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ABSTRACT
Deep learning models have been used to support analytics
beyond simple aggregation, where deeper and wider mod-
els have been shown to yield great results. These models
consume a huge amount of memory and computational op-
erations. However, most of the large-scale industrial ap-
plications are often computational budget constrained. In
practice, the peak workload of inference service could be
10x higher than the average cases, with the presence of un-
predictable extreme cases. Lots of computational resources
could be wasted during off-peak hours and the system may
crash when the workload exceeds system capacity. How to
support deep learning services with dynamic workload cost-
efficiently remains a challenging problem. In this paper,
we address the challenge with a general and novel train-
ing scheme called model slicing, which enables deep learning
models to provide predictions within the prescribed compu-
tational resource budget dynamically. Model slicing could
be viewed as an elastic computation solution without requir-
ing more computational resources. Succinctly, each layer in
the model is divided into groups of contiguous block of ba-
sic components (i.e. neurons in dense layers and channels in
convolutional layers), and then partially ordered relation is
introduced to these groups by enforcing that groups partici-
pated in each forward pass always starts from the first group
to the dynamically-determined rightmost group. Trained by
dynamically indexing the rightmost group with a single pa-
rameter slice rate, the network is engendered to build up
group-wise and residual representation. Then during infer-
ence, a sub-model with fewer groups can be readily deployed
for efficiency whose computation is roughly quadratic to the
width controlled by the slice rate. Extensive experiments
show that models trained with model slicing can effectively
support on-demand workload with elastic inference cost.
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1. INTRODUCTION
Database management systems (DBMS) have been widely

used and optimized to support OLAP-style analytics. In
present-day applications, more and more data-driven ma-
chine learning based analytics have been grafted into DBMS
to support complex analysis (e.g., stock prediction, disease
progression analysis) and/or to enable predictive query and
system optimization. To better understand the data and
decipher the information that truly counts in the era of Big
Data with its ever-increasing data size and complexity, many
advanced large-scale machine learning models have been de-
vised, from million-dimension linear models (e.g., Logistic
Regression [40], feature selection [55]) to complex models
like Deep Neural Networks [30]. To meet the demand
for more complex analytic queries, OLAP database vendors
have integrated Machine Learning (ML) libraries into their
systems (e.g., SQL Server pymssql1, DB2 python ibm db2

and etc). It is widely recognized that the integration of ML
analytics into data systems yields seamless effects since the
ML task is treated as an operator of the query plan instead
of an individual black-box system on top of data systems.
Naturally, a higher-level abstraction provides more space for
optimization. For example, query planning [42, 31], lazy
evaluation [57], materialization [55] and operator optimiza-
tion [1] could be considered in a fine-grained manner.

Cost and accuracy are always the two most crucial cri-
teria considered for analytic tasks. Lots of research on ap-
proximate query processing have been conducted [33, 4] to
provide faster yet approximate analytical query results in
modern large-scale analytical database systems, while such
a trade-off is not equally well researched for modern ML an-
alytic tasks, particularly deep neural network models. There
are two characteristics of the inference cost of analytic tasks
for deep neural network models. Firstly, with the devel-
opment of high-end hardware and large-scale datasets, re-
cent deep models are growing deeper [30, 16] and wider [53,
51]. State-of-the-art models have been designed with up
to hundreds of layers and tens of millions of parameters,
which leads to a dramatic increase in the inference cost. For
instance, a 152-layer ResNet [16] with over 60 million pa-
rameters requires up to 20 Giga FLOPs for the inference
of one single 224 × 224 image. The surging computational
cost severely affects the viability of many deep models in
industry-scale applications. Secondly, for most of the ana-
lytic tasks, the workload is usually not constant, e.g., the

1https://docs.microsoft.com/en-
us/sql/connect/python/pymssql/python-sql-driver-pymssql
2https://github.com/ibmdb/python-ibmdb

86



number of images per query for person re-id [58] service in
peak hours could be five times more than the workload in
the off-peak hours. Therefore, such a trade-off should be
naturally supported in the inference phase rather than the
training phase: using one single deep model with fixed infer-
ence cost to support the peak workload could lead to huge
amounts of resources wasting in off-peak hours, and may not
be able to handle the unexpected extreme workload. How to
trade off the accuracy and cost during deep model inference
remains a challenging problem of great importance.

Existing model architecture re-design [25, 20] or model
compression [14, 15, 35] methods are not able to handle
elastic inference satisfactorily, and we shall use an appli-
cation example to highlight the challenges. Singles′ Day
shopping festival3 around 11 November was introduced by
Taobao.com and is now becoming one of the biggest online
shopping festivals around the world. In 2018, the Singles′

Day festival generated close to 30 billion dollars of sales in
one single day and had attracted hundreds of millions of
users from more than 200 different countries. The peak
level of trade rate reached 0.256 million per second, and
42 million processing in the database in the first half hour.
In Singles′ Day, the search traffic of the e-commerce search
engine increases about three times than in a common day,
and could be 10x in its first hour. Meanwhile, the workload
of most other services in Alibaba such as OLTP transaction
may also hit the peak at the same time [3], and consequently,
it is not possible to scale up the service by acquiring more
hardware resources from Alibaba Cloud. The system degra-
dation is often executed in two simple and naive approaches:
First, some costly deep learning models are replaced by sim-
ple GBDT [6, 28] models; Second, the size of the candidate
items for ranking is reduced. The search accuracy suffers
dramatically due to the system degradation in such a coarse-
grained manner. With a deep learning model supporting
elastic inference cost, the system degradation management
can become more fine-grained where the inference cost and
accuracy trade-off per query sample can be dynamically de-
termined based on the current system workload.

In this paper, instead of constructing small models based
on each individual workload requirement, we propose and
address a related but slightly different research problem:
developing a general framework to support deep learning
models with elastic inference cost. We base the framework
on a pay-as-you-go model to support dynamic trade-offs be-
tween computation cost and accuracy during inference time.
That is, dynamic optimization is supported based on system
workload, availability of resources and user requirements.

An ML model abstraction with elastic inference cost would
greatly benefit the optimization of the system design for
complex analytics. We shall examine the problem from a
fresh system perspective and propose our solution – model
slicing, a general network training mechanism supporting
elastics inference cost, to satisfy the run-time memory and
computation budget dynamically during the inference phase.
The crux of our approach is to decompose each layer of the
model into groups of a contiguous block of basic components,
i.e. neurons in dense layers and channels in convolutional
layers, and facilitate group residual learning by imposing
partially ordered relation on these groups. Specifically, if
one group participates in the forward pass of model com-

3https://en.wikipedia.org/wiki/Singles%27 Day

putation, then all of its preceding groups in this layer are
also activated under such a structural constraint. There-
fore, we can use a single parameter slice rate r to control
the proportion of groups participated in the forward pass
during inference. We empirically share the slice rate among
all layers in the network; thus the computational resources
required can be regulated precisely by the slice rate.

Figure 1: Model slicing : slice a sub-layer that is composed of
preceding groups of the full layer controlled by the slice rate
r during each forward pass. Only the activated parameters
and groups of the current layer are required in memory and
participate in computation. We illustrate a dense layer with
slice rate r = 0.5 (activated groups highlighted in blue) and
r = 0.75 (additional groups involved in green).

