
Programmable View Update Strategies on Relations

Van-Dang Tran3,1, Hiroyuki Kato1,3, Zhenjiang Hu2,1

1National Institute of Informatics, Japan
2Peking University, China

3The Graduate University for Advanced Studies, SOKENDAI, Japan

{dangtv, kato}@nii.ac.jp, huzj@pku.edu.cn

ABSTRACT
View update is an important mechanism that allows updates
on a view by translating them into the corresponding up-
dates on the base relations. The existing literature has shown
the ambiguity of translating view updates. To address this
ambiguity, we propose a robust language-based approach
for making view update strategies programmable and vali-
datable. Specifically, we introduce a novel approach to use
Datalog to describe these update strategies. We propose a
validation algorithm to check the well-behavedness of the
written Datalog programs. We present a fragment of the
Datalog language for which our validation is both sound and
complete. This fragment not only has good properties in
theory but is also useful for solving practical view updates.
Furthermore, we develop an algorithm for optimizing user-
written programs to efficiently implement updatable views
in relational database management systems. We have imple-
mented our proposed approach. The experimental results
show that our framework is feasible and efficient in practice.

PVLDB Reference Format:
Van-Dang Tran, Hiroyuki Kato, Zhenjiang Hu. Programmable
View Update Strategies on Relations. PVLDB, 13(5): 726-739,
2020.
DOI: https://doi.org/10.14778/3377369.3377380

1. INTRODUCTION
View update [11, 20, 21, 22, 33] is an important mechanism

in relational databases. This mechanism allows updates on a
view by translating them into the corresponding updates on
the base relations [21]. Consider a view V defined by a query
get over the database S, as shown in Figure 1a. An update
translator T maps each update u on V to an update T (u) on
S such that it is well-behaved in the sense that after the view
update is propagated to the source, we will obtain the same
view from the updated source, i.e., u(V) = get(T (u)(S)).
Given a view definition get, the known view update problem
[21] is to derive such an update translator T .

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 5
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3377369.3377380

S V

S′ V ′

uT (u)

get

(a)

S V

S′ V ′

u

get

put

(b)

Figure 1: The view update problem (a) and bidirec-
tional transformation (b).

However, there is an ambiguity issue here. Because the
query get is generally not injective, there may be many
update translations on the source database that can be used
to reflect view update [20, 21]. This ambiguity makes view
update an open challenging problem that has a long history
in database research [22, 20, 21, 11, 34, 33, 40, 36, 45, 42, 41].
The existing approaches either impose too many syntactic
restrictions on the view definition get that allow for limited
unambiguous update propagation [21, 15, 11, 35, 43, 41, 44,
45, 46] or provide dialogue mechanisms for users to manually
choose update translations with users’ interaction [34, 42]. In
practice, commercial database systems such as PostgreSQL
[4] provide very limited support for updatable views such
that even a simple union view cannot be updated.

In this paper, we propose a new approach for solving the
view updating problem practically and correctly. The key
idea is to provide a formal language for people to directly
program their view update strategies. On the one hand, this
language can be considered a formal treatment of Keller’s
dialogue [34], but on the other hand, it is unique in that
it can fully determine the behavior of bidirectional update
propagation between the source and the view.

This idea is inspired by the research on bidirectional pro-
gramming [25, 19] in the programming language community,
where update propagation from the view to the source is
formulated as a so-called putback transformation put, which
maps the updated view and the original source to an updated
source, as shown in Figure 1b. This put not only captures
the view update strategy but also fully describes the view
update behavior. First, it is clear that if we have such a
putback transformation, the translation T is obtained for
free:

T (u)(S) = put(S, u(get(S))).

Second, and more interestingly, while there may be many
putback transformations for a view definition get, there is at
most one view definition for a putback transformation put

726

for a well-behaved view update [32, 24, 23, 38, 37]. Thus,
get can be deterministically derived from put in general.
Although several languages have been proposed for writing
put for updatable views over tree-like data structures [57, 38,
37], whether we can design such a language for solving the
classical view update problem on relations remains unclear.

There are several challenges in designing a formal language
for programming put, a view update strategy, on relations.

• The language is desired to be expressive in practice to
cover users’ update strategies.

• To make every view update consistent with the source
database, an update strategy put must satisfy some
certain properties, as formalized in previous work [25,
23, 24]. Therefore, there is a need for a validation
algorithm to statically check the well-behavedness of
user-written strategies and whether they respect the
view definition if the view is defined beforehand.

• To be useful in practice rather than just a theoreti-
cal framework, the language must be efficiently imple-
mented when running in relational database manage-
ment systems (RDBMSs).

In contrast to the existing approaches [57, 38, 37] where
new domain-specific languages (DSLs) are designed, we argue
that Datalog, a well-known query language, can be used as
a formal language for describing view update strategies in
relational databases. Our contributions are summarized as
follows.

• We introduce a novel way to use nonrecursive Datalog
with negation and built-in predicates for describing
view update strategies. We propose a validation algo-
rithm for statically checking the well-behavedness of
the described update strategies.

• We identify a fragment of Datalog, called linear-view
guarded negation Datalog (LVGN-Datalog), in which
our validation algorithm is both sound and complete.
Furthermore, the algorithm can automatically derive
from view update strategies the corresponding view
definition to confirm the view expected beforehand.

• We develop an incrementalization algorithm to opti-
mize view update strategy program. This algorithm
integrates the standard incrementalization method for
Datalog with the well-behavedness in view update.

• We have implemented all the algorithms in our frame-
work, called BIRDS1. The experiments on benchmarks
collected in practice show that our framework is feasible
for checking most of the view update strategies. Inter-
estingly, LVGN-Datalog is expressive enough for solving
many types of views and can be efficiently implemented
by incrementalization in existing RDBMSs.

The remainder of this paper is organized as follows. After
presenting some basic notions in Section 2, we present our
proposed method for specifying view update strategies in
Datalog in Section 3. The validation and incrementaliza-
tion algorithms for these update strategies are described
in Section 4 and Section 5, respectively. Section 6 shows
the experimental results of our implementation. Section 7
summarizes related works. Section 8 concludes this paper.
1A prototype implementation is available at https://dangtv.
github.io/BIRDS/.

2. PRELIMINARIES
In this section, we briefly review the basic concepts and

notations that will be used throughout this paper.

2.1 Datalog and Relational Databases
Relational databases. A database schema D is a finite

sequence of relation names (or predicate symbols, or simply
predicates) 〈r1, . . . , rn〉. Each predicate ri has an associated
arity ni > 0 or an associated sequence of attribute names
A1, . . . , Ani . A database (instance) D of D assigns to each
predicate ri in D a finite ni-ary relation Ri, D(ri) = Ri.

An atom (or atomic formula) is of the form r(t1, . . . , tk)
(or written as r(~t)) such that r is a k-ary predicate and each
ti is a term, which is either a constant or a variable. When
t1, . . . , tk are all constants, r(t1, . . . , tk) is called a ground
atom.

