5
er

0k

100k

200k

300k

400k

Se
rv

ed
 R

eq
ue

st
s

DAIF-B
DAIF-DP
GreedyDP
SHARE

(b) Served requests (SYN)

0.1 0.2 0.3 0.4 0.5
er

0.0

0.5

1.0

1.5

2.0

2.5

Un
ifi

ed
 C

os
t

1e9

DAIF-B
DAIF-DP
GreedyDP
SHARE

(c) Unified cost (NYC)

0.1 0.2 0.3 0.4 0.5
er

0.0

0.5

1.0

1.5

2.0

Un
ifi

ed
 C

os
t

1e9

DAIF-B
DAIF-DP
GreedyDP
SHARE

(d) Unified cost (SYN)

0.1 0.2 0.3 0.4 0.5
er

0.0

0.1

0.2

0.3

Re
sp

on
se

 T
im

e(
se

cs
)

DAIF-B
DAIF-DP
GreedyDP
SHARE

(e) Resp. time (NYC)

0.1 0.2 0.3 0.4 0.5
er

0.00

0.05

0.10

0.15

Re
sp

on
se

 T
im

e(
se

cs
)

DAIF-B
DAIF-DP
GreedyDP
SHARE

(f) Unified cost (SYN)
Figure 6: Performance of varying deadline coefficient er

increases, the results fo the prediction model become vague and the
travel cost in the same area increase, which leads to our demand-
aware analyses less effective. Thus, the number of served requests
of DAIF decreases and the unified cost of them increases when g
increases. GreedyDP has no change in serving rate and unified
cost when g changes. For the running time, a smaller g leads to a
better grid prune and the time cost of all algorithms except SHARE
becomes lower.
Impact of arranging idle workers. In our default setting, an idle
worker would stay at the destination and provide a supply contri-
bution to this area. What if the worker wanders around to look for
new requests? In addition to the basic setting, we append random
routes for idle workers. The result shows that the serving rate drops
by 8.3% and the unified cost increases by 6.7% after a wander.

We modify the strategy by checking the supply shift after wan-
der. After generating the random wander, we check whether the
additional route improves the DSB. If so, we treat it as a good
wander and add it; otherwise, we discard it and the worker just
stays still. The result shows that the serving rate increases by 9.8%
and the unified cost decrease by 6.7% with our filtered wander.
Summary of Results. We summarize the experimental results as
follows:

• Our DAIF algorithms can serve 50% to 820% more requests
than the state-of-art traditional ride-sharing algorithm [40] and
the state-of-art prediction-based algorithm [45]. The unified cost
of the results of DAIF algorithms is decreased by 11% to 74%.

• DAIF-B and DAIF-DP achieve nearly the same results on serv-
ing rate and unified cost. DAIF-DP is much faster than DAIF-
B. Taking the prediction results into account, DAIF-DP is just
slightly slower than GreedyDP and fast enough for the online
ridesharing services. (i.e., serving a request in 0.2 second in large
city-scale scenarios).

1 2 4
g

0k

50k

100k

150k

200k

Se
rv

ed
 R

eq
ue

st
s

DAIF-B
DAIF-DP

GreedyDP
SHARE

(a) Served requests (NYC)

1 2 4
g

0k

50k

100k

150k

200k

250k

300k

Se
rv

ed
 R

eq
ue

st
s

DAIF-B
DAIF-DP

GreedyDP
SHARE

(b) Served requests (SYN)

1 2 4
g

0.0

0.5

1.0

1.5

2.0

2.5

Un
ifi

ed
 C

os
t

1e9

DAIF-B
DAIF-DP
GreedyDP
SHARE

(c) Unified cost (NYC)

1 2 4
g

0.0

0.5

1.0

1.5

2.0

Un
ifi

ed
 C

os
t

1e9

DAIF-B
DAIF-DP
GreedyDP
SHARE

(d) Unified cost (SYN)

1 2 4
g

0.0

0.1

0.2

0.3

Re
sp

on
se

 T
im

e(
se

cs
)

DAIF-B
DAIF-DP
GreedyDP
SHARE

(e) Response time (NYC)

