
Effective and Ef�cient Retrieval of Structured Entities

Ruihong Huang
Tsinghua University

Beijing, China
hrh16@mails.tsinghua.edu.cn

Shaoxu Song
Tsinghua University

Beijing, China
sxsong@tsinghua.edu.cn

Yunsu Lee
Samsung Research
Seoul, South Korea

yunsu16.lee@samsung.com

Jungho Park
Samsung Research
Seoul, South Korea

j0106.park@samsung.com

SooHyung Kim
Samsung Research
Seoul, South Korea

sooh0721.kim@samsung.com

Sungmin Yi
Samsung Research
Seoul, South Korea

sungmin.yi@samsung.com

ABSTRACT

Structured entities are commonly abstracted, such as from
XML, RDF or hidden-web databases. Direct retrieval of
various structured entities is highly demanded in data lakes,
e.g., given a JSON object, to �nd the XML entities that de-
note the same real-world object. Existing approaches on
evaluating structured entity similarity emphasize too much
the structural inconsistency. Indeed, entities from heteroge-
neous sources could have very distinct structures, owing to
various information representation conventions. We argue
that the retrieval could be more tolerant to structural dif-
ferences and focus more on the contents of the entities. In
this paper, we �rst identify the unique challenge of parent-
child (containment) relationships among structured entities,
which unfortunately prevent the retrieval of proper entities
(returning parents or children). To solve the problem, a
novel hierarchy smooth function is proposed to combine the
term scores in di�erent nodes of a structured entity. Enti-
ties sharing the same structure, namely an entity family, are
employed to learn the coe�cient in aggregating the scores,
and thus distinguish/prune the parent or child entities. Re-
markably, the proposed method could cooperate with both
the bag-of-words (BOW) and word embedding models, suc-
cessful in retrieving unstructured documents, for querying
structured entities. Extensive experiments on real datasets
demonstrate that our proposal is e�ective and e�cient.

PVLDB Reference Format:

Ruihong Huang, Shaoxu Song, Yunsu Lee, Jungho Park, Soo-
Hyung Kim and Sungmin Yi. E�ective and E�cient Retrieval of
Structured Entities. PVLDB, 13(6): 826-839, 2020.
DOI: https://doi.org/10.14778/3380750.3380754

1. INTRODUCTION
A structured entity is a set of connected nodes, often in

a tree structure, labeled with types and contents. For ex-
ample, T1 in Figure 1 denotes a structured entity consist-
ing of 4 nodes with types such as Institute and contents,

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 6
ISSN 21508097.
DOI: https://doi.org/10.14778/3380750.3380754

Figure 1: Motivation example of structured entities
T in di�erent customer channels in a corporation

e.g., University of Hong Kong. Such structured entities are
prevalent in XML, RDF and hidden-web databases [18]. A
structured entity in relational databases is a collection of
tuples connected via primary-foreign keys, a.k.a. joined tu-
ple tree [42]. XML entities are naturally organized in a tree
structure [41]. In RDF data, entities could be interpreted
as subgraphs [43]. In key-value stores, such as MongoDB,
documents are encoded in JSON as semi-structured data.

In the emerging scenario of data lakes, direct retrieval on
various source types becomes an important problem. Given
a structured entity (query), the structured entity retrieval
problem is to �nd the structured entities that are most rele-
vant to the query, e.g., denoting the same real-world objects.
For instance, given the structured query entity T13 in Fig-
ure 1, say from a relational database in the online channel,
a result entity T1 is expected (from some XML document in
the education channel with a distinct structure but denoting
the same person as T13).

1.1 Challenges on ParentChild Relationships
It is notable that the structured entity is di�erent from

the information object consisting of multiple documents with-

826

out any structure [36]. Owing to the hierarchical structure
of entities, one structured entity may contain another, e.g.,
T1 known as the parent contains T2 as a child in Figure 1.

Some instances of shared terms are due to the unnormal-
ized nature of the data, e.g., common in data lakes. While
shared terms may appear in properly normalized data as
well, we primarily target the former. For example, in Fig-
ure 1, Hong Kong appears not only in the Address of T4

but also in the Region of T3. However, such shared proper-
ties seem not entirely avoidable. For instance, the Institute
of University of Hong Kong locates in the Region of Hong
Kong.

It leads to the essential question: is a term more repre-
sentative in the parent entity or the child entity? In other
words, is the term able to distinguish whether the parent or
child entity should be returned to a query entity?

Overlapping Contents. One may represent entities as term
vectors, i.e., the bag-of-words (BOW) model [34], or embed-
ding vectors, e.g., using word embeddings learned by the
continuous bag-of-words (CBOW) model [28], which are suc-
cessful in retrieving unstructured documents. A straightfor-
ward idea is to simply merge the contents of a structured
entity as an unstructured document. Structured entities are
then represented (and compared) by term scores, or by ag-
gregating embedding vectors weighted by the term scores.

To apply the state-of-the-art retrieval technique FSDM
[44] (considering term dependencies), all the structured en-
tities (both parents and embedded children) need to be ma-
terialized as separate documents. It does not only waste
storage cost, but also incur huge retrieval time cost.

Rather than enumerating all the structured entities, a nat-
ural idea is to dynamically aggregate the scores of nodes by
sum as the score of a term in a structured entity (often con-
sidered in keyword search in graphs [26, 19]). Unfortunately,
this simple aggregation leads to a dogmatic assertion that a
term is always more representative in the parent, i.e., always
returning the parent entity in retrieval while the child entity
could never be retrieved (Proposition 1).

Structural Inconsistency. Existing studies [16, 32, 29] on
evaluating the graph (tree) edit distance [31] may not be
the best way of retrieving structured entities. As illustrated
in Figure 1, entities T1 and T13 from heterogeneous data
sources have very distinct structures, but indeed denote the
same person in real-world.

The structured entity retrieval problem is di�erent from
the keyword search problem over structured data [11], where
the results are online assembled, and thus cannot utilize the
entities sharing the same structure in answer ranking. As
illustrated below, the predetermined structure of entities is
essential in e�ectively and e�ciently retrieving structured
entities, i.e., properties could be learned from entities shar-
ing the same structure, and enable pruning.

1.2 Opportunity on Same Structured Entities
Instead of simple sum, in this paper, we propose to de-

vise a weighted aggregation of term scores among nodes in
a structured entity. To determine a node’s weight in a score
combination, the idea is to explore the entities sharing the
same structure, namely an entity family (which is not avail-
able in unstructured entity resolution). For instance, entities
T5 and T9 have the same structure with T1, i.e., the same

node types Education Customer, Institute and so on, as well
as the same connections among these types such as between
Education Customer and Institute.

Intuitively, if the nodes of a type frequently share terms
with their children, terms are likely to be representative
in the parent entities, i.e., assigning a high weight of the
node in combination. For instance, in Figure 1, Institute
type nodes, I134, I265 and I372, share a large number of
terms with their children, e.g., Hong and Kong appear both
in I134 and R172, and Princeton in both I265 and R238.
Thereby, term Hong is representative in T2, and similarly,
term Princeton is representative in T6.

