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ABSTRACT

Poorly supported stories can be told based on data by cherry-picking

the data points included. While such stories may be technically ac-

curate, they are misleading. In this paper, we build a system for

detecting cherry-picking, with a focus on trendlines extracted from

temporal data. We define a support metric for detecting such trend-

lines. Given a dataset and a statement made based on a trendline,

we compute a support score that indicates how cherry-picked it is.

Studying different types of trendlines and formalizing terms, we

propose efficient and effective algorithms for computing the sup-

port measure. We also study the problem of discovering the most

supported statements. Besides theoretical analysis, we conduct ex-

tensive experiments on real-world data, that demonstrate the valid-

ity of our proposed techniques.
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1. INTRODUCTION
“A lie which is half a truth is ever the blackest of lies.”

– ALFRED, LORD TENNYSON

Fake news is receiving much attention today. Sometimes fake news

may be a complete fabrication. More often, it is based on a grain of

truth, such as a fact reported out of context or analysis on cherry-

picked data [1]. In fact, cherry-picking is prevalent in almost every

controversial domain from tax policy to climate change.

Partisans on one side of an argument look for statements they can

make about trends that support their position. They would like not

to be caught blatantly lying, so they cherry-pick the factual basis for

their conclusion. That is, the points based on which a statement is

made are carefully selected to show a misleading “trendline” that

is not a “reasonable” representation of the situation. Even though

the trendline is not fake, in that it is supported by the selected data

points, it is misleading. In this paper, we study such cherry-picked

trendlines. But first, let us look at a couple of examples.
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EXAMPLE 1 (NORTHERN HEMISPHERE’S TEMPERATURE).

In [2], John Mason explains how cherry-picking short time-frames

can distort the reality of global warming. He uses the monthly cli-

mate data of the year 2012 to support the fantasy-like claim that

THE NORTHERN HEMISPHERE SUMMERS ARE COLDER THAN WINTERS.

Such a statement can be made by selecting two specific time/days in

summer and winter, as well as specific locations in Northern Hemi-

sphere, and comparing the temperatures of the selected locations

in selected time/days: summer was colder than winter in 2012 as,

for example, the (average) temperature1 of Ann Arbor (MI, USA)

on Aug. 18 (a summer day) was 58◦F degrees, whereas its temper-

ature in Mar. 15 (a winter day) was 66◦F.

The end points considered for a trendline may not be readily avail-

able as data points. Instead, they may need to be aggregated over

a period, which could itself be cherry-picked, as we see in the next

example. In fact, even in the example above, the average daily tem-

perature may not so neatly have been materialized, leaving us to

average individual temperature readings, taken ever minutes, over

a period of our choice.

EXAMPLE 2 (GIULIANI’S ADOPTION CLAIM). Wu et al. [3]

provide an example claim made by Rudy Giuliani in the 2007 Re-

publican presidential candidates’ debate that “adoptions went up

65 to 70 percent” in New York City “when he was the mayor”. The

claim considered the total number of adoptions during 1996-2001

v.s. 1990-1995, while Giuliani actually was in office in 1994-2001.

In this paper, we focus on trends derived by comparing a pair of

points in data to make a statement. As we can see from the exam-

ples above, such statements are quite common. 2 There are other,

potentially more robust, methods to find a trendline, such as line

fitting with least squared error. Our focus is restricted to trendlines

based on selected endpoints. The question we ask is whether the

chosen points gives us a “reasonable” trend.

Note that the trendlines are technically “not fake” in that they are

derived from actual data points: our task is to determine whether

the data points were cherry-picked, whether intentionally or by ac-

cident. To this end, we ask what other data points could have been

chosen for a similar analysis. We can then look at the trendlines ob-

tained from all such alternative pairs of points. The trend observed

over these alternatives should not differ by much from the reported

trend if it is stable. In contrast, a trendline is presumed to be cherry-

picked, if it differs greatly from most alternatives considered. Even

if it is not intentionally chosen to mislead, there is no question that

it does mislead its consumers about the observed trend.

1based on www.wunderground.com
2 A detailed discussion about the recent real-life cherry-picking
instances, if those fit to the scope of this paper, and required adjust-
ments is provided in § 9.
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Of course, this begs the question of what alternatives to consider

for the start and end points of a trend line. In the simplest, and

most common case, there are no additional constraints, and we can

define a region around the original start and end points. However,

in other problems, we may have constraints. For example, we may

need the distance between begin and end points to be exactly one

year, or we may need the start point always to be a Monday. We

formally define a rich set of constraints, covering most examples

we have seen in practice.

The set of possible choices can be very large for each end-point.

Therefore, the number of pairs to consider can become impracti-

cal, as in a full cartesian product. We develop efficient algorithms

for computing the support of statements. For unconstrained trend-

lines, we design an exact linearithmic algorithm. Similarly, for

constrained trendlines, we design the proper data structure and an

exact linearithmic algorithm. Next, we use Monte-Carlo methods

and design sampling-based approximation algorithms for comput-

ing support in scale. Providing a negative result, we also propose a

randomized heuristic, effective in practice.

If we believe that a particular statement is cherry-picked, we may

ask what would be an alternative statement with greater support.

Towards this end, we formalize the problem of finding the trendline

statement with the most support in a dataset, We present two formal

definitions, and design algorithms for both. In summary, we make

the following major contributions in this paper:

• We define the notion of support as a metric to identify cherry-

picking in trendlines reported (§ 2).

• We develop efficient exact algorithms to compute support for

different types of trendlines (§ 3 and § 4).

• We develop randomized algorithms based on Monte-Carlo

methods to compute support, efficiently and effectively (§ 5).

• We define the notion of a most supported statement and de-

velop algorithms for discovering it(§ 6).

• We conduct extensive experiments on real-world datasets to

study the efficiency and effectiveness of our proposal, as well

as providing a proof of concept (§ 7).

2. PRELIMINARIES

2.1 Data Model
In this paper, we consider the trend statements derived by com-

paring a pair of points. Consider a dataset D defined over trend

attributes 〈x1, x2, · · · , xd〉 and a target attribute y which is the

“measure of goodness” for each combination of target values. We

use n to refer to the number of tuples in D. The trend attributes

can be continuous or discrete. For instance, consider Example 1.

The trendline attributes are time and location. Location, for ex-

ample, in the form of different countries is discrete, whereas the

location in the form of longitude and latitude is continuous. In

Example 1, the target attribute is temperature. We use a vector

〈p[1], p[2], · · · , p[d]〉 to refer to a point p in the space value combi-

nations for the trend attributes. For every such point p, the notation

y(p) is used to refer to the value of y for p. For instance, in Ex-

ample 1, the vector p = 〈 July 20 2012, Ann Arbor - MI 〉 and

y(p) = 70 show that the temperature of Ann Arbor - MI in July 20

2012 was 70 degrees.

Typically, the dataset D has tuples that comprise both trend and

target attributes. Therefore, given the combination of trend values,

the target value can simply be looked up, for example, by using

an index into the dataset. We allow more general cases where the

target attribute value is somehow determined as a function of the

trend values: this could be additional data collection, a function

computation, or something else. We model this as an oracle that,

given the combination of the trend values returns the target value

for some “cost”. The oracle cost for the traditional dataset model

could be as low as O(1), but in some other situations we may need

to address costly oracles.

2.2 Trendline Statement
We consider trendlines based on selecting a pair of points in the

space of the trend attributes. For example, in Example 1, the trend-

line compares the temperature of Ann Arbor on two different days.

Formally, such a trendline is defined as follows:

DEFINITION 1 (TRENDLINE). For a dataset D, a trendline θ
is a defined as a pair of trend points b (the beginning) and e (the

end) and their target values in the form of θ = 〈(b, y(b)), (e, y(e))〉.

Trendlines can also be made based on an aggregate over the tar-

get values in a window. For instance, consider Example 2. In this

example, year is the trend attribute. For every year p, the target at-

tribute y(p) shows the total number of adoptions in that year. Giu-

liani’s claim is based on the aggregate over a 5-year window. The

aggregate window is identified by its beginning and its width. For

example, the aggregate window 1996-2001 in Example 2 is identi-

fied by the point 1996 and 6 years as the beginning and the length of

the window. Considering a fixed length for the aggregate window,

for every point p, let Y (p) be the aggregate over the values of y(p′)
for all points in the window of p. Using this model, Definition 1

gets generalized for aggregate windows by replacing y(b) and y(e)
by Y (b) and Y (e).

