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ABSTRACT
Recording sensor data is seldom a perfect process. Fail-
ures in power, communication or storage can leave occa-
sional blocks of data missing, affecting not only real-time
monitoring but also compromising the quality of near- and
off-line data analysis. Several recovery (imputation) algo-
rithms have been proposed to replace missing blocks. Un-
fortunately, little is known about their relative performance,
as existing comparisons are limited to either a small subset
of relevant algorithms or to very few datasets or often both.
Drawing general conclusions in this case remains a challenge.
In this paper, we empirically compare twelve recovery al-

gorithms using a novel benchmark. All but two of the al-
gorithms were re-implemented in a uniform test environ-
ment. The benchmark gathers ten different datasets, which
collectively represent a broad range of applications. Our
benchmark allows us to fairly evaluate the strengths and
weaknesses of each approach, and to recommend the best
technique on a use-case basis. It also allows us to identify
the limitations of the current body of algorithms and suggest
future research directions.
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1. INTRODUCTION
With the emergence of the Internet of Things (IoT), time

series data has became ubiquitous in a range of domains
such as Astronomy [18, 61], Climate [27, 39], Energy [18],
Environment [54], Finance [33, 58], Medicine [52], Neuro-
science [65, 67], and Traffic [46, 71]. Missing values often
occur when sensor time series are recorded. For instance,
the Intel-Berkeley Research Lab dataset is missing about
50% of the expected measurements [5]; the University of
California Irvine’s repository of time series 20% [12]. Miss-
ing values frequently occur consecutively, forming a block
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in a time series. These blocks can be large, as it can take
arbitrarily long time to fix a faulty sensor.
Data management systems assume no such gaps exist in

the data. Even if a system can work with incomplete data
(e.g., NULLs in relational databases), leaving missing val-
ues untreated can cause incorrect or ill-defined results [8].
Recently, some systems have started to incorporate missing-
values recovery as a native feature [1, 8, 42, 55]. We expect
other systems to follow, but there is no clear way to pick the
most suitable recovery algorithm for at least two reasons.
First, the algorithms use different underlying techniques

to achieve a good accuracy. Some algorithms assume that
the time series present a temporal continuity, given the
nature of the phenomena they measure (e.g., rainfall sen-
sors). These algorithms recover missing blocks by looking
at an entire set of series as a matrix and by applying tech-
niques based on matrix completion principles. Other algo-
rithms consider that sensors which are at close proximity
can present trend similarity (e.g., body movement sensors).
These algorithms apply pattern matching techniques and
use the observed values – the values that the sensors actu-
ally measured – as a source to replace missing blocks. We
lack a guide to understand which technique could yield the
best accuracy and in which cases.
The second reason why it is difficult to select an algorithm

is that their efficiency is hard to predict. Matrix completion
and pattern matching involve different iterative computa-
tions. The latter are expensive, which forces each algorithm
to find compromises to achieve a reasonable efficiency. For
instance, matrix completion algorithms often use a dimen-
sionality reduction step, and compensate for the loss of ac-
curacy by iterating over the computations until a chosen
error metric reaches a threshold. While this process brings
efficiency, it creates the need to pick an algorithm’s param-
eters properly, e.g., which dimensionality reduction to use.
One needs to ponder all these implications before selecting
an algorithm and deciding how to properly parameterize it.
In this paper, we present an empirical evaluation of miss-

ing values recovery techniques. To the best of our knowl-
edge, this is the first in-depth study discussing their ac-
curacy, efficiency and parameterization. The chosen algo-
rithms, summarized in Table 1, cover the full gamut of tech-
niques currently available to recover large missing blocks. As
these algorithms were implemented using different languages
and techniques, we re-implemented them in a common lan-
guage (C++ ) and underlying data manipulation library1.

1Source code and datasets are available online: https://
github.com/eXascaleInfolab/bench-vldb20.git
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Table 1: Recovery techniques (described in more detail in Section 3).

Recovery Technique Implementation
Initialization Multiple TS Type Matrix D/F Termination Original LoC Speedup

M
at
ri
x
co
m
p.

CDRec [27, 28] interpolation batch CD dynamic Java 196 27
GROUSE [2, 72] N/A batch PCA static Python 94 10

ROSL [59] interpolation batch PCA dynamic C++ 330 -
SoftImp. [43] zero batch SVD dynamic Python 92 5

SPIRIT [49, 50] N/A online PCA static Matlab 214 110
SVDImp. [64] zero batch SVD dynamic Python 91 9

SVT [7] zero batch SVD dynamic Matlab 158 21
TeNMF [44] zero batch NMF dynamic Python 78 2
TRMF [70] random batch MF static Matlab/C++ - -

P
at
te
rn DynaMMo [34] interpolation batch dynamic Matlab 208 3

STMVL [68] N/A batch static C# 768 2
TKCM [66] N/A online static C 140 -

Results. We not only reproduce results from the original
papers but also discover a number of new findings. Some of
our most salient findings are:
There is no single-best accurate algorithm. Five distinct

algorithms stand out. SoftImpute and TRMF are the most
accurate algorithms on datasets exhibiting repeating trends,
CDRec on time series with high variations in correlation and
STMVL on highly correlated time series. Lastly, DynaMMo
is adapted to datasets with irregular fluctuations.
Larger missing blocks can sometimes yield higher recov-

ery accuracy. This is due to the iterative nature of some
algorithms. Large missing blocks require a larger number of
iterations which, in turn, yield better recovered values.
Blackouts pose an accuracy challenge. Blackouts refer to

episodes where all sensors go quiet simultaneously, causing
widespread and aligned missing blocks. None of the tech-
niques recovered from a blackout with a high accuracy. Only
CDRec and DynaMMo showed (some) acceptable results.
Small dimensionality yields the best results. Techniques

relying on dimensionality reduction achieve the best per-
formance when they look at a relatively small number of
dimensions, i.e., when they apply large reductions.
There is a large runtime variance across solutions. The

most efficient algorithms, SVDImpute and CDRec, are three
orders of magnitude faster than the slowest, DynaMMo.