The slice rate is structurally the same concept as width
multiplier [20] which controls the width of the network.
However, instead of training only one fixed narrower model
as in [20], we train the network in a dynamic manner to en-
hance the representation capacity of all the subnets it sub-
sumes. For each forward pass during training, as illustrated
in Figure 1, we sample the slice rate from a distribution
F predetermined in the Slice Rate Scheduling Scheme, and
train the corresponding sub-layers. The main challenges
of training one model that supports inference at different
widths include: how to determine proper candidate subnets
(i.e. scheduling the slice rate) for each training iteration;
and more importantly, how to stabilize the scale of output
for each component (i.e. neurons or channels) as the the
number of input components varies. Independent to our
work, Slimmable Neural Network [52] (SlimmableNet) also
proposes to train a single network executable at different
widths. In [52], candidate subnets are considered to be
equally important during training, by statically scheduling
all subnets for every training pass and incorporating a set
of batch normalization [26] (BN) layers into each layer, one
for each candidate sub-layer, to address the output scale in-
stability issue. In contrast, we consider the importance of
the subnets to be different in model slicing (e.g., the full
and the base network are the two most important subnets),
and propose to dynamically schedule the training accord-
ingly; besides the multi-BN solution, we further propose
a more efficient solution with the group normalization[50]
layer (GN) to prevent the scale instability, which works in
accordance with the dynamic group-wise training and en-
genders the group residual representation. We shall provide
more discussions on Section 3.

The model slicing training scheme can be scrutinized un-
der the perspective of residual learning [16, 17] and knowl-
edge distillation [18]. Under the random training process of
model slicing, groups of each layer need to build up the rep-
resentation increasingly, where the preceding groups carry
the most fundamental information and the following groups
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the residual representation relatively. Structurally, the fi-
nal learned network is an ensemble of G subnets, with G
being the number of groups, each corresponds to one slice
rate. The parameters of these subnets are tied together and
during each forward training pass, one subnet uniquely in-
dexed by the slice rate is selected and trained. We conjec-
ture that the accuracy of the resulting full trained network
should be comparable to the network trained convention-
ally. Meanwhile, smaller subnets gradually distill knowledge
from larger subnets as the training progresses, and thus can
achieve comparable or even higher accuracy than their coun-
terparts individually trained. Consequently, we can provide
the same functionality of an ensemble of models with only
one model by width slicing.

The proposed training scheme has many advantages over
existing methods on various issues such as model compres-
sion, model cascade and anytime prediction. First, model
slicing is readily applicable to existing neural networks, re-
quiring no iterative retraining or dedicated library/hardware
support as compared with most compression methods [15,
35]. Second, instead of training a set of models and opti-
mize the scheduling of these models with different accuracy-
efficiency trade-offs as is in conventional model cascade [27,
47], model slicing provides the same functionality of pro-
ducing an approximate low-cost prediction with one single
model. Third, the structure of the model trained with model
slicing naturally supports applications where the model is
required to give prediction within a given computational
budget dynamically, e.g., anytime prediction [22, 21].

Our main technical contributions are:

• We develop a general training and inference framework
model slicing that enables deep neural network mod-
els to support complex analytics with the trade-off be-
tween accuracy and inference cost/resource constraints
on a per-input basis.

• We formally introduce the group residual learning of
model slicing to general neural network models and
further convolutional and recurrent neural networks.
We also study the training details of model slicing and
their impact in depth.

• We empirically validate through extensive experiments
that neural networks trained with model slicing can
achieve performance comparable to an ensemble of net-
works with one single model and support fluctuating
workload with up to 16x volatility. Example appli-
cations are also provided to illustrate the usability of
model slicing. The code is available at GitHub 4, which
has been included in [38].

The rest of the paper is organized as follows. Section 2
provides a literature survey of related works. Section 3 in-
troduces model slicing and how it can be applied to various
deep learning models, including Convolutional Neural Net-
works (CNNs), Recurrent Neural Networks (RNNs) and etc.
We then show how model slicing can support fine-grained
system degradation management for present industrial deep
learning services and we also provide an illustrating applica-
tion of cascade ranking in Section 4. Experimental evalua-
tions of model slicing are given in Section 5, under prevailing
natural language processing and computer vision tasks on

4https://github.com/ooibc88/modelslicing

public benchmark datasets. Visualizations and detailed dis-
cussions of the results are also provided. Section 6 concludes
the paper and points out some further research directions.

2. RELATED WORK

2.1 Resource-aware Model Optimization
Many recent works directly devise networks [22, 48, 2]

that are more economical in producing predictions. Skip-
Net [48] incorporates reinforcement learning into the net-
work design, which guides the gating module whether to
bypass the current layer for each residual block. SkipNet
can provide predictions more efficiently yet in a less con-
trolled manner inherently. In MoE [41], a gating network
is introduced to select a smaller number of networks out a
mixture-of-experts which consists of up to thousands of net-
works during inference for each sample. This kind of model
ensemble approach aims to scale up the model capacity with-
out introducing much overhead, while our approach enables
every single model trained to scale down and support elastic
inference cost.

MSDNet [22] supports classification with computational
resource budgets at test time by inserting multiple classi-
fiers into a 2D multi-scale version of DenseNet [23]. By
early-exit into a classifier, MSDNet can provide predictions
within given computation constraints. ANNs [21] adopts
a similar design strategy of introducing auxiliary classifiers
with Adaptive Loss Balancing, which supports the trade-off
between accuracy and computational cost by using the in-
termediate features. [36] also develops a model that can
successively improve prediction quality with each iteration
but this approach is specific to segmenting videos with RNN
models. These methods can largely alleviate the computa-
tional efficiency problem. However, they are highly special-
ized networks, which restrict their applicability. Function-
ally, models trained with model slicing also reuse interme-
diate features and support progressive prediction but with
width slicing. Model slicing works similarly to these net-
works yet is more efficient, flexible and general.

2.2 Model Compression
Reducing the model size and computational cost has be-

come a central problem in the deployment of deep learning
solutions in real-world applications. Many works have been
proposed to resolve the challenges of growing network size
and surging resource expenditure incurred, mainly memory
and computation. The mainstream solutions are to com-
press networks into smaller ones, including low-rank ap-
proximation [12], network quantization [10, 14, 15], weight
pruning [15, 14], network sparsification on different level of
structure [49, 35] etc.

To this end, many model compression approaches attempt
to reduce the model size on the trained networks. [12] re-
duces model redundancy with tensor decomposition on the
weight matrix. [10] and [15] instead propose to quantize the
network weights to save storage space. HashNet [7] also pro-
poses to hash network weights into different groups and shar-
ing weight values within each group. These techniques are
effective in reducing model size. For instance, [15] achieves
up to 35x to 49x compression rates on AlexNet [30]. Al-
though a considerable amount of storage can be saved, these
techniques can hardly reduce run-time memory or inference
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time, and they typically need a dedicated library and/or
hardware support.

Many studies propose to prune weights, filters or channels
in the networks. These approaches are generally effective be-
cause typically, deep networks are highly redundant in model
representation. [14, 15] iteratively prune unimportant con-
nections of small weights in trained neural networks. [44]
further guides the sparsification of neural networks during
training by explicitly imposing sparse constraints over each
weight with a gating variable. The resulting networks are
highly sparse, which can be stored compactly in a sparse for-
mat. However, the speedup of inference time of these meth-
ods depend heavily on dedicated sparse matrix operation
libraries or hardware, and the saving of run-time memory is
again very limited since most of the memory consumption
comes from the activation maps instead of these weights.
[49, 35] reduce the model size more radically by imposing
regularization on the channel or filter and then prune the
unimportant components. Like model slicing, channel and
filter level sparsity can reduce the model size, run-time mem-
ory footprint and also lower the number of computational
operations. However, these methods often require iterative
fine-tuning to regain performance and support no inference
time control.