On the other hand, if a node type barely shares contents
with its children, terms might not be representative in the
parent entities, i.e., probably assigning a low weight of the
node in combination. For instance, E136, E287 and E358
barely share contents with their children. Term Hong should
not be representative in T1 (having low term score).

Following the intuition, we observe a coe�cient �F (in
Formula 7) on how large a type of nodes shares with their
children, and utilize the coe�cient to advise the score combi-
nation (in Formula 8). The parent and child entities are then
distinguished by checking whether they share contents pro-
portional to the coe�cient �F of the other same-structured
entities.

1.3 Contributions
To the best of our knowledge, this is the �rst work on

distinguishing the representative power of terms for struc-
tured entities with parent-child (containment) relationships.
Remarkably, the proposed term score combination method
could cooperate with both the bag-of-words (BOW) and
word embedding models for retrieving structured entities.
Our main contributions are summarized as follows.

We identify the infeasibility of applying the existing term
score combination techniques to structured entities (in Sec-
tion 4). While the sum combination always favors the parent
entities (Proposition 1), the combination with normaliza-
tion might never return the parent entities in certain cases
(Proposition 2).

We propose a novel hierarchy smooth combination func-
tion for structured entities (in Section 5). The idea is to
learn the coe�cient �F of aggregating scores in a structured
entity from those entities sharing the same structure (fol-
lowing the aforesaid intuition). While the coe�cient �F is
shared among all the same-structured entities in an entity
family F , one may still want to tune individually the impor-
tance of the head node in an entity and distinguish parent
from its children, by a smooth factor �. The parameter � in
the score combination, is not only theoretically interesting
(the sum combination is indeed a special case of the pro-
posed combination with � = 0 as shown in Proposition 6),
but also can be practically determined by observing the dif-
ference on similarity scores of returned entities (Figure 10).

We develop indexing and pruning techniques to improve
the e�ciency of retrieving the (top-k) entities with the high-
est similarity scores (in Section 6). The monotonicity of the
proposed score function is �rst illustrated (Proposition 7).
It enables strategies for e�cient ranking and pruning.

We conduct an extensive experiment on real data sets
to demonstrate both e�ectiveness and e�ciency of the pro-
posed techniques (in Section 7).

827

Table 1: Notations

Symbol Description

T entity

F entity family

t node

t0 head node of entity T

w term

s(w ; t) score of a term w in node t

s(w ; T) score of a term w in entity T (Formula 1)

�F ratio of expected scores, indicating how most
entities in an entity family F share terms in
head node and children (Formula 7)

� smooth factor, indicating importance of head
node in an entity and distinguishing (parent)
entity from its children

2. RELATED WORK
To retrieve structured entities, e.g., from databases, a

straightforward approach is to treat the structured entity
as a \big joined tuple", then perform schema matching and
entity matching [20]. Since the structural information is ig-
nored, the performance of retrieval is limited. We list below
several attempts of utilizing structural information that may
be adapted to structured entity retrieval.

2.1 Difference to Entity Matching
Entity resolution is considered over entities that are con-

nected as graphs, e.g., by using references among entities [6].
Structural information from relationship graphs is leveraged
in entity matching tasks in di�erent knowledge bases [23] or
Linked Open Data [7]. To retrieve event entities, the occur-
rence order relationships among events are considered [46].
Referential relationships among tuple entities in databases
can also be utilized as authority information in ranking [5].

All the aforesaid entities (events, tuples) are still single
nodes, while the links among entity nodes assist the re-
trieval. In contrast, the structured entity considered in this
paper involves multiple connected nodes. It leads to the
unique challenge that one (parent) entity may contain an-
other (child). The structured entity retrieval needs to distin-
guish whether the parent or child entity should be returned.
As illustrated in the experiments in Section 7, our proposal
shows higher retrieval accuracy compared to the existing
entity resolution by considering the links among entities.

2.2 Difference to Keyword Search
Keyword search over structured/semi-structured data [11]

dynamically assembles answers referring to the queried key-
words, e.g., joined tuples in databases [42] or across databases
[35], subtrees w.r.t. lowest common ancestor in XML [10],
or subgraphs in RDF data [24].

The main di�erences between structured entity retrieval
and keyword search are as follows. (1) While structured enti-
ties are all clearly de�ned w.r.t. node types and represented,
the results of keyword search, e.g., joining network of tuples,
are often dynamically assembled according to the query key-
words. As shown in Section 5.1, the pre-identi�ed structure
enables entity score combination to utilize knowledge from

Figure 2: Structured entities with parent-children

other entities sharing the same structure. (2) Without ex-
ploring the same structured entities, the sum combination
of tuple scores (or with size normalization) is often adopted
in keyword search [27, 19, 26]. As discussed in Section 4,
sum (with normalization) may fail in retrieving structured
entities with parent-child containment relationships.

2.3 Difference to Vectorizing Taxonomies
Motivated by the keyword search studies in databases,

such as ObjectRank [5], the structural information paired
with content information has been studied for vectorizing
concepts in taxonomies [22, 12]. The CP/CV method [22]
assigns di�erent weights to keywords, depending on the struc-
tural information embedded in the taxonomy tree/graph.
In addition to the structured entity retrieval studied in this
paper, taxonomy vectorization is also used in other appli-
cations, e.g., to make a corpus-aware adaptation of existing
taxonomies according to the change of contents in a docu-
ment collection [8] or to build online reverse dictionary [38].

The novelty of our proposal, compared to the graph/tree
vectorization [22, 12], lies in two aspects. (1) When the
(weighted) concepts propagate between adjacent nodes and
contribute to their characterization, \since the parent con-
cept subsumes all child concepts, the propagation degrees
from children to parent is set to 1.0" [22]. That is, the sum
of child weights is considered, which may prefer the parent
entities and fail in retrieving child entities, as analyzed in
Section 4. Instead of a simple sum, in this paper, we devise
a novel hierarchy smooth combination function with a co-
e�cient �F , denoting the expected ratio of scores between
parents and children in aggregation. Remarkably, such a co-
e�cient �F could be di�erent for various structured entities.
(2) It leads to the second novelty. In order to determine a
proper coe�cient �F for aggregating scores, we investigate
the entities sharing the same structure, known as an en-
tity family, which is not considered in vectorizing taxonomy
trees/graphs. Such an entity family with the same structure
is not only important in learning the parameters �F for ef-
fective score combination (in Section 5) but also useful in
pruning entities for e�cient entity retrieval (in Section 6).

3. STRUCTURED ENTITY RETRIEVAL
In this section, we (1) introduce the sources of structured

entities, (2) discuss the term score of structured entities, and
(3) present the retrieval of structured entities.

3.1 Structured Entities

De�nition 1. An entity T is a directed acyclic graph (N ; E)
with a single root (having no parents), called head node t0

828

Figure 3: Structured entities in (a) database, (b)
XML, (c) RDF

of T . Each node t 2 N is labeled with a (type, content) pair,
and each edge v1 ! v2 2 E denotes that v1 is a parent of v2.