Contributions. We summarize the contributions of this
paper as follows:

• We curate a comprehensive set of large-block recovery
algorithms for time series data. We adopt improve-
ments to these algorithms that were suggested either
in the literature or by practitioners. We also suggest
some improvements on our own.

• We create, to the best of our knowledge, the first
common test-bed for comparing such algorithms. We
achieve this by proposing a reusable code framework, a
large selection of representative time series, and mech-
anisms to automate benchmarking.

• We evaluate and discuss the accuracy, efficiency, and
the proper parameterization of these recovery tech-
niques under a large variety of scenarios.

• We provide a detailed guide to navigating the choice of
available algorithms. We also discuss scenarios where
no acceptable results exist, thus opening the field to
future research in this area.

Related Work. Balzano et al. [2] introduce the closest
work to ours which compares large missing blocks recovery
techniques for time series data. The authors focus exclu-
sively on algorithms based on Principal Component Analysis
(PCA) and use only synthetic datasets in their experiments.
In contrast, our study includes both a more extensive set of
recovery techniques and real-world time series covering a
wider range of characteristics. We also include a more ex-
haustive set of recovery scenarios and we open-source our
benchmark.
Another relevant work is by Moritz et al. [48], which offers

a comparison of a number of statistical-based methods and
one algorithm that uses Kalman Filters [19]. Similarly, Xi-
aoping Zhu [74] presents an analysis of four statistical-based
techniques: MeanImpute [17], kNNImpute [73], Delete and
Multiple Imputation. These techniques are effective only in
the case of a single or a handful of missing values.
Some additional comparisons exist in which missing values

recovery is used as a step in classification/clustering tasks,
e.g., [40, 41, 45]. These works, however, do not discuss the
quality of the recovery itself.
The original papers that introduced the recovery tech-

niques we evaluate here [7, 28, 34, 43, 44, 49, 59, 64, 66,
68, 70, 72] also include empirical evaluations. Compared to
our work, the scope of these experiments is limited in terms
of datasets, competitors, and analysis of accuracy, runtime
and parametrization.
Similarly to time series data, other types of data provide

unique opportunities for recovery techniques. For instance, a
number of techniques focus on graph recovery [10, 23, 35, 47,
57], image reconstruction [24, 63], or recovery of categorical
data [3, 4], to mention a few. None of these algorithms
made it into our study, as they are highly dependent on the
specific type of data for which they were originally designed
and thus, are not applicable for time series data.

Outline. The rest of this paper is organized as follows.
Section 2 provides background information on the families
of algorithms we evaluate. Section 3 surveys all algorithms
in our test-bed, analyzes their properties, and discusses our
implementation choices. Section 4 reports on the experi-
mental results. Section 5 discusses our findings and makes
suggestions for future work. Section 6 concludes this paper.

2. BACKGROUND
Missing-values recovery algorithms can be classified as ei-

ther matrix-based or pattern-based, according to the under-
lying method they use. Matrix-based (completion) recovery
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Figure 1: Graphical illustration of the recovery of the missing block (MB) in X3. (a) A plot of three input time series X1,
X2 and X3 with a missing block represented by a dashed line at 14 ≤ t ≤ 16. (b) A matrix-based recovery, where SVD
decomposes the original data, exposing the matrix rank with dimensions σ1, σ2 and σ3. (c) A pattern-based recovery, where
the query pattern was matched at 3 ≤ t ≤ 5 and 5 ≤ t ≤ 7.

techniques use data analysis methods to infer the missing
block. To illustrate this process, consider a set of m time
series, each having n points, where one of these time series
has a missing block of values. We show such a scenario in
Figure 1a, without loss of generality, for m = 3 and n = 20.
These time series can be represented as an n × m matrix
where each time series represents a single column, shown as
the left-most matrix in Figure 1b.
A matrix-based algorithm transforms the data in a way

that simplifies the application of dimensionality reduction.
The Singular Value Decomposition (SVD) method [60] is the
most widely known technique that has been used to achieve
such a goal. SVD decomposes the input matrix X into three
matrices U, Σ and V, such that X = U·Σ·VT . The Σ ma-
trix exposes the number of linearly independent dimensions
of the data (rank) and presents them sorted by importance,
i.e., σ1 > σ2 > σ3. Reducing the original matrix can be
done by nullifying the smallest cells in the diagonal in Σ,
σ3 in our example. A recovery process multiplies back the
matrices after the reduction and uses the results to fill the
original missing block. The number of dimensions to reduce
needs to be parametrized as it heavily impacts the accu-
racy/efficiency trade-off.
This recovery process can be iterative, as we depict in Fig-

ure 1b. One commonly used objective function is to mini-
mize the distance between the input and the approximated
matrices as calculated, for instance, using the Frobenius
norm [28], the nuclear norm [7], the rank minimization [59],
the root mean square error minimization [25, 26], etc. We
also discuss matrix-based algorithms that rely on different
techniques than SVD, such as Principal Components Anal-
ysis [21], Centroid Decomposition [11], Matrix Factoriza-
tion [31], and Non-Negative Matrix Factorization [30].
In contrast, pattern-based recovery techniques assume

that a high degree of similarity exists between series. When
a block is missing in a base series, an algorithm would lever-
age the similarity to any number of reference series. The
observed values in the reference series are treated as a query
pattern. Any blocks matching that pattern may reveal can-
didate replacement values in the base series. For instance,
in Figure 1c, X3 is a base series whereas X1 and X2 are two
reference ones. The reference series provide two candidate
replacing blocks since they match the pattern at the missing
interval.

Similarly to matrix-based algorithms, pattern-based tech-
niques also require parameterization. The length of the
query pattern greatly impacts the accuracy/efficiency trade-
off. If the pattern is too small, the technique loses accuracy,
especially if the time series are not cyclic. If too big, the
computational time involved in pattern manipulation prim-
itives (e.g., comparison) becomes too costly.

Notations. In the following, bold upper-case letters re-
fer to matrices, regular font upper-case letters refer to vec-
tors (rows and columns of matrices) and lower-case let-
ters refer to elements of vectors/matrices. The symbol ‖‖F
refers to the Frobenius norm of a matrix, while ‖‖ refers
to the l-2 norm of a vector. Assume X is an n × m ma-
trix where each column is X = [x1, . . . , xn], then ‖X‖F =√∑n

i=1

∑m
j=1(xij)

2 and ‖X‖ =
√∑n

i=1(xi)
2.

