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ABSTRACT

Most public blockchain systems, exemplified by cryptocur-
rencies such as Ethereum and Monero, use memory-hard
proof-of-work (PoW) algorithms in consensus protocols to
maintain fair participation without a trusted third party.
The memory hardness, or the amount of memory access,
of these PoW algorithms is to prevent the dominance of
custom-made hardware of massive computation units, in
particular, application-specific integrated circuit (ASIC) and
field-programmable gate array (FPGA) machines, in the sys-
tem. However, it is unclear how effective these algorithms
are on general-purpose processors.

In this paper, we study the performance of representa-
tive memory-hard PoW algorithms on the CPU, the Graph-
ics Processing Unit (GPU), and the Intel Knights Landing
(KNL) processors. We first optimize each algorithm for indi-
vidual processors, and then measure their performance with
number of threads and memory size varied. Our experimen-
tal results show that (1) the GPU dominates the CPU and
the KNL processors on each algorithm, (2) all algorithms
scale well with number of threads on the CPU and KNL,
and (3) the size of accessed memory area affects each al-
gorithm differently. Based on these results, we recommend
CryptoNight with scratchpads of different sizes as the most
egalitarian PoW algorithm.
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1. INTRODUCTION

Blockchain technologies have been under rapid develop-
ment, and a major application is cryptocurrencies, such as
Bitcoin [34], Ethereum [44], and Monero [42]. Promising ap-
plications have also been demonstrated in healthcare [21],
supply chain [36], financial services [46], and other areas.
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Recently, database researchers have started analyzing pri-
vate blockchains [20], scaling up blockchains [19], and devel-
oping blockchain-based storage engines [43], databases [23,
35], cloud data management [33], and data provenance [39].
In this paper, we study the performance of several represen-
tative memory-hard proof-of-work (PoW) algorithms, which
are key components in leading cryptocurrency systems.

Cryptocurrencies are public blockchain systems, where
distributed participants do not fully trust each other but
must reach consensus for their data blocks (transactions)
to be appended to the blockchain. PoW algorithms [22] are
used to reach such consensus. The core idea is that a service
requestor must prove to a service provider that the requestor
has spent a certain amount of computational effort, and that
the provider can verify this effort in a short time.

Because the success of appending data blocks to the chain
depends on the speed of executing PoW algorithms, cryp-
tocurrency participants, or called miners, utilize powerful
computers for this purpose. These computers include not
only general-purpose CPUs and GPUs, but also application-
specific integrated circuit (ASIC) and field-programmable
gate array (FPGA) machines. Such imbalance in comput-
ing power between participants challenges the democratiza-
tion of the system, and may create opportunities for security
threats.

To prevent the dominance of powerful computers, in par-
ticular, ASICs and FPGAs, recent cryptocurrencies adopt
memory-hard PoW algorithms, which require a large amount
of memory access. The goal is to have a similar PoW perfor-
mance on various processors. These PoW algorithms effec-
tively discourage the use of ASICs and FPGAs because their
memory performance is limited and will be costly to boost.
However, it is unclear how effective these memory-hard PoW
algorithms achieve the democratization purpose on general-
purpose computers, as CPUs and GPUs differ considerably
on processor architectures as well as memory performance.
Therefore, we study the performance of memory-hard PoW
algorithms on three types of general-purpose processors -
the CPU, the GPU, and the Intel Xeon Phi Knights Land-
ing (KNL) processors.

We select three representative memory-hard PoW algo-
rithms for our study. The first algorithm under study is
CryptoNight [18], which is one of the most popular memory-
hard PoW algorithms, designed by the CryptoNote founda-
tion. Its performance is bound by memory latency because
the algorithm performs a sequence of random memory ac-
cesses mixed with reads and writes in a 2MB scratchpad
in the memory. The second algorithm we study is Ethash



[24], which is another notable memory-hard PoW algorithm,
used by Ethereum [44]. It works by fetching data from a
randomly generated dataset, specifically a directed acyclic
graph (DAG) in memory, which is typically several gigabytes
in size. The third algorithm under study is Cuckoo Cycle
[41]. It finds cycles in a randomly generated bipartite graph
by visiting all edges and marking vertices whose degrees are
less than or equal to one. The bipartite graph takes several
gigabytes of memory, the accesses to the graph are sequen-
tial reads, and those to the mark arrays are random reads
and writes.

In this paper, we study memory-hard PoW algorithms
on general-purpose processors, because these techniques are
not only essential for public blockchains, but also relevant
to in-memory data-intensive operations. However, few stud-
ies have been performed to compare the performance of a
memory-hard PoW algorithm between general-purpose pro-
cessors or analyze the performance characteristics of these
algorithms. To the best of our knowledge, this study is the
first to fill the gap.

Specifically, we first take the open-source versions of the
memory-hard PoW algorithms, and implement and optimize
them on the CPUs, the GPUs, and the KNL. We then evalu-
ate the overall performance of these optimized implementa-
tions in their default parameter settings. Next, we vary the
number of threads and the size of accessed memory area to
examine the scalability and memory performance character-
istics. Finally, we analyze the results on processor profiling,
memory throughput, and power consumption.

Our contributions can be summarized as follows:

e We evaluate the overall performance of each optimized
algorithm on seven processors (two CPUs, one KNL,
and four GPUs).

e We identify the performance factors of each algorithm
and examine their effect.

e We collect and analyze various hardware profiling re-
sults, such as cache hit rate, memory throughput, and
power consumption.

e We provide suggestions for selecting PoW algorithms
in blockchains and designing egalitarian PoW algo-
rithms based on our experiment results.

The remainder of this paper is organized as follows. We
first introduce the background on blockchain, PoW algo-
rithms, and computer processors in Section 2. Then we
describe details of the memory-hard PoW algorithms under
study in Section 3. The implementations and optimizations
of each algorithm on different processors are presented in
Section 4, and the experimental results along with our anal-
ysis and findings are shown in Section 5. Finally, we discuss
related work in Section 6 and conclude in Section 7.

2. BACKGROUND
2.1 Blockchain

We first introduce the concepts and terminologies in block-
chain systems using the Bitcoin as an example. The Bitcoin
whitepaper [34] was published in 2008 by Satoshi Nakamoto,
whose identity remains unknown. It proposed a fully de-
centralized implementation of a distributed ledger, i.e., an
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asset database that is shared among multiple sites. In this
database, transactions are recorded in a chain of blocks con-
nected by hash pointers, as shown in Figure 1. This chain
of blocks is called the blockchain, and the first block of the
blockchain is called the genesis block. Except the genesis
block, each block contains the hash value of the previous
block. Thus, the content of each block cannot be modified,
given that the hash function is secure. Nodes (participants)
can freely join or leave the Bitcoin network, and every node
can verify the validity of past transactions. This way, every
node can be the validator. To save storage space and reduce
verification time, the Merkle tree (a binary hash tree) is used
to store the transactions.
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Figure 1: The Bitcoin blockchain

Blockchain systems can be categorized into two types -
public or private. Public blockchains or permissionless block-
chains keep the decentralization feature, i.e., nodes are un-
trusted and can freely join or leave the network. In contrast,
in private blockchains or permissioned blockchains, the iden-
tities of participants are known, the data might be private,
and trusted third parties may act as transaction validators.