Figure 2 presents a typical structured entity T1 with head
node t1. Although our proposed technique could support
structures with multiple roots in a directed acyclic graph
(DAG), we do not �nd examples of such structures in real
scenarios. For the same reason, we assume that nodes in an
entity do not share the same type.

We call Ti a child entity of T1, if the head node ti of Ti is
a child of t1 (the head node of T1), having an edge t1 ! ti .
For instance, T3 is also a child entity of T1 in Figure 2.

Example 1. Figure 3 illustrates possible sources of struc-
tured entities in Figure 1, including (a) relational databases,
(b) XML and (c) RDF. In Figure 3(a), each tuple corre-
sponds to a node in the structured entity T1 in Figure 1. The
relation name serves as the type of a node, while the content
of a tuple corresponds to the node’s content. The connec-
tion between nodes, e.g., E136!I134, denotes the primary-
foreign key relationship. The XML document in Figure 3(b)
could be naturally represented in a tree structure, which cor-
responds to entity T9 in Figure 1. An element nested in the
XML document, e.g., institute, appears as a child entity T10

of T9. RDF triples, represented as a graph in Figure 3(c),
are transformed to more concise structured entities, i.e., T5

in Figure 1. For instance, Customer.name is interpreted as
the content of a node, while Customer.work for denotes con-
nections. Such entities can be obtained by template queries
[43] or clustering [45] over a big RDF graph [47].

Analogous to tuples in a relation having the same set of
attributes, we consider entities sharing the same structure.

De�nition 2. An entity family F is a set of entities sharing
the same structure w.r.t. node types, i.e., for any two entities
T1(N1; E1); T2(N2; E2) 2 F, there is a bijective mapping be-
tween nodes N1 and N2 that preserves edges and node types.

In other words, we have jN1j = jN2j, jE1j = jE2j and for
each v1 ! u1 2 E1 there is a v2 ! u2 2 E2 such that
v1; v2 sharing the same type and u1; u2 sharing the same
type. It also implies that for each v2 ! u2 2 E2 there is a
v1 ! u1 2 E1 such that v1; v2 sharing the same type and
u1; u2 sharing the same type, i.e., exactly identical structure
for all entities in the same entity family F .

For example, entities T1 and T2 belonging to entity family
F in Figure 2 share the same structure on node types. That
is, nodes t1 and t2 have the same type1, while their children
t3 and t4 share the same type3.

In this sense, entity family F could also be interpreted
as the \schema" de�ning the structure of all entities in F .
As presented in Section 5, the same structured entity family
is essential in e�ectively retrieving structured entities. We
learn properties from the entities sharing the same structure
and enable pruning in Section 6.

3.2 Term Score
Following the bag-of-words model [34], we also consider

the term scores of structured entities. Below, we start from
the determination of term scores on nodes, the most ele-
mentary level in a structured entity, by treating them as
unstructured documents. Then, the node scores of the same
terms are combined as entity scores of an entity.

3.2.1 Node Score

By interpreting the content of a node as an unstructured
document, we represent each node by a vector of terms. The
score of term w in node t , denoted by s(w ; t), could be eval-
uated by any IR score function in document retrieval such as
TF-IDF [40]. Since it is not the focus of this paper to study
the score evaluation on the unstructured document level,
please refer to [39] for more details of the score function.

3.2.2 Entity Score

Once the scores of nodes are obtained, we combine them
together as the scores of entities.

De�nition 3. The score of term w in entity T (N ; E) com-
bines the scores of all the nodes t 2 N appearing in T,

s(w ; T) = combt2N

�

s(w ; t)
�

: (1)

Designing the score combination function comb(�), how-
ever, is non-trivial. It has to consider the unique entity con-
tainment relationship, i.e., a parent entity T may contain
another child entity Ti. The term scores should be able to
distinguish such entities that one contains another. We dis-
cuss this main challenge of score combination in structured
entities in the following Section 4.

3.3 Entity Similarity
The structured entity retrieval problem is thus: given an

entity Tq, to �nd the entities T , whose similarity scores
sim(Tq; T) as de�ned below are the highest.

3.3.1 Term Vector Similarity

Given two entities T1 and T2 with the corresponding term
scores, their similarity is given by

sim(T1; T2) =
X

w2W

s(w ; T1) s(w ; T2); (2)

where W is the space of all terms. It is usually interpreted
as the cosine of the angle between vectors [13].

829

3.3.2 Embedding Vector Similarity

Similar to sentence embedding [25], we can aggregate the
word embeddings vw weighted by term scores s(w ; T) to
form the structured entity embedding vT ,

vT =
1

jT j

X

w2W

s(w ; T)vw (3)

where jT j is the number of terms in entity T , W is the space
of all terms, and vw is the word embedding of term w , e.g.,
GloVe [33]. Given the entity embeddings of two entities T1

and T2, their similarity can be computed by

sim(T1; T2) =
vT1

� vT2

jjvT1
jj jjvT2

jj
;

where jjvT1
jj; jjvT2

jj are the lengths of the vectors.

Overview

In the remaining of this paper, we will �rst illustrate how
the existing score combination techniques fail in retrieving
structured entities in Section 4. Our novel hierarchy smooth
combination function is then presented in Section 5. E�-
cient indexing and pruning techniques are further developed
upon the monotonicity property of the proposed score com-
bination function in Section 6.

4. SIMPLE COMBINATIONS
In this section, we show that existing score combination

strategies may fail to distinguish the entities with parent-
child relationships. That is, the score of a term in the parent
entity, for instance, is always higher than that of the child
entity, and thus the child entity could never be retrieved.

4.1 Score Combination by Sum
To combine the scores of term w in an entity T (N ; E), a

straightforward strategy is to sum up the scores of all nodes
t 2 N appearing in T ,

s(w ; T) = combSUMt2N

�

s(w ; t)
�

=
X

t2N

s(w ; t); (4)

which is known as combSUM combination, the sum of scores
[37]. Unfortunately, this combination does not work in rep-
resenting entities with parent-child relationships. A direct
result is that entity T as the parent always has a higher
score than any child entity Ti.

Proposition 1. A term w is always more representative in
a parent entity T than any of its children Ti, i.e., s(w ; T) �
s(w ; Ti); evaluated by combSUM in Formula 4.

In entity retrieval, referring to the similarity function in
Formula 2, only the parent entities with higher scores will
be returned as the results. That is, the child entities can
never be retrieved, which is obviously a defeated attempt.

Example 2. Consider node R172 in T3 in Figure 1. For
simplicity, we assume that each term appearing in the con-

tent in a node has score 1, e.g., s(Hong, R172)=1 and s(Kong,
R172)=1. Similar scores on terms Alice, University, and so
on could also be obtained for nodes A734, I134 and E136.

