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ABSTRACT

A long-running analytic task on big data often leaves a devel-
oper in the dark without providing valuable feedback about
the status of the execution. In addition, a failed job that
needs to restart from scratch can waste earlier computing
resources. An e↵ective method to address these issues is to
allow the developer to debug the task during its execution,
which is unfortunately not supported by existing big data
solutions. In this paper we develop a system called Amber
that supports responsive debugging during the execution of
a workflow task. After starting the execution, the developer
can pause the job at will, investigate the states of the cluster,
modify the job, and resume the computation. She can also
set conditional breakpoints to pause the execution when cer-
tain conditions are satisfied. In this way, the developer can
gain a much better understanding of the run-time behavior
of the execution and more easily identify issues in the job
or data. Amber is based on the actor model, a distributed
computing paradigm that provides concurrent units of com-
putation using actors. We give a full specification of Amber,
and implement it on top of the Orleans system. Our experi-
ments show its high performance and usability of debugging
on computing clusters.

PVLDB Reference Format:
Avinash Kumar, Zuozhi Wang, Shengquan Ni, and Chen Li. Am-

ber: A Debuggable Dataflow System Based on the Actor Model.

PVLDB, 13(5): 740-753, 2020.

DOI: https://doi.org/10.14778/3377369.3377381

1. INTRODUCTION

As information volumes in many applications continu-
ously grow, analytics of large amounts of data is becom-
ing increasingly important. Many big data engines have
been developed to support scalable analytics using comput-
ing clusters. In these systems, a main challenge faced by
developers when running an analytic task on a large data
set is its long running time, which can take hours, days, or

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy

of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For

any use beyond those covered by this license, obtain permission by emailing

info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 13, No. 5

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3377369.3377381

even weeks. Such a long-running task often leaves the devel-
oper in the dark without providing valuable feedback about
the status of the execution [13]. What is worse is that the
job can fail due to various reasons, such as software bugs,
unexpected data, or hardware issues. In the case of failure,
earlier computing resources and time are wasted, and a new
job needs to be submitted from scratch.

Analysts have resorted to di↵erent techniques to identify
errors in job execution. One could first run a job on a small
data set, with the hope of reproducing the failure, finding
and solving the problems before running it on the entire data
set. Unfortunately, many run-time failures occur only on a
big data set. For instance, a software bug is triggered only
by some rare, outlier data instances, which may not appear
in a small data set [19, 15]. As another example, there can
be an out-of-memory (OOM) exception that happens only
when the data volume is large.

Another method is to instrument the software to generate
log records to do post-execution analysis. This approach has
several limitations. First, the developer has to add state-
ments at many places in order to find bugs. These state-
ments can produce an inordinate amount of log records to
be analyzed o✏ine, and most of them are irrelevant. Second,
these log records may not reveal all the information about
the run-time behavior of the job, making it hard to identify
the errors. This situation is similar to the scenario of debug-
ging a C program. Instead of using printf() to produce a
lot of output messages and do post-execution analysis, many
developers prefer to use a debugger such as gdb to investigate
the run-time behavior of the program during its execution.

The aforementioned shortcomings of the debugging tech-
niques have led data analysts to seek more powerful moni-
toring and debugging capabilities [30, 8, 13]. There are sev-
eral recent e↵orts to provide debugging capabilities to big
data engines [15, 16]. As an example, BigDebug [15] used a
concept of simulated breakpoint during the execution of an
Apache Spark job. Once the execution arrives at the break-
point, the user can inspect the program state. More details
about these approaches and their limitations are discussed
in Section 1.1. A fundamental reason of their limitations
is that they are developed on engines such as Spark that
are not natively designed to support debugging capabilities,
which limit their performance and usability.

In this paper, we consider the following question: can
we develop a scalable data-processing engine that supports
responsive debugging? We answer the question by develop-
ing a parallel data-processing system called Amber, which
stands for “actor-model-based debugger.” A user of the sys-
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tem can interact with an analytic job during its execution.
For instance, she can pause the execution, investigate the
states of operators in the job, and check statistics such as
the number of processed records and average time to process
each record in an operator. Even if the execution is paused,
she can still interact with the operators in the job. The user
can modify the job, e.g., by changing the threshold in a se-
lection predicate, a regular expression in an entity extractor
operator, or some parameters in a machine learning (ML)
operator. The user can also set conditional breakpoints,
so that the execution can be paused automatically when a
condition is satisfied. Examples of conditions are incorrect
input formats, occurrences of exceptions etc. In this way,
the user can skip many irrelevant iterations. After doing
some investigation, she can resume the execution to process
the remaining data. To our best knowledge, Amber is the
first system with these debugging capabilities.

Amber is based on the actor model [20, 1], a distributed
computing paradigm that provides concurrent units of com-
putation called actors. The message-passing mechanism be-
tween actors in the actor model makes it easy to support
both data messages and debugging requests, and allows low-
latency control-message processing. Also after the execution
of a workflow is paused, the actor-based operators can still
receive messages and respond to user requests. More details
about the actor model and the motivation behind using it
for Amber are described in Section 2.2.

The actor model has been around for decades and there
are data-processing frameworks built on top of it [29, 23]. A
natural question is “why do we develop Amber now?”. The
answer is twofold. First, as data is getting increasingly big-
ger, the need for a system that supports responsive debug-
ging during big data processing is getting more important.
Second, there are more mature and widely adopted actor
model implementations on clusters recently, making it easy
to develop our system without reinventing the wheel.

There are several challenges in developing Amber using
the actor model. First, every actor has a single mailbox,
which is a FIFO queue storing both data messages and con-
trol messages. (The actor model does not support priority
messages natively.) Large-scale data processing implies that
data messages sent to an actor can be significantly more
than its incoming control messages. Thus, the mailbox can
already have many data messages when a control message
arrives. Responsive debugging requires that control mes-
sages be processed quickly, but the control message can only
be processed after those data messages ahead of it. Second,
a data message can take an arbitrarily long time to process
(e.g., in an expensive ML operator). Real-time debugging
necessitates that user requests should be taken care of in the
middle of processing a data message instead of waiting for
the entire message to be processed, which could take a long
time depending on the complexity of the operator.

In this paper we tackle these challenges and make the fol-
lowing contributions. In Section 2 we discuss important fea-
tures related to debugging the execution of a data workflow,
and analyze the requirements of an engine to support these
features. In Section 3 we present the overall architecture of
Amber and study how to construct an actor workflow for
an operator workflow, how to allocate resources to actors,
and how to transfer data between actors. In Section 4 we
describe the lifecycle of executing a workflow, discuss how
control messages are sent to the actors, how actors expe-

dite the processing of these control messages, and how they
save and load their states during pausing and resuming, re-
spectively. In Section 5 we study how to support conditional
breakpoints in Amber, and present solutions for enforcing lo-
cal conditional breakpoints (which can be checked by actors
individually) and global conditional breakpoints (checked by
the actors collaboratively in a distributed environment). In
Section 6, we discuss challenges in supporting fault toler-
ance in Amber and present a technique to achieve it. In
Section 7 we present the Amber implementation on top of
the Orleans system [31], and report an experimental evalu-
ation using real data sets on computing clusters to show its
high performance and usability.