Due to propagation delays or malicious attacks, nodes
may have different views of the blockchain, called forks. The
forks may result in double spending problems, i.e., an asset is
spent in two distinct transactions. To resolve this issue, con-
sensus protocols must be developed. For example, Bitcoin’s
consensus protocol is that only the longest chain among the
forks is accepted as the finalized transactions, because the
longest chain is likely to be the work of honest nodes. The
assumption is that honest nodes in the blockchain system
possess more than half of the computation power, so that
these honest nodes can always produce the longest chain.
Finally, forks are not always undesirable. Some consensus
protocols accept forks and turn the blockchain into a tree or
graph, in order to improve the performance [32].

2.2 Proof-of-Work Algorithms

Proof-of-Work (PoW) algorithms are run by service re-
questors to solve some computationally hard puzzles for
their requests to the service provider. The service provider
will first verify if the requestor has finished the work, before
the requestor is allowed to have the service. In the context
of blockchain systems, the service requestors are the users
who want to append a new block to the blockchain, and the
service provider is all the users in the blockchain network.

Based on PoW algorithms, consensus protocols in block-
chain systems can be formally defined as follows. Given a



Table 1: Comparison of PoW algorithms

Name Hash Function Memory-Hardness Application Hardware
Hashcash [11] SHA-256 None Bitcoin [34] ASIC

Scrypt [37] Scrypt Latency Litecoin [30] ASIC

Equihash [15] BLAKE2b Bandwidth Zcash [12] ASIC
CryptoNight [18]  CryptoNight Latency Monero [42] CPU, KNL, GPU
Ethash [24] SHA-3 (Keccak) Bandwidth Ethereum [44] GPU

Cuckoo Cycle [41] - Latency and Bandwidth  Grin [28] GPU

cryptographic hash function H, the block content b, and the
difficulty of the work d, the block can be appended to the
chain if the PoW algorithm can find a nonce n such that
H(n||H(b)) < d (]| represents concatenation). For exam-
ple, in Bitcoin, the hash function H is SHA256d (SHA256
done twice), the block b contains the transactions produced
during a period of time, and the difficulty d represents the
threshold for the final hash value and will increase over time.

Since the hash function used in the PoW algorithm of Bit-
coin is simple and fast to run on ASICs, ASIC miners domi-
nate the computing power of the Bitcoin network. This dom-
ination is detrimental to the decentralization of Bitcoin be-
cause individuals without powerful hardware cannot succeed
in executing transactions. To address this problem, complex
PoW algorithms are designed and adopted by blockchains.
Table 1 shows the PoW algorithms in use by mainstream
blockchain applications. They usually combine several hash
functions and require a certain amount of memory access.

In our study, we focus on the most popular and represen-
tative memory-hard PoW algorithms, namely CryptoNight,
Ethash, and Cuckoo Cycle. We categorize these algorithms
by the types of memory-hardness, i.e., latency bound and
bandwidth bound. Specifically, CryptoNight is memory la-
tency bound, Ethash is bounded by memory bandwidth,
and Cuckoo Cycle combines both types of memory-hardness.
The two PoW algorithms we omitted from study are Scrypt
and Equihash, because they are less memory hard than
CryptoNight and Ethash correspondingly.

2.3 Blockchain, PoW, and Database

Blockchain is an increasingly important topic in database
research. On the one hand, blockchains have the potential
of enhancing various database applications. Recent papers
have explored blockchain applications in relational databases
[35], data provenance [39], and storage engines [43]. On the
other hand, database technologies can be applied to improve
blockchain performance. For example, the sharding strat-
egy widely used in distributed databases has been applied
to blockchains [19, 23] to increase the throughput and lower
the latency.

PoW algorithms play an indispensable role in permis-
sionless blockchains, because they are the core component
that enables consensus between untrusted parties. Further-
more, memory-hard PoW algorithms are closely related to
in-memory query processing. For example, the Cuckoo Cy-
cle PoW algorithm is inspired by the Cuckoo hash algorithm,
so they share common optimizations with hash probing in
query processing [38].

In practice, memory-hard PoW algorithms are acceler-
ated by hardware. Similarly, modern parallel processors are
widely used to improve the performance of query process-
ing with memory intensive operations [40, 45]. Finally, the

900

design of consensus protocols in distributed databases is a
classic problem [33], and PoW-based consensus protocols in
blockchains are a special case of the problem.

In summary, memory-hard PoW algorithms and their per-
formance on modern processors are of significance to the
database area. Therefore, we are motivated to conduct this
experimental study. Based on our study, we make recom-
mendations for selecting and adjusting PoW algorithms in
permissionless blockchains.

2.4 Processors

Modern CPUs consist of up to a few tens of cores, and use
multiple levels of caches to improve memory access speed.
Specifically, the L1 and L2 caches are privately owned by
each core, and the L3 cache is shared among all the cores.
Depending on the memory type, high-end server CPUs can
achieve a bandwidth of more than 100 GB/s. Even though
the CPU is the most versatile general-purpose processor, its
thread parallelism is limited compared with the GPU.

GPUs are many-core processors that contain thousands of
streaming processors (cores), organized into tens of stream-
ing multiprocessors. GPUs use the single instruction, mul-
tiple threads (SIMT) execution model, i.e., each instruction
is executed concurrently in multiple threads. Threads on
the GPU are organized in thread blocks, and all threads in
a thread block must be assigned to the same multiproces-
sor. A single routine on the GPU, called a kernel, can be
run in different thread configurations, in terms of number of
thread blocks and number of threads per block. Since the
thread scheduling unit, called warp, consists of 32 consecu-
tive threads, usually the number of threads per block is set
to a multiple of 32. The number of thread blocks is set to
a multiple of the number of multiprocessors. The memory
bandwidth of GPUs is high, which can be close to 900 GB/s.

The CPU and the GPU differ significantly on processor
architecture and memory hierarchy. The second genera-
tion Intel Xeon Phi processor, code named Knights Landing
(KNL), is a many-core processor that represents a middle-of-
the-road approach. The number of cores on KNL is 64, and
its instruction set and programming APIs are compatible to
the CPUs. It is a fully independent self-bootable processor,
which does not rely on the CPU and eliminates the data
transfer cost. KNL has two vector processing units (VPU)
per core, which support the AVX-512 SIMD instruction set.
KNL contains 16 GB on-board MCDRAM, which can pro-
vide a memory bandwidth of 450 GB/s, about five times
higher than DDR RAM. Although existing CPU-based code
can run on KNL without any modifications due to the x86
compatibility, architecture-aware optimizations can further
improve the performance. Through tuning programs on
KNL, some optimizations can also boost the performance
on the CPU, which is called the “dual-tuning” effect [29].



Compared with modern multi-core CPUs, many-core pro-
cessors have a large number of low-performance cores and
are especially suitable for data-parallel tasks. Therefore, to
achieve the best performance on many-core processors, we
need to reduce serial execution and increase parallelism in
the program.