A database D can be represented as a set of ground
atoms [18, 17], where each ground atom r(t1, . . . , tk) cor-
responds to the tuple 〈t1, . . . , tk〉 of relation R in D. As
an example of a relational database, consider a database
D that consists of two relations with respective schemas
r1(A,B) and r2(C). Let the actual instances of these two
relations be R1 = {〈1, 2〉, 〈2, 3〉} and R2 = {〈3〉, 〈4〉}, re-
spectively. The set of ground atoms of the database is
D = {r1(1, 2), r1(2, 3), r2(3), r2(4)}.

Datalog. A Datalog program P is a nonempty finite set
of rules, and each rule is an expression of the form [18]:

H :− L1, . . . , Ln.

where H,L1, . . . , Ln are atoms. H is called the rule head,
and L1, . . . , Ln is called the rule body. The input of P is a
set of ground atoms, called the extensional database (EDB),
physically stored in a relational database. The output of
P is all ground atoms derived through the program P and
the EDB, called the intensional database (IDB). Predicates
in P are divided into two categories: the EDB predicates
occurring in the extensional database, and the IDB predicates
occurring in the intensional database. An EDB predicate can
never be the head predicate of a rule. The head predicate
of each rule is an IDB predicate. We assume that each
EDB/IDB predicate r corresponds to exactly one EDB/IDB
relation R. Following the convention used in [18], throughout
this paper, we use lowercase characters for predicate symbols
and uppercase characters for variables in Datalog programs.
In a Datalog rule, variables that occur exactly once can be
replaced by an anonymous variable, denoted as “ ”.

A Datalog program P can have many IDB predicates. If
restricting the output of P to an IDB relation R correspond-
ing to IDB predicate r, we have a Datalog query, denoted as
(P,R). We say that an IDB predicate r (or a query (P,R))
is satisfiable if there exists a database D such that the IDB
relation R in the output of P over D is nonempty [10].

We can extend Datalog by allowing negation and built-in
predicates, such as equality (=) or comparison (<,>), in
Datalog rule bodies but in a safe way in which each variable
occurring in the negated atoms or the built-in predicates
must also occur in some positive atoms [18].

2.2 Bidirectional Transformations
A bidirectional transformation (BX) [25] is a pair of a

forward transformation get and a backward (putback) trans-
formation put, as shown in Figure 1b. The forward transfor-
mation get is a query over a source database S that results

727

https://dangtv.github.io/BIRDS/
https://dangtv.github.io/BIRDS/

S′ S
⊕Apply

V

∆S putdelta

Figure 2: View update strategy put.

in a view relation V . The putback transformation put takes
as input the original database S and an updated view V ′

to produce a new database S′. To ensure consistency be-
tween the source database and the view, a BX must satisfy
the following round-tripping properties, called GetPut and
PutGet:

∀ S, put (S, get(S)) = S (GetPut)

∀ S, V ′, get
(
put

(
S, V ′

))
= V ′ (PutGet)

The GetPut property ensures that unchanged views cor-
respond to unchanged sources, while the PutGet property
ensures that all view updates are completely reflected to the
source such that the updated view can be computed again
from the query get over the updated source.

Definition 2.1 (Validity of Update Strategy).
A view update strategy put is said to be valid if there exists a
view definition get such that put and get satisfy both GetPut
and PutGet.

The important property that makes putback essential for
BXs is that a valid view update strategy put uniquely deter-
mines the view definition get, which satisfies GetPut and
PutGet with put. Therefore, although put is written in
a unidirectional (backward) manner, if put is valid, it can
capture both forward and backward directions. We state
the uniqueness of the view definition get in the following
theorem, and the proof can be found in [23].

Theorem 2.1 (Uniqueness of View Definition).
Given a view update strategy put, there is at most one view
definition get that satisfies GetPut and PutGet with put.

3. THE LANGUAGE FOR VIEW UPDATE
STRATEGIES

As mentioned in the introduction, it may be surprising
that the base language that we are using for view update
strategies is nonrecursive Datalog with negation and built-in
predicates (e.g., =, 6=, <, >) [18]. One might wonder how
the pure query language Datalog can be used to describe
updates. In this section, we show that delta relations enable
Datalog to describe view update strategies. We will define
a fragment of Datalog, called LVGN-Datalog, which is not
only powerful for describing various view update strategies
but also important for our later validation.

3.1 Formulating Update Strategies as Queries
Producing Delta Relations

Recall that a view update strategy is a putback transfor-
mation put that takes as input the original source database
and an updated view to produce an updated source. Our
idea of specifying the transformation put in Datalog is to
write a Datalog query that takes as input the original source

database and an updated view to yield updates on the source;
thus, the new source can be obtained.

We use delta relations to represent updates to the source
database. The concept of delta relations is not new and
is used in the study on the incrementalization of Datalog
programs [28]. Unlike the use of delta relations to describe
incrementalization algorithms at the meta level, we let users
consider both relations and their corresponding delta rela-
tions at the programming level.

Let R be a relation and r be the predicate corresponding
to R. Following [27, 39, 53], we use two delta predicates +r
and −r and write +r(~t) and −r(~t) to denote the insertion
and deletion of the tuple ~t into/from relation R, respectively.

An update that replaces tuple ~t with a new one ~t′ is a
combination of a deletion −r(~t) and an insertion +r(~t). We
use a delta relation, denoted as ∆R, to capture both these
deletions and insertions. For example, consider a binary
relation R = {〈1, 2〉, 〈1, 3〉}; applying a delta relation ∆R =
{−r(1, 2),+r(1, 1)} to R results in R′ = {〈1, 1〉, 〈1, 3〉}. Let
∆+

R be the set of insertions and ∆−R be the set of deletions
in ∆R. Applying ∆R to the relation R is to delete tuples in
∆−R from R and insert tuples in ∆+

R into R. Considering set
semantics, the delta application is the following:

R′ = R⊕∆R = (R \∆−R) ∪∆+
R

An update strategy for a view can now be specified by a
set of Datalog rules that define delta relations of the source
database from the updated view.

Example 3.1. Consider a source database S, which con-
sists of two base relations, R1 and R2, with respective schemas
r1(A) and r2(A), and a view relation V defined by a union
over R1 and R2: V = get(S) = R1 ∪ R2. To illustrate the
ambiguity of updates to V , consider an attempt to insert
a tuple 〈3〉 into the view V . There are three simple ways
to update the source database: (i) insert tuple 〈3〉 into R1,
(ii) insert tuple 〈3〉 into R2, and (iii) insert tuple 〈3〉 into
both R1 and R2. Therefore, the update strategy for the view
needs to be explicitly specified to resolve the ambiguity of view
updates. Given original source relations R1 and R2 and an
updated view relation V , the following Datalog program is
one strategy for propagating data in the updated view to the
source:

−r1(X) :− r1(X),¬v(X).

−r2(X) :− r2(X),¬v(X).

+r1(X) :− v(X),¬r1(X),¬r2(X).