1.1 Related Work

Spark-based debugging. Titian [21] is a library that en-
ables high speed data provenance in Spark. BigSift [16] is
another provenance-based approach for finding input data
responsible for producing erroneous results. It redefines
provenance rules to prune input records irrelevant to given
faulty output records before applying delta debugging [43].
BigDebug [15] uses the concept of simulated breakpoint in
Spark execution. A simulated breakpoint needs to be preset
before the execution starts, and cannot be added or changed
during the execution. Furthermore, after reaching a simu-
lated breakpoint, the results computed till then are materi-
alized, but the computation still continues. If the user makes
changes to the workflow (such as modifying a filter condi-
tion) after the simulated breakpoint, the existing execution
is cancelled, causing computing resources to be wasted. In
addition, the part of the workflow after the simulated break-
point is executed again using the materialized intermediate
results. Amber is di↵erent since the developer can set a
breakpoint or explicitly pause the execution at any time,
and the computation is truly paused.

Spark cannot support such features due to the following
reason. In order for the driver (as “controller” in Amber)
to send a Pause message to an executor (as “actor” in Am-
ber) at an arbitrary user-specified time, the driver needs to
send some state-change information to the executor. Spark
has two ways that might be possibly used to support com-
munication from the driver to the executor, either through
a broadcast variable or using an RDD. Both are read-only
to ensure deterministic computation, which is mandatory
in the method used by Spark to support fault tolerance.
Any state change requires a modification of the content of a
broadcast variable or an RDD, and such information cannot
be sent to the executor from the driver.

Workflow systems: Alteryx [3], Kepler [23], Knime [22],
RapidMiner [34], and Apache Taverna [27] allow users to for-
mulate a computation workflow using a GUI interface. They
provide certain feedback to the user during data processing.
These systems do not run on a computing cluster, and do
not support debugging either. Texera [40] is an open-source
GUI-based workflow system we are actively developing in
the past three years, and Amber is a suitable backend en-
gine. Apache Airavata [25] is a scientific workflow system
supporting pausing, resuming, and monitoring. Its pause is
coarse in nature since a user has to wait for an operator to
completely finish processing all its data. Apache Storm [5]
supports distributed computations over data streams, but
does not support any low-level interactions with individual
operators apart from starting and stopping the operators.
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Debugging in distributed systems. When debugging a
program (e.g., in C, C++, or Java) in a distributed envi-
ronment, developers often use pre-execution methods such
as model-checking, running experiments on a small dataset,
and post-execution methods such as log analysis to identify
bugs in a distributed system [8], and their limitations are al-
ready discussed above. Although query-profiling tools such
as Perfopticon [28] have simplified the process of analyzing
distributed query execution, their application is limited to
discovering run-time bottlenecks and problematic data im-
balances. StreamTrace [6] is another tool that helps devel-
opers construct correct queries by producing visualization
that illustrates the behavior of queries. Such pre-execution
and post-execution analysis tools cannot be used to support
debugging during the execution. On the other hand, break-
points are an e↵ective tool to debug the run-time behavior of
a program. In prior studies, global conditional breakpoints
in a distributed system are defined as a set of primitive pred-
icates such as entering a procedure, which are local to in-
dividual processes (hence can be detected independently by
a process), tied together using relations (e.g., conjunction,
disjunction, etc.) to form a distributed global predicate [17,
14, 26, 12]. Checking the satisfaction of a global condition
given that all the primitive predicates have been detected
was studied in [17, 26, 12]. Our work is di↵erent given its
focus on data-oriented conditions.

Pausing/resuming in DBMS. [10] studied how to sus-
pend and resume a query in a single-threaded pull-based
engine. [4] studied how to resume online index rebuilding
after a system failure. These existing approaches do not
allow users to inspect the internal state after pausing.

Actor model based data processing. The use of the ac-
tor model for data processing has been explored before. For
instance, S4 [29] was a platform that aimed to provide scal-
able stream processing using the map-reduce paradigm and
actor model. Amber is di↵erent since it focuses on respon-
sive debuggability during data processing, without compro-
mising the scalability. Kepler [23] is a scientific workflow sys-
tem using the Ptolemy II actor model implementation [33].
It is limited to a single machine and treats a grid job as
an outside resource included in the workflow as an operator.
Amber is di↵erent as it is a parallel run-time engine natively.

2. DEBUGGABLE DATAFLOW ENGINES

In this section, we discuss important features related to
debugging the execution of a data workflow, and analyze
the requirements of an engine to support these features. We
then give an overview of the actor model.

2.1 Debugging Execution of Data Workflows

A data workflow (dataflow for short) is a directed acyclic
graph (DAG) of operators. An operator is physical (instead
of logical) since it specifies how its computation is done ex-
actly, such as a hash-join operator, which is di↵erent from a
ripple-join operator. We consider common relational opera-
tors as well as operators that implement user-defined func-
tions. When running a workflow, data from sources is passed
through the operators, and the results are produced from a
final operator called Sink. For simplicity, we focus on the
relational data model, in which data is modeled as bags of
tuples, and the results generalize to other data models.

Figure 1 shows an example workflow to identify news ar-
ticles related to disease outbreaks using a table of news ar-
ticles (timestamp, location, content, etc.) and a table of
tweets (timestamp, location, text, etc.). The KeywordSearch
operator on the tweet table selects records related to dis-
ease outbreaks such as measles and zika. The next step is to
find news articles published around the same time by joining
them based on their timestamps (e.g., months). We then use
topic modelling to classify the news articles that are indeed
related to outbreaks.

Scan1
(tweets)

Keyword 
Search

Scan2
(news articles)

HashJoin

Search disease 
outbreak keywords like 
"measles", "zika" etc.

on month

SinkTopic 
Modelling

classification

Figure 1: A workflow to anlayze disease outbreaks

from tweets and news.

During the execution of a workflow, we want to allow the
developer to take any of the following actions. (1) Pausing:
stop the execution so that all operators no longer process
data. (2) Investigating operators: check the states of each
operator, and collect statistics about its behaviors, such as
the number of processed records and processing time. (3)
Setting conditional breakpoints: stop the workflow once the
condition of a breakpoint is satisfied, e.g., the number of
records processed by an operator goes beyond a threshold.
Breakpoints can be set before or during the execution. (4)
Modifying operators: after pausing the execution, change
the logic of an operator, e.g., by modifying the keywords in
KeywordSearch. (5) Resuming: continue the execution.