In addition to general-purpose processors, specialized pro-
cessors, e.g., FPGAs and ASICs, are widely used by non
memory-hard PoW algorithms for cryptocurrency mining,
because customized hardware provides faster instruction ex-
ecution and reduces power consumption. For example, the
mining of Bitcoin is dominated by ASIC miners, which are
thousands of times faster than GPUs. However, for memory-
hard PoW algorithms, specialized processors have little ad-
vantage over CPUs and GPUs due to the complexity of algo-
rithms and high cost of memory. For example, the Antminer
E3 [16] for Ethereum has a hash rate of 190 MH/s, which
is only 2 times faster than the V100 GPU at the cost of
consuming 3 times more energy. Therefore, we target our
study on general-purpose processors, because they are most
suitable for memory-hard PoW algorithms.

3. MEMORY-HARD POW ALGORITHMS

3.1 CryptoNight

The CryptoNight algorithm was released in 2013, as part
of the CryptoNote blockchain system. It contains a memory-
hard loop, which performs a sequence of random reads and
writes in a small memory area, called a scratchpad. It was
designed for running on the CPUs efficiently, because the
scratchpad fit into the CPU L2 cache. In contrast, such
sequences of random memory accesses were inefficient on
the GPU and ASIC machines.

The CryptoNight algorithm consists of three steps. The
first step is scratchpad initialization. The size of the scratch-
pad memory is 2 MB. First, we use the Keccak (SHA3) [13]
function to generate a result of 200 bytes. We use the first
32 bytes, byte 0---31, as an AES-256 key. Then we split
the next 128 bytes, bytes 64 - --191, into eight blocks of 16
bytes each, and encrypt each of these eight blocks for 10
AES rounds using the AES-256 key. The encryption result
is stored as the first 128 bytes of the scratchpad memory.
Then we iteratively perform AES encryption on the current
128 bytes of the scratchpad and append the result as the
next 128 bytes in the scratchpad. This process continues
until the entire scratchpad is filled.

The second step is the memory-hard loop, as listed in
Algorithm 1 and illustrated in Figure 2. Both A and B
are 16-byte integers, and are initialized to the XOR result
of bytes 0---31 and 32---63 generated using the Keccak
function. These integers are then served as addresses in the
scratchpad by looking up the 21 least significant bits. We
read the value S[A] in the scratchpad using A as the address,
and perform AES encryption of S[A] with A to get result C.
Then we perform XOR on B and C, and write the XOR
result back to S[A]. Next we use C as the address, read S[C]
into D, multiply C and D, add the multiplication result to
A, and store A to S[C]. Finally, we get the XOR result of
A and D as the new A, and C as the new B, and feed the
new A and B to the next iteration. Since the output of the
AES encryption is random, we can not predict the address,
thus the loop can not be parallelized. The loop contains
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524,288 iterations, so a sequence of 2 million random reads
and writes in total will be performed on the scratchpad.

A
B
| S
Mm@ @' ;6
Read “ J
----- S[A] S[C]
Write Scratchpad Memory (2 MB)
Figure 2: The memory-hard loop of the Cryp-

toNight algorithm. The numbers in parentheses cor-
respond to the line numbers in Algorithm 1.

Algorithm 1: The Memory-hard Loop of the
CryptoNight algorithm

Input : Integer A, B, Scratchpad memory S

Output: Modified scratchpad memory S
for i <~ 1 to 524288 do

C + AES(S[A], A);

S[A] + XOR(B,C);

D + S[C];

A+ ADD(A, MUL(C, D));

S[C] + A,

A+ XOR(A,D);

B+ C;

end

W O U W N

The final step is result calculation. Similar to the first
step, bytes 32---63 of the initial Keccak result are used as
an AES-256 key, and bytes 64 - - - 191 are encrypted with the
contents in the scratchpad memory, 128 bytes a time. Then
the Keccak permutation is performed once on the encryption
result. Depending on the two least significant bits of the first
byte of the Keccak result, one of the four hash algorithms
will be chosen: BLAKE-256, Groestl-256, JH-256, or Skein-
256. The selected hash algorithm is applied on the Keccak
result to produce the final output of CryptoNight.

With CryptoNight as the consensus protocol of the block-
chain, the users who request to append a new block will be
required to perform the CryptoNight algorithm repeatedly
until they find such a nonce n that holds H(n||b) x d < 22°°,
where H is the CryptoNight hash function, b is the content
of the new block, and d is difficulty. When a new block
is broadcast to the blockchain network, the validator will
perform the CryptoNight hash function on the new block
to verify if the hash value of the new block is less than the
given threshold.

3.2 Ethash

Ethash [24], another memory-hard PoW algorithm, is used
by Ethereum, which is the second largest cryptocurrency in
the world. The memory-hard loop randomly reads slices of



a memory area, called the DAG, which is significantly larger
than the scratchpad in CryptoNight. The DAG area is ini-
tially 1GB and increases over time. Each slice of the DAG
is 128 consecutive bytes.

Ethash updates its parameters every 30000 blocks, which
is called an epoch. In each epoch, the Ethash algorithm
works in four steps. Firstly, the seed of the epoch is gener-
ated by calculating the SHA3-256 hash value of the previous
seed. The seed of the first epoch is set to 32 bytes of zeros.
In practice, the seed can be determined by the current block
number.

In the second step, Ethash allocates a light cache, whose
size is determined by the current block number and increases
over time. At block number 0, the size of the light cache is
16 MB. The light cache is generated by first filling up the
memory sequentially with SHA3-512 hash values, and then
applying the RandMemoHash algorithm [31] twice.

The third step generates the DAG. The initial size of the
DAG is 1 GB. This step is intended to prevent efficient ex-
ecution on ASICs, since large memory is very costly. The
DAG is only updated at the start of each epoch. Each 64-
byte item in the DAG depends on 256 items in the light
cache and is calculated by the Fowler—-Noll-Vo (FNV) hash
function [25].

Algorithm 2: The Main Loop of Ethash

Input : header, nonce, dag, dag_size

Output: mix

MIX_BYTES <« 128;

HASH_BYTES « 64;

mizhashes + MIX_BYTES/HASH BYTES;

n < dag-size/HASH_BYTES;

w + MIX_BYTES/4;

s < sha3_512(header + nonce);

miz + [[;

for j < 0 to MIX BYTES/HASH_BYTES do
| mix[j] « s;

end

for i < 0 to 64 do

p + fnu(i A s[0], miz[i%w])%(n/mizhashes) *
mixhashes;

newdata + [[;

for j < 0 to MIX_ BYTES/HASH_BYTES do
| newdatalj] + dagp + jl;

end

miz < fnv(miz, newdata);

end
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The final step is known as the mining process, as shown
in Algorithm 2. It is a memory-hard loop with 64 iterations.
Each iteration fetches 128 bytes of data from the DAG and
mixes these bytes with the results from the previous itera-
tion. Since this loop requires randomly reading data from a
large area of memory, which cannot be cached, it is bound
by memory latency. However, because the accesses to the
DAG in the loop are all reads, a large number of reads can
be parallelized to utilize memory bandwidth effectively.