A time series X = {(t1, v1), . . . , (tn, vn)} is an ordered set
of n temporal values vi which are ordered according to their
timestamps ti. We write X = [X1|. . . |Xm] (or Xn×m) to de-
note an n×mmatrix havingm time seriesXj as columns and
n values for each time series as rows. Time series can be uni-
variate (2-dimensional) or multivariate (multi-dimensional).
In univariate series, a temporal value is a scalar that refers
to one specific phenomenon, e.g., temperature. In multi-
variate series, a value is a vector that refers to multiple phe-
nomena, e.g., temperature, precipitation and humidity. We
consider time series with fixed granularity and omit their
timestamps, which are implicitly expressed by the position
(order) of each observation.
To measure the recovery accuracy, we adopt the most

commonly used measures in this field: Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE) between
the original block and the recovered one, i.e.,

RMSE =

√
1

|T |
∑
t∈T

(xt − x̃t)2

MAE =

∑
t∈T |xt − x̃t|
|T |

where T is the set of missing values, xt is the original value
and x̃t is the recovered value. MAE and RMSE can present
different trends. In particular, RMSE is more sensitive to
larger errors.
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3. SELECTED ALGORITHMS
Collectively, the algorithms discussed in this study bring

a wide range of solutions. The “Recovery” and “Technique”
columns in Table 1 characterize each algorithm by its type
of initialization, by whether it supports recovery in just one
or multiple series at once, by whether the recovery can be
done on a streaming series or a batch one, by the underlying
method on which it relies and, lastly, by whether the number
of iterations to perform is fixed or not. We briefly describe
each recovery algorithm below.

3.1 Matrix-Based Algorithms
SVDImpute [64] is a recovery algorithm similar to the one
depicted in Figure 1b. It was originally introduced to recover
missing genes in DNA micro-arrays where missing blocks are
usually small. SVDImpute first initializes the missing values
as zeroes. Then, it selects the k most significant columns of
V (obtained through SVD) and uses a linear combination of
these columns to estimate the missing values. We adopted
a common improvement that allows SVDImpute to scale
better: we calculate the SVD in a faster and randomized
way (resp., [13, 15]). This change yielded the same accuracy
up to 3 decimals.

SoftImpute [43] is an extension of the SVDImpute
technique with an Expectation Maximization (EM) step.
The EM extension improves accuracy, when compared to
SVDImpute, and has a low impact on efficiency. The result-
ing algorithm alternates between recovering the missing val-
ues and updating the SVD using the observed values. Soft-
Impute adopts a soft-thresholded version of SVD – hence
the name – and, unlike SVDImpute, uses the product of all
three matrices produced by the decomposition.

SVT [7] is an SVD-based algorithm designed with one no-
table feature: it automatically finds the optimal rank reduc-
tion for a dataset, avoiding the prior calibration step that
matrix-based algorithms usually require. It does so by ap-
plying a thresholding technique to reduce the number of the
singular values obtained from the decomposition. The pre-
served singular values are rescaled using only the observed
values, and the recovery is obtained by iteratively multiply-
ing back the three matrices of the decomposition.

CDRec [28, 29] is a memory-efficient algorithm designed to
recover long time series and is based on a technique called
Centroid Decomposition (CD) [11]. Similarly to SVD, CD
decomposes an n ×m input matrix X into an n ×m load-
ing matrix L and an m ×m relevance matrix R, such that
X = L · RT . CDRec performs the recovery by first us-
ing interpolation/extrapolation to initialize the missing val-
ues. Second, it computes the CD and keeps only the first
k columns of L and R, producing Lk and Rk, respectively.
Lastly, it replaces the interpolated values by the correspond-
ing elements in X̃ = Lk ·RT . This process iterates until the
normalized Frobenius norm between the matrices before and
after the update reaches a small threshold.

GROUSE [2, 72] is an algorithm that does not require ini-
tializing the missing values. It uses a decomposition tech-
nique we mentioned earlier, PCA [21]. PCA takes an n×m
input matrix X and finds n eigenvectors (vectors of U from
SVD) each of size m that correspond to the principal com-
ponents. In other words, U is a new subspace that approx-
imates the dimensions of the initial data. The approxima-

tion is performed by applying a gradient descent procedure
to minimize an objective function, and subsequently derive
the missing values. We experimented with two different ob-
jective functions: one with a distance-based step size and
one with a greedy step size. We kept the distance-based
implementation as it yielded more stable results.

SPIRIT [49, 50] is an algorithm designed to perform
streaming recovery (i.e., the missing block is at the tip of
the series). It uses PCA to reduce a set of m co-evolving
and correlated streams into a small number of k hidden vari-
ables. These variables summarize the most important fea-
tures of the original data. For each variable, SPIRIT fits
one auto-regressive (AR) model on historical values and in-
crementally updates it as new data arrives. Next, the model
is used to predict the value of each variable, from which an
estimate of the missing value is derived. Lastly, both the es-
timated and the non-missing values are used to update the
AR coefficients and subsequently recover the missing values.

ROSL [59] is a PCA-based algorithm specialized in denois-
ing corrupted data. It assumes the input matrix contains
corrupted data and suggests better estimates using the ma-
trix’s orthonormal subspace. This subspace uses a rank mea-
sure to identify the rank representation of the data. We
modified the original algorithm to consider only the (initial-
ized) missing values as corrupted values.

TRMF [70] is an algorithm that learns from different types
of data dependencies, making it suitable to time series ex-
hibiting diverse characteristics. It is based on temporal Ma-
trix Factorization (MF) [31] which takes an n × m input
matrix X and seeks to approximate it using two factor ma-
trices, W and H respectively of size n× r and r ×m (with
r ≤ min(n,m)). This process guarantees that X ≈ WH.
The input time series are factorized into a so called latent
temporal embeddings and an auto-regressive (AR) model is
applied to derive the temporal structure of the embeddings.