The first two rules state that if a tuple 〈X〉 is in R1 or R2 but
not in V , it will be deleted from R1 or R2, respectively. The
last rule states that if a tuple 〈X〉 is in V but in neither R1

nor R2, it will be inserted into R1. Let the actual instances of
the source and the updated view be S = {r1(1), r2(2), r2(4)}
and V = {v(1), v(3), v(4)}, respectively. The input for the
Datalog program is a database of both the source and the view
(S, V) = {r1(1), r2(2), r2(4), v(1), v(3), v(4)}. Thus, the re-
sult is delta relations ∆R1 = {+r1(3)} and ∆R2 = {−r2(2)}.
By applying these delta relations to S, we obtain a new source
database S′ = {r1(1), r1(3), r2(4)}.

Formally, consider a database schema S = 〈r1, . . . , rn〉 and
a single view v. Let S be a source database and V be an
updated view relation. We use ∆S to denote all insertions
and deletions of all relations in S. For example, the ∆S in

728

Example 3.1 is ∆S = {+r1(3),−r2(2)}. We say that ∆S
is non-contradictory if it has no insertion/deletion of the
same tuple into/from the same relation. Applying a non-
contradictory ∆S to a database S, denoted as S ⊕∆S, is to
apply each delta relation in ∆S to the corresponding relation
in S. We use the pair (S, V) to denote the database instance
I over the schema 〈r1, . . . , rn, v〉 such that I(ri) = S(ri) for
each i ∈ [1, n] and I(v) = V . A view update strategy put is
formulated by a Datalog query putdelta over the database
(S, V) that results in a ∆S (shown in Figure 2) as follows:

put(S, V) = S ⊕ putdelta(S, V) (1)

The Datalog program putdelta is called a Datalog putback pro-
gram (or putback program for short). The result of putdelta,
∆S, should be non-contradictory to be applicable to the
original source database S.

Definition 3.1 (Well-definedness). A putback pro-
gram is well defined if, for every source database S and view
relation V , the program results in a non-contradictory ∆S.

3.2 LVGN-Datalog
We have seen that nonrecursive Datalog with extensions

including negation and built-in predicates can be used for
specifying view update strategies. We now focus on the
extensions of Datalog in which the satisfiability of queries
is decidable. This property plays an important role in guar-
anteeing that the validity of putback programs is decidable.
Specifically, we define a fragment of Datalog, LVGN-Datalog,
which is an extension of nonrecursive guarded negation Data-
log (GN-Datalog [13]) with equalities, constants, comparisons
[18] and linear view predicate. This Datalog fragment allows
not only for writing many practical view update strategies
but also for decidable checking of validity later.

3.2.1 Nonrecursive GN-Datalog with Equalities, Co-
nstants, and Comparisons

We consider a restricted form of negation in Datalog, called
GN-Datalog [12, 13], in which we can decide the satisfiability
of any queries. In this way, we define LVGN-Datalog as an
extension of this GN-Datalog fragment without recursion as
follows:

• Equality is of the form t1 = t2, where t1/t2 is either a
variable or a constant.

• Comparison predicates < (>) on totally ordered do-
mains in the form of X < c (X > c), where X is a
variable and c is a constant.

• Constants may freely be used in Datalog rule bodies
or rule heads without restriction.

• Every rule is negation guarded [13] such that for every
atom L (or equality, or comparison) occurring either
in the rule head or negated in the rule body, the body
must have a positive atom or equality, called a guard,
containing all variables occurring in L.

Example 3.2. The following rule is negation guarded:

h(X,Y, Z) :− r1(X,Y, Z)︸ ︷︷ ︸
guard

,¬ Z = 1︸ ︷︷ ︸
equality

,¬r2(X,Y, Z).

because the negated atom r2(X,Y, Z), negated equality ¬Z = 1
and the head atom h(X,Y, Z) are all guarded since all vari-
ables X, Y , and Z are in the positive atom r1(X,Y, Z).

3.2.2 Linear View
As formally proven in [24], the putback transformation

put must be lossless (i.e., injective) with respect to the view
relation. This means that all information in the view must
be embedded in the updated source. To enable tracking
this behavior of putback programs in LVGN-Datalog, we
introduce a restriction called linear view, which controls the
usage of the view in the programs. By linear view, we mean
that the view is linearly used such that there is no self-join
and projection on the view. Every program in LVGN-Datalog
conforms to the linear view restriction defined as follows.

Definition 3.2 (Linear view). A Datalog putback pr-
ogram conforms to the linear view restriction if the view
occurs only in the rules defining delta relations, and in each
of these delta rules, there is at most one view atom and no
anonymous variable () occurs in the view atom.

Example 3.3. Given a source relation R of arity 3 and
a view relation V of arity 2, consider the following rules of
the delta relation ∆R:

−r(X,Y, Z) :− r(X,Y, Z),¬ v(X,Y)︸ ︷︷ ︸
linear view

. (rule1)

−r(X,Y, Z) :− r(X,Y, Z),¬ v(X,)︸ ︷︷ ︸
projection

. (rule2)

+r(X,Y, Z) :− v(X,Y), v(Y,Z)︸ ︷︷ ︸
self-join

,¬r(X,Y, Z). (rule3)

(rule1) conforms to the linear view restriction because v(X,Y)
occurs once in the rule body, whereas (rule2) and (rule3) do
not because there is an anonymous variable () in the atom
of v in (rule2) and there is a self-join of v in (rule3).

3.2.3 Integrity Constraints
Since an updatable view can be treated as a base table, it is

natural to create constraints on the view. Similar to the idea
of negative constraints introduced in [17], we extend the rules
in LVGN-Datalog by allowing a truth constant false (denoted
as ⊥) in the rule head for expressing integrity constraints.
The linear view restriction defined in Definition 3.2 is also
extended that the view predicate can also occur in the rules
having ⊥ in the head. In this way, a constraint, called the
guarded negation constraint, is of the form ∀ ~X,Φ(~X)→ ⊥,

where Φ(~X) is the conjunction of all atoms and negated atoms

in the rule body and Φ(~X) is a guarded negation formula.

The universal quantifiers ∀ ~X are omitted in Datalog rules.

Example 3.4. Consider a view relation v(X,Y, Z). To
prevent any tuples having Z > 2 in the view v, we can use
the following constraint: ⊥ :− r(X,Y, Z), Z > 2.

3.2.4 Properties
We say that a query Q is satisfiable if there is an input

database D such that the result of Q over D is nonempty.
The problem of determining whether a query in nonrecur-
sive GN-Datalog is satisfiable is known to be decidable [13].
It is not surprising that allowing equalities, constants and
comparisons in nonrecursive GN-Datalog does not make the
satisfiability problem undecidable since the same already
holds for guarded negation in SQL [13]. The idea is that
we can transform such a GN-Datalog query into an equiv-
alent guarded negation first-order (GNFO) formula whose
satisfiability is decidable [12].

729

male(emp name: string, birth date: date).

female(emp name: string, birth date: date).

others(emp name: string, birth date: date,

gender: string).

ed(emp name: string, dept name: string).

eed(emp name: string, dept name: string).