To verify if the Ethash PoW output is valid, a validator
will calculate the light cache of the corresponding epoch and
regenerate the involved pieces of data in the DAG, without
constructing the entire DAG. This design reduces the mem-
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ory capacity requirement for the validator and also improves
the efficiency of validation.

3.3 Cuckoo Cycle

The Cuckoo Cycle [41] algorithm solves a PoW puzzle that
finds cycles or other structures in large random graphs. It
has the simplest specification among all the PoW puzzles,
but its security is not comprised, and has been used in many
cryptocurrencies, e.g., Grin [28] and Aeternity [27].

Initially, a bipartite graph is generated using the hash
value of the block as the seed. The size of the graph is
defined by edge bits N, i.e., the number of edges is 2% and
the number of vertices on each side of the bipartite graph is
2N The task is to find a list of edges that form a cycle of a
given length in the graph. The difficulty of this puzzle can
be adjusted by limiting the hash value of the edge list to be
less than a threshold. When the graph is big (e.g., N = 29
in Grin), the memory capacity requirement is high.

To solve the Cuckoo Cycle puzzle, one can maintain a
directed forest and perform union-find on the forest to locate
cycles. However, this simple solver is inefficient in practice.
The edge trimming algorithm [8], as shown in Algorithm 3,
can greatly reduce the running time and memory usage. The
idea is to preprocess the graph by deleting all the vertices
of degrees less than or equal to one, which are not in any
cycle. Since the bipartite graph is sparse, nearly 2/e
73% of the vertices can be excluded after the first round of
trimming. After several rounds of trimming, the trimmed
graph is passed to the simple solver to get the result. In
practice, edge trimming is the most time-consuming step of
the Cuckoo Cycle PoW.

~
~

Algorithm 3: The Edge Trimming Step of Cuckoo
Cycle

Input : edge bits N, trim rounds r, edge
1 n<+ 2V,
2 liveleft « [true,n] ;
3 live_right < [true, n];
4 for i<+ 0 to r do

> New array of size n

5 count <+ [0, n];
6 for j < 0 ton do
7 if live_right[edge[j].right] then
8 | countledgel[j].left] + +;
9 end

10 end

11 for j < 0 ton do

12 if count[j] < 2 then

13 | liveleft[j] = false;

14 end

15 end

16 Repeat for the right side

17 end

4. IMPLEMENTATION & OPTIMIZATION

4.1 Implementation

We first introduce the implementation details of each algo-
rithm. Since the memory sizes and access patterns of these
algorithms vary, we select the most suitable parallelization
strategies for individual algorithms to improve the perfor-
mance.



For the CryptoNight algorithm, we let each thread execute
the entire CryptoNight function with its private scratchpad
and nonce value, because each scratchpad is small, and the
accesses to a single scratchpad cannot be parallelized (a sub-
sequent access depends on the address obtained from a pre-
vious access). With private nonce values and scratchpads,
multiple instances of the PoW puzzle are running indepen-
dent from each other, and no exchange of information occurs
between threads.

Similar to CryptoNight, we parallelize Ethash by having
each thread execute the entire Ethash main loop. The differ-
ence is that the DAG of Ethash is shared by all the threads,
because the DAG size is at several gigabytes and is read-only
by all threads. As a result, each thread is running its own in-
stance of Ethash without communicating to each other, and
no conflict exists between threads even if they may access
the same proportion of the DAG.

Similar to Ethash, the edge trimming step of the Cuckoo
Cycle algorithm has read-only access to a graph of several
gigabytes in size. Different from the other two algorithms,
each round of the edge trimming step visits all edges of the
bipartite graph, and updates the counts of the neighbors of
each vertex. Therefore, we parallize each round by parti-
tioning the edge set and having each thread visit a subset of
edges and update the neighbor counts. The read accesses to
the edges have no conflict; however, different threads may
update the neighbor count and livelihood mark of the same
vertex, which will result in a write-write conflict. Therefore,
we use atomic operations on count and livelihood mark up-
dates to ensure the correctness of results.

4.2 Optimizations on CPU

4.2.1 SIMD Vectorization

The cryptographic hash functions are important primi-
tives in PoW algorithms. The computation in these func-
tions is usually suitable for vectorization. Therefore, we
use SIMD instructions to vectorize the hash functions in
PoW algorithms. Specifically, the SHA-256 hash function
in Hashcash, the Keccak hash function in CryptoNight and
Ethash, and the Siphash [10] hash function in Cuckoo Cy-
cle are vectorized. We use the AVX2 instruction set on the
CPU, which has a vector width of 256 bits.

4.2.2 AES Instruction Set

The Advanced Encryption Standard (AES) encryption is
widely used and is an important component of the Cryp-
toNight algorithm. Currently, most CPUs have built-in in-
structions for AES encryption, called AES-NI (Advanced
Encryption Standard New Instructions). We utilized these
instructions to improve the efficiency of CryptoNight on the
CPU and KNL.

4.2.3 Huge Pages

The default page size on the CPU is 4 KB. Memory-hard
PoW algorithms may incur a large number of page faults
due to random memory access, so pages will be frequently
swapped. The working set of CryptoNight is 2 MB, which
requires at least 512 pages of 4 KB page size. By enabling
the huge pages option on the CPU and increasing the page
size to 2 MB, we can fit the entire scratchpad memory of
CryptoNight into a single page. As such, the random reads
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and writes happen in a single page, and page faults are ef-
fectively eliminated.

4.2.4 Loop Unrolling

Most PoW algorithms require multiple rounds of compu-
tation, and the number of iterations is known. Therefore,
we unroll the loops in the CPU implementations through
the #pragma unroll directive. Through loop unrolling, the
branch instructions are minimized, and the resource used
per thread can be reduced. We also fine tune the unroll
factor to achieve best performance.

4.3 Optimizations on KNL

Most optimizations on the CPU are applicable to the KNL
processor as well. Moreover, the KNL processor supports
additional features including the AVX-512 instruction set
and high-bandwidth MCDRAM.

Three memory modes are available on the KNL. They dif-
fer by the strategy of utilizing the MCDRAM on the KNL.
In the cache mode, the MCDRAM is completely assigned
as a cache between the KNL processor and the CPU’s DDR
main memory. In the flat mode, the MCDRAM is used
as program-allocatable memory to increase the total size of
available memory for the KNL. In the hybrid mode, the MC-
DRAM is partitioned into a cache and a program-allocatable
memory area with a given parameter on the portion [29].

We use the flat mode in our experiments, because the
programmer can explicitly manage the MCDRAM in the
flat mode, so that frequently accessed data can be manu-
ally allocated in the MCDRAM. In contrast, in the cache
mode the MCDRAM cannot be explicitly managed in the
programs.

As a KNL program can program both the CPU’s DDR
RAM and its own MCDRAM in the flat mode, we use
the numactl utility to specify the memory type, MCDRAM
and DDR RAM, for memory allocation. The MCDRAM
has higher bandwidth but larger latency than DDR RAM.
Therefore, using MCDRAM in bandwidth-bound PoW al-
gorithms can improve the performance.