TeNMF [44] is an algorithm designed to leverage correla-
tion across time series. It combines temporal aggregation
techniques with a matrix decomposition technique called
Non Negative Matrix Factorization (NMF) [30]. NMF is
similar to the above MF technique, but it constrains W
and H to non-negative elements. More specifically, TeNMF
first applies NMF to obtain temporal aggregates and uses
them to define a loss function. This function is modified by
adding a penalty that captures the correlation across time
series. TeNMF’s original implementation uses a multiplica-
tive divergence-based update to compute NMF [62], which
makes the recovery unstable. We use instead the Alternat-
ing Least Squares update (ALS) to compute NMF [37].

3.2 Pattern-Based Algorithms
TKCM [66] is similar to the algorithm depicted in Figure 1c
in that it identifies and uses repeating patterns (seasonal-
ity) in the time series’ history. In TKCM’s case, the pattern
search is performed in a dynamic warping fashion which al-
lows for recovering time-shifted time series. Similarly to
SPIRIT, TKCM is a streaming technique that operates on
the set of values at the tip of the input data.

DynaMMo [34] is an algorithm that considers the similari-
ties across only a few time series. It assumes that some time
series present co-evolving patterns. Internally, the algorithm
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Figure 2: Parameterization of the techniques on the Chlorine dataset.

relies on Kalman Filters and iterates using an Expectation
Maximization (EM) step. The Kalman Filter uses the data
that contains missing blocks together with a reference time
series to estimate the current state of the missing blocks.
The recovery is performed as a multi-step process. At each
step, the EM method predicts the value of the current state
and then two estimators refine the predicted values of the
given state, maximizing a likelihood function.

STMVL [68] is an algorithm designed to recover missing
values in correlated time series. It focuses on two types
of correlation: a spatial correlation (geographical distance
between sensors) and a temporal correlation (closeness of
the values in time). Internally, STMVL combines a data
smoothing technique with collaborative filtering to derive
models out of historical data. These models are then used
to estimate the missing values based on the closeness of the
sensors, as represented by a decay rate.

3.3 Alternative Techniques
Recovery techniques that rely on Neural Networks (NN)

have been also used to recover time series data. For in-
stance, some algorithms use recurrent networks [9, 69] or
LSTM [32]. These algorithms build a (parametric) model
that reconstructs the linear dependence between time se-
ries. The recovery is based on the information obtained
through those dependencies. This class of techniques uses a
calibration process where the dataset is split into two sets: a
training set to learn the dependencies and a test set to apply
the recovery. The quality of the recovery heavily depends
on the size of the training set and the similarity between the
two sets. One notable advantage of such algorithms is their
ability to deal with multivariate series naturally.
The current limitation with these algorithms has been the

assumption that the series in a dataset are linearly depen-
dent on one another [69]. Such datasets exist, for instance,
in medical data where a given vital sign can accurately pre-
dict another. The relationships between the time series we
use are, however, more elaborate in practice, as we show in
Section 4. The results of our evaluation show that NN-based
recovery techniques are not suitable for the data we use here.
For instance, MRNN [69] incur a high error (average RMSE
higher than 1), while it takes orders of magnitude more time
than the slowest algorithm from our benchmark.

3.4 Implementation Notes
As we mentioned earlier, we rewrote all the afore-

mentioned algorithms in C++ , except for TRMF (inextri-
cable from Matlab) and ROSL (we use the efficient original
implementation). The “Implementation” column in Table 1
describes the original language in which each algorithm was
written, the number of lines of code (LoC) of our rewrite,
and the speed-up benefit this latter brought.
We use the same advanced linear algebra operations

across all techniques, thanks to a modern library called Ar-
madillo [56]. By using a common code infra-structure, we
eliminate any source of disparities that would otherwise ex-
ist if each algorithm re-implemented common primitives.
Our rewriting was more involved than simply translat-

ing an algorithm from one language into another. We re-
engineered the original implementations, which led to gains
in performance across all the algorithms – in one case mak-
ing an algorithm 110x faster. We discuss some of the insights
we learned during this process in more detail in Appendix A.
We also validated our versions of the algorithms by repeat-

ing core experiments from the original papers. We describe
this effort in more detail in Appendix B.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate the previously selected algo-

rithms through a number of experiments designed to test
their parameterization, accuracy and efficiency.

4.1 Setup and Datasets
We conduct our experiments on a 3.4 GHz Intel i7-4770

CPU that consists of 8 cores with an 8MB L3 cache and
32GB of RAM. The code was compiled with g++ 7.3.0 at
the maximum optimization level. We use eight real-world
datasets (cf. Table 2) and two synthetic ones. The real-
world datasets we use are the following:
Air brings air quality measurements collected from 36 mon-
itoring stations in China from 2014 to 2015 (appeared in
STMVL [68]). Air time series contain repeating trends and
jumps of magnitude.
Gas shows gas concentration collected between 2007 and
2011 from a gas delivery platform situated at the ChemoSig-
nals Laboratory at University of California in San Diego
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Table 2: Description of time series and accuracy of each technique.

Name Length # TS CD
Rec
GR

OU
SE

RO
SL
Sof

tIm
put

e

SP
IRI

T
SV

DIm
put

e

SV
T

TeN
MF
TR

MF
Dy

naM
Mo

ST
MVL

TK
CM

Air 1k 10 norm. RMSE
Chlorine 1k 50 ≥ 2.0
Gas 1k 100 < 2.0
Climate 5k 10 < 1.5
Electricity 5k 20 < 1.0
Temperature 5k 50 < 0.5
MeteoSwiss 10k 10 < 0
BAFU 50k 10 < −0.5

(appeared in [53]). Gas time series exhibit high variations
in the correlation between each other.
Climate presents monthly aggregated climate data col-
lected from 18 stations over 125 locations in North America
between 1990 and 2002 (appeared in [38, 39]). Climate time
series are irregular and contain sporadic spikes.
Electricity has data on household energy consumption col-
lected every minute between 2006 and 2010 in France (ob-
tained from the UCI repository and used by TRMF [70] and
TeNMF [44]). Electricity time series are shifted in time.
Temperature contains temperature data collected from cli-
mate stations in China from 1960 to 20122 (appeared in
STMVL and CDRec [27]). Temperature time series are very
highly correlated with each other.
MeteoSwiss is a weather time series provided by the Swiss
Federal Office of Meteorology and Climatology3 collected
from different Swiss cities from 1980 to 2018 (appeared in
CDRec). Meteo time series contain repeating trends with
sporadic anomalies.
BAFU consists of water discharge data provided by the
BundesAmt Für Umwelt (BAFU)4, the Swiss Federal Office
for the Environment, collected from different Swiss rivers
from 1974 to 2015 (appeared in [1]). BAFU time series con-
tain synchronized irregular trends.
Chlorine simulates a drinking water distribution system
and describes the concentration of chlorine in 166 junctions
over a time frame of 15 days with a sample rate of 5 minutes
(used by DynaMMo [34], GROUSE [72], SPIRIT [49] and
TKCM [66]). This dataset contains clusters of similar time
series which exhibit repeating trends.