Base tables

ced(E,D) :− ed(E,D),¬ eed(E,D).
residents(E,B,G) :− others(E,B,G).
residents(E,B,‘F’) :− female(E,B).
residents(E,B,‘M’) :− male(E,B).
residents1962(E,B,G) :− residents(E,B,G),

¬B <‘1962-01-01’,¬B >‘1962-12-31’.
employees(E,B,G):− residents(E,B,G), ced(E,D).
retired(E) :− residents(E,B,G),¬ced(E,).

Views

Figure 3: Database and view schema.

Lemma 3.1. The query satisfiability problem is decidable
for nonrecursive GN-Datalog with equalities, constants and
comparisons.

Given a set of guarded negation constraints Σ and a query
Q, we say that Q is satisfiable under Σ if there is an input
database D satisfying all constraints in Σ such that the result
of Q over D is nonempty.

Theorem 3.2. The query satisfiability problem for non-
recursive GN-Datalog with equalities, constants and compar-
isons under a set of guarded negation constraints is decidable.

3.3 A Case Study
We consider a database of five base tables shown in Fig-

ure 3. The base tables male, female and others contain
personal information. Table ed has all historical departments
of each person, while eed contains only former departments
of each person. We illustrate how to use LVGN-Datalog to
describe update strategies for the views defined in Figure 3.

For the view residents, which contains all personal infor-
mation, we use the attribute gender to choose relevant base
tables for propagating updated tuples in residents. More
concretely, if there is a person in residents but not in any
of the source tables male, female and other, we insert this
person into the table corresponding to his/her gender. In
contrast, we delete from the source tables the people who no
longer appear in the view. The Datalog putback program
for residents is the following:

+male(E,B) :− residents(E,B,‘M’),
¬ male(E,B),¬ others(E,B,‘M’).

-male(E,B) :− male(E,B),¬ residents(E,B,‘M’).
+female(E,B) :− residents(E,B,G), G =‘F’,

¬ female(E,B),¬ others(E,B,G).
-female(E,B) :− female(E,B),¬ residents(E,B,‘F’).
+others(E,B,G) :− residents(E,B,G),¬ G =‘M’,

¬ G =‘F’,¬ others(E,B,G).
-others(E,B,G) :− others(E,B,G),

¬ residents(E,B,G).

The view ced contains information about the current de-
partments of each employee. We express the following update
strategy for propagating updated data in this view to the
base tables ed and eed. If a person is in a department
according to ed but he/she is currently no longer in this de-
partment according to ced, this department becomes his/her
previous department and thus needs to be added to eed. If
a person used to be in a department according to eed but
he/she returned to this department according to ced, then
this department of him/her needs to be removed from eed.

+ed(E,D) :− ced(E,D), ¬ ed(E,D).
-eed(E,D) :− ced(E,D), eed(E,D).
+eed(E,D) :− ed(E,D), ¬ ced(E,D), ¬ eed(E,D).

The view residents1962 is defined from the view residen-

ts such that residents1962 contains all residents that have a
birth date in 1962. Interestingly, because the view residents

is now updatable, residents can be considered as the source
relation of residents1962. Therefore, we can write an up-
date strategy on residents1962 for updating residents

instead of updating the base tables male, female and others

as follows:

% Constraints:

⊥ :− residents1962(E,B,G), B >‘1962-12-31’.
⊥ :− residents1962(E,B,G), B <‘1962-01-01’.
% Update rules:

+residents(E,B,G) :− residents1962(E,B,G),
¬ residents(E,B,G).

-residents(E,B,G) :− residents(E,B,G),
¬ B <‘1962-01-01’,
¬ B >‘1962-12-31’,
¬ residents1962(E,B,G).

We define the constraints to guarantee that in the updated
view residents1962, there is no tuple having a value of
the attribute birth date not in 1962. Any view updates
that violate these constraints are rejected. In this way, our
update strategy is to insert into the source table residents

any new tuples appearing in residents1962 but not yet
in residents. On the other hand, we delete only tuples in
residents having birth date in 1962 if they no longer appear
in residents1962.

The view employees contains residents who are employed,
whereas retired contains residents who retired. Since emplo-
yees and retired are defined from two updatable views
residents and ced, we can use residents and ced as the
source relations to write an update strategy of employees:

% Constraints:

⊥ :− employees(E,B,G),¬ ced(E,).
% Update rules:

+residents(E,B,G) :− employees(E,B,G),
¬ residents(E,B,G).

-residents(E,B,G) :− residents(E,B,G),
ced(E,),¬ employees(E,B,G).

Interestingly, in this strategy, we use a constraint to specify
more complicated restrictions of updates on employees. The
constraint implies that there must be no tuple 〈E,B,G〉
in the updated view employees having the value E of the
attribute emp name, which cannot be found in any tuples of
ced. In other words, the constraint does not allow insertion
into employees an actual new employee who is not mentioned
in the source relation ced. The update strategy then reflects

730

Yes
No

Well-definedness ?

No
Yes

 Existence of a view definition
get satisfying GetPut ?

No
Yes

The PutGet property of get and put ? Invalid

Valid

expected_get Putback program

Figure 4: Validation algorithm.

updates on the view employees to updates on the source
residents.

For retired, we describe an update strategy to update
the current employment status of residents as follows:

-ced(E,D) :− ced(E,D), retired(E).
+ced(E,D) :− residents(E, ,),¬ retired(E),

¬ ced(E,), D =‘unknown’.

+residents(E,B,G) :− retired(E), G =‘unknown’,
¬ residents(E, ,), B =‘00-00-00’.

We have presented the formal way to describe view update
strategies using Datalog. In the next section, we will present
our proposed validation algorithm for checking the validity
of these update strategies. In fact, if an update strategy
specified in LVGN-Datalog is valid, the corresponding view
definition can be automatically derived and expressed in
nonrecursive GN-Datalog with equalities, constants and com-
parisons. For all the update strategies in our case study, the
view definitions derived by our validation algorithm are the
same as the expected ones in Figure 3.

4. VALIDATION ALGORITHM
As mentioned in Section 2, a view update strategy must

be valid (Definition 2.1) to guarantee that every view update
is well-behaved. In this section, we present an algorithm for
checking the validity of user-written view update strategies.

4.1 Overview
Checking the validity of a view update strategy based on

Definition 2.1 is challenging since it requires constructing
a view definition satisfying both the GetPut and PutGet
properties. Instead, we shall propose another way for the
validity check based on the following important fact.

Lemma 4.1. Given a valid view update strategy put, if
a view definition get satisfies GetPut, then get must also
satisfy PutGet with put.

Lemma 4.1 implies that if put is valid, we can construct a
view definition get that satisfies both GetPut and PutGet
by choosing any get satisfying GetPut.

By Lemma 4.1, the idea of our validation algorithm is
detecting contradictions for the assumption that the given
view update strategy put is valid. Assuming that put is valid,
we first check the existence of a view definition get satisfying
GetPut with put. We consider the expected view definition
expected get if available as a candidate for the get definition
and construct the get definition if expected get does not sat-
isfy GetPut. Clearly, if get does not exist, we can conclude

that put is invalid. Otherwise, we continue to check whether
get also satisfies PutGet with put (Lemma 4.1). If this
check passed, we actually complete the validation and it is
sufficient to conclude that put is valid because the get found
satisfies both GetPut and PutGet. Furthermore, the con-
structed get is useful to confirm the initially expected view
definition especially when they are not the same. For the
case in which the expected view definition is not explicitly
specified, the view definition is automatically derived.