The cases for which the length of the aggregate window is not

fixed can also be modeled by Definition 1, by assigning each win-

dow to its beginning point and adding an extra trend attribute show-

ing the length of the window. For instance, in Example 2, the adop-

tion numbers for the years 1996 to 2002 are (approximately) 3600,

4000, 3800, 3750, 3100, 2700, and 2650 [3]. The window 1996-

2001 is modeled as the point p1 = 〈1996, 6〉 and its target value

(sum) is Y (p1) = 20950. Similarly, the point p2 = 〈1998, 5〉
shows a window of length 5 years that starts at year 1998; com-

puting the sum for this window, Y (p2) = 16000. Note that pre-

processing the data, for the non-holistic aggregate functions such

as sum and mean, while maintaining the moving aggregate, needs

a single scan. Hence for a dataset of n points, it is in O(n).
Following the above discussion, in the rest of the paper, we con-

sider Definition 1 for trendlines for both single value (Example 1)

and aggregate window (Example 2) trendlines.

Next, we define the trendline statements, or simply statements,

as the claims that are made based on the choice of a trendline.

DEFINITION 2 (STATEMENT). Given a trendline θ = 〈(b, y(b)
), (e, y(e))〉, a statement is made by proposing a condition that is

satisfied by the target values y(b)) and y(e). In this paper, we con-

sider the conditions that are made based on the absolute difference

between y(b) and y(e). Formally, given the trendline θ, the state-

ment Sθ is a range (⊥,⊤) such that:

y(e)− y(b) ∈ (⊥,⊤)

For instance, in Example 1 the beginning point of the trendline θ
is b = 〈 Aug. 18 2012, Ann Arbor - MI 〉 with y(b) = 58◦F, and

its end is e = 〈 March 15 2012, Ann Arbor - MI 〉 with y(e) =
66◦F. The statement Sθ:“summer was colder than winter” is made

by proposing a condition: (0, inf), that is satisfied by θ as y(e) −
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y(b) = 66 − 58 > 0. As another example, consider Example 2.

Assuming a fixed window size of 6 years, the trendline θ′ consists

of the beginning point b′ = 1996 and y(b′) = 0.65 (the adoption

rate for a window of 6 years starting at b = 1996 is 65%) and the

end point e′ = 1996 and y(e′) = 0.7. The statement Sθ′ :“adoption

rate went up” is made by proposing a condition: (0, inf), that is

satisfied by θ′, as y(e′)− y(b′) = 0.7− 0.65 > 0.

2.3 Support Model
Given a statement based on a trendline, our task is to determine

whether the trendline is based on cherry-picked data points. For

this purpose, we consider the entire dataset and compute a “sup-

port” measure for the given statement in the dataset. We would like

trendline statements to be well-supported by the data.

So, how should support be defined? Our intuition is that cherry-

picked trendlines are carefully selected and, therefore, may change

by slightly changing the trend points. For instance in Example 1, it

turns out that perturbing the beginning and/or the end points of the

chosen dates by even a few days results in trendlines for which a

summer day is not colder than a winter day, i.e., y(e) − y(b) ≤ 0.

Hence, those trendlines do not support the statement that “summer

was colder than winter”.

Following the above discussion, given a Statement S = (⊥,⊤)
and a trendline θ′ = 〈(b′, y(b′)), (e′, y(e′))〉, we say that θ′ sup-

ports Sθ , if y(e′)− y(b′) ∈ (⊥,⊤).
We name the space of trend points in which the support of a

statement is studied as the support region. In the following, we

provide two possible ways of identifying a region:

(i) Rectangular region: A rectangular region in the space of trend

attributes is defined as a vector of d ranges R = 〈[R⊢[1], R⊣[1]],
· · · , [R⊢[d], R⊣[d]]〉 such that ∀i ∈ [1, d] : p[i] ∈ [R⊢[i], R⊣[i]].
(ii) Circular region: A circular region in the space of trend at-

tributes is identified by a vector ρ = 〈ρ1, ρ2, · · · , ρd〉 and a value

r. It specifies the set of points that have a maximum distance of r
from the vector ρ. In fact, a rectangular support region can be re-

garded as a special case of a circular region, with scaled L∞-norm.

Given a statement S, a support region for S, RS = (R(b), R(e)),
is defined as a pair of disjoint regions, where every trendline θi with

the beginning and end points bi and ei should satisfy the conditions

bi ∈ R(b) and ei ∈ R(e) in order to be considered for computing

the support of S.

A support region may naturally be defined by the statement itself.

For instance, in Example 1, the statement is made on the tempera-

ture of summer versus winter days. This naturally sets the support

region to the set of summer days as R(b), the valid beginnings for

the trendlines, and the set of the winter days as R(e), the set of

end points for them. When the support region of some statement

is not obvious from the statement itself, an appropriate region can

be defined by a domain expert. For instance, in Example 2 it is not

immediately clear if the width of the aggregation window is fixed at

6, or if an aggregation window of other sizes should also be consid-

ered? Also, it is not clear what are the valid years (for defining the

aggregation windows) for the beginning and end of the trendlines.

However, these questions are not difficult to answer for someone

with domain knowledge.

Thus far, we have considered unconstrained support regions.

That is every trendline θ = 〈(b, y(b)), (e, y(e))〉 where b ∈ R(B)
and e ∈ R(E) is “valid” for studying the support of a statement.

We name such trendlines as unconstrained trendlines. However,

for some statements, all possible trendlines drawn in the support

region may not be valid. For instance, consider Example 1. A trend

point is a combination of a location and a date/time. However, a

trendline that compares the temperature of two different locations

on different days does not make sense and sense is not valid. Such

invalid choices must be eliminated from the support region when

computing the support for a statement. We do so by formally spec-

ifying validity constraints.

The two extreme cases based on the validity constraints are:

1. no-constraint: where every trendline θi = 〈(b, y(b)), (e, y(e)
)〉 is valid, as long as its beginning and end points belong to

the support region – i.e., b ∈ R(b) and e ∈ R(e).

2. single-point enforcement: the choice of the beginning point,

enforces the end point to a single point. The trendlines that

are supposed to have a fixed distance between their beginning

and end points fall in this category.

We name the trendlines that require satisfying validity constraints

to be considered for a given statement, as constrained trendlines.

Based on how restrictive the validity constraints are, the choice of

the beginning of the constrained trendline limits the end points for

the valid trendlines. We assume the validity constraints are pro-

vided by the expert. Still, a realistic assumption is that for all start

points, the valid regions in R(e) create a fixed-size window with a

fixed distance from the start points. This, follows a generalization

of the single-point enforcement case, that instead of having a fixed

distance between the beginning and end point, we allow a range

of distances. For instance, in our Example 1, it is like allowing the

comparison in the temperature of the cities, as long as their distance

is within a bounded range; or in Example 2, it is like allowing the

comparison between the adoption rate of the years, so long as their

differences are at least 4 and at most 6 years.

We define the support of a statement as the proportion of (valid)

trendlines in R(b) and R(e) for which their target value difference

remains within the acceptable range. Formally:

DEFINITION 3 (SUPPORT FOR A STATEMENT). Given a data

set D, a statement S = (⊤,⊥), and a support region RS =
(R(b), R(e)), the support for S is

ω(S,RS ,D) =

vol({valid 〈p ∈ R(b), p′ ∈ R(e)〉 | y(p′)− y(p) ∈ (⊥,⊤)})
vol({valid 〈p, p′〉 | p ∈ R(b), p′ ∈ R(e)})

The denominator in Definition 3 is the universe of possible valid

trendlines from R(b) and R(e). For unconstrained trendlines, this

is the product of the “volume” of R(b) and that of R(e):

vol({〈p, p′〉 | p ∈ R(b), p′ ∈ R(e)}) =
∫

R(b)

∫

R(e)

dxedxb

=

∫

R(b)

dx

∫

R(e)

dx

= vol(R(b))× vol(R(e)) (1)

Having the terms formally defined, next we shall formulate the

problems we address in this paper.

2.4 Problem Formulation
In this paper, our goal is to design a system for detecting cherry-

picked trendlines. To do so, we compute the support for a statement

based on Definition 3. Formally:

PROBLEM 1. Given a dataset D, a trendline statement S, and

a support region RS , compute ω(S,RS).