Engine requirements. A dataflow engine supporting
the abovementioned debugging capabilities needs to meet
the following requirements. (1) Parallelism: To support an-
alytics on large amounts of data, the engine needs to allow
parallel computing on a cluster. As a consequence, phys-
ically an operator can be deployed to multiple machines
to run simultaneously. (2) Supporting various messages be-
tween operators: Developers control the execution by send-
ing messages to operators, which should co-exist with data
transferred between operators. Even if the execution is
paused, each operator should still be able to respond to
requests. (3) Timely processing of control messages: De-
bugging requests from the developers need to take e↵ect
quickly to improve the user experience and save computing
resources. Thus control messages should be given a chance
to be processed by the receiving operator without a long
delay. Since processing data tuples can be time consuming,
computation in an operator should be granulated, e.g., by
dividing data into batches with a size parameter, so that it
can handle control messages in midst of processing data.

2.2 The Actor Model

The actor model [20, 1] is a computing paradigm that
provides concurrent units of computation called “actors.”
A task in this distributed paradigm is described as compu-
tation inside actors plus communication between them via
messages. Every actor has a mailbox to store its received
messages. After receiving a message, the actor performs
three basic actions: (i) sending messages to actors (includ-
ing itself); (ii) creating new actors; and (iii) modifying its
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state. There are various open source implementations of
the actor model such as Akka [2], CAF [9], Orleans [31],
and ProtoActor [32], as well as large-scale applications us-
ing these systems such as YouScan [42], Halo 5 [18], and
Tapad [38]. For instance, Halo 5 is an online video game
based on Orleans that allows millions of users to play to-
gether, and each player’s actions can be processed within
milliseconds. There is a study to develop an actor-oriented
database with support of indexing [7]. These successful use
cases demonstrate the scalability of these implementations.

We use the actor model due to its several advantages.
First, it is intrinsically parallel, and many implementations
support e�cient computing on clusters. This strength makes
our system capable of supporting big data analytics. Second,
the actor model simplifies concurrency control by using mes-
sage passing instead of distributed shared memory. Third,
the message-passing mechanism in the actor model makes it
easy to support both data computation via data messages
and debugging requests via control messages. Streaming
control messages in the same pipeline as data messages leads
to high scalability [24]. As described in Section 4.2, we can
granulate the logic of operators using the actor model and
thus support low-latency control-message processing.

3. AMBER SYSTEM OVERVIEW

In this section, we present the architecture of the Amber

system. We discuss how it translates an operator DAG to
an actor DAG and delivers messages between actors.

3.1 Architecture

Figure 2 shows the Amber architecture. The input to the
system is a data workflow, i.e., a DAG of physical operators.
Based on the computational complexity of an operator, the
Resource Allocator decides the number of actors allotted to
each operator. The Actor Placement Planner decides the
placement scheme of the actors across the machines of the
cluster. An operator is translated to multiple actors, and
the policy of how these actors send data to each other is
managed by the Data Transfer Manager. These modules
create a DAG of actors, allocate them to the machines, and
determine how actors send data. The actor DAG is deployed
to the underlying actor system, which is an implementation
of the actor model, such as Orleans and Akka. The execution
of the actor DAG takes place in the actor system, which
places the actors on their respective machines, helps send
messages between them, and executes the actions of an actor
when a message is received. The actor system processes the
data and returns the results to the client. The Message
Delivery Manager ensures that the communication between
any two actors is reliable and follows the FIFO semantics.
More details about these modules are in Section 3.2.

During the execution, a user can send requests to the sys-
tem, which are converted to control messages by the Control
Signal Manager. The actor system sends control messages
to the corresponding actors, and passes the responses back
to the user. The user can also specify conditional break-
points, which are converted by the Breakpoint Manager to
a form understandable by the engine.

3.2 Translating Operator DAG to Actor DAG

We use the example workflow of detecting disease out-
breaks to show how Amber translates the operator DAG to
an actor DAG, as shown in Figure 3. As in Spark, we group
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Figure 2: Amber system architecture.

a sequence of operators with no shu✏ing into the same stage.
The operator workflow has three stages, namely {Scan1,
KeywordSearch}, {Scan2}, and {HashJoin, TopicModelling,
Sink}. A controller actor is the administrator of the en-
tire workflow, as all control messages are first conveyed to
this actor, which then routes them appropriately. The con-
troller actor creates a principal actor for each operator and
connects these principal actors based on the operator DAG.
An edge A �! B between two actors A and B means that
actor A can send messages to B. The principal actor for an
operator creates multiple worker actors, and each of them is
connected to all the worker actors of the next operators. The
worker actors conduct the data-processing computation and
respond to control messages. The principal actor manages
all the tasks within an operator, as well as collects run-time
statistics, dispatches control signals, and aggregates control
responses related to its operator. Placement of workers is
planned to achieve load balancing and minimizing network
communication overhead and the plan is included in the
actor DAG. The workers of an operator are distributed uni-
formly across all machines. Workers do cross-machine com-
munication only for shu✏ing data at stage boundaries.

3.3 Communication between Actors

Message-delivery guarantees. Data between actors is
sent as data messages, where each message includes a batch
of records to reduce the communication cost. Control com-
mands from the user are sent as control messages. These
two types of messages to an actor are queued into a single
mailbox of the actor, and processed in their arrival order.
Reliability is needed to avoid data loss during the communi-
cation and FIFO is needed for some operators such as Sort.
Thus, we made the communication channels between actors
FIFO and exactly once. We use congestion control to reg-
ulate the rate of sending messages to avoid overwhelming a
receiver actor and the network.
Data-transfer policy on an incoming edge. For each
edge A �! B from operator A to operator B, the operator
B has a data-transfer policy on this incoming edge that spec-
ifies how A workers should send data messages to B workers.
If B has multiple input edges, it has a data-transfer policy
for each of them. Following are a few example policies. (a)
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Modelling
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Sink
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Operator 
DAG
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Figure 3: Translating the disease-outbreak work-

flow to an actor DAG. For clarity purpose, we show an
edge from a principal actor to only one of its workers.

One-to-one on the same machine: An A worker sends all
its data messages to a particular B worker on the same ma-
chine. (b) Round-Robin on the same machine: An operator
A worker sends its messages to B workers on the same ma-
chine in a round-robin order. (c) Hash-based: Operators
such as hash-based join require incoming data to be shu✏ed
and put into specific buckets based on their hash value. An
easy way to do so is to assign specific hash buckets to its
workers.