4.4 Optimizations on GPU

The implementations of PoW algorithms on the GPU
share the main parallelization strategy with the CPU and
the KNL. Some optimizations, e.g., loop unrolling, can also
be applied to the GPU. However, other optimizations must
be adjusted to suit the GPU architecture.

Firstly, the number of threads in the CPU and KNL pro-
grams is limited roughly to the number of cores, and the
SIMD vectorization is also limited to the vector width. In
contrast, the GPU program can be executed by a massive
number of light-weight threads organized in thread blocks,
so the execution model is SIMT (single instruction, multiple
threads). Therefore, we experiment with a wide parameter
range on number of thread blocks and number of threads
per block for each algorithm on the GPU.

Secondly, the GPU cache sizes are very limited, but its
global memory bandwidth is high. Furthermore, the con-
current memory accesses of a warp of threads to consecu-
tive addresses can be coalesced. Specifically, the memory
coalescing optimization is suitable for many cryptographic
hash functions, which are essential for PoW algorithms. For
CryptoNight, we achieve memory coalescing for AES en-
cryption using the CUDA build-in vector data type. The



Table 2: Hardware configurations

Processor CPU1 CcPU2 KNL GPU1 GPU2 GPU3 GPU4
Model i7-3770 Xeon Gold 5115 Xeon Phi 7210 GTX 670 Tesla K80 GTX 1080 Ti Tesla V100
# Cores 4 20 64 1344 4992 3584 5120
Base Frequency (MHz) 3400 2400 1300 915 562 1481 1246
Max Frequency (MHz) 3900 3200 1500 980 824 1582 1380
Memory Type DDR3 DDR4 MCDRAM GDDR5 GDDR5 GDDRAX HBM2
Memory Size (GB) 32 256 16 4 24 11 16
Bandwidth (GB/s) 25.6 115.2 450 192 480 484 897
L1 Cache (KB) 32 32 32 16 16 48 128
L2 Cache (MB) 8 20 32 0.5 1.5 2.75 6
TDP (W) 7 85 215 170 300 250 250

Table 3: Performance of PoW algorithms. H/s denotes hashes per second, MH/s denotes million hashes per

second, and G/s denotes graphs per second.

CPU1 CPU2 KNL GPU1 GPU2 GPU3 GPU4
Hashcash (MH/s) 25.21 190.26  191.18 159.31 577.74 1832.95 2724.92
CryptoNight (H/s) 128.513 552.95 1005.2 91.21 478.57 780.14 1541.10
Ethash (MH/s) 0.75 231  3.09 1630 27.97 32.63  94.21
Cuckoo Cycle (G/s) 0.24 0.67 0.59 - 0.85 3.92 5.39

SHAS3 hash functions in Ethash are optimized in a similar
manner. The Cuckoo Cycle algorithm, however, contains
no hash function, but its sequential access to the edge set is
coalesced.

S. EXPERIMENTS

After implementing and optimizing the PoW algorithms,
we compare and analyze their performance. Firstly, we com-
pare the overall performance of each algorithm on different
processors and identify the key performance factors. Sec-
ondly, we investigate the impact of these performance fac-
tors. Finally, we examine the hardware profiling results on
latency, bandwidth, and power consumption.

5.1 Experimental Setup

The list of processors is shown in Table 2. We use both
low-end and high-end CPUs and GPUs. In the experiments
that perform comparison between different platforms, un-
less specified, we select the processors with the best perfor-
mance, i.e., CPU2, KNL, and GPU4. All the experiments
are conducted on the CentOS system.

Our implementations are based on the state-of-the-art
open-source projects [1, 2, 3, 4, 5] with our optimizations
and modifications. Our programs are compiled using GCC
5.5 for CPU and KNL, and NVCC 10.1 for GPU. To collect
statistics of hardware events, we use the GNU perf tool to
monitor the performance on CPU and KNL, and nvprof to
record GPU events and metrics.

The workloads of the algorithms under study are set as
follows, following typical setups of the original algorithms.
For Hashcash and CryptoNight, the input data is randomly
generated. For Ethash, we start from block number 10000,
which has a DAG size of 1 GB. For Cuckoo Cycle, we set
edge bits to 29, which corresponds to the number of 22°
vertices on each side of the bipartite graph, and 22° edges
between the two sides.

The PoW algorithm performance is usually measured by
the hash rate, i.e., the number of hash function calls divided
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by the elapsed time. In the case of Cuckoo Cycle, the hash
rate is replaced by the number of graphs processed divided
by the elapsed time. However, the absolute hash rates of
different algorithms are not comparable, since they are de-
termined by the algorithm design and parameter settings.
Rather, we mainly compare the hash rate of each algorithm
on different processors to examine its effectiveness in achiev-
ing the original goal of memory-hard PoW algorithms. In
addition, we include Hashcash, Bitcoin’s PoW algorithm as
a baseline, since it has no memory-hardness design.

5.2 Performance Overview

Table 3 shows the performance of PoW algorithms on dif-
ferent processors. The performance number of Cuckoo Cy-
cle on GPU1 is missing because Cuckoo requires 5.7 GB of
memory to run on the test dataset, which exceeds the 4 GB
memory capacity of GTX 670.

For each algorithm, we observe the performance increase
from CPU1 to CPU2, and from GPU1 to GPU4. The KNL
performance is mostly between that on CPU2 and GPU4
with the exception of Cuckoo Cycle where the KNL perfor-
mance is slightly lower than CPU2. This increasing overall
performance trend is due to the increase of computation
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Figure 3: Comparison of memory footprint



power and/or memory bandwidth. In the end, the GPU
is the best performer for each algorithm with a speedup of
1.5x-30x over KNL and 1.8x-40x over CPU2. This wide
performance gap between processors suggests that current
memory-hard PoW algorithms are in general ineffective in
maintaining the democratization of blockchain systems. The
best algorithm for the democratization purpose is Cryp-
toNight, which yields the least performance difference across
processors among the four algorithms.

Compared to CPU2, KNL has higher parallelism since
it has 3 times as many as number of cores, and 3.9 times
of the memory bandwidth. This performance advantage is
best taken by CryptoNight, achieving a speedup of 1.8x on
KNL over CPU2. This speedup is mainly from the larger
number of threads on the KNL than on the CPU2, each of
which executes the CryptoNight function on its small-sized
private scratchpad. In comparison, KNL has no advantage
over CPU2 on Hashcash, is slightly slower than CPU2 on
Cuckoo Cycle, and outperforms Ethash by 30% on Ethash.
These puzzling results suggest that KNL’s large memory
bandwidth or high core-counts do not benefit these algo-
rithms, including the memory-hard ones.