While the main focus of the paper is on efficiently addressing

Problem 1, we also aim to find the statement with the highest sup-

port. We consider two formulations for the problem:
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PROBLEM 2. Most Supported Statement (MSS) for a fixed range:

Given a dataset D, a value d, and a support region RS find the

statement S = (⊥,⊥+ d) with the maximum support. Formally,

max ω(S(⊥,⊤), RS)

s.t. ⊤−⊥ = d

Given a fixed width for the support statement range, Problem 2

aims to find the most supported statement. An orthogonal alterna-

tive is to fix the support value. Obviously any trendline supports the

range (−∞,∞). Hence, the support of the statement S(−∞,∞)
is always 1. However, this does not provide any information about

the trend since its range is too wide. The tighter the range of a

statement is, the more restrictive, and hence more informative, it

is. Therefore, in Problem 3, our goal is to find the tightest state-

ment with a given support value. Formally, we define the “tightest

statement (TS) for a given support” problem as following:

PROBLEM 3. Tightest Statement (TS) for a given support: Given

a dataset D, a support region RS , and a value 0 < s ≤ 1, find the

statement S = (⊥,⊤) such that S(S) ≥ s and ⊤−⊥ is minimized.

Formally, min ⊤−⊥
s.t. ω(S(⊥,⊤), RS) ≥ s

Considering Problem 1 as the main focus of this paper, first in

§ 3 we provide an efficient exact solution for Problem 1, for uncon-

strained trendlines. We will introduce constraints in § 4. Later on,

in § 5 we propose sampling-based approaches for approximating

the support. We will study Problems 2 and 3 in § 6.

3. UNCONSTRAINED TRENDLINES
In this section we aim to design an efficient exact algorithm for

the computation of the support of unconstrained trendline state-

ment. In the following, we first propose a baseline algorithm that

leads to the design of our efficient algorithm in § 3.2.

3.1 Baseline algorithm
First, let us take a careful look at Definition 3, especially the

numerator of the equation. The numerator can be rewritten as a

conditional integral as follows:

vol({〈p ∈ R(b), p′ ∈ R(e)〉 | y(p′)− y(p) ∈ (⊥,⊤)})

=

∫

R(b)

(

∫

{dx∈R(e) | y(dxe)−y(dxb)∈(⊥,⊤)}
dxe

)

dxb (2)

Consider the partitioning of the space into the Riemann pieces

(the data records in the dataset D). For a trend point dxb, let

Rdxb
(e) be the points in R(e) where y(dxe) − y(dxb) ∈ (⊥,⊤).

Then, Equation 2 can be rewritten as the following Riemann sum:
∑

∀dxb∈R(b)

dxb(
∑

∀dxe∈Rdxb
(e)

dxe) (3)

Consider the example in Figure 1. The horizontal axis shows

the trend attribute x while the vertical axis shows y. The trend-

line of interest is specified by the vertical dashed lines; the left

green region identify R(b) while the one in the right shows R(e),
and the curve shows the y values. In this example, the range of

the statement S is (α,∞). A point dxb in R(b) is highlighted in

red in the left of the figure. For dxb, all points dxe ∈ R(e) for

which y(dxe) − y(dxb) > α support S, forming Rdxb
(e) (high-

lighted in red in the right-hand side of the figure), and therefore,

are counted for dxb. The summation of these counts for all points

in R(b) computes the numerator of Equation 3. Following this,

Algorithm 1 BASELINE

Input: statement S = (⊥,⊤), support reg RS = 〈R(b), R(e)〉
Output: ω(S,RS)

1: cnt = 0
2: for dxb in R(b) do

3: for dxe in R(e) do

4: if y(dxe)− y(dxb) ∈ (⊥,⊤) then cnt = cnt+ 1
5: end for

6: end for

7: return cnt
vol(R(b))×vol(R(e))

the baseline solution (Algorithm 1), sweeps a vertical line from left

to right through R(b) and counts the acceptable points inR(e) for

each dxb (similar to highlighted dxb and Rdxb
in Figure 1).

Clearly, comparing each pair of points in R(b) and R(e), Algo-

rithm 1 is quadratic in the number of items in dataset, i.e. O(n2).
Next, we show how an observation about R(b) and R(e) lead to

the design of a linearithmic algorithm.

3.2 Efficient exact algorithm
For each point dx[i] in R(b), the baseline algorithm makes a

pass over R(e) to find the set of points that, together with dx[i],
support the statement S, and therefore, is quadratic. In this section,

we seek to design an algorithm that passes through R(b) and R(e)
independently.

Consider Equation 3 once again. For a point dx[i] in R(b), let

w[i] be the number of points in R(e) where y(dxe) − y(dx[i]) ∈
(⊥,⊤) , i.e.

∑

∀dxe∈Rdx[i](e)
dxe. Then, Equation 3 can be rewrit-

ten as: ∑

∀dx[i]∈R(b)

w[i] (4)

For example, in Figure 1, the weight of the point dxb is the width

of the red rectangle Rdxb
(e). In the following, we show how the

construction of a cumulative function for R(e) enables efficiently

finding the corresponding weights for the points in R(b).
Let us consider the example of Figure 1 once again. Let dx[1]

to dx[n′] be the set of points in R(b), from left to right. Fig-

ure 2 shows three points dx[i], dx[j], and dx[k] where y(dx[i]) <
y(dx[j]) < y(dx[k]). It also highlights Rdx[i](e), Rdx[j](e), and

Rdx[k](e) in the right. Note that Rdx[i](e) consists of two disjoint

rectangles. Looking at the figure, one can confirm that Rdx[k](e) is

a subset of Rdx[j](e) and Rdx[j](e) is a subset of Rdx[i](e). Since

all points in Rdx[k](e) belong to Rdx[j](e) and Rdx[i](e), we don’t

need to recount those points three time for dx[i], dx[j], and dx[k].
Instead, we could start from dx[k], compute its width, move to

dx[j], only consider the parts of Rdx[j](e) that is not covered by

Rdx[k](e), i.e. Rdx[k](e)\Rdx[k](e), and set w[j] as w[i] plus the

width of the uncovered regions by Rdx[k](e). Similarly, in an in-

cremental manner, we could compute w[i], as we sweep over R(e).
Following the above discussion, if we could design a “cumula-

tive” function F : R → R, that for every value y, returns the

number of points dx in R(e) where y(dx) < y, we could use it to

directly compute the weights for the points in R(b). Formally, we

seek to design the following function F :

F (y) = |{dx ∈ R(e) | y(dx) < y}| (5)

Given such a function F , the weight of the point dx[i] ∈ R(b)
can be computed as following:

w[i] = F
(

y(dx[i]) +⊤
)

− F
(

y(dx[i]) +⊥
)

(6)
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Figure 1: Illustration of a point dxb and the set of
points in R(e) for which y(dxe)− y(dxb) ≥ α.

Figure 2: Illustration of weights for three points
dx[i], dx[j], and dx[k] in the example of Figure 1.

Figure 3: Illustration of the sliding window in
R(b) for constrained trendlines.

Algorithm 2 EXACTu

Input: statement S = (⊥,⊤), support reg. RS = 〈R(b), R(e)〉
Output: ω(S,RS)

1: F = [ ]
2: for dx in R(e) do add y(dx) to F

3: sort F descending ; cnt = 0
4: for dx in R(b) do

5: i1 = binary search(y(dx) +⊥,F)
6: i2 = binary search(y(dx) +⊤,F)
7: cnt = cnt+ (i2 − i1)
8: end for

9: return cnt
vol(R(b))×vol(R(e))

But first, we need to implement the function F . We use a sorted

list F for the implementation of F . F contains the target values in

R(e) such that the i-th element in F shows the y value for the i-th
largest point in R(e).

Having the target values sorted in F, in order to find F (y), it is

enough to find index i for which F[i] < y and F[i+ 1] ≥ y. Then,

F (y) = i. That is because, for all j ≤ i: F[j] < y, while for

all j > i: F[j] ≥ y. Therefore, the number of points for which

y(x) < y is equal to i. Also, since the values in F are sorted, we

can use binary search for finding the index i.
In order to compute the weight of a point point dx ∈ R(b) using

the Equation 6, Algorithm 2 conducts two binary searches on F. It

uses the sums of the weights and calculate ω(S,RS).
As explained above, the EXACTu algorithm (Algorithm 2) has

two phases: (i) constructing the sorted list F, and (ii) parsing over

the points in R(b) and calculating the support. (i) is in O(n log n).
In (ii), for each point in R(b), the algorithm runs two binary searches

over the array F (of size n) and, therefore, is again in O(n log n).
Hence, the EXACTu algorithm is in O(n log n).

Having designed the efficient algorithm for unconstrained trend-

lines, next we extend it to constrained trendlines in § 4.