2.3 Efficient Model Design
Instead of compressing existing large neural networks dur-

ing or after training, recent works have also been explor-
ing more efficient network design. ResNet [16, 17] proposes
residual learning via an identity mapping shortcut and the
efficient bottleneck structure, which enables the training of
very deep networks without introducing more parameters.
[45] shows that ResNet behaves like an ensemble of shallow
networks and it can still function normally with a certain
fraction of layers being removed. FractalNet [32] contains
a series of the duplication of the fractal architecture with
interacting subpaths. FractalNet adopts drop-path train-
ing which randomly selects certain paths during training,
allowing for the extraction of fixed-depth subnetworks af-
ter training without significant performance loss. To some
extent, these network architectures can support on-demand
workload by slicing subnets layer-wise or path-wise. How-
ever, these methods are not generally applicable to other
networks and the accuracy significantly drops when short-
ening or narrowing the network.

Many recent works focus on designing lightweight net-
works. SqueezeNet [25] reduces parameters and computa-
tion with the fire module. MobileNet [20] and Xception [9]
utilize depth-wise and point-wise convolution for more pa-
rameter efficient convolutional networks. ShuffleNet [56]
proposes point-wise group convolution with channel shuffle
to help the information flowing across channels. These ar-
chitectures scrutinize the bottleneck in conventional convo-
lutional neural networks and search for more efficient trans-
formation, reducing the model size and computation greatly.

3. MODEL SLICING
We aim to provide a general training scheme for neural

networks to support on-demand workload with elastic infer-
ence cost. More specifically, the target is to enable the neu-
ral network to produce prediction within prescribed compu-
tational resources budget for each input instance, and mean-
while maintain the accuracy.
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Figure 2: Classification accuracy w.r.t. inference FLOPs of
ResNet trained with model slicing against ensemble, com-
pression and other baselines on the CIFAR-10 dataset.

Existing methods of model compression, model ensemble
and anytime prediction models can partially address this
problem, but each has its limitations. Model compression
methods such as network slimming [35] which compresses
channel width each layer, produce efficient models while
they typically take longer training time for iterative prun-
ing and retraining, and more importantly, have no control
over resources required during inference. Model ensemble
methods, e.g., the ensemble of varying depth or width net-
works, support inference time resources control by schedul-
ing the model for the immediate prediction task. However,
deploying an ensemble of the models multiply the amount
of disk storage and memory consumption; further, schedul-
ing of these models is a non-trivial task to the system in
deployment. Many works [22, 21, 36] instead exploit in-
termediate features for faster approximate prediction. For
instance, Multi-Scale DenseNet [22] (MSDNet) inserts mul-
tiple classifiers into the model and thus supports anytime
prediction by early-exit on a classifier.

Our model slicing also exploits and reuses intermediate
features produced by the model while sidesteps the afore-
mentioned problems. The key idea is to develop a general
training and inference mechanism called model slicing which
slices a narrower subnet for faster computation. With model
slicing, neural networks are able to dynamically control the
width of the subnet and thus regulate the computational re-
source consumption with one single parameter slice rate. In
Figure 2, we illustrate by comparing the accuracy-efficiency
trade-offs of ResNet trained with different approaches. We
can observe that model ensemble methods are strong base-
lines which trade off accuracy for lower inference cost and
that the Ensemble of ResNet with varying width performs
better than varying depth. This finding indicates the supe-
riority of width slicing over depth slicing, which is corrob-
orated by the rapid loss in accuracy of ResNet with Multi-
Classifiers (single model) in Figure 2. We will show that
trained with model slicing, one single model is able to pro-
vide inference performance comparable to the ensemble of
varying width networks. Therefore, model slicing is an ideal
solution for neural networks to support elastic inference cost
and resource constraints.
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3.1 Model Slicing for Neural Networks
We start by introducing model slicing to fully-connected

layer (dense layer) for general neural networks. Each dense
layer in the neural network transforms via a weight matrix
W ∈ RN×M : y = Wx, where x = [x1, x2, . . . , xM ], a M -
dimension input vector, corresponds to M input neurons
and y = [y1, y2, . . . , yN ], N output neurons correspondingly.
Details such as the bias and non-linearity are omitted here
for brevity. As illustrated in Figure 1, a gating variable is
implicitly introduced to impose a structural constraint on
each input neuron xj :

yi =

M∑
j=1

wij(αj · xj) (1)

Each gating variable αj thus controls the participation of
the corresponding neuron xj in each forward pass during
both training and inference. Formally, the structural con-
straint is obtained by imposing partial ordered relation on
these gating variables:

∀i∀j(i < j ∧ αj = 1→ αi = 1) (2)

which requires that the set of activated neurons during
each forward pass forms a contiguous block starting from the
first neuron. Based on the relation, we further divide these
neurons into G ordered groups, i.e. x = [x1,x2, . . . ,xG],
each group corresponds to a contiguous block of neurons.
We denote the index of the rightmost neuron of the first i
groups as gi, and the corresponding sub-layer as Sub-layer-
ri, where the slice rate ri = gi

M
, (0 < ri ≤ 1). Then the set

of groups participated in the current forward pass can be
determined by indexing the rightmost group xi, and the set
of neurons involved corresponds to {x1, x2, . . . , xgi}. Note
that the group number G is a pre-defined hyper-parameter,
which could be set from 1 (the original layer) to M (each
component forms a group).

Empirically, the slice rate is shared among all the layers
in the network and we denote the subnet of first i groups
in each layer as Subnet-ri. Thus the width of the whole
network can be regulated by the single parameter r. As
illustrated in Figure 1, only the sliced part of the weight
matrix and components are activated and required to re-
side in memory for inference in the current forward pass.
We denote the computational operation required by the full
network as C0, then the computational operation required
by the subnet of slice rate r is roughly r2 × C0. There-
fore, the run-time computational resources limit Ct can be
dynamically satisfied by restricting slice rate r by:

r ≤ min(

√
Ct

C0
, 1) (3)

Consequently, a subnet can be readily sliced and deployed
out of the network trained with model slicing whose disk
storage and run-time memory consumption are also roughly
quadratic to the slice rate r. Besides satisfying the run-time
computational constraint, another primary concern is how
to maintain the performance of these subnets. To this end,
we propose the model slicing training in Algorithm 1. For
each training pass, a list of slice rate Lt is sampled from the
predefined slice rate list L by a scheduling scheme F , and
the corresponding subnets are optimized under the current

Algorithm 1: Training with Model Slicing.

Input: model W0, slice rate list L, scheduling
scheme F , training iteration T , criterion, optimizer.

Upgrade layers to support model slicing :
W0 ← upgrade model(W0,L)

for iteration t from 0 to T − 1 do
Generate next batch of data and label: (xt,yt)
Generate the current training slice rate list:
Lt ← next slice rate batch(L,F)

Initialize model gradient Wg ← 0
for slice rate r ∈ Lt do

Forward Subnet-r: ŷ← forward(Wt, r,xt)
Compute Loss: loss← criterion(yt, ŷ)
Accumulate gradient:
Wg ←Wg + loss.backward()

end
Update model
Wt+1 ← optimizer.update(Wt,Wg)

end

training batch. We shall elaborate on the scheduling scheme
in Section 3.4.