4. LIFECYCLE OF JOB EXECUTION

Amber follows a staged-execution model, which means
the execution follows the topological order of stages. Each
worker processes one data partition and forward the results
in batches to the downstream workers. Amber supports op-
erator pipelining within a stage. In this section, we discuss
the whole life cycle of the execution of a job, including how
control messages are sent to the actors, how actors expe-
dite the processing of control messages, and how each actor
pauses and resumes its computation by saving and loading
its states, respectively.

4.1 Sending Control Messages to Actors

When the user requests to pause the execution, the con-
troller actor sends a control message called “Pause” to the
actors. The message is sent in the following way, which is
also applicable to other control messages. The controller
sends a Pause message to all the principal actors, which for-
ward the message to their workers. Due to the random delay
in message delivery, the workers are paused in no particular
order. For example, the source workers may be paused later
than the downstream workers. Consequently, the workers
may still receive data messages after being paused, and need
to store them for later processing.

4.2 Expedited Processing of Control Messages

A critical requirement in Amber is fast processing of con-
trol messages in order to support real-time response from
the system during debugging. Worker actors process a large
number of data messages in addition to control messages.

These two types of messages to a worker actor are enqueued
in the same mailbox, which is a FIFO queue as specified in
the actor model. Therefore, there could be a delay between
the enqueuing of a control message and its processing. This
delay is a↵ected mainly by two factors, the number of en-
queued messages and the computation per batch. For actor
model implementations such as Akka that support priority
messaging, we can expedite the processing of control mes-
sages by giving them a priority higher than data messages.

For actor model implementations that do not support pri-
ority such as Orleans, Amber solves the problem by letting
each actor delegate its data processing to an external thread,
called data-processing thread or DP thread for short. This
thread can be viewed as an external resource used by actors
to do computation and send messages to other actors. The
main thread shares a queue with the DP thread to pass data
messages. After receiving a data message (D1 in Figure 4),
the main thread enqueues it in the queue. The main thread
o✏oads the data processing to the DP thread (steps (i) and
(ii) in the figure). The DP thread dequeues data messages
from the queue and processes them. After enqueuing a data
message into the queue, the main thread is free to continue
processing the next message in the mailbox. The next data
messages are also stored in the queue (messages D2 and D3

in steps (iii) and (iv)). If the next message is a Pausemessage
(step (v)), the main thread sets a shared variable Paused to
true (step (vi)) to notify the DP thread. The DP thread,
after seeing this new variable value, saves its states inside
the worker, notifies its principal, and exits. The worker then
enters a Paused state. The details of these actions of the DP
thread will be described in Section 4.3 shortly.

While in this Paused state, the main thread can still re-
ceive messages in its mailbox and take necessary actions.
(More details are in Section 4.4.) A received data message
is stored in the internal queue (D4 in step (vii)) because no
data processing should be done. After receiving a control
message, the main thread can act and respond accordingly
(Check in step (viii)). If the control message is a Resume re-
quest, the main thread changes the Paused variable to false,
and uses a new DP thread to resume the data processing
(step (ix)). The DP thread continues processing the data
messages in the internal queue, and sends produced data
messages to the downstream worker (step (x)).

4.3 Pausing Data Processing

The DP thread associated with a worker actor needs to
check the variable Paused to pause its computation so that
the worker can enter the Paused state. One way is to check
the variable after processing every data message, but this
method has a long delay, especially for a large batch size
and expensive operators.

Amber adopts a technique based on the observation that
operators use an iteration model to process their tuples one
by one and apply their computation logic on each tuple.
Hence, the DP thread can check the variable after each it-
eration. If the variable becomes true, the DP thread saves
necessary states of data processing in the worker actor’s in-
ternal state, then simply exits. When a Resume message
arrives, the main thread employs a new DP thread, which
loads the saved states to resume the computation. Thus, the
worker actor can respond to a Pause request quickly with-
out introducing much overhead. The delay of checking the
shared variable is mainly decided by the time of each iter-
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Figure 4: Processing of control and data messages by a worker. ‘Paused’ variable and the queue are shared between
the main thread and the data processing (DP) thread. The ‘Paused’ shared variable is not shown in (i)-(iv) for simplicity.

ation, e.g., the time of processing one tuple. Next we use
several commonly used operators as examples to show how
they are implemented in Amber, and what state information
is saved by a worker actor for pausing.

1. Tuple-at-a-time operators (e.g., selection, projec-

tion, and UDF operators): In a non-blocking operator,
its DP thread checks the Paused variable after processing
each tuple. When pausing, the thread needs to save the in-
dex (or o↵set) of the next to-be-processed tuple in the batch,
called resumption-index.

2. Sort: Sort does not output results until receiving all
its input data. We implement sort as two layers of workers.
The first layer sorts its data partition and the second layer
contains a single worker that merges the sorted outputs of
the first-layer workers. We use this method to show how to
save and load states, and the solution works for other dis-
tributed sort implementations as well. A first-layer worker
does its local sort using an algorithm such as InsertionSort,
MergeSort, or QuickSort. For online sorting algorithms such
as InsertionSort, the DP thread saves only the resumption-
index. For o✏ine sorting algorithm such as MergeSort, the
DP thread saves the state of merge sort to resume the op-
eration later, such as the resumption index for each input
chunk. The worker in the second layer merges the sorted
outputs of first-layer workers to produce the final sorted re-
sults. When pausing the execution, the DP thread needs to
store the resumption-index for each input batch.

3. Hash-based join. This operator consists of two phases,
namely hash-building for one input table (say table R) and
probing the hash table using the tuples from the other table
(say table S). When a worker receives a Pause message, its
DP thread can be in one of the two phases. If it is in the
hash-building phase, it saves its states related to building
the hash table and the resumption index for the interrupted
batch of table R. If the DP thread is in the probing phase,
it saves the corresponding state and the resumption index
from the interrupted batch of table S.

4. GroupBy. We can implement this operator using two
layers of workers. A first-layer worker does a local GroupBy
for its input tuples. After that, it forwards its local aggrega-
tions to second-layer workers using a hash function on the
GroupBy attribute. A second-layer worker produces final
aggregated results for its own groups. When pausing the

execution, the DP thread saves the resumption index of the
interrupted batch and the current aggregate per group.

4.4 Responding to Messages after Pausing

After pausing the execution, the user can investigate the
states of the job. For instance, she may want to know the
number of tuples processed by each worker, or modify an
operator, such as the constant in a selection predicate. Such
requests can be implemented by sending control messages
to the worker actors. Notice that even though an actor
is in the Paused state, it can still receive and respond to
messages, which is very important in debugging to support
user interactions after pausing the execution (steps (vii) -
(viii) in Figure 4). It is a unique capability of Amber due
to the adoption of the actor model. When the user wants to
resume the computation, the controller actor sends a Resume

control message using the approach described above for the
Pause message. Each worker actor, after receiving Resume

message, uses a DP thread, to loads the saved states and
continue the computation (steps (ix) and (x) in the figure).