4. CONSTRAINED TRENDLINES
So far, our focus was on the unconstrained trendlines, where

θ = 〈(b, y(b)), (e, y(e))〉 is valid, so long as its beginning and end

points belong to the support region – i.e., b ∈ R(b) and e ∈ R(e).
In this section, we consider computing the support of the state-

ments that are based on constrained trendlines. Recall that the

single-point enforcement is the extreme case of constrained trend-

lines where the choice of the beginning point, enforces the end

point to a single point. Computing the support for these cases is

straightforward. To do so, given a support statement S = (⊥,⊤)
over the support region RS = (R(b), R(e)), it is enough to make

a pass over the points in R(b), for each point b ∈ R(b) find its cor-

responding point e ∈ R(e), and count up if y(e)− y(b) ∈ (⊥,⊤).
This simple algorithm is linear in the size of R(b).

A similar approach also works for the less extreme constrained

trendlines. For a point b ∈ R(b), let Rb(e) be the set of valid points

in R(e). One can make a pass over R(b), and for each point b ∈
R(b) find Rb(e). Then, it is enough to, for each b ∈ R(b), count the

number of trendlines that support S. This algorithm, apparently, is

efficient when the size of Rb(e) is small. Especially, when Rb(e)
is a small constant, just like the single-point enforcement case, the

algorithm is linear to the size of R(b). The problem is, however,

when Rb(e) is a considerably large portion of R(e). For example,

for the constrained trendlines with more freedom where |Rb(e)| is

in O(n), the algorithm becomes quadratic, i.e., O(n2) – just like

our baseline in § 3.1.

Our aim in this section is to maintain the linearithmic perfor-

mance. We note that if |Rb(e)| ≤ O(log n), the baseline solution

is in O(n log n); that is, it already is efficient.

In § 3.2, we proposed the construction of the cumulative func-

tion F . The cumulative function gave us the advantage to, for ev-

ery point b ∈ R(b), find the number of points in e ∈ R(e) that

θ = 〈b, e〉 supports the statement S. Recall that we use a sorted

list, containing the objective values of the points in R(e), for the

development of F . Then, every call of F is equivalent with con-

ducting a binary search on the list, and, hence, is in O(log n). This

method becomes problematic for the constrained trendlines, as not

all the elements in F correspond to a valid point Rb(e). One still

could make a pass over F and filter out the invalid points, and then

apply the binary search. However, requiring a pass over F , this

reduces the performance of F to O(n), dropping the overall per-

formance of the algorithm to O(n2).
The other alternative is to consider Rb(e) as a sliding window

while sweeping over R(b). That is, to initially find Rb(e) for a

(corner) point in R(b), and to move Rb(e), as a sliding window,

while sweeping b (Figure 3). Then, initially constructing the sorted

list of objective values for the first region Rb(e), while sliding the

window, one can update the list by removing the points that are no

further valid, and adding the new points in R(e) that become valid.

Maintaining the objective values of the points inside the window,

however, is problematic when there are updates. That is because

every insert or delete into the list requires to shift the values in the

array which makes the performance of each count linear in |Rb(e)|,
even though the binary search is still in O(log n). Alternatively,

one could use a heap data structure for maintaining the sorted list.

However, even though the operations are efficient in heap, it is not

possible to conduct a binary search of O(log n) on it. This again,

makes the final algorithm quadratic.

In order to develop the sliding window strategy, we need to be

able to update (both insert and delete) and also the search in a log-

arithmic time. The quick answer is a balanced binary search tree.

Red-black trees (RBT) [4], is balanced binary search tree (BST)

that has a logarithmic run-time for insert, delete, and also search.

But there still is a small issue. Search in a BST checks the existence
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Figure 4: A sample red black tree in which every node contains the size of
its left sub tree (including the node itself).

of an item in the list and if not a pointer to the location it can get

inserted. We, instead need to count the number of elements smaller

than the queried value in the tree. Given a BST, one would need to

iterate over its nodes in the “left-hand side” of the key, in order to

find the number of nodes with smaller value.

In the following, we show how we adapt BST for finding the

counts efficiently. The central idea is that if the nodes of the BST,

in addition to the node value, maintain the size of their left sub-tree,

then counting the number of nodes in the left-hand side of the key is

doable in logarithmic time. Consider the sample RBT in Figure 4.

Note that, in addition to the node values, every node contains the

count of its left sub tree (including the node itself). In order to count

the number of nodes smaller than a given key value, starting from

the root and following the path for finding the key, it is enough to

add up the count values for the nodes with smaller values than the

key. For instance, in Figure 4, let the key be 8, that is, the goal is

to compute F (8). Let sum (initially 0) be the variable containing

the sum of counts. The traverse starts from the root and since its

value (6) is smaller than the key (8), its count value is added to sum

making its value 4. It then moves to the right child of the root with

the value of 10. Since 10 > 8, it then moves to its left child (8.1)

and since that also is larger than 8, moves to its left child with value

7. Then, because 7 < 8, it adds its count value to sum making it

4 + 1 = 5. The algorithm then stops since this node does not have

a right child, returning F (8) as 5.

The only remaining issue here is updating the counts while up-

dating the red-black tree. The RBT does not originally contain the

count, and does not consider it while updating the tree. Similar to

the search operation, insertion and deletion operations, traverse the

RBT from the root, while at each iteration conducts constant num-

ber of “rotation” operations (for further details please refer to [4]).

Rotation is a local operation changing O(1) pointers in the tree.

Every rotation operation may change the structure of the tree by

moving the entire sub-tree under a node to another node. There-

fore, assuming that every node maintains the the size of its left

sub-tree (including itself), updating the counts for on each rotation

is also in O(1) – without the need to traverse over the sub-trees.

Consequently, adding the count values to the nodes of RBT does

not affect its logarithmic update time.

Having the proper data structure for developing the sliding win-

dow strategy, Algorithm 3 shows the pseudocode of EXACTc, the

efficient algorithm for computing the support of statement with

constrained trendlines. If the constraints on the validity of trend-

lines are restrictive enough that makes the size of Rb(e) less than

log n, then we follow the baseline strategy for computing the sup-

port, which gives a performance of O(n log n). Otherwise, the al-

gorithm uses the RBT (with count values) data structure, illustrated

in Figure 4. Then, starting from the left-most point in R(b), it fol-

lows the sliding window strategy, keeping the RBT up-to-date, as

it moves the window. Let the number updates to RBT upon mov-

ing the window be k. Then the algorithm needs to conduct O(k)
updates per move, making its overall run-time in O(k n log n).

So far in § 3 and 4, we designed efficient exact algorithms that, as

Algorithm 3 EXACTc

Input: statement S = (⊥,⊤) and support region RS = 〈R(b), R(e)〉
Output: ω(S,RS)

1: cnt = 0, vol = 0
2: if size of valid region for a point b ∈ R(b) ≤ O(log n) then

3: for b′ ∈ R(b) do

4: Rb′(e) = {e′ ∈ R(e) | 〈b′, e′〉 is a valid trendline}
5: vol = vol + |Rb′(e)|
6: for e′ ∈ Rb′(e) do

7: if y(e′)− y(b′) ∈ (⊥,⊤) then cnt = cnt+ |Rb′(e)|
8: end for

9: end for

10: return cnt
vol

11: end if

12: RBT = new red-black tree

13: b′ = the left-most point in R(b)
14: for e′ ∈ Rb′(e) do add(RBT, y(e′))
15: while true do

16: vol = vol + |RBT|
17: i1 = count smaller(RBT, y(b′) +⊥)
18: i1 = count smaller(RBT, y(b′) +⊤)
19: cnt = cnt+ (i2 − i1)
20: b′ = sweep to next (b′, R(b))
21: if b′ = null then break

22: X1 = the points to be removed from RBT

23: for e′ ∈ X1 do remove(RBT, y(e′))
24: X2 = the points to be added to RBT

25: for e′ ∈ X2 do add(RBT, y(e′))
26: end while

27: return cnt
vol

we shall demonstrate in § 7, run well for the large settings. How-

ever, for the very large settings, the exact algorithms may not be

very efficient. On the other hand, as an aggregate value, the user

may prefer a quick, yet accurate, estimation of the support over

waiting for the exact value. She therefore, may be willing to trade-

off accuracy with efficiency. Following this, next in § 5, we seek

to design a sampling-based algorithm for estimating the support of

trendline statements.