In particular, we are given a putback program putdelta,
which is written in nonrecursive Datalog with negation and
built-in predicates, and maybe an expected view definition
(expected get) if it is explicitly described. The validation
algorithm consists of three passes (see Figure 4): (1) checking
the well-definedness of the putback program, (2) checking
the existence of a view definition get satisfying GetPut
with the view update strategy put specified by the putback
program and deriving get, and (3) checking whether get
and put satisfy PutGet. If one of the passes fails, we can
conclude that put is invalid. Otherwise, put is valid because
the derived get satisfies GetPut and PutGet with put.

4.2 Well-definedness
Consider a database schema S = 〈r1, . . . , rn〉 and a view

v. Given a putback program putdelta, the goal is to check
whether the delta ∆S resulting from putdelta is non-contradi-
ctory for any source database S and any view relation V . In
other words, we check whether in ∆S, there is no pair of
insertion and deletion, +ri(~t) and −ri(~t), of the same tuple
~t on the same relation Ri. To check this property, we add
the following new rules to putdelta:

di(~Xi) :− +ri(~Xi),−ri(~Xi). (i ∈ [1, n]) (2)

The problem of checking whether ∆S is non-contradictory
is reduced to the problem of checking whether each IDB
predicate di in the Datalog program is unsatisfiable. When
putdelta is in LVGN-Datalog, because each rule (2) is trivially
negation guarded, according to Theorem 3.2, the satisfiability
of di is decidable.

4.3 Existence of A View Definition Satisfying
GetPut

Consider a view update strategy put specified by a putback
program putdelta and a set of constraints Σ. Assume that put
is valid. If an expected view definition expected get is explic-
itly written by users, we check whether expected get satisfies
GetPut with put. With the view defined by expected get,
the GetPut property means that put makes no change to
the source. Therefore, checking the GetPut property is
reduced to checking the unsatisfiability of each delta relation
in the Datalog program putdelta. This check is decidable
if expected get and putdelta are in LVGN-Datalog due to
Theorem 3.2.

If expected get is not explicitly written or if it does not
satisfy GetPut, we construct a view definition get satisfying
GetPut as follows. For each source database S, we find a
steady-state view V such that the putback transformation put
makes no change to the source database S. In other words,
V must satisfy the constraints in Σ and put(S, V) = S. We
define get as the mapping that maps each S to the V . If
there exists an S such that we cannot find any steady-state
view, then there is no view definition satisfying GetPut, and
we conclude that put is invalid. Otherwise, the constructed

731

get satisfies GetPut with put. Moreover, the view relation
V resulting from get over S always satisfies Σ.

Example 4.1 (Intuition). Consider the update strat-
egy put in Example 3.1. For an arbitrary source database
instance S, the goal is to find a steady-state view V such
that put(S, V) = S, i.e., both of the source relations R1 and
R2 are unchanged. Recall that the putback transformation
put is described by Datalog rules that compute delta relations
of each source relation R1 and R2. For R1, we compute
∆+

R1
and ∆−R1

, which are the set of insertions and the set of
deletions on R1, respectively. R1 is unchanged if all inserted
tuples are already in R1 and all deleted tuples are actually
not in R1. Similarly, for R2, all tuples in ∆−R2

must be not

in R2 (we do not have ∆+
R2

). This leads to the following:

∆−R1
∩R1 = ∅

∆−R2
∩R2 = ∅

∆+
R1
\R1 = ∅

(3)

Let us transform each delta predicate −r1, −r2, and +r1
in the Datalog program putdelta to the form of relational
calculus query [10]: ϕ−r1 = r1(X)∧¬v(X), ϕ−r2 = r2(X)∧
¬v(X), ϕ+r1 = v(X)∧¬r1(X)∧¬r2(X). The constraint (3)
is equivalent to the constraint that all the relational calculus
queries ϕ−r1(X) ∧ r1(X), ϕ−r2(X) ∧ r2(X) and ϕ+r1(X) ∧
¬r1(X) result in an empty set over the database (S, V) of
both the source and view relations. In other words, (S, V)
does not satisfy the following first-order sentences: (S, V) 6|= ∃X,ϕ−r1(X) ∧ r1(X)

(S, V) 6|= ∃X,ϕ−r2(X) ∧ r2(X)
(S, V) 6|= ∃X,ϕ+r1(X) ∧ ¬r1(X)

By applying ¬∃X, ξ(X) ≡ ∀X, ξ(X)→ ⊥, we have (S, V) |= ∀X,ϕ−r1(X) ∧ r1(X)→ ⊥
(S, V) |= ∀X,ϕ−r2(X) ∧ r2(X)→ ⊥
(S, V) |= ∀X,ϕ+r1(X) ∧ ¬r1(X)→ ⊥

⇔(S, V) |=

 ∀X, r1(X) ∧ ¬v(X) ∧ r1(X)→ ⊥
∀X, r2(X) ∧ ¬v(X) ∧ r2(X)→ ⊥
∀X, v(X) ∧ ¬r1(X) ∧ ¬r2(X) ∧ ¬r1(X)→ ⊥

The idea for checking whether a view relation V satisfying
the above logical sentences exists is that we swap the atom
v(X) appearing in these sentences to either the right-hand
side or the left-hand side of the implication formula. For this
purpose, we apply p ∧ ¬q → ⊥ ≡ p→ q and obtain:

⇔(S, V) |=

 ∀X, r1(X)→ v(X)
∀X, r2(X)→ v(X)
∀X, v(X)→ ¬(¬r1(X) ∧ ¬r2(X))

By combining all sentences that have v(X) on the right-hand
side and combining all sentences that have v(X) on the left-
hand side, we obtain:

(S, V) |=
{
∀X, r1(X) ∨ r2(X)→ v(X)
∀X, v(X)→ ¬(¬r1(X) ∧ ¬r2(X))

(4)

Note that S is an instance over 〈r1, r2〉 and V is the view
relation corresponding to predicate v. The first sentence
provides us the lower bound Vmin of V , which is the result of
a first-order (FO) query2 ψ1 = r1(X) ∨ r2(X) over S. The
second sentence provides us the upper bound Vmax of V , which

2A FO query ψ over D results in all tuples ~t s.t. D |= ψ(~t).

is the result of the first-order query ψ2 = ¬(¬r1(X)∧¬r2(X))
over S. In fact, for each S, all the V such that Vmin ⊆
V ⊆ Vmax satisfy (4), i.e., are steady-state instances of the
view. Thus, a steady-state instance V exists if Vmin ⊆ Vmax.
Indeed, by applying equivalence ¬(p∨ q) ≡ ¬p∧¬q to ψ2, we
obtain the same formula as ψ1; hence, ∀X,ψ1(X)→ ψ2(X)
holds, leading to that Vmin ⊆ Vmax holds. Now by choosing
Vmin as a steady-state view instance, we can construct a get
as the mapping that maps each S to Vmin. In other words,
get is a query equivalent to the FO query ψ1 over the source
S. Since ψ1 is a safe-range formula3, we transform ψ1 to an
equivalent Datalog query4 as follows:

v(X) :− r1(X). (5)

v(X) :− r2(X). (6)

This is the view definition get that satisfies GetPut with
the given view update strategy put.