5. CONDITIONAL BREAKPOINTS

The Amber system allows users to set breakpoints before
and during the execution of a workflow in order to detect
bugs and data errors. In this section, we present the seman-
tics of conditional breakpoints, and discuss how to support
two types of predicates in breakpoints.

5.1 Semantics of Conditional Breakpoints

We use an example to illustrate conditional breakpoints
in Amber. Consider the workflow in Figure 1 and assume
the tweets are obtained from a tab-separated text file. In
this scenario, an additional operator RegexParser is required
between Scan1 and KeywordSearch. This operator reads the
file line-by-line and uses tab as a delimiter to convert it to
multiple attribute values. In this case, both the data and
the regex could have errors. For example, the followerNum

value (i.e., number of followers of a twitter user) should al-
ways be a non-negative integer. Thus the user may want to
do sanity checks on the output values of this operator. To
do so, she puts a breakpoint on the output of this operator
with a condition “followerNum < 0” When a tweet satisfies
this condition, the system pauses the data processing and
allows the user to investigate.
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Figure 5: Evaluating a global conditional breakpoint “KeywordSearch operator producing 15 tuples.” Solid
lines are messages from the principal actor to workers, and dashed lines are responses from workers.

Recall that an operator can have multiple inputs and out-
puts. A user specifies a breakpoint on a specific output of an
operator with a conditional predicate. When the predicate
is satisfied, the data processing in the entire workflow should
be paused. There are two types of predicates. A local pred-
icate is a condition that can be satisfied by a single tuple,
while a global predicate is a condition that should be satis-
fied by a set of tuples processed by multiple workers. Next
we will discuss how to check these two types of predicates.

5.2 Evaluating Local Predicates

Since a local predicate can be evaluated by a single actor,
such a conditional breakpoint can be detected by a worker
independently. An example use case of local predicate de-
tection is validating the schema of input data into an ML
operator. For instance, the values of the ‘ratings’ column
should always be from 1 to 5. Another use case is to pause
the execution in case of an exception and show the culprit
tuple to the user. Example local predicates for the workflow
in Figure 1 are: 1) the followerNum of a tweet is negative,
2) the maximum followerNum among all the tweets is above
1,000. Although the second predicate is a predicate over all
the tuples, it is still a local predicate since it can be checked
by an actor for its tuples independently. Whenever the pred-
icate is satisfied, the worker pauses its data processing and
notifies its principal actor. Then, the principal pauses the
workflow as described in Section 4.1.

5.3 Evaluating Global Predicates

A global conditional breakpoint relies on tuples processed
by multiple workers of an operator, and cannot be detected
by a single worker. The evaluation of such a predicate is
done by the principal actor. Such predicates are valuable
in scenarios where a performance metric of an operator has
to be continuously monitored, e.g., the number of emails
marked as spam by a Spam-Detection operator within a
time window. If this metric goes above a threshold, it indi-
cates some problem that requires attention. A few possible
causes can be cyber attack, input data corruption, or model
degradation. It will be helpful if the system can detect such
predicates. We use two example global predicates for the
workflow in Figure 1 to show how to evaluate them. G1:
the total number of tweets output by KeywordSearch is 15.
G2: the sum of followerNum of all tweets produced by Key-

wordSearch exceeds 90.

Evaluating a global COUNT predicate G1. Suppose Key-

wordSearch has three workers. As illustrated in Figure 5,
the process of evaluating G1 consists of several steps. At
time t0, the principal actor divides the target number 15
equally among the three workers, namely a, b, and c. Each
worker, after producing a tuple, increments its counter by
1. Suppose worker b is the first to produce 5 tuples. It
pauses itself and notifies the principal actor (time t1). The
principal waits for a threshold time (⌧) with a timer. If
the other two workers respond within the time limit ⌧ (not
shown in the figure), the conditional breakpoint is hit and
the principal sends a message to the controller to pause
the entire workflow. Otherwise, the principal inquires each
worker that has not responded, about how many records it
has produced (time t2). The figure shows the case where
both workers a and c did not respond within ⌧ . These two
workers pause themselves, and respond with their number,
say, 3 and 1 (time t3). Now the remaining target number
becomes 15� 5� (3 + 1) = 6.

At time t4, as before, the principal divides the new tar-
get number 6 equally, and sends a target number 2 to each
worker to resume its data processing. This reassignment is
necessary so that all the three workers can be resumed and
the operator processes data at the maximum parallelism.
Assuming worker c produces 2 tuples, it again pauses it-
self and notifies the principal (time t5). The principal again
waits for a threshold time after which it asks workers a and
b (time t6), who pause themselves and respond with their
produced number of tuples, say 1 and 1 (time t7). For the
new remaining target of 2, the principal gives a target of 1
to each of the first two workers a and b (time t8). Suppose
worker a contacts the principal after producing one tuple
(time t9). After a while, worker b also produces a tuple,
reports the same after pausing itself (time t10) and the con-
ditional breakpoint is triggered. At the end, KeywordSearch
has received 15 tuples and the conditional breakpoint is hit.
Notice that at time t9, when worker a contacts the princi-
pal after producing one tuple, the principal does inquire the
other workers for their tally. The reason is that there is only
one tuple left to be computed, and reassigning this target
to another worker will not increase parallelism.

Before the conditional breakpoint is hit, the computation
can be in one of the two states. A normal processing state
starts when the workers have been assigned their targets by
the principal and ends when one of the workers completes
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its target. A synchronization state starts when a worker
completes its target and ends when the principal allocates
new targets to the workers. The amount of time spent in
the synchronization state depends on the timeout threshold
⌧ and the variance of the processing speeds of the workers.

Evaluating a global SUM predicate G2. The evaluation
of the second predicate G2 follows a similar process. The
principal starts by dividing the target into three parts of
30 each. A unique aspect of SUM is that a tuple can bring
the total value closer to the target by an arbitrary amount,
unlike the COUNT example where a tuple only causes a change
of 1. For example, if the current sum of followerNum at a
worker is 24, and the next tuple has a followerNum value of
15, then the target of 30 will be “overshot” by 9. Therefore,
it is di�cult to pause the execution at the exact target.

Our goal is to minimize the amount over the target. To
do so, the principal actor initially follows the same proce-
dure as above till it gets close to the target and the overall
needed value is below a threshold. The threshold can be de-
cided based on the distribution of followerNum values (ob-
tainable online). Then the principal can give the target to
only one worker in order to minimize the overshot amount.
For example, say the sum of followerNum values received by
KeywordSearch till now is 80 and it needs a total of 10 more
to reach the target. If it gives the three workers a target of
3, 3, and 4, and the next tuples received by the three work-
ers have a followerNum value of 11, 14 and 13, respectively,
the total followerNum sum will be 98, which is 8 more than
the target of 90. Instead, if the principal gives the target
of 10 to only one worker and keeps the other two paused,
then even if that worker receives a tuple with a followerNum
value such as 14, the excess is of just 4. Thus, the system
pauses closer to the target.
The aforementioned methods are meant to allow the de-

veloper to pause the execution of the workflow when a con-
ditional breakpoint is hit. As in general debuggers, it is
the developer’s responsibility to decide what breakpoints to
set and where in order to investigate the run-time behavior
of the program and find bugs. As Amber is a distributed
system, the execution of multiple actors to reach a global
breakpoint could be non-deterministic.