To compute the entity score of T2, we combine the scores
of nodes R172, A734 and I134. The sum combination in For-
mula 4 is employed, having s(Hong, T2)=3, s(Kong, T2)=3,
s(University, T2)=1, and so on. Similarly, for T1, we have

s(Hong, T1)=4, s(Kong, T1)=3, s(University, T1)=1,
Referring to Proposition 1, for any term, the score in the
parent is always higher (more representative) than that of
child entity, e.g., s(Hong, T1)=4 > s(Hong, T2)=3.

Consider a query entity T14 whose term scores are com-
puted similarly, having s(Hong, T14)=1, s(Kong, T14)=1,
s(University, T14)=1, and so on. Terms not appearing in
the entity have score 0. Referring to Formula 2, we have

sim(T14;T2) = 3 + 3 + 1 + 1 + 1 + 1 = 10

< sim(T14;T1) = 4 + 3 + 1 + 1 + 1 + 1 = 11:

That is, the child entity T2, denoting the same real world
entity as T14, cannot be retrieved, since its parent entity T1

gets a higher similarity score with T14 by combSUM.

For the same reason, combMNZ combination, which mul-
tiplies the combSUM by the number of non-zero scores and
shows good performance in meta search [15], does not work
in our problem either. Although a variation is studied in [26]
with the consideration of the maximum node score, it is still
based on combSUM with the problem of favoring parents.

4.2 Score Combination by Size Normalization
Instead of simple sum, the combination with normaliza-

tion over the size of T is computed as follows, known as the
combANZ combination, the average of non-zero scores [37],

s(w ; T) = combANZt2N

�

s(w ; t)
�

=

P

t2N
s(w ; t)

jN j
; (5)

where jN j is the number of nodes in entity T .
Unfortunately, this combANZ function might not be able

to e�ectively distinguish entities with parent-child relation-
ships either, e.g., in Figure 2.

Proposition 2. Let Tm be the child of T with the maximum
score, i.e., m = arg maxi2[1;n] s(w ; Ti). If

s(w ; t0) < s(w ; Tm); (6)

where t0 is the head node of T , then parent entity T always
has score s(w ; T) < s(w ; Tm) by combANZ in Formula 5.

Given the condition in Formula 6, term w in the parent
entity T can never be as representative as in the children.
In entity retrieval, the child with larger s(w ; Tm) will always
rank higher than the parent with lower s(w ; T), referring to
the similarity function in Formula 2. In this case, the parent
entity can never be retrieved.

Example 3. Consider again the entity T2 in Figure 1. Sim-
ilar to Example 2, we compute the entity scores by using
combANZ in Formula 5, having s(Hong, T2)= 3

3
=1, s(Kong,

T2)= 3
3
=1, s(University, T2)= 1

3
=0.33, and so on. Similar

combination applies to T1, having s(Hong, T1)= 4
4
=1, s(Kong,

T1)= 3
4
=0.75, s(University, T1)= 1

4
=0.25, The same

score s(Hong, T2)=s(Hong, T1)=1 means that the term
Hong cannot distinguish the child T2 from the parent T1.

Consider another query entity T13, s(Hong, T13)= 2
3
=0.66,

s(Kong, T13)= 1
3
=0.33, s(University, T13)= 1

3
=0.33, Re-

ferring to the similarity function in Formula 2, we have

sim(T13;T1)=
1

3

1

4
+

2

3

4

4
+

1

3

3

4
+

1

3

1

4
+

1

3

1

4
+

1

3

1

4
+

1

3

1

4
=1:33

< sim(T13;T2)=
1

3

0

3
+

2

3

3

3
+

1

3

3

3
+

1

3

1

3
+

1

3

1

3
+

1

3

1

3
+

1

3

1

3
=1:44:

That is, T13 and T2 with higher similarity score by combANZ

will be erroneously returned, whereas the truth is that T13

and T1 indeed denote the same real world entity.

830

5. STRUCTUREAWARE COMBINATION
In order to distinguish the entities with parent-child rela-

tionships, we need a coe�cient (�F) to tell the di�erence of
a term w ’s importance in the parent and child entities. Intu-
itively, such a coe�cient could be learned from entities shar-
ing the same structure (the same parent-child relationships
w.r.t. node types). If most entities with the same structure
share contents between head nodes and their children (e.g.,
between T2 and T3, T6 and T7, T10 and T11, in Figure 1),
the shared terms in children could contribute positively in
retrieving the parents. A novel score combination function is
thus introduced following the intuition, in Section 5.1. We
illustrate di�erent scenarios where the parent or the child
could be ranked higher in retrieval, in Section 5.2.

5.1 Hierarchy Smooth Combination
Referring to the intuition at the beginning of this section,

we learn a coe�cient (�F), evaluating the term score dif-
ference between an entity and its children, from all entities
having the same structure.

Let �F denote the expected coe�cient of scores between
the head node and all the n children of an entity in F

�F = E(

Pn

i=1 s(w ; Ti)

s(w ; t0)
) (7)

=
1

jWF j � jF j

X

w2WF

X

T2F

Pn

i=1 s(w ; Ti)

s(w ; t0)

where WF is the set of all terms appearing in the head nodes
of entities in F , t0 is the head node of entity T , and Ti are
children of T .

As discussed in the introduction, if a type of nodes fre-
quently share terms with their children, i.e., large coe�cient
�F , terms are likely to be representative in the parent enti-
ties, i.e., assigning a high weight of the node in combination.
On the other hand, if a node type barely shares contents
with its children, i.e., small coe�cient �F , terms might not
be representative in the parent entities, i.e., probably as-
signing a low weight of the node in combination. We �rst
introduce the combination function following this intuition,
then explain its detailed properties in Section 5.2.

De�nition 4. The score of term w in entity T in an entity
family F is given by combHIS

s(w ; T) =(1 + � � �F) s(w ; t0) + (1 � �)
n
X

i=1

s(w ; Ti) (8)

where s(w ; t0) is the score of the head node t0 of T , s(w ; Ti)
is the score of the child entity Ti of T , �F is the aforesaid
coe�cient on term sharing, and � is a smooth factor in the
range of [0; 1] on weighting the parent and child entities (see
explanations below).

The combHIS(�) score combination function is de�ned re-
cursively. For a family F of entities without any child, we
have �F = 0. It follows s(w ; T) = s(w ; t0): The value of �F

is determined by the contents of head nodes and children
entities in F , and shared among all the entities in F .

In order to tune individually the importance of the head
node in an entity and distinguishing parent from its children,
we introduce a parameter of smooth factor � in the hierarchy
combination. The larger the smooth factor � is, the more
the entity s(w ; T) relies on the head node s(w ; t0).

Figure 4: Hierarchy smooth combination

Example 4. Consider the entity family F2 = fT2; T6; T10g
sharing the same structure. There are 10 terms appearing
in the head nodes of entities in F2, each with node score 1.
Four of them also appear in the child entities. For entities
T3; T4; T7; : : : without child, we have s(w ; T) = s(w ; t0).