4.3.1 Checking the existence of a steady-state view
In general, similar to the idea shown in Example 4.1, for an

arbitrary putback program putdelta and a set of constraints
Σ in LVGN-Datalog, we can always construct a guarded
negation first-order (GNFO) sentence to check whether a
steady-state view V satisfying Σ and put(S, V) = S (i.e.,
S ⊕ putdelta(S, V) = S) exists.

Lemma 4.2. Given a LVGN-Datalog putback program put-
delta and a set of guarded negation constraints Σ, there
exist first-order formulas φ1, φ2, φ3 such that for a given
database instance S, a view relation V satisfies Σ and S ⊕
putdelta(S, V) = S iff (S, V) |= ∀~Y , v(~Y) ∧ φ1(~Y)→ ⊥

(S, V) |= ∀~Y ,¬v(~Y) ∧ φ2(~Y)→ ⊥
(S, V) 6|= φ3

(7)

where v is the predicate corresponding to the view relation
V and φ1, φ2, φ3 have no occurrence of the view predicate
v. Both φ2(~Y) and φ3 are safe-range GNFO formulas, and

v(~Y) ∧ φ1(~Y) is equivalent to a GNFO formula.

The third constraint (S, V) 6|= φ3 in (7) is simplified to
S 6|= φ3 because the FO sentence φ3 has no atom of v as a
subformula. This means that φ3 must be unsatisfiable over
any database S. Since φ3 is a GNFO sentence, we can check
whether φ3 is satisfiable. If it is satisfiable, we conclude that
the view relation V does not exist; thus, put is invalid.

For the two other constraints in (7), by applying the logical
equivalence p ∧ ¬q → ⊥ ≡ p→ q, we have:{

(S, V) |= ∀~Y , v(~Y)→ ¬φ1(~Y)

(S, V) |= ∀~Y , φ2(~Y)→ v(~Y)
(8)

Because φ1 and φ2 do not contain an atom of v as a subfor-
mula, there exists an instance V if

S |= ∀~Y , φ2(~Y)→ ¬φ1(~Y)

⇔S |= ∀~Y , φ1(~Y) ∧ φ2(~Y)→ ⊥

This means that the sentence ∃~Y , φ1(~Y) ∧ φ2(~Y) is not sat-
isfiable. In this way, checking the existence of a V is now

3ψ is a safe-range FO formula if all the variables in ψ are
range restricted [10].
4Due to the equivalence between nonrecursive Datalog
queries and safe-range FO formulas [10].

732

reduced to checking the satisfiability of ∃~Y , φ1(~Y) ∧ φ2(~Y).

The idea of checking the satisfiability of ∃~Y , φ1(~Y)∧φ2(~Y) is
to reduce this problem to that of a GNFO sentence. For this
purpose, by introducing a fresh relation r of an appropriate
arity, we have the fact that ∃~Y , φ1(~Y)∧φ2(~Y) is satisfiable if

and only if ∃~Y , r(~Y) ∧ φ1(~Y) ∧ φ2(~Y) is satisfiable. Because

v(~Y)∧φ1(~Y) is equivalent to a GNFO formula, r(~Y)∧φ1(~Y)
is also equivalent to a GNFO formula. On the other hand,
φ2(~Y) is equivalent to a GNFO formula; hence, we can trans-

form ∃~Y , r(~Y) ∧ φ1(~Y) ∧ φ2(~Y) into an equivalent GNFO
sentence whose satisfiability is decidable [12].

4.3.2 Constructing a view definition
If both φ3 and ∃~Y , φ1(~Y) ∧ φ2(~Y) are unsatisfiable, there

exists a steady-state view V satisfying Σ such that S ⊕
putdelta(S, V) = S for each database S. One steady-state
view V is the one resulting from the FO formula φ2 over
S. Indeed, such a V satisfies (8); hence, it satisfies Σ and
S ⊕ putdelta(S, V) = S. By choosing this steady-state view,
we can construct a view definition get as the Datalog query
equivalent to φ2 because φ2 is a safe-range formula. The
equivalence of safe-range first-order logic and Datalog was
well studied in database theory [10, 13]. We present the
detailed transformation from safe-range FO formula to Dat-
alog query in the full paper [55]. Due to Lemma 4.2, φ2

is also negation guarded and hence, get is in nonrecursive
GN-Datalog with equalities, constants and comparisons.

4.4 The PutGet Property
To check the PutGet property that get(put(S, V)) = V

for any S and V , we first construct a Datalog query over
database (S, V) equivalent to the composition get(put(S, V)).
Recall that put(S, V) = S ⊕ putdelta(S, V). The result
of put(S, V) is a new source S′ obtained by applying ∆S
computed from putdelta to the original source S. Let us
use predicate rnew

i for the new relation of predicate ri in
S after the update. The result of applying a delta ∆S to
the database S is equivalent to the result of the following
Datalog rules (i ∈ [1, n]):

rnew
i (~Xi) :− ri(~Xi), ¬ -ri(~Xi).

rnew
i (~Xi) :− +ri(~Xi).

By adding these rules to the Datalog putback program
putdelta, we derive a new Datalog program, denoted as
newsource, that results in a new source database. The re-
sult of get(put(S, V)) is the same as the result of the Datalog
query get over the new source database computed by the
program newsource. Therefore, we can substitute each EDB
predicate ri in the program get with the new program rnew

i

and then merge the obtained program with the program
newsource to obtain a Datalog program, denoted as putget.
The result of putget over (S, V) is exactly the same as the
result of get(put(S, V)). For example, the Datalog program
putget for the view update strategy in Example 4.1 is:

-r1(X) :− r1(X), ¬ v(X).
-r2(X) :− r2(X), ¬ v(X).
+r1(X) :− v(X), ¬ r1(X), ¬ r2(X).
rnew
1 (X) :− r1(X), ¬ -r1(X).
rnew
1 (X) :− +r1(X).
rnew
2 (X) :− r2(X), ¬ -r2(X).
vnew(X) :− rnew

1 (X).
vnew(X) :− rnew

2 (X).