6. FAULT TOLERANCE

Fault tolerance is critical due to failures in large clusters.
In traditional distributed data-processing systems such as
Spark, recovery only ensures the correctness of final com-
puted results. As we will see below, the presence of control
messages in Amber poses new challenges for fault tolerance,
because Amber additionally needs to ensure the recovery of
control messages and their resulting states. In this section
we first show why the Spark approach cannot be used, then
present a solution to support fault tolerance in Amber.

6.1 Why not the Spark Approach?

Spark runs in a stage-by-stage fashion and allows check-
pointing of the output of a stage. When failure happens,
Spark reruns the computation of the lost data partitions
from the last checkpoint using lineage information. This
fault tolerance approach cannot be adopted in Amber for
two reasons. Firstly, the computation of each data partition
in Spark is fully independent, which allows Spark to recover
only the failed partitions. In contrast, Amber has execution

dependencies among workers of an operator. For example,
the principal can split the global predicate in a breakpoint
into multiple target numbers, which can be adjusted dynam-
ically for each worker (see Section 5.3). If Amber naively
re-runs the computation of failed data partitions, the as-
signed intermediate target values are lost, which will lead
to an incorrect detection of the global predicate. Secondly,
a control message can alter the state of a worker, and in
case of failure, Amber needs to recover the worker to the
same consistent state. For example, suppose before a fail-
ure happens, the worker is paused when processing the 10th

record in the 1st data message, and the user has already
seen the corresponding state of the operator of this worker,
such as the number of records processed so far. After recov-
ery, in order for the user to see the same operator state, we
need to recover this worker to its state before the failure.
If we were to use the Spark fault tolerance approach, this
worker will not pause at all, since this approach only reruns
the computation without considering the control messages.
One way to support fault tolerance in Amber is using the
Chandy-Lamport algorithm [11], which records all the in-
transit data in a snapshot. This approach is not e�cient
since it can generate a large amount of checkpointed data.

6.2 Supporting Fault Tolerance in Amber

Next we develop a technique to support fault tolerance in
Amber based on the following realistic assumptions. (A1)
We treat the controller and the principal actors as a single
unit (called “coordinator”), which is placed on the same ma-
chine. (A2) Workers only exchange data messages, not con-
trol messages. (A3) For each worker, both its computation
logic and response to a control message are deterministic, as
assumed by many other data-processing systems. Our fault
tolerance technique consists of two parts: 1) checkpointing
of data produced after each stage, and 2) logging control
messages and their arrival order relative to data messages.
Recovery works by restarting the computation of the failed
data partitions from the last checkpoint and replaying the
control messages by injecting them in the original order rel-
ative to data messages.

We use an example to explain this technique. Figure 6
illustrates the logging process of control messages before a
failure of a worker (steps (i)-(iii)). A Pause message arrives
at the worker after a data message with a sequence number
8 (step (i)). In step (ii), the main thread sees the Pause

message and saves the sequence number 8. The main thread
alters its internal state by setting the shared variable Paused
to true. The DP thread observes the variable change after
processing the 34th tuple in the 6th data message and notifies
the main thread. In step (iii), the main thread sends the
following log record to the coordinator:

(Pause; <Main: 8>; <DP: (6, 34)>)

The record includes the content of the control message
(Pause), the sequence number (‘8’) of the last data mes-
sage of the main thread when it received this control mes-
sage, and the iteration status of the DP thread when it saw
the shared-variable changed caused by this control message.
The iteration status includes the sequence number (‘6’) of
the currently processed data message and the index (‘34’) of
the last processed tuple in the message. After receiving this
record, the coordinator stores it in a data structure called
control-replay log for this worker.
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Figure 6: Fault Tolerance in Amber: logging control messages and recovery.

Suppose a machine failure happens, which causes the data
partition of this worker to be lost. During recovery, the co-
ordinator recreates all the workers of the failed partition
and sends their control-replay log records respectively. Dur-
ing this period, the coordinator holds new control messages
for each recreated worker until the worker has replayed all
its control-replay log records. Each recreated worker reruns
the computation of the failed partition from the last check-
point. Since the computation is deterministic (assumption
A3), a re-run of these recreated workers leads to the same
content and sequence numbers of data messages received by
each worker. Now let us consider the recreated worker cor-
responding to the aforementioned worker. Steps (iv)-(vi) in
the figure show the recovery process of this worker. In step
(iv), it receives its control-replay log from the coordinator.
Intuitively, the main thread and DP thread of this worker
continue processing their received data messages until both
of them reach the control-replay point as specified in the
log. Specifically, after receiving a data message D, the main
thread checks the sequence number of D, denoted S(D). If
S(D) < 8, the main thread processes this message normally
as before. If S(D) = 8, it processes D, then waits to syn-
chronize with the DP thread (step (v)). Similarly, when
the DP thread processes the tuples in a message, it han-
dles those tuples “before” (6, 34) (i.e., tuple 34 in message
6). After processing this tuple, it will synchronize with the
main thread. After the synchronization, the control message
is replayed by the main thread as if this message were just
received (step (vi)).

There can be a case where a worker failed before being
able to respond to a control message from the coordinator.
For example, suppose the worker failed after step (ii) in Fig-
ure 6, before it sends the log record to the coordinator. The
coordinator marks the processing of this Pause message as
incomplete. During recovery, the coordinator first allows the
recreated worker to fully replay its existing control-replay
log records. The coordinator then retries sending this Pause
message to the worker. Consequently, the worker can pause
at a tuple di↵erent from the one before the failure. Fault
tolerance is still valid because the processing of the Pause

message was incomplete, and the user never saw its e↵ect.
Amber’s fault tolerance approach incurs little overhead on

execution because it only saves control messages and control-
replay log, which have a much smaller size compared to data
messages. To deal with the case of coordinator failures, we
can use write-ahead logging or use backup coordinators to
replicate the states of the coordinator. Notice that for an
operator with multiple data inputs such as Join and Union,
to satisfy assumption A3, they need to provide an ordering

guarantee across their inputs, and the sequence numbers of
each input will be maintained and recorded separately. If
failure happens during recovery, the coordinator can simply
restart the recovery procedure, which is idempotent.