Referring to Formula 7, the ratio is computed as �F2
=

1
10�3

(2
1

+ 2
1

+ 2
1

+ 1
1
) = 7

30
: Suppose that the smooth factor �

is set to 0.9. According to Formula 8, the scores for entities
in F2 could be computed, e.g., s(Hong; T2) = (1 + 0:9 �
7
30

) s(Hong; I134) + (1 � 0:9)(s(Hong; T3) + s(Hong; T4)) =
1:21 + 0:1 � 2 = 1:41.

For the parent entities, i.e., entity family F1=fT1; T5; T9g,
we obtain �F1

= 1:41
54

. Similarly, scores for entities in F1 are
computed, e.g., s(Hong; T1) = 1:1645. That is, the term
Hong is found more representative in T2 than T1.

Finally, consider again the query entities T13 and T14.
For simplicity, we assume �F13

= �F14
= 1, where F13 =

fT13; : : : g and F14 = fT14; : : : g. The similarities of entities
for retrieval are sim(T13; T1) = 4:43, sim(T13; T2) = 3:47,
sim(T14; T1) = 2:73 and sim(T14; T2) = 7:87. That is, T13

successfully matches T1 and T14 matches T2, which can-
not be identi�ed in the previous Examples 2 and 3 using
combSUM or combANZ.

5.2 Properties of combHIS
To illustrate the properties of combHIS in (four) di�erent

cases below, we rewrite Formula 8 w.r.t. smooth factor �,

s(w ; T) =�

�F � s(w ; t0) �

n
X

i=1

s(w ; Ti)

!

+

s(w ; t0) +

n
X

i=1

s(w ; Ti):

It can be interpreted as a linear function on the variable
�. In Figure 4, its y-intercept is s(w ; t0) +

Pn

i=1 s(w ; Ti);
(which is equivalent to combSUM in Formula 4). Let

� =
�F � s(w ; t0)
Pn

i=1 s(w ; Ti)
(9)

denote the di�erence between
Pn

i=1
s(w;Ti)

s(w;t0)
and �F . We con-

sider the linear functions with various slopes �F � s(w ; t0) �
Pn

i=1 s(w ; Ti) = (� � 1)
Pn

i=1 s(w ; Ti); given di�erent �.

5.2.1 Case 1: � > 1

For a term w with � > 1, i.e., �F >
Pn

i=1
s(w;Ti)

s(w;t0)
, the head

node t0 does not share as much as other same-structured

831

entities with children
Pn

i=1 s(w ; Ti), compared to the ex-
pectation �F . Term w is more representative in the parent.

Proposition 3. If the coe�cient of children
Pn

i=1 s(w ; Ti)
to head node s(w ; t0) is less than the coe�cient �F ,

Pn

i=1 s(w ; Ti)

s(w ; t0)
< �F ;

i.e., � > 1, it always has s(w ; T) > s(w ; Ti):

5.2.2 Case 2: � = 1

For a term w with � = 1, i.e., term w is as representa-
tive as most other terms in the entity family F , the sum
combination applies.

Proposition 4. If the coe�cient of children
Pn

i=1 s(w ; Ti)
to head node s(w ; t0) is proportional to the coe�cient �F ,

Pn

i=1 s(w ; Ti)

s(w ; t0)
= �F ;

i.e., �=1, the entity T has s(w ; T)= s(w ; t0)+
Pn

i=1 s(w ; Ti):

In this case, the parent also has a higher score than the
child, i.e., s(w ; T) � s(w ; Ti).

5.2.3 Case 3: � < 1

For a term w with � < 1, i.e., the coe�cient
Pn

i=1
s(w;Ti)

s(w;t0)

is greater than the expected coe�cient �F , term w is not
as representative as most other terms in the entity family
F . To illustrate this, we rewrite the entity score in Formula
8 by using � in Formula 9, s(w ; T) =

�

�
�F

+ � � � + 1 �

�
�
Pn

i=1 s(w ; Ti):

Proposition 5. If the coe�cient of children
Pn

i=1 s(w ; Ti)
to head node s(w ; t0) is greater than �F ,

Pn

i=1 s(w ; Ti)

s(w ; t0)
> �F ;

i.e., � < 1, for a smooth factor � with
�

�F
+1�

1

n

1��
< � < 1, we

have s(w ; T) < 1
n

Pn

i=1 s(w ; Ti):

Some child entity Ti of T may have s(w ; T) < s(w ; Ti).

Example 5 (Example 4 continued). Consider term Hong
in entity T13 in Figure 1. Suppose that s(Hong, O42) =
s(Hong; T14) = 1 and �F13

= 1, where F13 = fT13;:::g, i.e.,
the aforesaid Case 2 with � = 1. In Example 4, we have
s(Hong; T13) = 2 = s(Hong, O42)+s(Hong; T14), which ver-
i�es the conclusion in Proposition 4. It implies that the term
Hong is more presentative in the parent entity T13 than the
child T14 (similar to Case 1).

When computing s(Hong; T1), we have � =
1:41
54

�1

1:41
=

0:02 < 1, i.e., Case 3. Example 4 illustrates s(Hong; T1) =
1:1645 < s(Hong; T2) = 1:41. It veri�es the results in Propo-
sition 5. In other words, the parent entity score could be
lower than the child.

Summary

Thus far, we illustrate that the hierarchy smooth score com-
bination is able to distinguish the representative ability of
a term in entities with parent-child relationships. While
combSUM(�) is indeed a special of combHIS(�), the experi-
mental results in Section 7 also show that our combHIS(�)
yields signi�cant improvement compared to combANZ(�).

5.3 Analysis of Smooth Factor �

While the coe�cient �F is learned and shared among all
the entities in the entity family F , smooth factor � tunes
individually the importance of the head node in an entity
and distinguishing parent from its children.

First, for a smooth factor � = 0, the score function in
Formula 8 has s(w ; T) = s(w ; t0) +

Pn

i=1 s(w ; Ti); which is
exactly the combSUM combination in Formula 4.

Proposition 6. combSUM is a special combHIS with � = 0.

When � = 0, as illustrated in Figure 4, the parent s(w ; T)
is the same under di�erent � (denoting the di�erence be-

tween
Pn

i=1
s(w;Ti)

s(w;t0)
and �F). The score function cannot dis-

tinguish the di�erent representative power of terms in par-
ent and child entities. Parents will always be returned, as
analyzed after Proposition 1 in Section 4.

With the increase of �, referring to Formula 8, the weight
of the head node s(w ; t0) increases in the combination func-
tion. Meanwhile, the impacts of children Ti decrease. An
entity with large s(w ; t0) relative to

Pn

i=1 s(w ; Ti), i.e., hav-

ing
Pn

i=1
s(w;Ti)

s(w;t0)
less than �F , will be ranked signi�cantly

higher in retrieval. On the other hand, a small s(w ; t0) rela-

tive to
Pn

i=1 s(w ; Ti), i.e.,
Pn

i=1
s(w;Ti)

s(w;t0)
greater than �F , leads

to much lower similarity in retrieval. That is, in Figure 4,
with the increase of �, the distinction of s(w ; T) becomes
more signi�cant under various �.