4.2 Parameterization
Parameterization is the process of calibrating a technique

to work with a given accuracy-efficiency trade-off. There
are many parameters that can be calibrated for each of our
algorithms, but often one of them has a major impact. We
present in Figure 2 the experimental results when calibrating
the main parameter and discuss the remaining parameters
in Appendix C. We report the recovery RMSE and the ex-
ecution time, both normalized by the larger value of each
algorithm – the lower the better.
The most critical parameter for all the matrix-completion

techniques is the dimensionality reduction factor (SVT is a
special matrix-completion case, as the threshold parameter,
τ , is more critical than the reduction factor). We observe

2http://www.cma.gov.cn/en2014/
3http://meteoswiss.admin.ch
4https://www.hydrodaten.admin.ch/en

that the runtime of the matrix-based techniques increases
along with the reduction value, k. This result is expected,
since the higher k, the higher the number of dimensions
used to produce the recovery (yielding more time- and space-
intensive computations). Surprisingly, increasing k did not
always improve accuracy. The reduction used by these tech-
niques keeps only the most significant dimensions and filters
out the rest. At some point, the extra information resorts
to outlier values that deteriorates the recovery. The optimal
reduction value proved to be k ∈ {2, 3, 4}.
For the pattern-based techniques the critical parameters

are as follows: for DynaMMo the number of latent vari-
ables; for TKCM the pattern size, l; and for STMVL the
decay rate, α. The behavior of each algorithm in this group
was unique. For DynaMMo, the amount of computations
involved grows as more latent variables are used. When op-
timizing for accuracy, the optimal number of latent variables
proved to be 3. For TKCM, the performance takes a bell
shape as l grows. The accuracy decreases with l. Unlike the
author’s recommendation, we set the value of l to 4 rather
than 72. We found that 4 yields better accuracy in most of
our datasets and is an order of magnitude faster. Lastly, we
observed that the trend of STMVL is relatively flat. The
optimal value of the decay rate is 2.
We also parameterized the algorithms using all the

datasets in Table 2. In several cases, we found that small
losses in accuracy yielded significant efficiency gains. For
instance, we chose k=3 for ROSL with respect to the Cli-
mate dataset, even though k=4 yields the lowest RMSE. The
biggest accuracy difference between the two parameters is,
on average, 0.68 (k=3) vs. 0.75 (k=4), whereas the loss in
efficiency is about 1.65x. The performance loss is explained
by the need to process the additional dimension.
The results revealed that, when a trade-off between ac-

curacy and efficiency was warranted, the parameterization
under Chlorine provided a suitable value for all the cases
we study in this paper. We did not find any case for which
our choice caused an algorithm to perform worse. There-
fore, we used the parameters resulting from calibrating the
algorithms using Chlorine.

4.3 Accuracy
We now evaluate the accuracy of all the techniques. We

set a missing block to appear arbitrarily in the middle of a
randomly chosen series in the dataset. We then vary the size
of the missing block from 10% to 80% (of the chosen series)
and measure the average recovery accuracy using RMSE.
We normalize the error across all algorithms using z-score
(the lower the better) and present the results in Table 2.
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Figure 3: Accuracy comparison with increasing missing block size.

As Table 2 shows, TeNMF and TKCM have a low re-
covery accuracy on most of the datasets, while GROUSE
performs similarly poorly on half of them. We also observe
that, on large datasets (with either long or many time se-
ries), SPIRIT, SVT and ROSL fail to achieve a good recov-
ery. Hence, we focus in the rest of the experiments on the
most accurate algorithms: CDRec, DynaMMo, SoftImpute,
SVDImpute, STMVL and TRMF.

4.3.1 Impact of Missing Block Size
In this set of experiments, we evaluate the recovery ac-

curacy when increasing the percentage of missing values in
one time series. Here we also present the accuracy results
using RMSE, but we do not normalize it across datasets this
time. This reveals the accuracy levels, for different missing
percentage rates, that the algorithms can achieve on each
dataset. Figure 3 shows the results.
We observe two different trends. First, in some datasets a

set of algorithms perform equivalently well. In the Air, Me-
teo, and BAFU datasets (cf. Figures 3a, 3g, 3h, resp.), all of
CDRec, DynaMMo, SoftImpute, and TRMF present some-
what indistinguishably low RMSE. These datasets contain
similar features (weather-related time series), which pose no
significant challenge.
The second trend shows datasets that make single algo-

rithms stand out. We found that each of these datasets
presents a peculiar feature. The Chlorine dataset (cf. Fig-
ure 3b) has repeating trends, to which TRMF and Soft-
Impute respond particularly well. The AR and EM models
used respectively by the two techniques can capture the reg-
ularity inside the data, accurately detecting the trend repe-
tition. The Gas dataset (cf. Figure 3c) presents mixed cor-
relation, positive/negative and high/low, which CDRec can
capture thanks to its use of a weight vector. The Climate
(cf. Figure 3d) and the Electricity datasets (cf. Figure 3e)
both present irregularities – fluctuations and shifted time se-
ries, respectively – which DynaMMo and SoftImpute handle
well because of their attention to co-evolution of time series.
The temperature dataset (cf. Figure 3f) stands out by its

very high correlation. This is why STMVL, which captures
such models by design, performs so well.
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Figure 4: Accuracy comparison with increasing time series
length and number.