Notice that the parameters of all subnets are tied to-
gether and any subnet indexed by a slice rate ri subsumes
all smaller subnets. The structural constraint of model slic-
ing is reminiscent of residual learning [16, 17], where the
Subnet-r1 (the base network) carries the base representa-
tion. With the new input group xi introduced as i grows,
each yj is optimized to learn from finer input details and
thus the group residual presentation. We shall provide more
discussions on this effect in Section 3.5. From the viewpoint
of knowledge distillation [18], the Subnet-rG (Subnet-1.0)
maintains the capacity of the full model and as the train-
ing progresses, each Subnet-ri gradually distills the repre-
sentation from larger subnets and transfers the knowledge
to smaller ones. Under this training scheme, we conjecture
that the full network can maintain the accuracy, or possi-
bly improve due to the regularization and ensemble effect;
and in the meantime, the subnets can gradually pick up the
performance by distilling knowledge from larger subnets.

3.2 Convolutional Neural Networks
Model slicing is readily applicable to convolutional neural

networks in a similar manner. The most fundamental op-
eration in CNNs comes from the convolutional layer which
can be constructed to represent any given transformation
Fconv : X → Y, where X ∈ RM×Win×Hin is the input
with M channels of size Win × Hin, Y ∈ RN×Wout×Hout

the output likewise. Denoting X = [x1,x2, . . . ,xM ] and
Y = [y1,y2, . . . ,yN ] in vector of channels, the parameter
set associated with each convolutional layer is a set of fil-
ter kernels K = [k1,k2, . . . ,kN ]. In a way similar to the
dense layer, model slicing for the convolutional layer can be
represented as:

yi = ki ∗X =

M∑
j=1

kj
i ∗ (αj · xj) (4)

where ∗ denotes convolution operation, kj
i is a 2D spatial

kernel associated with ith output channel yi and convolves
on jth input channel xj . Consequently, treating channels in
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convolutional layers analogously to neurons in dense layers,
model slicing can be directly applied to CNNs with the same
training scheme.

Nonetheless, the output scale instability issue arises when
applying model slicing to CNNs. Specifically, each convo-
lutional layer is typically coupled with a batch normaliza-
tion layer [26] to normalize outputs in the batch dimension,
which stabilizes the mean and variance of input channels re-
ceived by channels in the next layer. In the implementation
of Equation 5, each batch-norm layer normalizes outputs
with the batch mean µ and variance σ2 and keeps records
of running estimates of them which will be used directly
after training. Here, γ and β are learnable affine transfor-
mation parameters of this batch-norm layer associated with
each channel. However, with model slicing, the number of
inputs received by a given output channel is no longer fixed,
which is instead determined by the slice rate ri during each
forward pass. Consequently, the mean and variance of the
batch-norm layer on the output fluctuate drastically; thus
one single set of the running estimates is unable to stabilize
the distribution of the output channel.

ŷ =
yin − µ√
σ2 + ε

; yout = γŷ + β (5)

We propose to address this issue with Group Normaliza-
tion [50], an adaptation to Batch-norm. Group-norm divides
channels into groups and normalizes channels in the same
way as is in Equation 5 with the only difference that the
mean and variance are calculated dynamically within each
group. Formally, given the total number of groups G , the
mean µi and variance σ2

i of i-th group are estimated within
the set of channels in Equation 6 and shared among all the
channels in the i-th group for normalization.

Si = {xj |floor(
j − 1

G
) = i} (6)

Group-norm normalizes channels group-wise instead of
batch-wise, avoiding running estimates of the batch mean
and variance in batch-norm whose error increases rapidly as
the batch size decreases. Experiments in [50], which is also
validated by our experiments on various network architec-
tures, show that the accuracy of group-norm is relatively
stable with respect to the batch size and group number.
Besides stabling the scale, another benefit of group-norm is
that it engenders the group-wise representation, which is in
line with the group residual learning effect of model slicing
training. To introduce model slicing to CNNs, we only need
to replace batch-norm with group-norm and slice the nor-
malization layers together with convolutional layers at the
granularity of the group.

3.3 Recurrent Neural Networks
Model slicing can be readily applied to recurrent layers

similarly to fully-connected layers. Take the vanilla recur-
rent layer expressed in Equation 7 for demonstration, the
difference is that the output ht is computed from two sets
of inputs, namely xt and ht−1.

ht = σ(Whxxt + Whhht−1 + bh) (7)

Consequently, we can slice each input of the recurrent
layer separately and adopt the same training scheme as fully-
connected layers. Model slicing for recurrent layers of RNN

variants such as GRU [8] and LSTM[19] works similarly.
Dynamic slicing is applied to all input and output sets, in-
cluding hidden/memory states and various gates, regulated
by one single parameter slice rate r of each layer.

3.4 Slice Rate Scheduling Scheme
As shown in Algorithm 1, for each training pass of model

slicing, a list of slice rate is sampled from a predetermined
scheduling scheme F , and then the corresponding subnets
are trained under the current training batch. Formally, the
random scheduling can be described as sampling the slice
rate r from a Distribution F . Denoting the list of valid slice
rate r in order as (r1, r2, . . . , rG), then we have:


p(r1) = F ( r1+r2

2
) =

∫ r1+r2
2

−∞ f(r)dr, i = 1

p(ri) = F (
ri+ri+1

2
)− F (

ri−1+ri
2

) =
∫ ri+ri+1

2
ri−1+ri

2

f(r)dr, 1 < i < G

p(rG) = 1− F (
rG−1+rG

2
) =

∫ +∞
rG−1+rG

2

f(r)dr, i = G

(8)

where f(r) is the probability density function, F (r) the
cumulative distribution function of F and p(ri) the proba-
bility of slice rate ri being sampled. Thereby, the random
scheduling F (e.g., the Uniform Distribution or the Nor-
mal Distribution) can be parameterized with a Categori-
cal Distribution Cat(G, p(r1), p(r2), . . . , p(rG)), where each
p(ri) denotes the relative importance of Subnet-ri over other
subnets. Further, the importance of these subnets should be
treated differently. In particular, the full and the base net-
work (i.e. Subnet-rG and Subnet-r1) should be the two most
important subnets, because the full network represents the
model capacity and the base network forms the basis for all
the subnets. Based on this observation, we propose three
categories of scheduling schemes:

• Random scheduling, where each of the slice rate is sam-
pled from an F parameterized by (p(r1), . . . , p(rG)).

• Static scheduling, where all valid slice rates are sched-
uled for the current training pass.

• Random static scheduling, where both a fixed set and
a set of randomly sampled slice rates are scheduled.

For random scheduling, the importance of different sub-
nets can be represented in the assigned probabilities, where
we can assign higher sampling probabilities to more impor-
tant subnets (e.g., the full and base network) during train-
ing. Likewise, for random static scheduling, we can include
the important subnets in the fixed set and meanwhile as-
sign proper probabilities to the remaining subnets. We shall
evaluate these slice rate scheduling schemes in Section 5.1.2.

3.5 Group Residual Learning of Model Slicing
The model slicing training scheme structurally is reminis-

cent of residual learning proposed in ResNet [16, 17]. In
ResNet, a shortcut connection of identity mapping is pro-
posed to forward input to output directly: y = x+Fconv(x),
where during optimization, the convolutional transforma-
tion only needs to learn the residual representation on top
of input information x, namely y−x. Analogously, networks
trained with model slicing learn to accumulate the represen-
tation with additional groups introduced (group of neurons
in dense layers and group of channels in convolutional lay-
ers), i.e. y =

∑G
i=1 Fconv i(xi).
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To demonstrate the group residual learning effect in model
slicing, we take the transformation in a fully-connected layer
for example, and analyze the relationship between any two
sub-layers of slice rate ra and rb with ra < rb. We have the
transformation of Sub-layer-ra as ya = Waxa and the trans-
formation of Sub-layer-rb [ỹa; yb] = Wb[xa; xb] in block ma-
trix multiplication as:

[
ỹa

yb

]
=

[
Wa B
C D

]
·
[
xa

xb

]
=

[
Waxa + Bxb

Cxa + Dxb

]
(9)

Here, xb is the supplementary input group introduced
for Sub-layer-rb and yb is the corresponding output group.
Generally rb − ra � ra, then the group residual representa-
tion learning can be clarified from two angles. Firstly, the
base representation of Sub-layer-rb is ỹa = W1xa + Bxb =
ya + Bxb, which is composed of the base representation ya

and the residual representation Bxb. Secondly, the newly-
introduced output group yb further forms the residual rep-
resentation supplementary to the base representation ỹa.
Higher model capacity is therefore expected of Subnet-rb.