7. EXPERIMENTS

In this section, we present an experimental evaluation of
the Amber system using real data sets on clusters.

7.1 System Implementation and Setting

Data and Workflows. We used three real datasets, namely
TPC-H, tweets, and New York taxi events. For the TPC-H
benchmark [41], we varied the scale factor to produce data
of di↵erent sizes. Based on the TPC-H queries 1 and 13 we
constructed two workflows, shown asW1 andW2 in Figure 7.
Note that the Scan operators of W1 and W2, had a built-in
projection to read only the columns being used by the oper-
ators later. This improvement was used in the experiments
for both Amber and Spark. The second dataset included
100M tweets in the US, on which we did sentiment analy-
sis using an ML-based, computationally expensive operator.
The third dataset included New York City Yellow taxi trips
(about 210 GB), and each record had information about a
trip, including its pick-up and drop-o↵ geo-locations, times,
trip distance, payment method, and fare [39].

Figure 7: Workflows used in the experiments.

Experiment Setting. All the experiments were conducted
on Google Cloud Platform (GCP). The data was stored in
an HDFS file system on a storage cluster of 51 n1-highmem-4
machines, each with 4 vCPU’s, 26 GB memory, and 500GB
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standard persistent disk space (HDD’s). The execution of
a workflow was done on a separate processing cluster of 101
machines with the same type. The storage cluster and pro-
cessing cluster were running Debian GNU/Linux 9.9 (stretch)
and Debian GNU/Linux 9.11 (stretch) operating system re-
spectively. The batch size used in data messages was 400
unless otherwise stated. Data checkpointing was disabled by
default in all experiments, except the experiment concern-
ing fault tolerance (Section 7.7). Out of the 101 machines,
we used one just for the controller and principal actors of
the operators, and the remaining 100 for data processing.
When reporting the number of computing machines, we only
included the number of data-processing machines.

We implemented Amber in C# on top of Orleans (version
2.4.2), running on the .Net core run-time (version 3.0). The
operators were implemented as discussed in Section 4.3, and
the workers of each operator were assigned uniformly across
multiple machines. For example, if a Scan operator had 10
workers and the processing cluster had 10 machines, then
each machine had a single Scan worker.

7.2 Scaleup Evaluation

We evaluated the scaleup of Amber using the TCP-H
data. We started with a data set of 10GB processed by
1 machine (4 cores), and gradually increased both the data
size in the storage cluster and the machine number in the
processing cluster linearly to 1TB processed by 100 machines
(400 cores). For both workflows W1 and W2, the early op-
erators did most of the work, leaving very few (less than 50)
tuples for the final Sort operator. Therefore, we allocated
2 workers for each operator on each machine, except Sort

that was allocated 1 worker on each machine. The GroupBy

operator had two layers (Section 4.3). The first layer was
allocated 2 workers on each machine and the second layer
was allocated 1 worker on each machine.
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Figure 8: Scaleup of TPC-H workflows W1 and W2

Figure 8 shows the running time for workflow W1. For
the 10GB data processed by 1 machine, the total time was
around 98s. When we increased the data size and the clus-
ter size gradually, the time increased slightly. For the 1TB
data processed by 100 machines, the total time was around
124.3s. Figure 8 also shows the results forW2. For the 10GB
data processed by 1 machine, the total time was around
37.5s. When we increased the data size and the cluster size
gradually, the time increased at a faster rate than W1 be-
cause of the intrinsic quadratic complexity of Join. It took
101.6s for 100 machines to process 1TB data.

7.3 Speedup Evaluation

To evaluate the speedup of Amber, we measured the time
taken to execute workflows W1 and W2 on the 50GB data

using 1 computing machine initially and gradually increased
the number of computing machines to 100.
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Figure 9: Speedup for TPC-H workflows W1 and W2

Figure 9 shows the speedup for workflow W1. For the
50GB data processed by 1 machine, the total time was around
484.5s. When we increased the number of machines gradu-
ally, the time decreased. The time was about 10s when using
60 machines, with a speedup ratio of 48.4. When we in-
creased the number of machines further to 80 and then 100,
the total time taken did not decrease at the same rate. For
100 machines, the total time taken was 8s (with a speedup
ratio of 60.5). This result was due to the fact that the total
data to be processed was only 50GB and the machines were
not fully utilized. Figure 9 also shows the results for W2. Its
speedup was sub-linear due to the intrinsic quadratic com-
plexity of Join. Increasing the number machines from 60
to 100 yielded little performance gain due to the increased
communication cost.

7.4 Time to Pause Execution

We used Pause and Resume as examples to evaluate the
time taken to process a control message while a workflow
is running on a cluster. We did the experiment with the
similar setting as the scaleup experiments. Each execution
was interrupted 8 times by sending a Pause then a Resume

message, before its completion.
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Figure 10: Time taken to pause the execution while
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Figure 10 and Figure 11 show the candlestick chart with
1st percentile, 1st quartile, median, 3rd quartile, and 99th

percentile pause times for W1 and W2 respectively. All the
times were less than 1 second. The time to pause W2 was
relatively more than that of W1 due to the high number
of data messages received by the Join operator, resulting in
more time to reach the Pause message. The time to resume
each workflow was also in milliseconds. The time to pause
increased with the number of machines due to the inherent
increase in the communication cost and higher number of
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data messages being received by the operators. These re-
sults show that control messages in Amber can be handled
quickly during the processing of a large amount of data.
Note that time to pause depends on the delay of checking
the shared variable Pause by the DP thread, which is ap-
proximately equal to the time required by the operator to
process a single tuple. The delay in the relational operators
was in milliseconds. For complex operators that need more
time to process one tuple such as ML operators, the time to
pause could be higher.

7.5 Effect of Worker Number

A unique feature of Amber is that di↵erent operators can
have di↵erent numbers of workers. We used workflow W3

on the tweet data set to evaluate the e↵ect of the number of
workers allocated to computationally expensive operators.
It included an SentimentAnalysis operator, which was based
on the CognitiveRocket package [35] and needed about 4
seconds to process each tuple. We used it as an example of
expensive ML operators. The workflow took 100M tweets as
the input and first applied KeywordSearch and Filter opera-
tors. The number of tweets going into the SentimentAnalysis

operator was 1,578. We varied the total number of workers
allotted to the SentimentAnalysis operator and measured its
e↵ect on the total running time. The total number of work-
ers for all other operators was fixed at 10. The workflow
was run on a cluster of 10 machines with a batch size of 25
for data from Filter to SentimentAnalysis operator. We used
a smaller batch size because we only had 1,578 tuples to be
distributed among sentiment analysis workers.
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Figure 12: Changing the worker number of the Sen-

timentAnalysis operator in workflow W3 for tweets.