We conclude from this experiment that the absolute best
accuracy can only be currently achieved by specialization,
the careful pairing of data features with the algorithm de-
sign. We also note that specialization may sacrifice stability.
For instance, STMVL does well on Temperature datasets
but its accuracy is particularly poor in large datasets that
contain either a high number of time series, such as Gas
(m = 100), or long time series, such as BAFU (n = 50k),
see Figure 3c and 3h, respectively.
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Figure 5: Different scenarios of multiple incomplete series.
The missing blocks are represented by a dashed box.

We also observe in this experiment that the error does not
always increase along with the size of the missing block. In
three datasets, Chlorine (cf. Figure 3b), Gas (cf. Figure 3c)
and Meteo (cf. Figure 3g), the trend is the opposite. As we
stated earlier, the larger a missing block, the more iterations
the algorithms can use to calculate the recovery. More iter-
ations means further opportunities to refine the values with
which the missing block was initialized.

4.3.2 Impact of Sequence Length and Number
Figure 4 depicts the recovery accuracy on different

datasets when increasing either the length of the sequences
in a dataset or their number. We set the size of the missing
block to 10% of one sequence within a dataset. When the
sequence length varies, the number of time series is set to
10. When the number of series varies, the sequence length
is set to 1k values. We use the average RMSE and MAE
values across different datasets, with standard deviation as
the confidence intervals. Both metrics appear here as each
provides a unique insight.
This experiment shows that, in general, the algorithms

take advantage of having longer time series to produce bet-
ter accuracy (cf. Figures 4a and 4b). The improvement is
more noticeable when we vary the length from 5k to 10k.
This is expected, because using more data should help bet-
ter capturing the main features of the time series.
This experiment also shows that the RMSE accuracy of

the algorithms remains largely unaffected when we vary the
number of time series (cf. Figures 4c). This was unexpected,
as using more time series from the same dataset should help
the dimensionality reduction computation (for matrix com-
pletion), the spatio-temporal model (for STMVL) and the
Kalman Filter (for DynaMMo). The MAE results (cf. Fig-
ure 4d), however, show the expected trend. The reason be-
hind the discrepancy between the two metrics is that some
outlier values are introduced by the addition of the new time
series. Unlike RMSE, MAE reflects the average recovery by
giving less weight to the outliers.

4.3.3 Impact of Number of Affected Series
In the previous experiments, we assumed that a missing

block occurs in one series in a dataset. There exists, how-
ever, a number of distinct scenarios when several series have
missing blocks. We depict in Figure 5 four different scenar-
ios depending on the position of the the missing blocks. We
compare the algorithms’ recovery RMSE for each of those
scenarios and we guarantee that all series are affected.
Figure 6 shows the recovery accuracy when the incomplete

time series have disjoint missing blocks. We keep the length
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Figure 6: Accuracy comparison with increasing number of
incomplete TS (disjoint case).
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Figure 7: Accuracy comparison with increasing number of
incomplete TS (overlapping case).
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Figure 8: Accuracy comparison in the case of MCAR.
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Figure 9: Accuracy comparison in case of blackout. STMVL
and TRMF are off the scale. SVDImpute and SoftImpute
achieve the same recovery accuracy.

and number of time series to their maximum per dataset
and we vary the number of affected time series (one missing
block per time series).
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Figure 10: Efficiency with increasing sequence length.
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Figure 11: Efficiency with increasing sequence number.

We observe two trends in the results. First, for the
datasets with a small or a high number of time series (cf.
Figure 6a and 6c, resp.) the error produced by all tech-
niques, except STMVL, first increases with the number of
affected series, then decreases. The increase in RMSE oc-
curs as expected, since adding more incomplete time series
increases the number of missing values. However, the de-
crease is unexpected and is explained, as mentioned earlier,
by the fact that having more incomplete time series avoids
early termination, thus improving the recovery. The second
trend appears for datasets with a medium number of time
series (cf. Figure 6b), where we observe a decrease in the
RMSE caused by the same reason. Interestingly, there is
not much differentiation among algorithms, again, except
for STMVL. The accuracy of the latter is barely affected,
as its spatio-temporal model produces a similar recovery for
all incomplete time series.
Figure 7 shows the recovery accuracy for multiple incom-

plete time series with overlapping missing blocks. Each miss-
ing block partially intersects with the two others; half in a
series following the current one and half in a prior series. The
results show that, similarly to the disjoint case, the impor-
tant factor differentiating the algorithms in this experiment
is the number of time series per dataset.
We also evaluate the recovery accuracy when blocks are

missing completely at random (MCAR). We vary the num-
ber of incomplete time series where each of them contains
more than one missing block (of size 10). The results are
depicted in Figure 8.
We observe different outcomes depending on the size of the

dataset. For long time series such as BAFU (cf. Figure 8a),
DynaMMo achieves the best recovery. The reason is that
longer series provide better opportunities for this technique
to learn local similarities and accurately recover multiple
missing blocks per time series. For datasets with many time
series such as Gas (cf. Figure 8b), CDRec stands out. It
leverages the correlations across multiple time series such
that the impact of a missing block in one series is attenuated
by the observed values in others.
Lastly, we evaluate the techniques in the case of a black-

out, i.e., when all time series lose data at the same time. In

Figure 9, we set the number of affected time series to the
maximum per dataset and we compare the recovery RMSE
when varying the size of the missing block. We observe that,
with very few exceptions, all algorithms incur a very high
RMSE. CDRec and DynaMMo achieve low errors with small
blackouts. This is due to the care with which they initialize
the missing block. We conclude from this experiment that
blackouts represent a feature that requires new and more
advanced recovery algorithms.

4.4 Efficiency
We now evaluate the efficiency of the recovery techniques.

To do so, we measure the elapsed runtime (wall clock) under
different conditions. We present time on a log scale since the
results vary widely among algorithms, by as much as three
orders of magnitude.