Finally, for a smooth factor � = 1, referring to Formula 8,
we have s(w ; T) = (1 + �F) s(w ; t0) which considers only the
head node s(w ; t0). When � = 0, as illustrated in Figure 4,
we have s(w ; T) = 0. That is, the child entities will have
higher scores, and thus the parent could never be retrieved.
If � is too large (greater than 1), the score of parent T could
be less than 0 which is meaningless.

Summary

The parameter � could take a value in the range of [0; 1]
to retrieve meaningful answers for particular entities. A
small � (close to 0) will rank parent entities higher in the
results. The larger the � is, the more the entity score relies
on the head node. For � = 1, the entity score considers only
the head node and ignores all its children contributions. In
practice, the smooth factor � can be determined by observ-
ing the di�erence of similarity scores of returned entities (as
illustrated in Figure 10 in the experiments).

6. EFFICIENT ENTITY RETRIEVAL
To e�ciently retrieve entities with the highest sim(Tq ; T),

rather than comparing query Tq to all entities T , we explore
the monotonicity property of the proposed score combina-
tion function (Proposition 7). It enables e�cient pruning on
entity families enlightened by the threshold algorithm [14].

6.1 The Beauty of Monotonicity in Ranking
The property of monotonicity is often employed in ranking

[19]. It is easy to see that our hierarchy smooth combination
in Formula 8 is also monotonic. With this property, entities
in the same entity family could be e�ciently ranked.

Proposition 7. For any two entities T ; T 0 in the same
entity family F , if s(w ; t) � s(w ; t 0), for each w appearing in
Tq, and each node pair t and t 0 with the same type appearing
in T and T 0, then it always has sim(Tq; T) � sim(Tq; T 0).

832

6.1.1 Index

To support e�cient ranking, we build an inverted index
on terms over nodes. (Note that building index over entities
by materializing their scores is not practical. The reason
is that the entity score in Formula 8 is determined by the
coe�cient �F which changes with the update of entities in
F , and depends on the parameter of smooth factor �.)

Let Lli denote the list of nodes ti with typei that contains
term wl, ranked by s(wl; ti). The inverted index is thus a
collection of lists Lli on all terms wl appearing in possible
nodes ti with typei. We denote Lli[d] the d -th node in the
ranked list, with s(w ; Lli[d]). For instance, L12[2] in Figure
5 denotes the 2nd node I1 in the list, with s(w1; I1) = 0:85.

6.1.2 Threshold for Ranking

To extend the threshold-based pruning for e�cient rank-
ing [14], we de�ne below the threshold for entity scores in
an entity family. Consider the d -th level of ranked lists for
entity family Fi. Referring to the term score in Formula 8
in De�nition 4, we recursively de�ne the threshold.

De�nition 5. The threshold at level d of term wl in an
entity family Fi is given recursively by

t(wl; Fi; d) =(1 + � � �Fi) s(wl; Lli[d])+ (10)

(1 � �)

n
X

j=1

t(wl; Fj ; d);

where the head nodes of entities in Fi are with typei, and
the entities in Fj are child entities of those in Fi.

By aggregating the thresholds on all the terms referred by
the given Tq, we obtain the threshold for similarity scores
between the given Tq and the entities (after level d) in Fi,

t(Tq; Fi; d) =
X

w2W

s(w ; Tq) � t(w ; Fi; d): (11)

Referring to entity score in Formula 8 and similarity score
in Formula 2, the threshold at level d has following property.

Proposition 8. For a query entity Tq and any entity Ti 2
Fi, if s(wl; tj) � s(wl; Llj [d]) for each node tj with typej

appearing in Ti and each term wl appearing in Tq, it always
has sim(Tq; Ti) � t(Tq; Fi; d):

Example 6. Consider an entity Tq with s(w1; Tq) = 1 and
s(w2; Tq) = 1. There are four entity families F1; : : : ; F4 with
head node type1; : : : ; type4, respectively. Suppose �Fi =
1; i = 1; : : : ; 4 and � = 0:5. Let d = 2 be the second level
in the inverted index shown in Figure 5. We �rst compute
the score threshold according to Formula 10, t(w1; F4; 2) =
(1+ 0:5

1
)�0:3 = 0:45 and t(w1; F3; 2) = (1+ 0:5

1
)�0:78 = 1:17.

Referring to the structure in Figure 1 that entities in F2 con-
tain those of F3 and F4 as children, we have t(w1; F2; 2) =
(1 + 0:5

1
) � 0:85 + (1 � 0:5) � (1:17 + 0:45) = 2:085. It follows

t(w1; F1; 2) = (1 + 0:5
1

) � 0:1 + (1 � 0:5) � 2:085 = 1:1925.
Similarly, we can get t(w2; F1; 2) = 0:652875. According to
Formula 11, the similarity threshold of entity family F1 in
the second level is computed by, t(Tq; F1; 2) = 1 � 1:1925 +
1 � 0:652875 = 1:845375.

Consider entity TE2 2 F1 with head node E2, we have
s(wl; tj) � s(wl; Llj [2]), for l = 1; 2 and j = 1; : : : ; 4. Refer-
ring to Proposition 8, TE2 and Tq has similarity sim(Tq; T) =
0:9375 < t(Tq; F1; 2).

Figure 5: Lists L of ranked nodes

Table 2: Statistics on datasets

Dataset Source #entities #entity families

Article DBLP-a 104106 3

Article DBLP-b 104295 4

Article DBLP-c 104338 5

Article CiteSeer-a 116048 3

Article CiteSeer-b 146975 5

Article CiteSeer-c 152647 5

Article Total 728409 25

Movie IMDB-a 135162 4

Movie IMDB-b 128738 4

Movie IMDB-c 128262 4

Movie Freebase-a 155705 4

Movie Freebase-b 146412 4

Movie Freebase-c 140541 4

Movie Total 834820 24

6.2 Pruning Entity Families
To process multiple entity families, we can entirely rank-

ing one entity family after another. For each entity family
Fi, it ranks entirely on all the necessary levels d . Refer-
ring to Proposition 8, if the current top-k answers (denoted
by K [k]) already have scores greater than the threshold,
sim(Tq; K [k]) � t(Tq; Fi; d), the remaining entities in Fi

can be pruned. Otherwise, we need to rank all the entities
in Fi with nodes appearing in the level d . Speci�cally, for
each wl appearing in Tq and each typej appearing in Fi, We
get the entity Ti in Fi that contains node Llj [d] and rank
entity Ti in the top-k list K .

7. EXPERIMENTAL EVALUATION
In this section, we compare our proposal to existing meth-

ods. The determination of smooth factor � is also presented.

7.1 Experimental Setup
Structured entities in two domains, Article and Movie,

are considered. Article dataset consists of scienti�c papers
collected from DBLP [2] and CiteSeer [1]. Movie dataset
collects movie information from IMDB [4] and Freebase [3].