Next we compare GPU4 with CPU2, which constitutes
a 100X difference in computation power and eight times
of difference in memory bandwidth. The highest speedup
of GPU4 over CPU?2 is achieved by Ethash, which benefits
from both the high memory bandwidth and parallel com-
putation. The second highest speedup of GPU4 over CPU2
is on Hashcash, which is computation bound and benefits
from the parallel computation. In contrast, CryptoNight is
memory latency bound, which sharply reduces the advan-
tage of the GPU. Also, the GPU cache size is much smaller
than the CPU’s (see Table 2), which is insufficient for storing
the scratchpad of CryptoNight, thus frequent global mem-
ory accesses occur. Finally, Cuckoo Cycle is bounded by
global memory access bandwidth, and benefits greatly from
the high memory bandwidth. The memory footprint of the
four algorithms is illustrated in Figure 3.

In summary, CryptoNight is memory latency-bound and
favors processors with large caches, such as CPU and KNL,
but not friendly to GPU. Ethash is bandwidth-bound, which
is ideal for GPU but not good for CPU or KNL. Cuckoo
Cycle is both latency and bandwidth bound, and can benefit
from the GPU significantly. Overall, CryptoNight achieves
the best fairness among all PoW algorithms.
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5.3 Scalability

In order to understand the effect of parallelization of each
algorithm on each processor, we measure the scalability of
PoW algorithms with respect to the number of threads on
each processor.

The speedups with the number of threads varied on the
CPU are shown in Figure 4. All the PoW algorithms achieve
nearly linear speedups with the number of threads up to
the number of cores. When hyperthreading is enabled, only
Ethash keeps speeding up, because it is bandwidth bounded
and the peak bandwidth is not reached yet. Cuckoo Cycle
shows the lowest speedup among all algorithms.
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Figure 5: Scalability on KNL

The speedups with number of threads varied on the KNL
are shown in Figure 5. The curves are similar to those on the
CPU, which are close to linear, when the number of threads
are less than the number of cores. The curves diverge consid-
erably when the number of threads goes beyond the num-
ber of cores. Both CryptoNight and Ethash keep scaling
whereas Hashcash scaling slows down and Cuckoo Cycle’s
performance drops when the number of threads reaches 256.
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Figure 6: Scalability on GPU with the number of
threads per block varied

As for the GPU, since the threads are organized in thread
blocks, we evaluate the effect of both the number of threads
per block and the number of thread blocks. We first fix
the number of thread blocks to 80, the number of streaming
multiprocessors on GPU4, and measure the speedups with
the number of threads per block varied, as shown in Fig-
ure 6. The Hashcash PoW algorithm achieves a nearly linear
speedup, since it is purely computation bound. The Cryp-
toNight algorithm cannot run with 512 threads or more,



due to the limit of global memory size. Cuckoo Cycle scales
better than Ethash, because its workload does not change
whereas Ethash’s workload increases with the number of
threads, and saturates the bandwidth earlier than Cuckoo
Cycle.

Next, we fix the number of threads per block to 32, the
warp size, and change the number of thread blocks. The
speedups are shown in Figure 7. The bottom left of the
figure (i.e., 80 to 2560 thread blocks) resembles Figure 6,
because the total number of threads is in the same range as
in Figure 6 (80*32 to 2560*32, or 32*80 to 1024*80). When
the number of thread blocks goes beyond 5120, Hashcash
still maintains the best speedup. Both Ethash and Cuckoo
Cycle’s performance flattens out with more than 5120 thread
blocks, because they both saturate the memory bandwidth.
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Figure 7: Scalability on GPU with the number of
thread blocks varied

5.4 Effect of Memory Size

In real-life blockchain applications, the block update in-
terval needs to be stable, which is maintained by monitoring
the hash rate of the network and adjusting the difficulty of
PoW. Therefore, most PoW algorithms support difficulty
control by changing parameters. In addition to changing
the thresholds of hash values, memory-hard PoW algorithms
can be tuned by changing the size of accessed memory area.
Therefore, we study the performance effect of the memory
size in each algorithm.
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Figure 8: The hash rates of CryptoNight with
scratchpad memory size varied

We first evaluate the performance of CryptoNight with
the size of the scratchpad memory varied from 32 KB to
128 MB. The hash rates on different processors are shown
in Figure 8. On all three processors, the hash rate decreases
with the increase of scratchpad memory size. We observe
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that the performance of the CPU significantly drops when
the scratchpad memory increases from 512 KB to 1 MB. The
reason is that the L2 cache available for each thread on the
CPU is 512 KB. When the scratchpad memory exceeds the
capacity of L.2 cache, reads and writes to the scratchpad be-
come costly due to cache misses. Similarly, the hash rate of
KNL reduces by half when the scratchpad memory increases
to 256 KB, because the L2 cache per thread is 128 KB. As
for the GPU, the performance is nearly constant when the
scratchpad memory is less than 16 MB. This is because reads
and writes to the scratchpad memory are all random global
memory accesses on the GPU, regardless of the scratchpad
memory size. The shared memory of the GPU cannot be uti-
lized for storing the scratchpad, since it is dedicated to AES
encryptions. When the scratchpad memory size exceeds 16
MB, the parallelism of GPU is limited by its global memory
size, thus the hash rate continuously decreases and eventu-
ally becomes worse than the CPU and KNL. The crossovers
of the performance curves of CryptoNight on three proces-
sors suggest that it is feasible for CryptoNight to democ-
ratize the blockchain by including multiple scratchpads of
different sizes, for example, hundreds of kilobytes, tens of
megabytes, and a few gigabytes. This way, the algorithm
poses memory hardness to all three kinds of processors, and
it will be challenging to design ASICs to perform well on all
scratchpads of various sizes.
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Figure 9: The hash rates of Ethash with DAG size
varied

We next investigate how the DAG size of Ethash impacts
the performance. The initial size of the DAG is 1 GB, and
increases with the block number. The DAG size of Ethash
in the real world was 3.13 GB at block number 8195807 as
of July 2019. We show the hash rates of our Ethash with
DAG size varied from 1GB to 6GB in Figure 9. The DAGs
of size 1 GB to 6 GB correspond to block number 10000,
3839999, 7679999, 11519999, 15359999, and 19199999, re-
spectively. With the increase of the DAG size, the hash rate
on both the KNL and the GPU slightly decreased by about
1%. The hash rate on the CPU drops about 20% when the
DAG size increases from 1GB to 6 GB. Overall, the DAG
size of Ethash has little impact on its hash rate, and the
performance advantage of the GPU is significant in Ethash.

Lastly, we analyze the impact of graph size in the Cuckoo
Cycle algorithm. The Cuckoo Cycle algorithm generates a
bipartite graph with N edges and 2N vertices, where N is
set to 2°. We show the hash rate of Cuckoo Cycle with
1 =4{25,...,29} in Figure 10. In the figure, the hash rate H
drops logarithmically on the CPU and GPU with N. Even
though the hash rates all drop on three processors with the



increase of graph size, the performance gap between the
GPU and the CPU is wide, and the performance of KNL
is worse than the CPU. Since Cuckoo Cycle is more efficient
on small graphs, the graph size can be used for adjusting
difficulty.
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Figure 10: The hash rates of Cuckoo Cycle with
graph size varied

5.5 Effect of Memory Type on KNL

The MCDRAM of KNL provides five times higher band-
width than DDR RAM. However, the latency of MCDRAM
is nearly 20% higher than DDR RAM. Therefore, utilizing
MCDRAM on memory latency-sensitive applications will
usually have negligible impact, or even result in worse per-
formance.