4.4.1 Impact of Sequence Length and Number
In Figure 10 we incrementally increase each dataset’s se-

quences length, using all the series from that dataset. The
size of the missing block is kept constant at 10% of the max-
imum length of one series.
We observe that the algorithms runtimes clearly fall

within two ranges: fast and slow. The faster algorithms
are all matrix-based, i.e., CDRec, SoftImpute and SVDIm-
pute. They operate on a few dimensions regardless of the
number of input time series, thanks to the dimensionality
reduction these algorithms use.
The remaining algorithms are slower because they rely

on expensive models. For instance, DynaMMo learns the
co-evolution by computing Kalman Filters while TRMF re-
sorts to an autoregressive model, even if it is a matrix-based
technique.
In the experiments in Figure 11 we gradually increase the

number of series in a dataset, while keeping their length
fixed. We observe the same trends as in Figure 10. CDRec
stood slightly apart among the faster peers when using a few
series. Its efficiency is due to the fast incremental computa-
tion of the centroid values. The runtime difference becomes,
however, indistinguishable as the number of series increases.
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Figure 12: Efficiency comparison with increasing block size.
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Figure 13: Efficiency on Synthetic Datasets.

4.4.2 Impact of Missing Block Size
In the experiments in Figure 12, we compare the efficiency

of the algorithms when increasing the size of the missing
block. We keep the dataset length and size to their respec-
tive maximum per dataset. We choose the Gas and the
BAFU datasets for the same reason as above, the size.
The results show the same trends we observed in Fig-

ures 10 and 11: when we consider an algorithm’s efficiency,
there is a fast peer group and a slow one. In this case, the
runtime of the faster algorithms increases with the percent-
age of missing values while it remains almost constant for
the slower ones. This is because the computation of the
models used by the pattern-bases techniques depends only
on the size of the input matrix. Thus, the efficiency of these
techniques is independent from the size of the missing block.

4.4.3 Large Synthetic Data
In Figure 13, we evaluate the efficiency of the fastest tech-

niques on datasets with thousands of sensors with millions of
observations each. We use synthetic time series, as the real-
world time series we have chosen are limited in the length
and in the number of time series. We focus on algorithms
able to perform the recovery in less than 1 minute.
We generate synthetic time series through a random walk

where the steps are given by a triangular distribution. We
first generate two matrices L and R. L follows a Gaussian
distribution N(0, 0.7) while R follows a triangular distribu-
tion with a step size of 0.7. Then, we multiply the two ma-
trices and update the resulting matrix by adding noise with
a Gaussian distribution N(0, 0.2) and exponential smooth-
ing. This generation guarantees that the values have hard
boundaries and that the time series do not have a dominant
feature, which would favor the runtime of one technique over
the others. We generate two datasets: the first has n = 1M
andm = 100, and the second one with n = 10k andm = 1k.
We set the size of the missing block to 10% of the maximum
length of one time series.
The results show that SPIRIT outperforms the rest of

the algorithms when varying the sequence length (cf. Fig-
ure 13a). SPIRIT is efficient because it learns the AR coef-
ficients and applies them only to a small window of the time
series. However, its performance deteriorates as the number
of time series grows (cf. Figure 13b). SPIRIT needs to or-
thogonalize the principal components, as it is PCA-based,
using the Gram Schmidt process [16]. This orthogonaliza-
tion process is unstable in case of a very large number of
time series [14].

5. RECOMMENDATIONS

5.1 Recommended Techniques
In this section, we propose a systematic method to com-

pare and select missing blocks recovery algorithms. We mea-
sure the recovery accuracy of each algorithm in the pres-
ence of a given data feature, e.g., correlation variations in a
dataset. We grade the recovery accuracy using a 0-5 scale,
from low to high accuracy, reflecting the evaluation we per-
formed in Section 4. We present the results using the Kiviat
diagram shown in Figure 14.
We select the most distinctive features that appear in the

datasets we use:

• high-degree of correlation among series, such as those
in temperature data (series varying closely together);

• mixed correlation, such as those in greenhouse gas
data (many high/low, negative/positive correlations
appearing at once);

• irregularities, such as those in household power con-
sumption or water discharge data (fluctuations, spikes,
outliers, etc);

• blackouts;

• size of the dataset, either in length or number of series.

These features are representative of many aspects natu-
rally present in real-world time series.
The Kiviat allows us to draw two main conclusions. First,

certain algorithms are clearly best-in-class. STMVL stands
out on highly-correlated time series; CDRec, on time series
with mixed correlation; DynaMMo on irregular time series.
In the special case where the time series contain similar re-
peating trends, TRMF and SoftImpute are the best options.
The second conclusion is that none of the algorithms deliv-
ers acceptable accuracy in the presence of severe blackouts.
Large blocks of missing values cause the algorithms to ter-
minate their iterations too early, returning almost the same
recovery block as the one at initialization. CDRec and Dy-
naMMo manage to perform a few iterations and can produce
relatively acceptable results.

5.2 Research Opportunities
In the following, we describe a number of research efforts

that could increase the number of dimensions with accu-
rate algorithms and/or allow choosing an algorithm without
knowing the data series properties upfront.
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Figure 14: Representation of the strengths and weaknesses
of selected algorithms. We divide the algorithms into two
groups and grade the ability of each algorithm to handle a
particular feature present in a dataset. Grades appear as
concentric polygons and vary from 0 to 5, depending on the
accuracy the algorithm delivers. A color polygon represents
an algorithm and is formed by connecting its grades. The al-
gorithms can be compared by looking at how their polygons’
reach differ.

Time-Series Characteristics Discovery. Existing tools
are only able to extract very basic properties from time-
series, such as number of peaks, entropy, energy, etc.5 To the
best of our knowledge, there is no technique that could effec-
tively probe all the features we discuss here. If such a tool
existed, it would open the possibility for a meta-algorithm
to test a dataset’s properties and to dynamically select the
best recovery process. This tool needs to run at a fraction
of the time an actual algorithm would, lest its runtime be
equivalent to that of the recovery algorithms.

Missing-block Initialization. Blackouts cause an ini-
tialization problem for matrix-based algorithms. Filling
the missing blocks through linear interpolation or zero-
initialization is common but it potentially changes the real
rank of the matrix, affecting the convergence of these algo-
rithms. An alternative approach would be to “mask-away”
the missing values by sampling from the observed values.
Sampling techniques that guarantee convergence such as
Stochastic Gradient Descent [51] could be used in this con-
text.
5https://tsfresh.readthedocs.io/

Automatic Parameterization. Another interesting dis-
covery feature is the rank auto-detection used by SVT. It
makes the choice of the parameters be a part of the algo-
rithm rather than a prior off-line step. Auto-detection is,
however, in no small part responsible for SVT’s low effi-
ciency.