5. RANDOMIZED ALGORITHM
In very large settings where the number of points in R(b) and

R(e) is significant, or in the absence of explicit target values where

acquiring the data is costly, exact algorithms may not be efficient.

On the other hand, a precise-enough estimation of the support of

a statement may give a good idea of whether or not it is cherry-

picked. Hence a user may prefer to quickly find the estimate, rather

than spending a significant amount of time for finding out the exact

values. In this section, we seek to design a Monte-Carlo method [5,

6] for estimating the support of a statement.

Monte-Carlo methods use repeated sampling and the central limit

theorem [7] for solving deterministic problems. Based on the law

of large numbers [7], the mean of independent random variables

can serve for approximating integrals. That is because the ex-

pected number of occurrence of each observation is proportional

to its probability. At a high level, the Monte-Carlo methods work

as follows: first, they generate a large enough set of random inputs

based on a probability distribution over a domain; then they use

these inputs to estimate aggregate results.

In the following, we first, § 5.2, propose the PAIRSAMPLING al-

gorithm that is based on sampling pairs of points from R(b) to R(e)
and works both for unconstrained and constrained trendlines. Then,
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Algorithm 4 PAIRSAMPLING

Input: statement S = (⊥,⊤), support region RS = 〈R(b), R(e)〉, a
dataset D, the sampling budget N , confidence level α

1: cnt = 0
2: for i = 1 to N do

3: p = a uniform sample from R(b)
4: p′ = a uniform sample from Rp(e)
5: if (y(p′)− y(p)) ∈ (⊥,⊤) then cnt = cnt+ 1
6: end for

7: mξ = cnt
N

8: e = Z(1− α
2
)
√

m (1−m)
N

9: return mξ, e

we will provide POINTSAMPLING in § 5.2 for unconstrained trend-

lines that sample independent points R(b) and R(e). Although

both PAIRSAMPLING and POINTSAMPLING provide unbiased es-

timations, we provide a negative theoretical result about the vari-

ance of POINTSAMPLING. Still as we shall show in in § 7, in

all of our experiments, for a fixed sampling budget, POINTSAM-

PLING provided low variance estimations, tighter than PAIRSAM-

PLING. POINTSAMPLING provides better estimations when sam-

pling is costly and the number of samples are limited.

5.1 Pair sampling
PAIRSAMPLING is a monte-carlo estimation algorithm that fol-

lows the idea of drawing independent trendline samples for esti-

mating the support of a statement (both unconstrained and con-

strained). Consider the trendline statement S = (⊥,⊤) with the

support region RS = 〈R(b), R(e)〉. The universe of possible

trendlines from R(b) to R(e) is the set of valid pairs 〈p, p′〉 where

p ∈ R(b) and p′ ∈ R(e). Let ω be the support of S in the re-

gion RS , i.e., ω(S,RS). For each uniformly sampled pair 〈p, p′〉,
let the random Bernoulli variable x〈p,p′〉 be 1 if y(p′) − y(p) ∈
(⊥,⊤), 0 otherwise. The probability distribution function (pdf) of

the Bernoulli variable x is:

p(x) =

{

ω x = 1

1− ω x = 0
(7)

The mean and the variance of a Bernoulli variable with the suc-

cess probability of x is µ = ω and the variance is σ2 = ω (1−ω),
respectively. For every set ξ of N iid (independent and identically

distributed) samples taken from the above binary variable x, let mξ

be the random variable showing the average of ξ. Using the central

limit theorem, mξ follows the Normal (AKA Gaussian) distribution

N
(

µ, σ√
N

)

– the Normal distribution with the mean µ and standard

deviation σ√
N

.

Given a confidence level α, the confidence error e identifies the

range [mξ − e,mξ + e] where:

p(mξ − e ≤ µ ≤ mξ + e) = 1− α (8)

Using the Z-table:
e = Z(1− α

2
)

σ√
N

(9)

For a large enough value of N , we can estimate σ as
√

mξ (1−mξ).
Hence, Equation 9 can be rewritten as:

e = Z(1− α

2
)

√

mξ (1−mξ)

N
(10)

Following the above discussion, the algorithm PAIRSAMPLING

(Algorithm 4) uses a budget of N sample trendlines from RS to es-

timate the support ω(S,RS). The algorithm computes mξ by ratio

of samples that support S. It then computes the confidence error e,

using Equation 10 and returns mξ and e. It is easy to see that, since

the algorithm linearly scans over N samples, it is running time is

in the order of O(N).
An observation is that, in order to take N trendline samples,

PAIRSAMPLING takes N independent samples from R(b) and also

N from R(e). It, however, does not reuses the sampled points, as it

intends to draw independent trendline samples. Although, reusing

the points would increase the number of sampled trendlines. Next,

we propose POINTSAMPLING, the algorithm that reuses the sam-

pled points to get N2 sample trendlines.

5.2 Point sampling, a practical solution
PAIRSAMPLING works by drawing independent trendline sam-

ples; hence it does not reuse sampled points from R(b) and R(e).
Reusing the sampled points could result in more trendline samples

and would have the potential to reduce the estimation error.

Let B be a set of N iid random samples from R(b) and E a set of

N iid random samples from R(e). The combinations of the points

in B and E generate N2 Bernoulli samples based on Equation 7

which may result in more accurate estimations. POINTSAMPLING

uses this idea. It uses the these N2 samples and returns their av-

erage as its estimation for support. In the following, we first pro-

vide an efficient development of the POINTSAMPLING algorithm.

Then, we show the negative result that, even though the number of

samples increase to N2, since the sampled pairs are not indepen-

dent, POINTSAMPLING may not necessarily generate more accu-

rate results. Still, POINTSAMPLING is effective when the sampling

budget is limited, or sampling is costly. As we shall show in § 7,

POINTSAMPLING had a lower variance than PAIRSAMPLING in all

experiments we conducted with a fixed sampling budget.

5.2.1 Algorithm Development

The straight-forward development would literally generate all

N2 pairs between B and E, and similar to Algorithm 4 compute

the ratio of pairs for which (y(p′) − y(p)) ∈ (⊥,⊤) to all pairs.

This, however, is in O(N2), simply because there are N2 pairs it

iterates over.

Instead, in the following we propose the efficient implemen-

tation, similar to Algorithm 2, which is linearithmic to N , i.e.,

O(N logN). Note that for every sample point b in B our ob-

jective is to find the number of points e in E such that y(e) ∈
(⊥ + y(b),⊤ + y(b)). That is the number of points in E with

the objective value of less than ⊤ + y(b) minus the ones with the

objective value of less than ⊥+ y(b).
Similar to Algorithm 2, we first design the “cumulative” function

F : R → R, that for every value y returns the number of points e
in E where y(e) < y. Given the objective values of the points in

E, the sorted list of these values represent F. Then, finding a value

F (y) is possible by applying a binary search on F. Algorithm 5

shows the development of POINTSAMPLING using this strategy.

5.2.2 Variance Analysis

In the following we study the variance of POINTSAMPLING. We

will show that, even though reusing the sampled points increase

the number of samples to N2, due to the dependency between the

samples, the variance will not necessarily drop.

Let b1, · · · , bN be the set of points sampled from R(b) and

e1, · · · , eN be the ones sampled from R(e). Also, let xi,j be the

Bernoulli variable based on Equation 7, defined over the sample
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Algorithm 5 POINTSAMPLING

Input: statement S = (⊥,⊤), support region RS = 〈R(b), R(e)〉, a
dataset D, the sampling budget N , confidence level α

1: for i = 1 to N do

2: add a uniform sample from R(b) to B
3: add a uniform sample from R(e) to E
4: end for

5: F = sorted(y(E[1]) · · · y(E[N ]))
6: cnt = 0
7: for i = 1 to N do

8: i1 = binary search(y(B[i]) +⊥,F)
9: i2 = binary search(y(B[i]) +⊤,F)

10: cnt = cnt+ (i2 − i1)
11: end for

12: mξ = cnt

N2

13: return mξ

points bi and ej . Recall that the mean and the variance of such vari-

able is µx = ω and σ2
x = ω(1 − ω). Using these m = N2 trend-

line samples, POINTSAMPLING outputs the averages xi,j , ∀i, j ∈
[1, N ]× [1, N ]. Using these notations, we compute the variance of

the average of x1,1 to xN,N . That is:

V ar[
1

m

m
∑

i=1

xi] =
1

m2

(

E[(
m
∑

i=1

xi)
2]− E[

m
∑

i=1

xi]
2)

=
1

m2

(

m σ2
x +

m
∑

i=1

m
∑

j=1 6=i

Cov(xi, xj)
)

(11)

Based on Equation 11, the variance of POINTSAMPLING de-

pends on the covariances between the sample pairs. For a sam-

ple pairs x = xi,j and x′ = xi′,j′ where i 6= i′ and j 6= j′,
Cov(x, x′) = 0, simply because those are independent, as bi, bi′ ,
ej , and ej′ are drawn independently.