To simulate a real world data lake, we intentionally add
both textual and structural noises to the datasets. As shown
in Figures 6 and 7, the datasets are split into multiple parts,
each of which uses a di�erent structural representation with

833

Table 3: Methods in comparison, categorized referring to the discussion in Sections 1 and 2

Category Method Comparison on (dis)advantages

Our proposal
combHIS(BOW) tolerant to structural di�erences and overlapping

contents of the entitiescombHIS(embedding)

Graph similarity
Labeled-graph-similarity [9]

weak tolerance to structural inconsistency
Graph-edit-distance [31]

Entity retrieval
WHIRL(BOW) [13]

no consideration of overlapping contents
FSDM [44]

Entity matching/resolution
Entity-resolution [21, 17]

considering only single node entities
Collective-ER [6]

Graph/tree vectorization
Keyword-search(combANZ) [19] ine�ective in parent-child score combination

CP/CV [22] does not utilize the same structure of entities

Figure 6: Example structured entities in Article

signi�cant diversity. For instance, in Figure 6, an article
is represented by a two-level structured entity in DBLP-a,
while the entities in DBLP-b and DBLP-c have three and
four levels, respectively.

In order to simulate the scenarios of synonyms, which may
not be frequently observed in articles or movies, we ran-
domly replace words in the datasets by their synonyms. A
total number of 732k words (20%) are substituted by the
corresponding synonyms from WordNet [30].

Table 2 reports the statistics of datasets. For the Article
dataset, there are 728k structured entities (including child
entities) categorized into 25 entity families. Recall that an
entity family is a set of entities sharing the same structure on
types, e.g., the structure of DBLP-a in Figure 6, as de�ned
in De�nition 2. For the Movie dataset, there are nearly 835k
structured entities categorized into 24 entity families.

For each source in the dataset (say DBLP-a in Figure 6),
we randomly draw 200 entities as the query entities for re-
trieval, including both parent entities (e.g., with head node
Article) and child entities (with head node Proceedings).
Each query entity is searched in the other sources, and col-

Figure 7: Example structured entities in Movie

lects top-k answers, for instance, search an entity of DBLP-a
in the other DBLP-b, CiteSeer-a and so on. We manually
identify the true answers of queries in di�erent sources.

7.2 Comparison to Existing Methods
In this experiment, we compare our proposed methods

with existing approaches. As discussed in Section 3.3, the
proposed score combination combHIS can work together with
both the bag-of-words model, denoted by combHIS(BOW),
and the word embedding model, i.e., combHIS(embedding).
GloVe [33] is employed as word embeddings. The smooth
factor is �=0.8 in the Article dataset (relies more on the
head node in representing and retrieving entities) and 0.6 in
the Movie dataset (the determination of the parameter will
be discussed in the following experiments).

7.2.1 Compared Approaches

The compared methods are generally the related studies
discussed in Sections 1 and 2. Table 3 lists the methods in
comparison. Each approach has been �ne-tuned by itera-
tively choosing parameters with the best performance.

The graph/tree edit distance based approaches are dis-
cussed in Section 1. (1) Labeled-graph-similarity [9] �nds a
mapping that matches the nodes of two entities, and then

834

Table 4: Varying the depth of structures and the number of data sources on Article and Movie datasets

Method

Article dataset Movie dataset

data sources depth of structures # data sources depth of structures

=1 =2 =2 =3 =4 =1 =2 =2 =3

combHIS(BOW) 0.963 0.923 0.912 0.921 0.935 0.888 0.877 0.873 0.881

combHIS(embedding) 0.912 0.903 0.888 0.903 0.918 0.844 0.841 0.842 0.84

Labeled-graph-similarity 0.514 0.512 0.568 0.441 0.526 0.673 0.582 0.523 0.642

Graph-edit-distance 0.525 0.501 0.538 0.476 0.488 0.621 0.55 0.544 0.556

WHIRL(BOW) 0.594 0.586 0.597 0.585 0.576 0.648 0.658 0.658 0.658

FSDM 0.737 0.676 0.697 0.659 0.674 0.852 0.798 0.771 0.825

Entity-resolution 0.625 0.628 0.641 0.609 0.635 0.806 0.672 0.635 0.708

Collective-ER 0.586 0.594 0.588 0.594 0.6 0.585 0.513 0.467 0.558

Keyword-search(combANZ) 0.682 0.414 0.429 0.385 0.426 0.602 0.605 0.496 0.715

CP/CV 0.38 0.401 0.429 0.388 0.385 0.379 0.37 0.375 0.365

combines the label similarity of each pair of matched nodes
as the similarity of two entities. (2) Graph-edit-distance [31]
considers entities as graphs and computes the edit distance
of two graphs as the similarity of the corresponding entities.

The document retrieval approaches for entities with �elds
are also discussed in Section 1. (3) WHIRL(BOW) [13] com-
bines the contents of a structured entity as an unstructured
document and evaluates similarity between combined docu-
ments. (4) FSDM [44] considers distinct weights of di�erent
�elds, and the relative importance of unigrams and bigrams.

The entity resolution methods are discussed in Section 2.1.
(5) Entity-resolution �rst combines the tuples of a struc-
tured entity as a \big joined tuple", then �nds matching of
attributes between big joined tuples [21], and �nally com-
bines the value similarity on all matched attributes [17]. (6)
Collective-ER [6] considers the entity resolution as a clus-
tering problem, and utilizes the edges between two nodes to
merge clusters. Although the method considers connections
among entities, each entity is still a tuple without structure.

The keyword search method over structured data is dis-
cussed in Section 2.2. (7) Keyword-search(combANZ) [19]
studies joining-trees of tuples (as entities) and evaluates
their IR-style scores with size normalization. Similarly, we
also employ (8) CP/CV [22] for vectorizing and propagating
concepts in taxonomies as discussed in Section 2.3.

7.2.2 Comparison Results

We evaluate the proposed combHIS cooperating with both
the BOW and embedding models as introduced in Section
3.3. Figure 8 presents the scalability over various numbers
of entities, and the corresponding time costs.

Our proposed method combHIS(BOW) with the bag-of-
words model shows a surprisingly high accuracy in all the
tests while keeping the time costs low. The other proposal
combHIS(embedding) with word embeddings is comparable
to (a bit lower than) combHIS(BOW). The reason is that
although word embeddings could capture similar semantics,
the contents (in addition to the structures) of entities from
DBLP and CiteSeer denoting the same real-world object
could be very di�erent. The bag-of-words approach in For-
mula 2 only considers the terms that occur in both two en-
tities. However, by aggregating the word embeddings as the
entity embedding by Formula 3, the resulting embeddings of

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

300k 400k 500k 600k 700k

P
re

ci
si

on
@

1

Number of entities

(a) Article dataset

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

200k 350k 500k 650k 800k

P
re

ci
si

on
@

1

Number of entities

(b) Movie dataset

 10

 100

 1000

 10000

 100000

 1x106

300k 400k 500k 600k 700k

T
im

e
co

st
 (

m
s)

Number of entities

(c) Article dataset

 1

 10

 100

 1000

 10000

 100000

200k 350k 500k 650k 800k
T

im
e

co
st

 (
m

s)
Number of entities

(d) Movie dataset

combHIS(BOW)
combHIS(embedding)

Labeled-graph-similarity
Graph-edit-distance

WHIRL(BOW)

FSDM
Entity-resolution

Collective-ER
Keyword-search(combANZ)

CP/CV

Figure 8: Scalability over various numbers of entities

the entities from DBLP and CiteSeer would be very di�erent
as well.