The justification for the group residual learning effect in
model slicing is that as the training progresses, the base
representation of ya alone in Sub-layer-ra has already been
optimized for the learning task. Therefore, the supplemen-
tary group yb introduced to Sub-layer-rb gradually adapts
to learn the residual representation, which is corroborated in
the visualization in Section 5.5.1. Furthermore, this group
residual learning characteristic provides an efficient way to
harness the richer representation for Subnet-rb based on
Subnet-ra by the simple approximation of ỹa ≈ ya. With
this approximation in every layer of the network, the most
computationally heavy features of Waxa could be reused
without re-evaluating, thus the representation of Sub-layer-
rb can be updated by calculating only Cxa + Dxb with a
significantly lower computational cost.

We note that the model slicing training for group resid-
ual representation is applicable to the majority of neural
networks. In addition, the group residual learning mech-
anism of model slicing is ideally suited for networks with
layer transformation of multiple branches, e.g., group con-
volution [56], depth-wise convolution [20] and homogeneous
multi-branch residual transformation of ResNeXt [51] etc.

4. EXAMPLE APPLICATIONS
In this section, we demonstrate how model slicing can

benefit the deployment of deep learning based services. We
use model slicing as the base framework to manage fine-
grained system degradation for large scale machine learning
services of dynamic workload. We also provide an example
application of cascade ranking with model slicing.

4.1 Supporting Dynamic Workload Services
For a service with a dynamic workload, fine-grained sys-

tem degradation management can be supported directly and
efficiently with model slicing. Query samples come as a
stream, and there is a dynamic latency constraint. Queries
are usually batch-processed with vectorized computation for
higher efficiency.

We design and implement an example solution to guaran-
tee the latency and throughput requirement via model slic-
ing. Given the processing time per sample for the full model
t, to satisfy the dynamic latency constraint T and unknown

query workload, we can build a mini-batch in every T/2
time, and utilize the rest T/2 time budget for processing:
first examine the number of samples n in current batch, and
choose the slice rate r satisfying nr2t ≤ T/2 (Equation 3) so
that the processing time for this batch is within the budget
T/2. Under such a system design, no computation resource
is wasted as the total processing time per mini-batch is ex-
actly the time interval of the batch input. Meanwhile, all
samples can be processed within the required latency.

4.2 Implementing Cascade Ranking Applica-
tion

Many information retrieval and data mining applications
such as search and recommendation need to rank a large
set of data items with respect to many user requests in an
online manner. There are generally two issues in this pro-
cess: 1). Effectiveness as how accurate the obtained results
in the final ranked list are and whether there are a sufficient
number of good results; and 2). Efficiency such as whether
the results are obtained in a timely manner from the user
perspective and whether the computational costs of ranking
is low from the system perspective. For large-scale rank-
ing applications, it is of vital importance to address both
issues for providing good user experience and achieving a
cost-saving solution.

Cascade ranking [46, 34] is a strategy designed for such
a trade-off. It utilizes a sequence of prediction functions of
different costs in different stages. It can thus eliminate irrel-
evant items (e.g., for a query) in earlier stages with simple
features and models, while segregate more relevant items in
later stages with more complicated features and models. In
general, functions in early stages require low inference cost
while functions in later stages require high accuracy.

One critical characteristic of cascade ranking is that the
optimization target for each function may depend on all
other functions in different stages [34]. For instance, given a
positive item set {1, 2, ..., 7} and we aim to build a cascade
ranking solution with two stages, suppose that function in
stage two mis-drop positive item {6, 7}, a function in stage
one mis-drop {1, 6, 7} is better than a function mis-drop
{1, 2}, though the former has a higher error rate over the
whole dataset (in the first case {2, 3, 4, 5} are left while in
the second case only {3, 4, 5} are left). Lots of analysis are
given in [46, 5, 34]. Therefore, we expect the prediction of
positive items given by functions in different stages to be
consistent so that the accumulated false negatives are min-
imized. Unfortunately, most implementations of the rank-
ing/filtering function at each stage for cascade ranking use
different model architectures with different parameters. The
results of different models are thus unlikely to be consistent.

Model slicing would be an ideal solution for cascade rank-
ing. Firstly, it provides the trade-off of model effectiveness
and model efficiency with one single model. The ranking
functions at different stages can be obtained by as simple
as configuring the inference cost of the model. Secondly,
as is corroborated in Section 5.5, the prediction results of
model slicing sub-models are inherently correlated since the
larger model is actually using the smaller model as the base
of its model representation. We shall illustrate the effec-
tiveness and efficiency of model slicing in comparison with
the traditional model cascade solution in a cascade ranking
simulation in Section 5.4.
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5. EXPERIMENTS
We evaluate the performance of model slicing on state-of-

the-art neural networks on two categories of public bench-
mark tasks, specifically evaluating model slicing for dense
layers, i.e. fully-connected and recurrent layers on language
modeling [37, 54, 39] in Section 5.2 and evaluating model
slicing for convolutional layers on image classification [43,
16, 53] in Section 5.3. Experimental setups of model slicing
are provided in Section 5.1; cascade ranking simulation of
example applications and visualization on the model slicing
training are given in Section 5.4 and Section 5.5 respectively.

5.1 Model Slicing Setup

5.1.1 General Setup and Baselines
The slice rate ri corresponds to Subnet-ri, which is re-

stricted between a lower bound r1 and 1.0. In the exper-
iments, the networks trained with model slicing are eval-
uated with the slice rate list where ri ranges from r1 =
0.25/0.375 (corresponding to around 16x/7x the computa-
tional speedup) to 1.0 in every 1

4
/ 1
8
/ 1
16

(the slice granular-
ity). We apply model slicing to all the hidden layers except
the input and output layers because both layers are neces-
sary for the inference and further take a negligible amount
of parameter and computation in the full network.

We compare model slicing primarily with two baselines.
The first baseline is the full network trained without model
slicing (r1 = 1.0, single model), implemented by fixing r1
to 1.0 during training. During inference, we slice the corre-
sponding Sub-layer-ri of each layer in the network for com-
parison. The second baseline is an ensemble of networks
of varying width (fixed models). In addition to the above
two baselines, we also compare model slicing with model
compression (Network Slimming [35]), anytime prediction
(multi-classifiers methods, e.g. MSDNet [22]) and efficient
prediction (SkipNet [48]).

5.1.2 Slice Rate Scheduling Scheme

Table 1: Accuracy of VGG-13 trained with various training
scheduling schemes on CIFAR-10. |Lt| denotes the number
of slice rates scheduled for each training pass.