1 2 4
g

0.00

0.05

0.10

0.15

0.20

Re
sp

on
se

 T
im

e(
se

cs
)

DAIF-B
DAIF-DP

GreedyDP
SHARE

(f) Response time (SYN)
Figure 7: Performance of varying grid size g

8. CONCLUSION
In this paper, we propose the DARP problem, which takes the

balance of supply and predicted demand into account to reach a bet-
ter assignment for potential profit instead of purely current profit.
We prove that there is no polynomial-time algorithms with a con-
stant competitive ratio to solve the DARP problem. We devise a
basic insertion program with consideration of the balance score for
DARP and develop a novel dynamic programming insertion pro-
gram, which reduces the time complexity of insertion from cubic to
quadric time. We then devise a grid-based solution leveraging the
above DP-based insertion algorithm to address the DARP problem
approximately. Extensive experiments on real datasets show that
our proposed solutions outperform the state-of-the-art solutions in
effectiveness greatly without sacrificing too much efficiency. Our
paper provide a comprehensive theoretical reference for optimiz-
ing route planning with prediction information in shared mobility,
and gives new direction for future research to design effective so-
lutions with higher prediction accuracy and efficiency as guidance
to large-scale shared mobility applications.

Acknowledgments
Jiachuan Wang, Libin Zheng and Lei Chen are partially supported
by the Hong Kong RGC GRF Project 16209519, CRF project C603
0-18G, AOE project AoE/E-603/18, the National Science Founda-
tion of China (NSFC) under Grant No. 61729201, Science and
Technology Planning Project of Guangdong Province, China, No.
2015B010110006, Hong Kong ITC grants ITS/044/18FX and ITS/4
70/18FX, Didi-HKUST joint research lab Grant, Microsoft Re-
search Asia Collaborative Research Grant, Wechat Research Grant
and Webank Research Grant. Peng Cheng is supported by Shang-
hai Pujiang Program 19PJ1403300. Xuemin Lin is supported by
NSFC61232006, 2018YFB1003504, ARC DP180103096 and DP2
00101338. Corresponding author: Peng Cheng.

990

9. REFERENCES
[1] [online] didi chuxing. http://www.didichuxing.com/.
[2] [online] geofabrik. https://download.geofabrik.de/.
[3] [online] meituan. https://www.meituan.com/.
[4] [online] tlc trip record data. https://www1.nyc.gov/site/

tlc/about/tlc-trip-record-data.page/.
[5] [online] uber. https://www.uber.com/.
[6] N. A. H. Agatz, A. L. Erera, M. W. P. Savelsbergh, and X. Wang.

Optimization for dynamic ride-sharing: A review. European Journal
of Operational Research, 223(2):295–303, 2012.

[7] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and
D. Rus. On-demand high-capacity ride-sharing via dynamic
trip-vehicle assignment. PNAS, 114(3):462–467, 2017.

[8] N. Ascheuer, S. O. Krumke, and J. Rambau. Online dial-a-ride
problems: Minimizing the completion time. In STACS, volume 1770
of Lecture Notes in Computer Science, pages 639–650. Springer,
2000.

[9] M. Asghari, D. Deng, C. Shahabi, U. Demiryurek, and Y. Li.
Price-aware real-time ride-sharing at scale: an auction-based
approach. In SIGSPATIAL, pages 3:1–3:10. ACM, 2016.

[10] M. Asghari and C. Shahabi. An on-line truthful and individually
rational pricing mechanism for ride-sharing. In SIGSPATIAL, pages
7:1–7:10. ACM, 2017.

[11] M. Charikar and B. Raghavachari. The finite capacity dial-a-ride
problem. In FOCS, pages 458–467. IEEE Computer Society, 1998.

[12] P. Cheng, H. Xin, and L. Chen. Utility-aware ridesharing on road
networks. In SIGMOD Conference, pages 1197–1210. ACM, 2017.

[13] J. Chu, K. Qian, X. Wang, L. Yao, F. Xiao, J. Li, X. Miao, and
Z. Yang. Passenger demand prediction with cellular footprints. In
SECON, pages 163–171. IEEE, 2018.