For the pairs where i = i′ or j = j′, though, the covariance

is not zero3. Consider the pairs x = xi,j and x′ = xi,j′ (the

covariance for x = xi,j and x′ = xi′,j is also the same):

Cov(x, x′) = E[x x′]− E[x]E[x′]

= E[xi,jxi,j′ ]− E[xi,j ]E[xi,j′ ]

= E[xi,jxi,j′ ]− ω2
(12)

Using γ to show E[xi,jxi,j′ ] (and E[xi,jxi′,j ])
4:

Cov(x, x′) = γ − ω2

Every sample point bi, ∀i = 1 to N , there are N Bernoulli vari-

ables, xi,1 to xi,N , that share bi. Hence, for each i, there are
N(N−1)

2
pairs xi,j and xi,j′ where covariance is not zero. Simi-

larly, every sample point ej , ∀j = 1 to N , there are N Bernoulli

variables, x1,j to xN,j , that share ej , giving
N(N−1)

2
pairs with

non-zero covariances. Excluding the pairs that share both bi and

ej , there totally are 2N · N(N−1)
2

= N2(N − 1) pairs for which

covariance is not zero. Therefore:

m
∑

i=1

m
∑

j=1 6=i

Cov(xi, xj) = N2(N − 1)(γ − ω2) (13)

3
Note that either i 6= i′ or j 6= j′, as otherwise x and x′ are the same

4
γ = E[xi,jxi,j′ ] is the probability that for a random sample bi from

R(b) and two independent random samples ej and ej′ from R(e), both

y(e)− y(b) ∈ [⊥,⊤] and y(e)− y(b′) ∈ [⊥,⊤].

Consequently:

V ar[
1

m

m
∑

i=1

xi] =
1

m2

(

m σ2
x +N2(N − 1)(γ − ω2)

)

=
1

N2

(

ω(1− ω) + (N − 1)(γ − ω2)
)

(14)

Assuming that sampling is in O(1), the computation cost be-

tween PAIRSAMPLING with N logN independent pairs of points

is equal to the cost of POINTSAMPLING with the budget N . Hence,

for a similar computation cost, POINTSAMPLING has a better vari-

ance than PAIRSAMPLING, if:

1

N2

(

ω(1− ω) + (N − 1)(γ − ω2)
)

<
ω(1− ω)

N logN
(15)

Substituting the variables:

(N − 1) logN

N − logN
<

ω(1− ω)

γ − ω2
(16)

Let ϕ(S) = ω(1− ω)/(γ − ω2), then:

N − 1

N − logN
logN < ϕ(S) (17)

Note that ϕ(S) is a function of the input statement S. Based on

Equation 17, assuming that sampling has a constant cost, for a fixed

time budget, PAIRSAMPLING is preferred over POINTSAMPLING,

unless the time is very limited. On cases that sampling is costly,

though, as we shall show in § 7, POINTSAMPLING is a better al-

ternative, as in all of our experiments it outperformed PAIRSAM-

PLING when both used N as the sampling budget.

6. MOST SUPPORTED STATEMENT
So far in this paper, we studied the verification problem: given

a statement, compute its support based on the data. Suppose the

statement has a low support. An immediate follow-up question one

may ask is: if not this, what is the right statement supported by

the data? For example, consider the statement of Example 1 that

in 2012 the Northern Hemisphere summer days were colder than

winters. In §7.2 we shall show that this statement has a very low

support. After providing this information, a natural question would

be: what is the statement supported by data? Answering this ques-

tion is our focus in this section. That is, instead of providing blind

support numbers, we provide extra information that can be viewed

as explanation to the user by comparing what is supported by data

v.s. what has been stated. Specifically, we aim to find the statement

(with a fixed range) that has the maximum support (problems 2)

and the statement (with minimum range) for a specific support (§2).

For instance, using Example 1 in § 7.2, we shall find statements

with support of 80% across different cities in Northern Hemisphere.

Finding most supported statements is challenging. That is because

a brute force solution needs to generate all possible statements

and check the support for each using the techniques provided in

the previous sections. Let ymin and ymax be min( y(R(e))) and

max(y(R(e))) respectively. For MSS, (ymax − ymin) provides a

lower bound for ⊥ and (ymax − ymin − d) is an upper bound for

it. The brute-force algorithm can start from the lower bound, check

the support of S(⊥,⊥ + d), increase the value of ⊥ by a small

value ǫ, check the support of the new statement, repeat this process

until ⊥ reaches the upper bound, and return the statement with the

maximum support. Note that in addition to the efficiency issue, this

algorithm cannot guarantee the discovery of the optimal solution,

no matter how small ǫ is.
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Algorithm 6 TS

Input: RS = 〈R(b), R(e)〉, D, a support value s

1: for b′ ∈ R(b) do

2: for valid e′ in Rb′(e) do add y(e′)− y(b′) to ℓ
3: end for

4: sort ℓ; δ = s× |ℓ|, min = ∞
5: for i = 1 to |ℓ| − δ do

6: if min > ℓ[i+ δ]− ℓ[i] then

7: min = ℓ[i+ δ]− ℓ[i]; S = (ℓ[i], ℓ[i+ δ])
8: end if

9: end for

10: return S,min

Algorithm 7 MSS

Input: RS = 〈R(b), R(e)〉, D, a statement range width d

1: for b′ ∈ R(b) do

2: for valid e′ in Rb′(e) do add y(e′)− y(b′) to ℓ
3: end for

4: sort ℓ; max = 0
5: for i = 1 to |ℓ| do

6: j =b-search(ℓ, i,|ℓ|,key = ℓ[i] + d)

7: if j = −1 /*not found*/ then break

8: if max < (j − i) then

9: max = (j − i); S = (ℓ[i], ℓ[j])
10: end if

11: end for

12: return S,max/|ℓ|

Instead, we first create the “sorted distribution of trendlines”.

That is, we create a sorted list ℓ (from smallest to largest) where

every value is the difference between the target values of a valid

trendline. We shall show that it enables answering both MSS and

TS. Constructing ℓ requires passing over the pairs of trendlines and

then sorting them. Given that the number of pairs is in O(n2),
constructing the ordered list is in O(n2 log n).

Finding the tightest statement for a given support value, using ℓ,
requires a single pass over the list. Algorithm 6 shows the pseudo-

code for finding TS. Starting from the beginning of the list, the

algorithm moves a window of size δ = |ℓ| × s over the list. Note

that the window i (the window at step i) identifies a set of δ trend-

lines having the indices from i to i + δ in the sorted list. Also,

all trendlines in the list support the statement S = (ℓ[i], ℓ[i + δ]).
Moreover, since s = δ/|ℓ|, ω(S(ℓ[i], ℓ[i + δ])) ≥ s. Using this

observation, while moving the sliding window over ℓ, at every step

the algorithm measures ℓ[i+δ]− ℓ[i] as the tightness of the current

statement. The algorithm keeps track of the tightest statement and

if ℓ[i+δ]−ℓ[i] is smaller than this value, it updates the tightest state-

ment to i. After sweeping the window over ℓ, the algorithm returns

TS. Obviously sweeping the window over ℓ is in O(|ℓ|) = O(n2).
Therefore the total running time of the algorithm is determined by

the construction of ℓ, i.e., O(n2 log n).
Finding MSS using ℓ is also possible, applying a similar process.

The idea for MSS is also to slide a window over ℓ. The difference,

however, is that the window size is not fixed anymore. Recall that

every value in ℓ represents the target-value difference of a valid

trendline. For a fixed statement range, the support window should

contain all trendlines that their target-value differences belong to

the statement range; hence, the window size is variable. The algo-

rithm for finding MSS is provided in Algorithm 7. Starting from

the beginning of ℓ the algorithm sweeps a window over ℓ. In every

step i, it applies a binary search over ℓ to find the index j, such
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Figure 5: Support of Northern Hemisphere’s Temperature Statement in
2012 (Example 1) for different cities

that (ℓ[j] − ℓ[i]) ≤ d while (ℓ[j + 1] − ℓ[i]) > d. The support

of the statement identified by the current window is (j − i)/|ℓ|. In

the end, the window with the maximum size (therefore maximum

support) is returned. Applying a binary search at every step, this

algorithm is in O(n2 log n).