Algorithm 1: Validate(expected get, putdelta, Σ)

get ← null;
// Checking the well-definedness of putdelta
check if all predicates di (i ∈ [1, n]) in (2) are
unsatisfiable under Σ;

if expected get is not null then
// Checking if expected get satisfies GetPut

if all delta relations of putdelta are unsatisfiable
under Σ with the view defined by expected get
then
get ← expected get;

if (expected get is null) or (get is null) then
// Constructing a get satisfying GetPut

check if φ3 in (7) is unsatisfiable under Σ;

check if ∃~Y , φ1(~Y) ∧ φ2(~Y) (φ1 and φ2 in (8)) is
unsatisfiable under Σ;

// Constructing a get
get← Translating FO formula φ2 in (8) to an
equivalent Datalog query;

// Checking the PutGet property

check if Φ1 and Φ2 in (9) and (10) are unsatisfiable
under Σ;

return get;

Checking the PutGet property is now reduced to checking
whether the result of Datalog query putget over database
(S, V) is the same as the view relation V . By transforming

putget to the FO formula φputget(~Y), we reduce checking the
PutGet property to checking the satisfiability of the two
following sentences:

Φ1 = ∃~Y , φputget(~Y) ∧ ¬v(~Y) (9)

Φ2 = ∃~Y , v(~Y) ∧ ¬φputget(~Y) (10)

The PutGet property holds if and only if Φ1 and Φ2 are not
satisfiable. Clearly, if get and putdelta are in LVGN-Datalog,
putget is also in LVGN-Datalog, leading to that φputget(~Y) is
a GNFO formula. Therefore, Φ2 is a GNFO sentence; hence,
its satisfiability is decidable. Φ1 is satisfiable if and only if
Φ′1 = ∃~Y , φputget(~Y)∧ r(~Y)∧¬v(~Y) is satisfiable, where r is
a fresh relation of an appropriate arity. Since Φ′1 is a guarded
negation first-order sentence, its satisfiability is decidable by
Theorem 3.2.

4.5 Soundness and Completeness
Algorithm 1 summarizes the validation of Datalog putback

programs putdelta. After all the checks have passed, the
corresponding view definition is returned and putdelta is
valid. For LVGN-Datalog in which the query satisfiability is
decidable (Theorem 3.2), Algorithm 1 is sound and complete.

Theorem 4.3 (Soundness and Completeness).

• If a LVGN-Datalog putback program putdelta passes all
the checks in Algorithm 1, putdelta is valid.

• Every valid LVGN-Datalog putback program putdelta
passes all the checks in Algorithm 1.

It is remarkable that if putdelta is not in LVGN-Datalog,
but in nonrecursive Datalog with unrestricted negation and
built-in predicates, we can still perform the checks in the
validation algorithm by feeding them to an automated theo-
rem prover. Though, Algorithm 1 may not terminate and

733

not successfully construct the view definition get because of
the undecidability problem [10, 54]. Therefore, Algorithm 1
is sound for validating the pair of putdelta and expected get
that once it terminates, we can conclude putdelta is valid.

5. INCREMENTALIZATION
We have shown that an updatable view is defined by a

valid put, which makes changes to the source to reflect view
updates. However, when there is only a small update on the
view, repeating the put computation is not efficient. In this
section, we further optimize the computation of the putback
program by exploiting its well-behavedness and integrating
it with the standard incrementalization method for Datalog.

Consider the steady state before a view update in which
both the source and the view are unchanged; due to the
GetPut property, a valid putdelta results in a ∆S having
no effect on the original source S: S ⊕∆S = S. This means
that ∆S can be either an empty set or a nonempty set in
which all deletions in ∆S are not yet in the original source
S and all insertions in ∆S are already in S. If the view is
updated by a delta ∆V , there will be some changes to ∆S,
denoted as ∆2S, that have effects on the original source S.

Example 5.1. Consider the database in Example 3.1: S =
{r1(1), r2(2), r2(4)}. Let ∆S = {+r1(1),+r2(2),−r2(3)} be
a delta of S. Clearly, S ⊕ ∆S = S. Now, we change ∆S
by a delta of ∆S, denoted as ∆2S, which includes a set of
deletions to ∆S, ∆2−S = {+r1(1),−r2(3)}, and a set of
insertions to ∆S, ∆2+S = {+r1(3),−r2(4)}. We obtain a
new delta of S:

∆S′ = (∆S \∆2−S) ∪∆2+S = {+r1(3),+r2(2),−r2(4)}

and the new database S′ = S ⊕∆S′ = {r1(1), r1(3), r2(2)}.
In fact, we can also obtain the same S′ by applying only
∆2+S directly to S: S′ = S ⊕∆2+S.

Intuitively, for each base relation Ri in the source database
S, we obtain the new R′i by applying to Ri the delta relations
∆−Ri

and ∆+
Ri

from ∆S. Because all the tuples in ∆−Ri
are

not in Ri and all the tuples in ∆+
Ri

are in Ri, if we remove

some tuples from ∆−Ri
or ∆+

Ri
, then the result R′i has no

change. Only the tuples inserted into ∆−Ri
or ∆+

Ri
make some

changes in R′i. Therefore, S′ can be obtained by applying to
the original S the part ∆2+S of ∆2S, i.e., ∆S′ and ∆2+S
are interchangeable.

Proposition 5.1. Let S be a database and ∆S be a non-
contradictory delta of the database S such that S ⊕∆S = S.
Let ∆2S be a delta of ∆S, and the following equation holds:

S′ = S ⊕∆S′ = S ⊕∆2+S

where ∆S′ = ∆S ⊕∆2S and ∆2+S is the set of new tuples
inserted into ∆S by applying ∆2S.

Proposition 5.1 is the key observation for deriving from
putdelta an incremental Datalog program ∂put that com-
putes ∆S more efficiently (Figure 5). To derive ∂put, we
first incrementalize the Datalog program putdelta to obtain
Datalog rules that compute ∆2S from the change ∆V on
the view V . This step can be performed using classical incre-
mentalization methods for Datalog [28]. We then use ∆2+S
in ∆2S as an instance of ∆S for applying to the source S.

S V ′

∆S′ putdelta

(a) Original putdelta

S
V

∆V∆S′ ∂put

(b) Incremental ∂put

Figure 5: Incrementalization of putdelta.

Example 5.2 (Intuition). Given a source relation R
of arity 2 and a view relation V defined by a selection on R:
v(X,Y) :− r(X,Y), Y > 2. Consider the following update
strategy with a constraint that updates on V must satisfy the
selection condition Y > 2:

+r(X,Y) :− v(X,Y),¬r(X,Y).
m(X,Y) :− r(X,Y), Y > 2.
−r(X,Y) :− m(X,Y),¬v(X,Y).

Let ∆+
V /∆−V be the set of insertions/deletions into/from the

view V . We use two predicates +v and −v for ∆+
V and ∆−V ,

respectively. To generate delta rules for computing changes
of ±r when the view is changed by ∆+

V and ∆−V , we adopt the
incremental view maintenance techniques introduced in [28]
but in a way that derives rules for computing the insertion
set and deletion set for ±r separately. When ∆+

V and ∆−V are
disjoint, by applying distribution laws for the first Datalog
rule, we derive two rules that define the changes to ∆+

R, a
set of insertions ∆+(∆+

R) and a set of deletions ∆−(∆+
R), as

follows:

+(+r)(X,Y) :− +v(X,Y),¬r(X,Y).
−(+r)(X,Y) :− −v(X,Y),¬r(X,Y).

where predicates +(+r) and −(+r) correspond to ∆+(∆+
R)

and ∆−(∆+
R), respectively. Similarly, we derive rules defining

changes to ∆−R, ∆+(∆−R) and ∆−(∆−R), as follows:

+(−r)(X,Y) :− m(X,Y),−v(X,Y).
−(−r)(X,Y) :− m(X,Y),+v(X,Y).