[14] B. Cici, A. Markopoulou, and N. Laoutaris. Designing an on-line
ride-sharing system. In SIGSPATIAL, pages 60:1–60:4. ACM, 2015.

[15] A. Colorni and G. Righini. Modeling and optimizing dynamic
dial-a-ride problems. International transactions in operational
research, 8(2):155–166, 2001.

[16] L. Coslovich, R. Pesenti, and W. Ukovich. A two-phase insertion
technique of unexpected customers for a dynamic dial-a-ride
problem. European Journal of Operational Research,
175(3):1605–1615, 2006.

[17] N. Cressie and C. K. Wikle. Statistics for spatio-temporal data. John
Wiley & Sons, 2015.

[18] P. M. d’Orey, R. Fernandes, and M. Ferreira. Empirical evaluation of
a dynamic and distributed taxi-sharing system. In ITSC, pages
140–146. IEEE, 2012.

[19] E. Feuerstein and L. Stougie. On-line single-server dial-a-ride
problems. Theor. Comput. Sci., 268(1):91–105, 2001.

[20] A. Gupta, M. T. Hajiaghayi, V. Nagarajan, and R. Ravi. Dial a ride
from k-forest. ACM Trans. Algorithms, 6(2):41:1–41:21, 2010.

[21] Z. He, J. Cao, and X. Liu. High quality participant recruitment in
vehicle-based crowdsourcing using predictable mobility. In
INFOCOM, pages 2542–2550. IEEE, 2015.

[22] W. Herbawi and M. Weber. A genetic and insertion heuristic
algorithm for solving the dynamic ridematching problem with time
windows. In GECCO, pages 385–392. ACM, 2012.

[23] Y. Huang, F. Bastani, R. Jin, and X. S. Wang. Large scale real-time
ridesharing with service guarantee on road networks. PVLDB,
7(14):2017–2028, 2014.

[24] H. Hung, R. Chapman, W. Hall, and E. Neigut. A heuristic algorithm
for routing and scheduling dial-a-ride vehicles. In ORSA/TIMS
National Meeting, 1982.

[25] J.-J. Jaw. Solving large-scale dial-a-ride vehicle routing and
scheduling problems. PhD thesis, Massachusetts Institute of
Technology, 1984.

[26] J.-J. Jaw, A. R. Odoni, H. N. Psaraftis, and N. H. Wilson. A heuristic
algorithm for the multi-vehicle advance request dial-a-ride problem

with time windows. Transportation Research Part B:
Methodological, 20(3):243–257, 1986.

[27] A. Kleiner, B. Nebel, and V. A. Ziparo. A mechanism for dynamic
ride sharing based on parallel auctions. In IJCAI, pages 266–272.
IJCAI/AAAI, 2011.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In Commun.
ACM, volume 60, pages 84–90, 2017.

[29] Y. Li, Y. Zheng, H. Zhang, and L. Chen. Traffic prediction in a
bike-sharing system. In SIGSPATIAL, pages 33:1–33:10. ACM, 2015.

[30] S. Ma, Y. Zheng, and O. Wolfson. T-share: A large-scale dynamic
taxi ridesharing service. In ICDE, pages 410–421. IEEE, 2013.

[31] S. Ma, Y. Zheng, and O. Wolfson. Real-time city-scale taxi
ridesharing. IEEE Trans. Knowl. Data Eng., 27(7):1782–1795, 2015.

[32] M. Ota, H. T. Vo, C. T. Silva, and J. Freire. Stars: Simulating taxi
ride sharing at scale. IEEE Trans. Big Data, 3(3):349–361, 2017.

[33] J.-F. Rougès and B. Montreuil. Crowdsourcing delivery: New
interconnected business models to reinvent delivery. In 1st
international physical internet conference, pages 1–19, 2014.

[34] Z. B. Rubinstein, S. F. Smith, and L. Barbulescu. Incremental
management of oversubscribed vehicle schedules in dynamic
dial-a-ride problems. In AAAI. AAAI Press, 2012.