Table 4 shows the performance of PoW algorithms on
KNL using DDR RAM and MCDRAM. The performance
of Hashcash is almost identical on the two types of memory,
because it is computation-bound with few memory opera-
tions. Surprisingly, CryptoNight and Ethash show speedups
of 1.95 times and 1.52 times respectively using MCDRAM
than DDR RAM, whereas the performance of Cuckoo Cycle
remains the same. These results suggest that the amounts
of parallel memory accesses in CryptoNight and Ethash are
large enough to hide the access latency whereas those in
Cuckoo Cycle are not.

Table 4: Comparison between memory types on
KNL

DDR RAM MCDRAM Speedup

Hashcash (MH/s) 191.06 190.79 0.99
CryptoNight (H/s)  514.6 1004.0 1.95
Ethash (MH/s) 2.03 3.09 1.52
Cuckoo Cycle (G/s) 0.59 0.59 1.00

5.6 Latency Analysis
5.6.1 GPU Issue Stall

We analyze the reasons of GPU issue stalls to show the
microperformance characteristics of these PoW algorithms.
Specifically, we measured eight types of issue stall reasons,
namely instruction fetch, execution dependency, memory
dependency, synchronization, pipe busy, not selected, mem-
ory throttle, and others.

The statistics of issue stall reasons are shown in Table 5.
Memory dependency stall is the major type of stalls in all
three memory-hard PoW algorithms, which counts for more
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Table 5: Types of stalls on GPU. The reasons that
account for more than 20% in each algorithm are
highlighted.

Hashcash CryptoNight FEthash g;zioo
Mem. dependency 0.00% 97.65% 94.82% 67.62%
Mem. throttle 0.00% 0.00% 0.00% 22.86%
Exec. dependency 11.88% 1.97% 2.35%  6.37%
Synchronization 0.00% 0.00% 0.00% 1.13%
Instruction fetch  5.23% 0.14% 0.70% 1.11%
Not selected 40.05% 0.00% 1.20%  0.46%
Pipe busy 41.6% 0.11% 0.64% 0.35%
Others 1.24% 0.13% 0.29% 0.10%

than 90 % of the stalls in CryptoNight and Ethash, and 67
% in Cuckoo Cycle. A memory dependency stall occurs in
a warp when a load/store instruction cannot be issued. In
Cuckoo Cycle, memory throttle stall is another significant
stall reason, which takes about 22 %. Memory throttle stall
is usually caused by an overwhelming number of memory
instructions, which exceeds the capacity of memory data
paths.

The domination of memory dependency and throttle stall
indicates that these algorithms are indeed memory-hard. As
a comparison, the Hashcash algorithm has no memory stall
at all, but is mainly stalled by the shortage of compute re-
sources, such as pipeline busy and not selected (the instruc-
tion is ready to issue, but the warp of threads is not selected
to issue because other warps are selected).

5.6.2 Cache hit rate

We use cache hit rate to examine whether an algorithm is
latency bound or not. To calculate cache hit rate precisely,
we directly read the hardware event counters of processors.
On CPU, we have L1 cache hit rate:

mem_load_uops.l1_hit
mem_load_uops.l1_hit + mem_load_uops.l1_miss

and L2 cache hit rate:

mem_load_uops.l2_hit
mem_load_uops.l2_hit + mem_load_uops.l2_miss

We calculate hit rates using counters of retired memory
operations, i.e., operations that have been completely exe-
cuted, so that failed branch prediction and prefetch opera-
tions are excluded. Similarly, we can calculate the L1 cache
hit rate of KNL:

mem_uops.all_loads — mem_uops.l1_miss_loads

mem_uops.all_loads

and L2 cache hit rate of KNL:

mem_uops.l2_hit_loads

mem_uops.l2_hit_loads + mem_uops.l2_miss_loads

For GPU, we use the metrics provided by nvprof, includ-
ing [1_cache_global_hit_rate, l1_cache_local_hit_rate, and
1211 read_hit_rate. We repeatedly execute the kernel and
take the average of hit rates within a small fluctuation range.



Table 6: L1 cache hit rate

CPU KNL
Hashcash 99.9% 99.9%
CryptoNight 96.8% 94.2%
Ethash 99.0% 97.2%
Cuckoo Cycle 94.5% 96.8%

The hit rates of L1 cache on CPU and KNL are shown in
Table 6. Most algorithms have a hit rate higher than 90%.
The L1 cache hit rate of GPUs are not included, since global
loads are cached in L2 cache only.

B Hashcash A Ethash
BB CryptoNight I Cuckoo Cycle
10°
E 0
E
102
CPU KNL GPU

Figure 11: Comparison of L2 cache hit rate on dif-
ferent processors

The L2 cache hit rates of three processors are shown in
Figure 11. Hashcash has the best hit rates, since it involves
few memory operations. Cuckoo Cycle achieves a cache hit
rate of more than 70 % on all processors, because the access
on the edge set is sequential access. CryptoNight’s hit rates
are low on the CPU and KNL due to random accesses, but
are high on the GPU due to coalesced access of the AES
encryption. In comparison, Ethash’s L2 cache hit rates are
low on all processors, but on the GPU the latency resulted
from the low cache hit rate can be hidden by overlapping
data transfer.

5.7 Bandwidth Analysis

To study the memory hardness of the PoW algorithm, we
also measure the peak memory throughput. On CPU, the
memory throughput can be measured using the per fmem
tool. On KNL, the metrics of perf are not available, so we
calculate throughput using event counters. The through-
put of reading and writing DDR RAM can be calculated by
unc_m_cas_count.rd and unc.m_cas_count.wr, respectively.
The throughput of reading and writing MCDRAM can be
calculated by unc_e_rpq_inserts and unc_e_wpq_inserts, re-
spectively. On GPU, we can get the throughput of all mem-
ory types by nvprof metrics, including the read and write
throughput of L2 cache, shared memory, device memory,
and system memory.

The peak memory read throughput is shown in Table 7.
On all three processors, the largest throughput is achieved
by Ethash, since it is a bandwidth-bound PoW algorithm.
Among three processors, GPU has the highest throughput,
which is 79 % of its bandwidth. KNL has demonstrated the
advantage of MCDRAM over DDR RAM, but only 27% of
its bandwidth is achieved.
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Table 7: Peak memory read throughput (GB/s)

CPU KNL GPU
Hashcash 0.47  4.67 0
CryptoNight  6.89 51.32  102.63
Ethash 7.69  119.48 708.75
Cuckoo Cycle 5.77  15.92 176.53

We also calculate the theoretical maximum hash rate of
bandwidth-bound PoW as follows. Given the memory band-
width of the processor B and the size of memory fetched per
hash m, the hash rate is H = B/m. For the Ethash algo-
rithm, 128 bytes of memory is fetch from the 2GB DAG
per step, and each hash requires 64 steps. Therefore, m =
128bytes x 64 = 8KB memory read is performed for each
hash. The memory bandwidth of V100 is B = 897 GB/s,
so the theoretical maximum hash rate of Ethash using GTX
670 is H = 897/8 = 112.125 MH/s. We see that the actual
hash rate is 84 percent of the theoretical value. In conclu-
sion, Ethash is the only PoW algorithm that can make full
use of the high bandwidth of GPUs.