7. EXPERIMENTS

7.1 Experiments setup
The experiments were conducted using a 3.8 GHz Intel Xeon

processor, 64 GB memory, running Linux. The algorithms were

implemented using Python 2.7.

We use the following real datasets in our experiments:

I. Carbon Dioxide Levels (CO2) [8]: Using data from Earth Sys-

tem Research Lab [9], this dataset contains Atmospheric Carbon

Dioxide Dry Air Mole Fractions from quasi-continuous daily mea-

surements at Mauna Loa, Hawaii. It contains 19,127 records from

Mar. 1958 to Feb. 2019, over the attributes date and price.

II. Weather dataset (WD) [10]: Collected from the OpenWeath-

erMap website5, it contains the historical weather data between the

years 2012-2017 over various weather attributes, for 36 cities in

US, Canada, and Israel. For each city, the dataset contains 42,253

records, each containing hourly weather measurements such as tem-

perature, humidity, and air pressure.

III. US Department of Transportation flight dataset (DOT) [11]:

This dataset is widely used by third-party websites to identify the

on-time performance of flights, routes, airports, and airlines. Af-

ter removing the records with missing values, the dataset contains

457,892 records, for all flights conducted by the 14 US carriers in

the last month of 2017. Each record contains measurements such

as Air-time, Distance, and Arrival-Delay.

IV. Stock dataset [12]: This is our very large dataset. It contains

21 million records about the daily stock prices for a selection of

several thousand stock tickers from NYSE and NASDAQ. Every

tuple contains 8 attributes ticker, open, close, adj close,

low, high, volume, and date.

In the following, first in § 7.2, we demonstrate a proof of concept

by studying Example 1, using the weather dataset. Then in § 7.3,

we conduct the performance evaluation of our proposal.

7.2 Proof of concept – Northern Hemisphere’s
Temperature

In this section, we demonstrate the validity of our proposal by

studying the claim in Example 1 that summer in the northern hemi-

sphere was colder than winter in 2012-13. We use the weather

dataset: 〈x1 : date/time , x2 : city name〉, y : temperature. We

consider the comparison between a summer day and a winter day

5openweathermap.org
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Figure 6: Tightest statements with support 0.8 for the temperature of dif-
ferent cities in 2012 (Example 1)

to be valid if it is comparing the temperature of the same city.

Therefore, the support regions RS is naturally defined as set of

winter days of cities as the beginning (RB) and set of summer

days of cities as the end (RE). Following this, we define RS as

RS = (RB , RE), where RB = (〈 Dec. 1 2012, x2〉, 〈 Mar. 1

2013, x2〉) and RE = (〈 Jun. 1 2013, x2〉, 〈 Sep. 1 2013, x2〉).
Given RS , the statement S is defined as S = (−∞, 0). Figure 5

shows the overall support, the cities with minimum and maximum

support of the statement, as well as the support for 7 major US

cities. Vancouver with a support of less than 0.0001 had the min-

imum support, while Beersheba with 0.1 had the maximum sup-

port. The overall support of this statement was less than 0.018.

This means that among all valid trendlines, less than 0.018 of them

support the idea that summer was colder than winter! This very

small support clearly shows that the trendline based on which the

statement is made is cherry-picked.

Next, to find “fair” statements supported by data, we run Algo-

rithm 6 to find tightest statements with support ω = 0.9 for dif-

ferent cities. Figure 6 show the results. The results confirm that

summer days have been warmer than winter. Among these, the

maximum difference belonged to Las Vegas where summer days

where 14 to 58 degrees warmer than the winter, while the least be-

longed to Beersheba where the differences between summer and

winter days where between -0.6 and 34 degrees.

7.3 Performance evaluation
Having demonstrated a proof of concept, in the rest of the sec-

tion we evaluate the efficiency and effectiveness of our proposed

algorithms. In addition to baseline (Algorithm 1), we compare our

results against [3] (labeled as CFCQP). In the plots, we label our

efficient exact algorithms (Algorithm 2 and Algorithm 3) as EX-

ACT. Our default randomized algorithm is PAIRSAMPLING (Algo-

rithm 4) which is labeled as RANDOMIZED in the plots. Since our

objective in this section is to study efficiency, as the default setting,

we partition the data in two equal-sized partitions R(b) and R(e).
The following are our experiment results.

7.3.1 Unconstrained Trendlines

Following the structure of the paper, first we study unconstrained

trendlines. To do so, we run [3] (CFCQP), Algorithms 1 (Base-

line), and Algorithm 2 (EXACTu) on different datasets while vary-

ing the input size n. The results are provided in Figure 7, Figure 8,

Figure 9, and Figure 10. We note that adopting [3] for computing

the support of trendlines results in an O(n2 log n) algorithm, while

Baseline is in O(n2) and EXACTu is linearathmic. This is what

we observed across different settings, independent of the choice

of the dataset. CFCQP did not finish for any of the settings for

DoT dataset (Figure 9). For other datasets also, it had a signifi-

cantly worse running time. For example, for weather dataset and

n = 42K tuples, CFCQP took 1709 seconds while BASELINE fin-

ished in 46 seconds and EXACTu run in 0.01 seconds. Having a

quadratic runtime, Baseline is not scalable as it required more than

half an hour to finish for the DoT dataset with 457K data records

and 32 seconds for the 45K records in the Weather dataset. On

the other hand, the linearithmic complexity of Algorithm 2 resulted

an acceptable efficiency in all of these settings. The Exact algo-

rithm finished in 7 milliseconds for CO2 dataset for 10K records,

in 10 milliseconds for weather dataset, and in 2 seconds for the

DoT dataset with 457K records. For the very large stock dataset,

for 10 million records, it finished in 46 seconds.

7.3.2 Constrained Trendlines

Next we study the performance of Baseline (we adopted Algo-

rithms 1 for constrained trendlines) and EXACTc (Algorithm 3). We

selected the CO2 and Weather datasets for this experiment. Con-

sidering the overhead of the RBT implementation, we use 10 log n
as the O(log n) threshold in line 2 of Algorithm 3. Similar to the

unconstrained trendlines experiments, first, we vary the input size

(n), while setting the width of the window (the size of valid region

for a point b ∈ R(b)) as 1000. The results are provides in Fig-

ures 11 and 12. In all settings Exact outperforms Baseline in an

order of magnitude. Still, comparing the results with the ones for

unconstrained trendlines, Algorithm 3 is slower than Algorithm 2.

That is due to the overhead of RBT operations. Also Baseline has

a better performance for constrained trendlines in comparison with

unconstrained trendlines. That is because here there are less valid

trendlines for Baseline to iterate over. As the next experiment, set-

ting the input size as 20K, we vary the with of the valid window

in R(e) (Figures 13 and 14). While the performance of Baseline

linearly depends on the width of the window, Algorithm 3 is loga-

rithmic to the window size. This is confirmed in our results.

7.3.3 Randomized Algorithms

After studying the performance of the exact algorithms, next

we move to randomized algorithms. Even though, our exact al-

gorithms are linearithmic, they may require a few minutes for the

very large settings. Using the stock dataset and PAIRSAMPLING

as the randomized algorithm, while setting the sampling budget to

N = 10K, we vary the input size from 2 million to 10 million and

compared the performance of EXACTu and PAIRSAMPLING for

computing support. The results are provided in Figures 15 and 16.

While the exact algorithm required up to the order of a minute to

compute the support, PAIRSAMPLING finished in at most one sec-

ond. Still, comparing the dashed lines in Figure 16, its estimate of

the support was almost the same as the exact values.

In § 5.2.2, we studied the variance of the POINTSAMPLING al-

gorithm and showed that, even though it uses N2 samples, its vari-

ance is not necessarily less than PAIRSAMPLING. Here, we also

demonstrate an experimental comparison between these two algo-

rithms. We used weather dataset for this experiment and consid-

ered the temperature in the New York city. In order to have an

accurate comparison between the variances, for each setting we re-

peated each batch of 30 experiments, 30 times. For each batch we

computed the variance and took the average of the 30 variances.

We compare the variance of POINTSAMPLING against PAIRSAM-

PLING with (i) budget of N and (ii) budget of N logN . While (i)

represents the equal sampling budget comparison, (ii) represents

equal computation cost (assuming O(1) cost for sampling). Us-

ing the statements with various supports (discovered using Algo-

rithm 6), we studied the impact of varying support (Figure 17). We

also run an experiment for varying the sampling budget (Figure 18).