Scheme Fixed R-uniform-2 R-weighted-2 R-weighted-3 Static R-min R-max R-min-max Slimmable
|Lt| 4 2 2 3 4 2 2 3 4
1.00 94.31 93.72 94.23 94.34 93.67 93.15 94.32 94.35 94.41
0.75 93.86 93.64 94.08 94.20 93.46 93.14 93.59 93.97 94.29
0.50 93.39 93.68 93.76 93.92 93.19 93.11 93.05 93.60 93.47
0.25 91.63 91.59 91.68 91.96 91.69 91.84 91.31 92.10 91.45

We evaluate the three slice rate scheduling schemes pro-
posed in Section 3.4 with the slice rate list (1.0, 0.75, 0.5, 0.25)
in Table 1. Specifically, the baseline is the ensemble of fixed
models (fixed). For random scheduling, we evaluate the
uniform sampling (R-uniform) and the weighted random
sampling (R-weighted, weight list (0.5, 0.125, 0.125, 0.25));
in particular, R-uniform-k and R-weighted-k denote ran-
dom scheduling of k slice rates scheduled for each forward
pass. For static scheduling (Static), the subnets are regarded
as equally important and thus all slice rates are scheduled
whose computation grows linearly with the number of sub-
nets configured; For random static scheduling, we evaluate
statically scheduling the base network (R-min), the full net-
work (R-max ) or both of these two subnet (R-min-max ),
and meanwhile uniformly sampling one remaining subnets.
The detailed training settings are given in Section 5.3.2.

Table 1 shows that weighted sampling of random schedul-
ing achieves higher accuracy than uniformly sampling with a
comparable training budget; and training longer further im-
proves the performance. In contrast, static scheduling per-
forms consistently worse than the weighted random schedul-
ing even though it takes more training rounds. The results
corroborate our conjuncture that the base and the full net-
work are of greater importance and thus should be scheduled
more frequently during training.

We next evaluate the random static scheduling, which con-
sists of statically scheduling the base and/or full network
while uniformly sampling the remaining subnets. We ob-
serve that statically training the base (R-min) or the full (R-
max ) network helps to improve the corresponding subnets.
Meanwhile, the performance of the neighboring subnets also
improves, mainly due to the effect of knowledge distilla-
tion. We also compare model slicing with SlimmableNet [52]
(Slimmable) that adopts static scheduling and multi-BN lay-
ers instead of one group-norm layer. The results shown in
Table 1 reveal that SlimmableNet obtains higher accuracies
in larger subnets, which may result from the longer train-
ing time; while smaller subnets perform worse than model
slicing with random scheduling, e.g., R-weighted or R-min-
max, mainly due to the lack of differentiation of varying
importance of subnets in static scheduling. In the follow-
ing experiments, we therefore evaluate model slicing with
R-weighted-3 for small datasets and R-min-max for larger
datasets for reporting purpose.

5.1.3 The Lower Bound of Slice Rate
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Figure 3: Illustration of the impact of the lower bound (lb)
on VGG-13 trained with model slicing on CIFAR-10.

For each of the subnet, the computation resources re-
quired can be evaluated beforehand. The lower bound con-
trols the width of the base network and thus should be set
to Equation 3 under the computational resource limit. Fig-
ure 3 shows the accuracies of VGG-13 trained with differ-
ent lower bounds. Empirically, the accuracy drops steadily
as ri decreases towards r1 (the lower bound lb), and net-
works trained with different lbs perform rather close. Given
a lower bound lb, however, the accuracy of the correspond-
ing Subnet-lb is slightly higher than other Subnet-lbs, which
is mainly because the base network is optimized more fre-
quently. When the slice rate ri decreases over the lower
bound, the accuracy drops drastically. This phenomenon
meets the expectation that further slicing the base network
destroys the base representation, and thus the accuracy suf-
fers significantly. The loss of accuracy is more severe for
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convolutional neural networks, where the representation de-
pends heavily on all channels of the base network. In the
following experiments, we therefore evaluate lower bound
0.375/0.25 for small (e.g. CIFAR, PTB)/large (e.g. Ima-
geNet) datasets respectively for reporting purpose, whose
computational cost is roughly 14.1%/6.25% of the full net-
work (i.e. 7.11x/16x speedup) and empirically can be ad-
justed readily according to the deployment requirement.

5.2 NNLM for Language Modeling

5.2.1 Language modeling task and dataset
The task of language modeling is to model the probability

distribution over a sequence of words. Neural Network Lan-
guage Modeling (NNLM) comprises both fully-connected
and recurrent layers; we thus adopt NNLM to evaluate the
effectiveness of model slicing for dense layers. NNLM [37,
54, 39] specifies the distribution over next word wt+1 given
its preceding word sequence w1:t = [w1, w2, . . . , wt] with
neural networks. Training of NNLM involves minimizing
the negative log-likelihood (NLL) of the sequence: NLL =

−
∑T

t=1 logP (wt|w1:t−1). Following the common practice
for language modeling, we use perplexity (PPL) to report
the performance: PPL = exp(NLL

T
). We adopt the widely

benchmarked English Penn Tree Bank (PTB) dataset and
use the standard train/test/validation split by [37].

1.000 0.875 0.750 0.625 0.500 0.375 0.250

Slice Rate

100

150

200

250

300

P
er

p
le

xi
ty

r1 = 1.000 (single model)

r1 = 0.375 (single model)

Ensemble of NNLM (varying width)

Figure 4: Results of NNLM trained w/o model slicing.

5.2.2 NNLM configuration and training details
Following [37, 54, 39], the NNLM model in the experi-

ments consists of an input embedding layer, two consecutive
LSTM layers, an output dense layer and finally a softmax
layer. The embedding dimension is 650 and both LSTM
layers contain 640 units. In addition, a dropout layer with
dropout rate 0.5 follows the embedding and two LSTM lay-
ers. The models are trained by truncated backpropagation
through time for 35 time steps, minimizing NLL during
training without any regularization terms with SGD of batch
size 20. The learning rate is initially set to 20 and quartered
in the next epoch if the perplexity does not decrease on the
validation set. Model slicing applies to both recurrent layers
and the output dense layer with output rescaling.

5.2.3 Results of Model Slicing on NNLM
Results in Figure 4 and Table 2 show that model slicing

is effective to support on-demand workload with one single
model only at the cost of minimum performance loss. The

performance of the network trained without model slicing
decreases drastically. With model slicing, the performance
decreases steadily and stays comparable to the correspond-
ing fixed models. In particular, the performance of the sub-
net is slightly better than the corresponding fixed model
when the slice rate is near 1.0. For instance, as is shown in
Table 2, the perplexity is 80.89 for the Subnet-rG (the full
network) while 81.58 for the full fixed model.

Table 2: Remaining percentage of computation (Ct), per-
plexity of NNLM on PTB w.r.t. the slice rate.

Slice Rate r 1.000 0.875 0.750 0.625 0.500 0.375 0.250
Ct 100.0 76.56 56.25 39.06 25.00 14.06 6.250

NNLM-1.0 81.58 85.23 91.04 99.68 116.5 155.5 298.8
NNLM-0.375 80.89 81.79 82.86 84.65 87.92 91.17 112.1
NNLM-fixed 81.58 81.66 81.78 81.83 84.13 88.08 96.69

This validates our hypothesis that the regularization and
ensemble effect could improve the full model performance.
Further, the student-teacher knowledge distillation effect of
the group residual learning facilitates the learning process
by transferring and sharing representation, and thus helps
maintain the performance of subnets.

5.3 CNNs for Image Classification
In this subsection, we evaluate model slicing for convo-

lutional layers on image classification tasks, mainly focus-
ing on representative types of convolutional neural networks.
We first introduce dataset statistics for the evaluation. Then
configurations of the networks and training details are intro-
duced. Finally, we discuss and compare with baselines the
results of model slicing training scheme for CNNs.