Labeled-graph-similarity and Graph-edit-distance empha-
size the structural similarity of two entities. However, as ex-
plained at the beginning of this paper, the same real world
entities may have di�erent structures. Therefore, the graph
similarity based approaches show low accuracy. With toler-
ance to such structural variations, our combHIS method can
achieve signi�cantly higher retrieval accuracy.

The retrieval method WHIRL(BOW) by treating struc-
tured entities as unstructured documents, already achieves
relatively high precision. It veri�es the motivation of this
study, i.e., to focus more on the contents of the entities
and tolerant to structural di�erences. Nevertheless, being
aware of both the contents and structural information, our
combHIS(BOW) shows a clearly better retrieval precision.

FSDM [44] shows better results than WHIRL(BOW), but
still not as high as our combHIS(BOW). The result is not

835

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6

P
re

ci
si

on
@

1

Number of different structures

(a) Article dataset

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6

P
re

ci
si

on
@

1

Number of different structures

(b) Movie dataset

 1

 10

 100

 1000

 10000

 100000

 1x106

 2 3 4 5 6

T
im

e
co

st
 (

m
s)

Number of different structures

(c) Article dataset

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 3 4 5 6

T
im

e
co

st
 (

m
s)

Number of different structures

(d) Movie dataset

combHIS(BOW)
combHIS(embedding)

Labeled-graph-similarity
Graph-edit-distance

WHIRL(BOW)

FSDM
Entity-resolution

Collective-ER
Keyword-search(combANZ)

CP/CV

Figure 9: Performances over di�erent structures

surprising, since the unique parent-child containment chal-
lenge is not considered.

The Entity-resolution approach by matching heterogenous
attributes between entities could further improve the re-
trieval precision, compared to the WHIRL(BOW) model.
Our proposed combHIS(BOW) considers the hierarchy struc-
ture of entities rather than a \big joined tuple", and shows
the even higher accuracy.

The accuracy of Collective-ER is not high, since it con-
siders only connections among entities where each entity is
still a tuple without structure. The method utilizes mainly
the contents in the head nodes of entities, while the children
contribute only in link structures (instead of contents).

The Keyword-search(combANZ) method with entity size
normalization unfortunately shows low precision. The rea-
son is that the same real world entities may have various
sizes (number of nodes in an entity). The normalization by
entity size in combANZ makes the small entities rank higher
and fails to retrieve large entities. The results verify again
the analysis of existing approaches in Section 4.

The precision of CP/CV is not as high as our proposal.
The reason is that CP/CV considers sum when propagat-
ing from children to parents (see Section 2.3). Moreover, the
concepts of parents are also propagated to children, i.e., bidi-
rectionally. For instance, all articles are propagated to the
corresponding conferences. In this sense, given the highly
similar keywords of all articles in SIGMOD and VLDB, it
may not be able to distinguish between two conferences.

7.2.3 Varying the Datasets

To study other factors in the data that may a�ect the per-
formance of the approaches. In addition to varying the num-
ber of entities in Figure 8 in Section 7.2.2, and the smoothing
factor in Figures 10 and 11 in Section 7.3, we report the re-
sults on various number of data sources, various number of
di�erent structures, and various depth of structures.

Figure 9 reports the results by varying the number of dif-
ferent structures, from 2 data sources. For instance, in Fig-

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.2 0.4 0.6 0.8 1.0
 0

 0.1

 0.2

 0.3

 0.4

 0.5

P
re

ci
si

on
@

1

D
iff

er
en

ce

Smooth factor

(a) DBLP-a

Precision@1
Difference

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.2 0.4 0.6 0.8 1.0
 0

 0.1

 0.2

 0.3

 0.4

 0.5

P
re

ci
si

on
@

1

D
iff

er
en

ce

Smooth factor

(d) CiteSeer-a

Precision@1
Difference

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.2 0.4 0.6 0.8 1.0
 0

 0.1

 0.2

 0.3

 0.4

 0.5

P
re

ci
si

on
@

1

D
iff

er
en

ce

Smooth factor

(b) DBLP-b

Precision@1
Difference

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.2 0.4 0.6 0.8 1.0
 0

 0.1

 0.2

 0.3

 0.4

 0.5

P
re

ci
si

on
@

1

D
iff

er
en

ce

Smooth factor

(e) CiteSeer-b

Precision@1
Difference

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.2 0.4 0.6 0.8 1.0
 0

 0.1

 0.2

 0.3

 0.4

 0.5

P
re

ci
si

on
@

1

D
iff

er
en

ce

Smooth factor

(c) DBLP-c

Precision@1
Difference

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.2 0.4 0.6 0.8 1.0
 0

 0.1

 0.2

 0.3

 0.4

 0.5

P
re

ci
si

on
@

1

D
iff

er
en

ce

Smooth factor

(f) CiteSeer-c

Precision@1
Difference

Figure 10: Determining smooth factor � by the
largest di�erence between top-1 and top-2 answers

ure 9(a) on Article, the �rst 3 di�erent structures are from
DBLP in Figure 6, and the last 3 di�erent structures are
from CiteSeer. The experiments range from 2 to 6 di�er-
ent structures. As shown, with the increase of the number
of di�erent structures from various data sources, the accu-
racy of returned results may drop (slightly). The result is
not surprising, since handling the heterogeneity on entity
structures is challenging as discussed in Section 1.1.

Table 4 presents the results with various number of data
sources and various depth of structures. For instance, by 2
data sources in Article, we consider all 6 structures in both
DBLP and CiteSeer in Figure 6, while a single data source
means only the 3 structures in DBLP. A small structure
such as DBLP-a has only two levels in depth, while DBLP-c
is a larger structure with four levels. Since the properties
in Movie are limited, we can construct entities with only
2 or 3 levels in depth. Nevertheless, the results of various
approaches are generally proportional to those with di�erent
structures in Figure 9. The results demonstrate again the
performance and robustness of our proposal.

7.3 Evaluation on Smooth Factor
We analyze the e�ect of varying the smooth factor � in

the combHIS combination. As introduced in Section 5.3, the
larger the � is, the more the retrieval relies on the head nodes
of entities. To practically determine whether a � is su�cient
to distinguish the importance of head nodes, we observe the
normalized di�erence of the top-1 and top-2 answers, i.e.,
sim1 � sim2

sim1
, where sim1 and sim2 are the entity similarities

836

837