[35] D. O. Santos and E. C. Xavier. Dynamic taxi and ridesharing: A
framework and heuristics for the optimization problem. In IJCAI,
pages 2885–2891. IJCAI/AAAI, 2013.

[36] S. Shaheen, A. Cohen, and I. Zohdy. Shared mobility: current
practices and guiding principles. Technical report, 2016.

[37] SUMC. [online] what is shared-use mobility?
https://goo.gl/3Jw6z7, 2018.

[38] R. S. Thangaraj, K. Mukherjee, G. Raravi, A. Metrewar,
N. Annamaneni, and K. Chattopadhyay. Xhare-a-ride: A search
optimized dynamic ride sharing system with approximation
guarantee. In ICDE, pages 1117–1128. IEEE, 2017.

[39] Y. Tong, L. Wang, Z. Zhou, B. Ding, L. Chen, J. Ye, and K. Xu.
Flexible online task assignment in real-time spatial data. PVLDB,
10(11):1334–1345, 2017.

[40] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu. A unified
approach to route planning for shared mobility. PVLDB,
11(11):1633–1646, 2018.

[41] N. H. Wilson, R. Weissberg, B. Higonnet, and J. Hauser. Advanced
dial-a-ride algorithms. Technical report, 1975.

[42] N. H. M. Wilson, R. W. Weissberg, and J. Hauser. Advanced
dial-a-ride algorithms research project. Technical report, 1976.

[43] Y. Xu, Y. Tong, Y. Shi, Q. Tao, K. Xu, and W. Li. An efficient
insertion operator in dynamic ridesharing services. In ICDE, pages
1022–1033. IEEE, 2019.

[44] S. Yeung, E. Miller, and S. Madria. A flexible real-time ridesharing
system considering current road conditions. In MDM, pages
186–191. IEEE Computer Society, 2016.

[45] C. F. Yuen, A. P. Singh, S. Goyal, S. Ranu, and A. Bagchi. Beyond
shortest paths: Route recommendations for ride-sharing. In WWW,
pages 2258–2269. ACM, 2019.

[46] Y. Zeng, Y. Tong, and L. Chen. Last-mile delivery made practical:
An efficient route planning framework with theoretical guarantees.
PVLDB, 13(3):320–333, 2019.

[47] Y. Zeng, Y. Tong, L. Chen, and Z. Zhou. Latency-oriented task
completion via spatial crowdsourcing. In ICDE, pages 317–328.
IEEE, 2018.

[48] J. Zhang, Y. Zheng, and D. Qi. Deep spatio-temporal residual
networks for citywide crowd flows prediction. In AAAI, pages
1655–1661, 2017.

[49] J. Zhang, Y. Zheng, D. Qi, R. Li, and X. Yi. Dnn-based prediction
model for spatio-temporal data. In SIGSPATIAL, pages 92:1–92:4.
ACM, 2016.

[50] L. Zheng, L. Chen, and J. Ye. Order dispatch in price-aware
ridesharing. PVLDB, 11(8):853–865, 2018.

991

http://www.didichuxing.com/
https://download.geofabrik.de/
https://www.meituan.com/
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page/
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page/
https://www.uber.com/
https://goo.gl/3Jw6z7

	Introduction
	Background and Related Work
	Problem Definition
	Basic Notations
	Demand-Aware Route Planning Problem
	Hardness Analysis

	Demand-Supply Balance Score
	The Grid-Based Demand Number Map
	Supply Number Map
	Demand-Supply Balance Score

	Demand-Aware Insertion
	Insertion Operation
	Basic Insertion
	Dynamic Programming Based Insertion
	Check Route Feasibility in O(1) time
	Derive Increased Cost wi in O(1) time
	Demand-Aware Dynamic Programming based Insertion Algorithm

	Demand-Aware Insertion based Dual-Phase Framework
	Decision Phase
	Lower Bound of Minimum Increased Cost
	Demand-Aware Decision Algorithm

	Planning Phase
	Pruning Candidate Workers
	Algorithm Sketch

	Experimental Study
	Experimental Methodology
	Experimental Results

	Conclusion
	References