5.3.1 Datasets
We evaluate the results on CIFAR [29] and ImageNet-

12 [11] image classification datasets.
The CIFAR [29] datasets consist of 32× 32 colors scenery

images. CIFAR-10 consists of images drawn from 10 classes.
The training and testing sets contain 50, 000 and 10, 000
images respectively. Following the standard data augmen-
tation scheme [16, 24, 23], each image is first zero-padded
with 4 pixels on each side, then randomly cropped to pro-
duce 32× 32 images again, followed by a random horizontal
flip. We normalize the data using the channel means and
standard deviations for data pre-processing.

The ILSVRC 2012 image classification dataset contains
1.2 million images for training and another 50,000 for val-
idation from 1000 classes. We adopt the same data aug-
mentation scheme for training images following the conven-
tion[16, 53, 23], and apply a 224×224 center crop to images
at test time. The results are reported on the validation set
following common practice.

5.3.2 CNN Architectures and Training Details
Model slicing dynamically slices channels within each layer

in CNNs; thus we adopt three representative architectures
differing mainly in the channel width for evaluation. The
first architecture is VGG [43] whose convolutional layer is a
plain 3×3 conv of medium channel width. The second archi-
tecture is the pre-activation residual network [17] (ResNet).
ResNet is composed of the bottleneck block [17], denoting
as B-Block (conv1 × 1 − conv3 × 3 − conv1 × 1). We eval-
uate model slicing on ResNet of varying depth and width,
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Table 3: Configurations of representative convolutional neural networks on CIFAR (left panel) and ImageNet (right panel)
datasets. Building blocks are denoted as “[block, number of channels] × number of blocks”.

Group Output Size VGG-13 ResNet-164 ResNet-56-2 Output Size VGG-16 ResNet-50
conv1 32×32 [conv3×3, 64]×2 [B-Block, 16]×1 [B-Block, 16]×1 112×112 [conv3×3, 64]×3 [B-Block, 64]×1
conv2 32×32 [conv3×3, 128]×2 [B-Block, 16]×18 [B-Block, 16×2]×6 56×56 [conv3×3, 128]×3 [B-Block, 64]×3
conv3 16×16 [conv3×3, 256]×2 [B-Block, 32]×18 [B-Block, 32×2]×6 28×28 [conv3×3, 256]×3 [B-Block, 128]×4
conv4 8×8 [conv3×3, 512]×4 [B-Block, 64]×18 [B-Block, 64×2]×6 14×14 [conv3×3, 512]×3 [B-Block, 256]×6
conv5 8×8 - - - 7×7 [conv3×3, 512]×3 [B-Block, 512]×3

avgPool/FC 10 [avg8×8, 512] [avg8×8, 64×4] [avg8×8, 64×2×4] 1000 [512×7×7,4096,4096] [avg7×7,512×4]
Dataset - CIFAR CIFAR CIFAR - ImageNet-12 ImageNet-12
Params - 9.42M 1.72M 2.35M - 138.36M 25.56M
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Figure 5: Classification accuracy w.r.t. inference FLOPs of
VGG-13 trained with model slicing against other baselines
on the CIFAR-10 dataset.

and denote the architecture adopted as ResNet-L, with L
being the number of layers. The third architecture is Wide
Residual Network [53], which is denoted as ResNet-L-k, with
k being the widening factor of the channel width for each
layer. Detailed configurations are summarized in Table 3.

To support model slicing, convolutional layers and the
batch-norm layers are replaced with counterpart layers sup-
porting model slicing. For both baseline and model slicing
trained models, we train 300 epochs on CIFAR-10 with SGD
of batch size 128 and initial learning rate 0.1, and 100 epochs
on ImageNet-12 with SGD of batch size 128 and learning
rate 0.01 with gradual warmup [16, 13]. The learning rate is
divided by 10 at 50% and 75% of the total training epochs
for CIFAR-10, and at 30%, 60% and 90% for ImageNet-12.
Other training details follow the conventions [17, 53].

5.3.3 Results of Model Slicing on CNNs
Results of representative CNNs on CIFAR and ImageNet

datasets are illustrated in Figure 2, Figure 5, and summa-
rized in Table 4. In general, a CNN model trained with
model slicing is able to produce prediction with elastic in-
ference cost by dynamically scheduling a corresponding sub-
net whose accuracy is comparable to or even higher than its
conventionally trained counterpart.

We compare the performance of model slicing with more
baseline methods on ResNet in Figure 2. We can observe
that ResNet-164 trained with model slicing (single model
L164) achieves accuracies significantly higher than ResNet
with Multi-Classifiers baseline, which confirms the superi-
ority of model slicing over depth slicing. However, its per-
formance is noticeably worse than the ensemble of ResNet

Table 4: Remaining estimated percentage of computation
FLOPs (Ct)/parameter size (Mt), and accuracy of VGG-
13, ResNet-164, ResNet-56-2 on CIFAR-10, and VGG-16,
ResNet-50 on ImageNet w.r.t. the slice rate.

Slice Rate r 1.000 0.8750 0.7500 0.6250 0.500 0.375 0.2500
Ct/Mt 100.0% 76.56% 56.25% 39.06% 25.00% 14.06% 6.25%

VGG-13-lb-1.0 94.31 87.55 67.93 44.18 21.37 12.23 10.19
VGG-13-fixed-models 94.31 93.92 93.86 93.79 93.39 92.85 91.63

VGG-13-lb-0.375 94.32 94.27 94.22 94.11 93.90 93.57 16.87
ResNet-164-lb-1.0 94.96 87.55 67.93 44.12 21.37 12.33 10.19

ResNet-164-fixed-models 94.96 94.85 94.68 94.35 94.13 93.65 92.73
ResNet-164-lb-0.375 95.09 94.89 94.62 93.46 92.53 90.95 16.83

ResNet-56-2-fixed-models 95.25 95.20 95.17 95.01 94.52 94.04 93.19
ResNet-56-2-lb-0.375 95.37 95.25 94.73 94.33 92.98 91.57 10.58
VGG-16-fixed-models 72.47 - 70.73 - 66.31 - 54.14

VGG-16-lb-0.25 72.53 - 70.69 - 66.41 - 54.20
ResNet-50-fixed-models 76.05 - 74.73 - 72.02 - 63.91

ResNet-50-lb-0.25 76.08 - 74.65 - 71.97 - 63.98

of varying width, especially in the lower budget prediction.
This is mainly because the convolutional layer of ResNet-164
on CIFAR is narrow. In particular, the convolutional layer
in conv1/conv2 comprises 16 channels (see Table 3) and thus
with slice rate 0.375, only 6 channels remain for inference
which leads to limited representational power. With twice
the channel width, the single model slicing trained model
ResNet-L56-2 achieves accuracies comparable to the strong
ensemble baseline of varying depth/width, model width com-
pression baseline Network Slimming [35], and achieves higher
accuracies than SkipNet [48] in corresponding inference bud-
gets and generally better accuracy-budget trade-offs than
MSDNet [22]. This demonstrates that model slicing works
more effectively for models of wider convolutional layers,
e.g. the VGG-13, ResNet-L56-2 and ResNet-50. For in-
stance, the accuracy is 93.57% for VGG-13-lb-0.375 with
slice rate 0.375, which is 0.72% higher than its individually
trained counterpart and takes around 14.06% of the com-
putation of the full network (∼7.11x speedup). This is also
confirmed in the wider network VGG-16 and ResNet-50 on
the larger dataset ImageNet. Specifically, ResNet-50-lb-0.25
of slice rate 0.25 achieves slightly higher accuracy than the
fixed model of the same width and takes only around 6.25%
computation of the full network (∼16x speedup).