Figure 12 shows the results.The running time when the
operator had 10 workers was 647s. When we doubled the
number of workers, the execution time reduced to 368s.
The rate of decrease declined as the number of workers was

further increased. When the number of workers was in-
creased above 50, the execution time even started increasing,
because data got distributed among many workers which
competed for CPU, thus increasing the overhead of context
switching. Thus, workers took more time to finish their task.

Dynamic resource allocation. ML operators such as
SentimentAnalysis can become a bottleneck in workflows
due to their slow speed of computation and extra resources
needed under peak load conditions. We implemented the
technique of dynamic resource allocation as suggested in [24]
to allocate extra machines to the SentimentAnalysis oper-
ator during the execution, and evaluated the performance
gain. First, we ran W3 on a cluster of 6 machines, with each
operator having 1 worker per machine, except Sentimen-
tAnalysis that had 5 workers per machine, and the total
time to run W3 was 422s. Then, we modified the setting by
adding one more machine to the cluster every minute and
allocating 5 SentimentAnalysis workers on the newly added
machine. The total time to run W3 reduced to 407s. This
reduction of 15s was feasible because of Amber’s capability
to add more computing resources dynamically.

7.6 Conditional Breakpoint Evaluation

For the TPC-H workflow W1 running on 10 machines, we
used 119M tuples and set a conditional breakpoint on the
output of the Filter operator to pause the workflow after
this operator produced 100M tuples. We varied the timeout
threshold (⌧) used by the principal from 0ms to 5s, and mea-
sured the time in the normal processing state and the time in
the synchronization state, as discussed in Section 5.3. Fig-
ure 13 shows the results. The normal processing time was
about 30s. The synchronization time was relatively small.
When ⌧ was high, the total synchronization time was around
2.15s. When we decreased ⌧ , the synchronization time de-
creased. The overall time decreased with decreasing ⌧ since
we had more data parallelism. The best setting was when ⌧
was a few milliseconds.

0

10

20

30

40

50

0 10 100 200 500 1k 2k 3k 4k 5k

Ti
m
e
(s
ec
on
ds
)

� (milliseconds)

Total time without cond. brk.
Total time with cond. brk

Total normal processing time
Total sync. time

Figure 13: Conditional breakpoint: running time

versus principal’s waiting threshold ⌧ .

To evaluate the overhead of conditional breakpoints, we
measured the total time needed by Filter operator to pro-
duce 100M tuples when the input had 119M tuples and no
conditional breakpoint was set. Figure 13 shows that the
time taken by the Filter operator to produce the same 100
million tuples was about 29.8s, which was close to the overall
time taken with the conditional breakpoint.

7.7 Performance Comparison with Spark

We compared the performance of Amber with Apache
Spark using TPC-H W1 and W2. Data checkpointing was
disabled for Spark. The scaleup experiment settings were
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re-used for Spark. Similar to Amber, we put the Spark’s
driver on one dedicated machine and allowed its executors
to run on the other 100 machines. We used two Spark API’s,
namely the DataFrame API on top of the Spark SQL en-
gine, and the RDD API, which is its primary user-facing
API [37]. The RDD API is a more general API that sup-
ports user-defined data structures and transformations. The
DataFrame API is a faster SQL-based API because of many
optimizations, such as binary data formats, fast serializa-
tion, and code generation [36].
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Figure 14: Scaleup for Amber and Spark for W1.
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Figure 15: Scaleup for Amber and Spark for W2.

Figures 14 and 15 show the results for TPC-H W1 and
W2, respectively. Amber achieved a performance compara-
ble to Spark’s DataFrame API and even more comparable
to the RDD API for W2. The performance gain of Spark’s
DataFrame API can be attributed to its optimizations dis-
cussed earlier. However, to our surprise, Spark’s RDD API
outperformed Spark’s DataFrame API for W1. Amber per-
formance remained quite comparable to both the API’s for
W1 too. We also compared Amber and Spark (DataFrame
API) using the Taxi workflow W4 on 10 machines. Spark
took 442s, while Amber took 470s.

7.8 Fault Tolerance in Amber and Spark

To evaluate the overhead of supporting fault tolerance,
we turned on data checkpointing in Amber and Spark to
write checkpointed data to a remote HDFS. In Amber, a
worker created a separate file for each hash partition. In
contrast, Spark consolidates its checkpoint data into HDFS
block-sized files of 128MB. With data checkpointing on, we
scaled the execution of W2 on both systems from 2 machines
(20GB data) to 20 machines (200GB data) and let the work-
flow run to completion. We chose W2 because it has more
number of stages than W1. In order to reduce the number
of produced files, we used only 1 worker per operator per
machine for Amber. We used the DataFrame API of Spark
as it was faster than the RDD API for W2. Figure 16 shows
the execution times. Amber’s data checkpointing initially
performed better than Spark. For a higher number of ma-
chines, Amber took more time to complete the execution

due to the quadratic increase in the number of files. For
instance, for the 20-machine case, Amber produced 400 files
(20 workers, each producing 20 partitions) at the end of each
stage, while Spark produced only 66 files.
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Figure 16: Data-checkpointing overhead for Amber

and Spark while executing W2. The time for Amber
with data checkpointing disabled and time for Spark and
Amber with data checkpointing enabled are shown.

We evaluated crash recovery for Amber. When running
W2 on 10 machines (100GB data), after the Join operator
ran for 5s, we simulated a crash by killing the workers of one
data partition. Amber took 176s in total (including crash
and recovery) to run to completion, which was comparable
to the case where there was no failure (153s). We also eval-
uated recovery of control messages in Amber. We paused
the workflow after it entered the Join stage for 10s and then
simulated a crash. Amber took 6s to recreate actors, and
10s of recomputation to recover to the same Paused state.

Summary: The experiments showed that the Orleans-
based Amber implementation can process control messages
quickly and support conditional breakpoints with a low over-
head. It achieved a high performance (both scaleup and
speedup) comparable to Spark. The capability of supporting
dynamic resource allocation during the execution achieved a
better performance. Given its young age compared to other
data-processing systems, Amber has the potential to achieve
an even better performance.

8. CONCLUSIONS

In this paper we presented a system called Amber that
supports powerful and responsive debugging during the ex-
ecution of a dataflow. We presented its overall system ar-
chitecture based on the actor model, studied how to trans-
late an operator DAG to an actor DAG that can run on
a computing cluster. We described the whole lifecycle of
the execution of a workflow, including how control messages
are sent to actors, how to expedite the processing of these
control messages, and how to pause and resume the compu-
tation of each actor. We studied how to support conditional
breakpoints, and presented solutions for enforcing local con-
ditional breakpoints and global conditional breakpoints. We
developed a technique to support fault tolerance in Amber,
which is more challenging due to the presence of control
messages. We implemented Amber on top of Orleans, and
presented an extensive experimental evaluation to show its
high usability and performance comparable to Spark.
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