Hardware Acceleration. The algorithms we study in this
paper are not scalable enough to handle very large time se-
ries. Such time series appear in applications where sensors
with very high frequency are used, generating billions or
even trillions of events per series. The SENTINEL-2 mission
conducted by the European Space Agency (ESA) is such an
example [36]. There have been successful GPU-based imple-
mentations of matrix operations that could speed up some
of the algorithms we evaluate here [6]. There is also an ex-
isting and expanding ecosystem of specialized hardware to
support Neural Network algorithms [20, 22] such as the ones
we presented in Section 3.3. To the best of our knowledge,
there has not been any successful attempt to leverage ei-
ther kind of hardware to accelerate missing block recovery
algorithms.

6. CONCLUSION
In this paper, we empirically investigated the relative

strengths and weaknesses of twelve algorithms for the recov-
ery of large missing blocks in time series. We re-implemented
all but two of the algorithms and subjected them to a large
mix of real-world and synthetic data. We were not only ca-
pable of reproducing the results originally published, but we
also exposed behavior previously unknown.
Our results show that no single algorithm delivers high

accuracy in all cases. We have substantiated this result and
other findings and provided a systematic method to navi-
gate the choices of algorithms. We have also discussed re-
search problems that remain unsolved, in particular related
to achieving more adaptable and scalable algorithms. We
intend to continue this line of work by looking at techniques
that would allow algorithms to handle substantially larger
amounts of data.
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APPENDIX

A. High-Impact Optimization Techniques
As we re-implemented a large number of algorithms, we

noticed that some improvements applied to several of them.
These improvements fostered a significant gain in runtime,
as described below.
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Figure 16: Reproducing results of TRMF [70].

Improved memory management. In certain algo-
rithms such as DynaMMo, SPIRIT and SVT, the origi-
nal implementation fully materialized a number of interme-
diate results/matrices before the main matrix decomposi-
tion/factorization was done. We avoided such a full mate-
rialization by adopting an on-demand approach to comput-
ing intermediate results, where we would produce the cells
of those matrices as needed. Besides the space savings, this
also brought better use of CPU caches, as the data in hot
loops could be placed close together in memory.

Support for sparse matrices. Sparse matrices can ben-
efit from a hybrid representation that switches between dif-
ferent storage formats depending on the executed opera-
tion [56]. Such a representation does not only take less space
but also improves speed as the initialized zero values do not
need to be processed. Support for sparse matrices had a
significant impact because such matrices appear in the re-
duction step of every single matrix decomposition technique.
As such, all the algorithms in this class benefited.

Efficient computation of algebraic operations. Some
algorithms such as SPIRIT, DynaMMo, and TRMF per-
form very specific algebraic operations that are not read-
ily available in many linear algebra libraries. In the origi-
nal algorithms, Matlab provides high-level abstractions with
which these operations could be easily expressed. In the
case of DynaMMo and SPIRIT, though, we ported the Mat-
lab operations to work with the (efficient) data structures
and primitives provided by Armadillo. For example, we can
vastly speed up algorithms that solve linear equations by
parallelizing their underlying matrix operations (e.g., mul-
tiplication, transposition, and QR decomposition).

B. Reproducibility of Original Results
We repeated the experiments of all the original papers we

included in our study. We have reproduced their results but

for two cases: Li et al. [34] (DynaMMo) and Yu et al. [70]
(TRMF). We provide details on each work below.

DynaMMo. Li et al. [34] introduced DynaMMo and com-
pared it against SVDImpute [64] and linear interpolation.
We repeat two core experiments on the Mocap and Chlo-
rine datasets, which evaluate the accuracy and runtime of
DynaMMo by varying the average missing rate (λ) and the
sequence length, respectively. Figure 15a shows the accu-
racy results from the original paper while our results are
shown in 15b.
We found that the difference between DynaMMo and the

two competitors is smaller compared to what is reported in
the paper. This is because we apply the interpolation within
each time series containing missing values while the authors
apply it across different time series. We also applied the
interpolation as used by the authors, achieving the exact
same results. The results show also that we obtain a slight
improvement in the error as, unlike the original paper, we
compute the average error over 5 runs.

TRMF. Yu et al. [70] introduced TRMF. We repeat an
experiment on the electricity dataset, which evaluates the
accuracy of TRMF by varying the missing rate and compares
it against Matrix Factorization (MF) and mean imputation.
We do not report the results of MF as the authors did not
specify the version of MF they used. Figure 16a shows the
results from the original paper, while our results are shown
in Figure 16b.
Our results confirm the good performance of TRMF. Un-

like in the original plot, the results of the mean imputation
are lower. This is because we apply the mean separately
over each time series while the authors apply it over the en-
tire matrix. The results also show a small difference in the
results of TRMF for the missing rate of 80%. This is likely
due to the randomized process used to delete the block to
recover.

C. Complete Parameterization of Selected Al-
gorithms
Most of the techniques we benchmarked use additional

parameters to those reported in Section 4.2. We use the
same parameterization procedure to find the optimal value
for each of these parameters. Our results show that the
values recommended by the authors yield the best results.
We describe in Table 3 these parameters and their optimal
values.

Table 3: Description of additional parameters.

Technique Additional Parameters
CDRec tol (tolerance)= 10−6

ROSL max_iter= 500; tol= 10−6

SoftImp. max_iter= 100; tol= 10−5

SPIRIT w (AR order)= 6; α (exp. forgetting)= 1
SVDImp. max_iter= 100; tol= 10−5

SVT max_iter= 100; tol= 10−4

TeNMF max_iter= 100; tol= 10−6

TRMF λ (learning rate)= [0.75,0.75,0.75];
L (lag index)= [1, . . . , 10]

DynaMMo max_iter= 100
STMVL ω (window size) =7; β (smoothing) =0.85
TKCM k (# anchor points) =5; d (# ref TS) =3
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