In all experiments, for a fixed sampling budget, POINTSAMPLING
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Figure 10: Stock dataset, uncon-
strained trendlines, varying n
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Figure 12: Weather dataset, con-
strained trendlines, varying n
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Figure 13: CO2 dataset, constrained
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strained, varying width of window
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Figure 20: Weather dataset, New
York city, tightest statement in Exam-
ple 1, varying support
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York city, most supported statement,
varying n, α = 30
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Figure 22: Weather dataset, New
York city, most supported statement in
Example 1, varying α

had a lower variance. This indicates that POINTSAMPLING is a

good approach for the cases that sampling is costly. On the other

hand, PAIRSAMPLING with the budget of N logN outperformed

POINTSAMPLING in all cases. This means that when sampling

is not costly (including the traditional dataset model) PAIRSAM-

PLING is preferred.

7.3.4 Most Supported Statement

Finally, we evaluate our proposed algorithms in § 6 for Prob-

lems 2 and 3. Again, as the default dataset, we used the weather

dataset for these experiments, while using the temperature in the

New York city as the target value. First, we use Algorithm 6 for

finding the tightest statements for (i. Figure 19) varying n (while

setting support to 0.8) and (ii. Figure 20) varying support. The

left-y-axis in the plots (and the blue line with the square marker)

show the time, while the right-y-axis (and the dashed line) show

the width of the range for the tightest statement. The algorithm re-

quired a couple of seconds for finding the tightest statement with

varying support values and up to 20 seconds for varying n. While

the width of the tightest statement does not seem to depend on n,

it clearly increases with the value of support. That is because we

need to make the statements less restrictive such that more trend-

lines support it. Next, we use Algorithm 7 for finding the most

supported statements for (i. Figure 21) varying n (while setting

the statement range width to α = 30) and (ii. Figure 22) varying

width of the statement range. Clearly, as n increases the running

time increases, as it took 315 seconds for the algorithm to finish for

n = 10K. From the right-y-axis in Figure 21, the support value,

as expected, does not depend on n, whereas (looking at Figure 22)

as the width of the statement range increases the support value get

close to 1.
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8. RELATED WORK
Initially developed in journalism, computational fact checking

aims to detect fake news, that is comparing the claims extracted

from the news content against the existing facts [3, 13–19]. The

initial fact checking efforts include manual methods based on the

domain knowledge of human expert and crowdsourcing [16, 18].

Manual fact checking efforts, however, are not scalable and do not

use the existing data. As a result, computational fact checking has

emerged, where the ultimate goal is to have a platform that can au-

tomatically evaluate a claim in real-time [15]. Computational fact

checking heavily rely on techniques form natural language process-

ing [20, 21], information retrieval [22, 23], and graph theory [13].

A set of work in automated fact checking focus on knowledge ex-

traction from different data sources [24–26], data cleaning and inte-

gration [27–29], and credibility evaluation [30, 31]. Existing work

also includes style-based [32–35], propagation-based [36–38], and

credibility-based [37, 39–42] study of fake news. Further informa-

tion about fake news and the detection mechanisms can be found in

a literature survey by Zhou and Zafarani [43].

Using perturbations for studying uncertainty has been studied in

different context in data management [44–46]. Perturbation is an

effective technique for studying the robustness of query outputs.

For example, [47–49] use function perturbation for verifying the

stability of ranking queries, as well as discovering fair and stable

rankings. Query perturbation has also been used for retrieving more

relevant query results [50–53]. The idea of query perturbation has

also seen its applications in the context of the computational jour-

nalism, in both fact-checking [3] and lead-finding [54]. [54] has a

different objective from our problem: finding a few representative

points to capture the high-value regions of a complex surface. Be-

sides, in this paper, we treat all points in the support region indiffer-

ently, and shape of the surface is not our focus. The focus of [3] has

been on the modeling side– a generic framework for perturbation-

based fact-checking. In contrast, this paper is on the technical side.

Drilling down on the trendline statement, we address both checking

and mining aspects. As observed in § 7.3, using [3] for computing

support results in a worse performance than our baseline. The no-

tion of “support”, proposed in this paper, is a natural measure that

can be defined within the framework and complementary to those

defined in [3].

9. DISCUSSIONS
In this paper, we study statements made based on comparing a

pair of points. Cherry-picking has a long history and hence many

different forms. In a nice article at PolitiFact [55], L. Jacobson

goes over some of the examples of cherry-picking in US politics.

According to this article, PolitiFact has reported cherry-picking

“hundreds of times” in their fact-checks. While we believe our no-

tion of support can be adopted for all cherry-picking settings, how

to efficiently compute the support is problem-specific. Of course,

our problem formulation, while covering many, does not cover all

forms of cherry-picking. Still, for many such settings, our algo-

rithms can simply be adopted. In the following, looking into some

real-life problems, we discuss if those fit our problem formulation

and if not whether our proposal can be adjusted for those.

A large number of the cherry-picked statements are made by

comparing a pair of points where our algorithms can directly (or

after small preprocessing as explained in § 2.2) be applied. For ex-

ample, consider President Trump’s tweet, comparing his approval

rate with president Obama [56]. He cherry-picked a single poll

source and a specific date which shows the highest approval for

him. To validate this statement, similar to § 7.2, one could compute

the statement support for different times/poll-sources for President

Trump v.s. President Obama. Another example is Trump’s cam-

paign ad. about undocumented immigrants. The ad. cherry-picked

a single undocumented immigrant to picture the whole group “as

dangerous”, compared to native-born Americans. Of course, com-

puting the support of the statement “undocumented immigrant are

more dangerous (commit crime more) than native-born Americans”

can numerically show how accurate it is. Yet other examples are the

statement made by President Trump about income levels and unem-

ployment numbers of African Americans being worst under presi-

dent Obama than ever [57] or president Trump having the highest

Poll Numbers in the history of the Republican Party [58], which

can be evaluated by computing their supports.

Some statements are made based on a single point, rather than

a pair of points. An example is a statement by the Democratic

National Committee that no middle-class taxpayers stood to gain

from President Trump’s tax bill. Such cases can be viewed as

special cases of constrained trendlines (by fixing R(e) to a sin-

gle point) where Algorithm 3 runs in O(n). Another variation is

when all trendlines are not equally important. For instance, the

data in different time periods may have different contributions to

the correctness of a statement. In such cases, instead of comput-

ing the simple average, one can consider a weighted average using

a user-provided importance function (such as Gaussian decaying

functions around the initial trendline points b and e). Let w(·) be

the user-provided importance function. To adjust for these cases,

Equation 5 shall be adapted to reflect the sum of weights, instead of

counts, i.e., F (y) =
∑

∀dx∈R(e) | y(dx)<y
w(dx). Equation 6 shall

also be adapted accordingly to w[i] = w(dx[i])
(

F
(

y(dx[i]) +

⊤
)

− F
(

y(dx[i]) + ⊥
))

. Such modeling change would not af-

fect the complexity of the proposed efficient algorithms.

We would like to reiterate that not all forms of cherry-picking

are covered by our formulation. Sometimes, a trendline statement

is not cherry-picked, but the narrative around it can be mislead-

ing. President Trump’s tweet: “Because of my policies, Black Un-

employment has just been reported to be at the lowest rate ever

recorded” [59] is such an example. Similarly, he wrongly claimed

credit for lack of commercial airline crash deaths during his presi-

dency, while there have not been crash-deaths since 2013 [60]. An-

other case is cherry-picking sentences from natural language texts

that cannot be directly evaluated with our method since our notion

of support is based on numerical values. Still, in such cases, experts

or NLP methods can be used for classifying sentences as if those

support the overall statement and then compute their support.

Finally, we would like to emphasize that human-in-the-loop is

necessary to transform “complicated” statements to the problem

inputs and to identify and provide proper data to the system.

10. CONCLUSION
In this paper, we proposed a system for detecting cherry-picked

trendlines. We defined a notion of support for this purpose and,

formally defining terms, designed linearithmic exact algorithms for

trendlines with different constraint models, followed by random-

ized approximation algorithms. We also studied the problem of

finding mostly supported statements by data. Besides theoretical

analysis, we conducted extensive experiments on real-world datasets

that confirm the validity, efficiency, and effectiveness of our pro-

posal In this paper we proposed sampling-based approximation

for scalability. We will consider designing massively parallel algo-

rithms, similar to [61], as part of our future work.
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