We can also notice in Figure 5, Table 4 that the accu-
racy of CNNs trained conventionally (lower bound lb=1.0)
decreases drastically as more channel groups are sliced off.
This shows that with conventional training, channel groups
in the same convolutional layer are highly dependent on
other groups in the representation learning such that slic-
ing even one channel group off may impair the represen-
tation. With the group residual representation learning of
model slicing, one single network can achieve accuracy com-
parable to the ensemble of networks of varying width with
significantly less memory and computational operation.
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5.4 Simulation of Cascade Ranking
We further simulate a cascade ranking scenario with six

stages of classifiers. CIFAR-10 test dataset is adopted for
illustration which contains ten types of items (classes) and
1000 items (images) for each type, and VGG-13 (see Table 3)
is adopted as the baseline model. The classifier (model) is
required to categorize each item into a type and then filter
out all the items whose predicted category is not consis-
tent with its previous type. Therefore, the cascade ranking
pipeline will only keep items of consistent classification type
in all the cascade models. Typically, the pipeline deploys
smaller models in early stages to efficiently filter out irrel-
evant items, and larger but costlier models in subsequent
stages for higher retrieval quality. The baseline solution is
a cascade model of the baseline model of varying width,
which is compared with the model slicing solution with cor-
responding sub-models sliced off the baseline model trained
with model slicing. The parameter size and computation
FLOPs of models at each stage are provided in Table 5.

Table 5: Simulation of cascade ranking with the cascade
model and the model trained with model slicing. The pre-
cision shows the prediction accuracy of each classifier; the
aggregate recall denotes the fraction of correctly classified
items over the total number of items by each stage.

Stage/Classifier 1st 2nd 3rd 4th 5th 6th
Model Width (r) 0.375 0.500 0.625 0.750 0.875 1.000

Params (M) 1.33 2.36 3.68 5.30 7.21 9.42
FLOPs (M) 144.6 256.5 400.2 575.8 783.2 1022.5

Cascade Model
precision 92.85% 93.39% 93.79% 93.86% 93.92% 94.31%

aggregate recall 92.85% 90.11% 88.62% 87.45% 86.70% 86.03%

Model Slicing
precision 93.57% 93.90% 94.11% 94.22% 94.27% 94.32%

aggregate recall 93.57% 91.81% 89.47% 88.95% 88.76% 88.67%

Table 5 summarizes the results on precision and the aggre-
gate recall of each stage. The results show two advantages
of the model slicing solution over the conventional cascade
model solution: firstly, in terms of effectiveness, the model
slicing solution retrieves 88.67% correct items in total as
compared with 86.03% of the conventional solution. The
significantly higher aggregate recall is mainly because of the
more consistent prediction between classifiers which we shall
discuss and visualize in Section 5.5.3; secondly, in terms
of efficiency, the conventional solution takes totally 29.3M
parameters and 3182.8M FLOPs computation for the re-
trieval of each item, while model slicing solution only takes
9.42M parameters in one model and the computation could
be greatly reduced with the computation reusage discussed
in Section 3.5.

5.5 Visualization

5.5.1 Residual Learning Effect of Model Slicing
In CNNs trained with model slicing, each of the convolu-

tional layers is followed by a group normalization layer to
stabilize the scale of output with a scaling factor, i.e., γ in
Equation 5. The scaling factor largely represents the impor-
tance of the corresponding channel. We therefore visualize
the evolution of these scaling factors during model slicing
training in Figure 6. Specifically, we take the first convolu-
tional layers of conv3 and conv5 in VGG-13 (see Table 3),
which corresponds to low and high level feature extractors.
We can observe an obvious stratified pattern in Figure 6.
Groups from G1 to G3 of the base network gradually learn
scaling factors of the largest values. Meanwhile, from G3
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Figure 6: Visualization of channel scaling factors (γ from
Equation 5) in scale as the training evolves, taken from the
first convolutional layer of conv3, conv5 (Table 3) of VGG-
13 trained on CIFAR-10 respectively. Brighter colors corre-
spond to larger values.

to G8, the average scaling factor values gradually become
smaller. This validates our assumption that model slicing
training engenders residual group learning, where the base
network learns the fundamental representation and follow-
ing groups residually build up the representation.

5.5.2 Learning Curves of Model Slicing
Figure 7 illustrates learning curves of VGG-13 trained

with model slicing compared with the full fixed model. Learn-
ing curves of the subnets of VGG-13 trained with model slic-
ing reveal that the error rate drops faster in larger subnets
and smaller subnets closely follow the larger subnets. This
demonstrates the knowledge distillation effect, where larger
subnets learn faster and gradually transfer the knowledge
learned to smaller subnets. We notice that the final accu-
racy of subnets of a relatively larger slice rate approaches the
full fixed model, which shows that the model slicing trained
model can trade off accuracy for efficiency by inference with
a smaller subnet with less memory and computation at the
cost of a minor accuracy decrease.

5.5.3 Prediction Consistency of Model Slicing
We also evaluate the consistency of prediction results be-

tween the subnets of the model trained with model slicing.
Typically, the outputs are not the same for different models
trained conventionally. However, trained with model slic-
ing, the model of a larger slice rate incorporates models of
lower slice rate as part of its representation. Consequently,
the subnets sliced off the model slicing model are expected
to produce similar predictions, and larger subnets could be
able to correct wrong predictions of smaller models. Fig-
ure 8 shows the inclusion coefficient of wrongly predicted
samples between each pair of models. The inclusion coeffi-
cient measures the fraction of the wrongly predicted samples
of the larger model over those of the smaller model. It es-
sentially measures the ratio of error overlapped between two
models. Unsurprisingly, the prediction results of model slic-
ing training is much more consistent than that of training
different fixed models separately. Therefore, model slicing
may not be ideal for applications such as model ensemble
which typically requires diversity, but could be extremely
useful for applications requiring consistent prediction such
as cascade ranking where the accumulated error is expected
to be minimized.
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Figure 7: Test Error Rate and Loss curves of VGG-13 full fixed model and VGG-13 trained with model slicing (r1 = 0.375)
validated under different slice rates on CIFAR-10 dataset.
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Figure 8: Heatmap of the inclusion coefficient of wrongly predicted samples between each pair of VGG-13 fixed models and
sliced subnets of VGG-13 trained with model slicing (r1 = 0.375) respectively on CIFAR-10 dataset.

6. CONCLUSIONS
Relatively few efforts have been devoted to neural net-

works dynamically providing predictions within memory and
computational operation budget. In this paper, we propose
model slicing, a general training framework supporting elas-
tic inference cost for neural networks. The key idea of model
slicing is to impose a structural constraint on basic compo-
nents of each layer both during training and inference, and
then regulate the width of the network with a single param-
eter slice rate during inference given the resource budget on
a per-input basis. We have provided detailed analysis and
discussion on training details of model slicing and evaluated
model slicing through extensive experiments.

Results on NLP and vision tasks show that neural net-
works trained with model slicing can effectively support on-
demand workload by slicing a subnet from the trained net-
work dynamically. With model slicing, neural networks can
achieve significant reduction of run-time memory and com-
putation with comparable performance, e.g., 16x speedup
with slice rate 0.25. Unlike conventional model compression

methods where the computation reduction is limited, the
required computation decreases quadratically to slice rate.

Model slicing also sheds light on the learning process of
neural networks. Networks trained with model slicing en-
gender group residual learning in each layer, where compo-
nents in the base network learn the fundamental representa-
tion while the following groups build up the representation
residually. Meanwhile, the learning process is reminiscent of
knowledge distillation. During training, larger subnets learn
faster and gradually transfer the representation to smaller
subnets. Finally, model slicing is readily applicable to the
model compression scenario by deploying a proper subnet.
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