5.8 Power Consumption

One important performance metric of PoW algorithms is
power consumption. Since cryptocurrency mining is prof-
itable, professional miners have been actively searching for
hardware that can achieve high performance while maintain-
ing a small energy footprint. To compare PoW algorithms
on the energy consumption, we use s-tui and nwvidia-smi
to monitor the peak power consumption on CPU/KNL and
GPU, respectively.
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Figure 12: Comparison of power consumption

As shown in Figure 12, Hashcash is the algorithm that
consumes the most power on all three processors, because
the intensive computation keeps processors busy. As for
memory-hard PoW algorithms, the power consumption is
80.3%, 77.3%, and 39.4% of that of Hashcash on CPU, KNL,
and GPU, respectively. This is due to the stalls resulted by
memory operations. The latency-bound CryptoNight algo-
rithm uses much less power on the GPU, because frequent
global memory accesses make the processor waiting for the
execution of load/store instructions.

We also calculate Hashes per Joule of each processor to
compare their energy efficiency. The results are shown in
Table 8. GPU achieves the best energy efficiency among
all three processors, while KNL spends the most energy for
each hash. On the Ethash algorithm, GPU is 28.3 times



Table 8: Energy efficiency of PoW algorithms on
different processors

CPU KNL GPU
Hashcash (MH/J) 2.668 1.068 13.423
CryptoNight (H/J)  9.650 5.966 19.264
Ethash (MH/J) 0.038 0.018 0.509
Cuckoo Cycle (G/J) 0.011 0.004 0.033

more energy efficient than KNL, which shows the advan-
tage of GPUs on bandwidth bound PoW algorithms. The
CryptoNight algorithm has the smallest energy gap between
processors, because GPUs are not suitable to latency bound
tasks. However, GPU still outperforms CPU and KNL by
1.9x and 3.2x, respectively. Therefore, the manycore design
of GPU makes it the most profitable mining device among
the general-purpose processors.

5.9 Discussion

The selection of PoW algorithms is a critical part of block-
chain system design, because it directly affects the secu-
rity and performance of the blockchain. We observe diverse
choices of PoW algorithms in current blockchain systems.
Most blockchains are designed to be egalitarian, i.e., aim
to eliminate the advantage of specialized hardware and en-
courage more participants to join. Other blockchains adopt
PoW algorithms that are friendly to specialized hardware.
Therefore, there is no standard answer to the selection of
PoW algorithm, since it depends on the objective of the
blockchain system. Nevertheless, in our study we focus on
the representative memory-hard PoW algorithms, which are
aimed for egalitarian blockchain systems.

To the best of our knowledge, this study is the first to mea-
sure and analyze the performance of representative memory-
hard PoW algorithms across three types of general-purpose
processors. We identify the performance factors including
thread parallelism and memory size in general and study
their impact. Furthermore, we obtain hardware profiling re-
sults on instruction stalls, cache hit ratios, peak memory
bandwidth, and power consumption to understand the per-
formance characteristics of the algorithms.

Based on our experimental results, we summarize the char-
acteristics of the three memory-hard PoW algorithms. First,
CryptoNight is the most egalitarian PoW algorithm. Sec-
ond, Ethash is the best memory bandwidth utilizer across all
three types of processors. Finally, all three PoW algorithms
reduce power consumption by memory stalls.

In addition, we give our suggestion based on our exper-
iment results: A memory-hard PoW algorithm that mini-
mizes the difference between processors can be designed to
include multiple scratchpads of different sizes.

6. RELATED WORKS

Memory-hard hash functions have been studied in cryp-
tography. MTP and MHE [14] are two memory-hard func-
tions designed for password hashing and encryption, respec-
tively. These algorithms are memory-hard to prevent at-
tacks from using ASICs to break ciphers and decrypt cre-
dential information.

Alwen and Serbinenko [7] developed theoretical tools for
measuring amortized memory complexity of memory-hard
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functions. They define a graph pebbling game to abstract
parallel computation. In their subsequent work [6], they
used their model to prove the theoretical lower bound of the
memory-hard PoW algorithm Scrypt.

Blockbench [20] is a framework for benchmarking the data
processing capability of blockchains. It can measure the
throughput, latency, and scalability of blockchain systems
under various workloads. It is specifically focused on private
blockchains, e.g., Hyperledger Fabric [9], where traditional
Byzantine fault tolerant algorithms [17] rather than PoW
algorithms are used for consensus.

Han et al. [26] conducted a study about memory-hard
PoW algorithms used in cryptocurrency mining. It proposed
a general structure of memory-hard PoW algorithms and
benchmarked three PoW algorithms, namely Ethash, Cryp-
toNight, and Scrypt on GPUs. The comparison between
the results of [26] and our GPU results on common exper-
iments are as follows. Firstly, we measured higher memory
read throughput than their results, since the GPU we used
(V100) has higher bandwidth than theirs (Titan XP). Sec-
ondly, we obtained similar results on peak memory usage,
i.e., CryptoNight consumes more memory than Ethash on
the GPU. Thirdly, our experimental results suggested that
memory dependency is the major type of stalls on the GPU,
which is consistent with their conclusion. The difference is
that we distinguish between latency-bound and bandwidth-
bound algorithms and perform detailed comparison between
GPU and other processors.

7. CONCLUSION

The memory-hard PoW algorithms in cryptocurrencies
were designed to prevent ASIC miners from having great
performance advantages over CPUs and GPUs, as it is im-
portant for the fairness to allow miners on general-purpose
computing hardware to participate. In this paper, we per-
formed an experimental study of memory-hard PoW algo-
rithms on three types of processors. We first demonstrate
the impact of thread parallelism, size of accessed memory
area, and memory types to the overall performance. Then,
we compare PoW algorithms through quantitative analy-
sis of low-level metrics including types of instruction stalls,
cache hit rates, memory throughput and power consump-
tion.

We share a few lessons learned through the study, which
would be useful for guiding the design of memory-hard PoW
algorithms. Firstly, due to the design of different processors,
they are suitable for different tasks. Latency-bound tasks
are friendly to CPU and KNL, because of their mature cache
hierarchy. Bandwidth-bound tasks can fully exploit the po-
tential of GPU. Secondly, since the processors are evolving
rapidly, PoW algorithms should be adjustable and flexible
so that their properties can be maintained as long as possi-
ble. In particular, the performance gaps between the GPU
and the CPU are widening for all three memory-hard al-
gorithms, and CryptoNight or other algorithms need to be
adjusted to reduce the gap.

Our source code and performance test scripts used in
this study are publicly available at https://github.com/
RapidsAtHKUST/pow-bench.
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