Finally, as stated in Proposition 5.1, ∆2+S and ∆S′ are
interchangeable. Since ∆2+S contains ∆+(∆−R) and ∆+(∆+

R),
we can substitute −r and +r for the predicates +(−r) and
+(+r), respectively, to derive the program ∂put as follows:

m(X,Y) :− r(X,Y), Y > 2.
+r(X,Y) :− +v(X,Y),¬r(X,Y).
−r(X,Y) :− m(X,Y),−v(X,Y).

Because ∆+
V and ∆−V are generally much smaller than the

view V , the computation of ∆+(∆±R) in the derived rules is
more efficient than the computation of ∆±R in putdelta.

The incrementalization algorithm that transforms a put-
back program putdelta in nonrecursive Datalog with negation
and built-in predicates into an equivalent program ∂put is
as follows:

• Step 1 : We first stratify the Datalog program putdelta.
Let v, l1, . . . , lm,±r1, . . .± rn be a stratification [18] of
the Datalog program putdelta, which is an order for
the evaluation of IDB relations of putdelta.

• Step 2 : To derive rules for computing changes of each
IDB relation l1, . . . , lm when the view v is changed, we
adopt the incremental view maintenance techniques

734

introduced in [28] but in a way that derives rules for
computing each insertion set (+li) and deletion set
(−li) on IDB relation li (i ∈ [1,m]) separately (see the
full paper for details [55]).

• Step 3 : Similar to Step 2, we continue to derive rules for
computing changes of each IDB relation ±r1, . . .± rn
but only for insertions to these relations. The purpose is
to generate rules for computing ∆2+S, i.e., computing
the relations +(±r1), . . .+ (±rn).

• Step 4 : We finally substitute ±ri for +(±ri) (i ∈ [1, n])
in the derived rules to obtain the incremental program
∂put. This is because ∆2+S can be used as a instance of
∆S′ to apply to the source database S (Proposition 5.1).

As shown in Example 5.2, for a LVGN-Datalog program in
which the view predicate v occurs at most once in each delta
rule, the transformation from a putback program putdelta
to an incremental one ∂put is simplified to substituting +v
for positive predicate v and −v for negative predicate ¬v.

Lemma 5.2. Every valid LVGN-Datalog putback program
putdelta for a view relation V is equivalent to an incremental
program that is derived from putdelta by substituting delta
predicates of the view, +v and −v, for positive and negative
predicates of the view, v and ¬v, respectively.

6. IMPLEMENTATION AND EVALUATION

6.1 Implementation
We have implemented a prototype for our proposed val-

idation and incrementalization algorithms in Ocaml (The
full source code is available at https://github.com/dangtv/
BIRDS). For the case in which the view update strategy is
not in LVGN-Datalog, our framework feeds each check in our
validation algorithm to the Z3 automated theorem prover
[9]. As mentioned in Subsection 4.5, the validation algorithm
may not terminate, though it is sound for checking the pair of
view definition and update strategy program. We have also
integrated our framework with PostgreSQL [4], a commercial
RDBMS, by translating both the view definition and update
strategy in Datalog to equivalent SQL and trigger programs.

Our translation is conducted because nonrecursive Data-
log queries can be expressed in SQL [10]. We use a similar
approach to the translation from Datalog to SQL used in
[29]. The SQL view definition is of the form CREATE VIEW

<view-name> AS <sql-defining-query>. Meanwhile, the
implementation for the update strategy is achieved by gener-
ating a SQL program that defines triggers [52] and associated
trigger procedures on the view. These trigger procedures are
automatically invoked in response to view update requests,
which can be any SQL statements of INSERT/DELETE/UPDATE.
Our framework also supports combining multiple SQL state-
ments into one transaction to obtain a larger modification
request on the view. When there are view update requests,
the triggers on the view perform the following steps: (1) han-
dling update requests to the view to derive deltas of the view
(see [55] for details), (2) checking the constraints if applying
the deltas from step (1) to the view, and (3) computing each
delta relation and applying them to the source. The main
trigger is as follows:

CREATE TRIGGER <update-strategy>
INSTEAD OF INSERT OR UPDATE OR DELETE ON <view V >

BEGIN
-- Deriving changes on the view

Derive ∆−V and ∆+
V from view update requests

-- Checking constraints

FOR EACH <constraint ∀ ~X,Φi(~X)→ ⊥> DO

IF EXISTS (<SQL-query-of Φi(~X)>) THEN
RAISE "Invalid view updates";

END IF;
END FOR;
-- Calculating and applying delta relations
FOR EACH <source relation Ri> DO

CREATE TEMP TABLE ∆+
Ri

AS <sql-query-of +ri>;

CREATE TEMP TABLE ∆−Ri
AS <sql-query-of −ri>;

DELETE FROM Ri WHERE ROW (Ri) IN ∆−Ri
;

INSERT INTO Ri SELECT * FROM ∆+
Ri
;

END FOR;
END;

6.2 Evaluation
To evaluate our approach, we conduct two experiments.

The goal of the first experiment is to investigate the prac-
tical relevance of our proposed method in describing view
update strategies and to evaluate the performance of our
framework in checking these described update strategies. In
the second experiment, we study the efficiency of our incre-
mentalization algorithm when implementing updatable views
in a commercial RDBMS.

6.2.1 Benchmarks
To perform the evaluation, we collect benchmarks of views

and update strategies from two different sources:

• View update examples and exercises collected from the
literature: textbooks [52, 26], online tutorials [2, 3, 6,
5, 8] (triggers, sharded tables, and so forth), papers
[15, 33] and our case study in Section 3.

• View update issues asked on online question & answer
sites: Database Administrators Stack Exchange [1] and
Stack Overflow Public Q&A [7].

All experiments on these benchmarks are run using Ubuntu
server LTS 16.04 and PostgreSQL 9.6 on a computer with 2
CPUs and 4 GB RAM.

6.2.2 Results
As mentioned previously, we perform the first experiment

to investigate which users’ update strategies are expressible
and validatable by our approach. In our benchmarks, the col-
lected view update strategies are either implemented in SQL
triggers or naturally described by users/systems. We man-
ually use nonrecursive Datalog with negation and built-in
predicates (NR-Datalog¬,=,<) to specify these update strate-
gies as putdelta programs5 and input them with the expected
view definition to our framework. Table 1 shows the valida-
tion results. In terms of expressiveness, NR-Datalog¬,=,<

can be used to formalize most of the view update strategies
with many common integrity constraints except one update
strategy for the aggregation view emp view (#23). This is
because we have not considered aggregation in Datalog. In-
terestingly, LVGN-Datalog can also express many update

5For the update strategies implemented in SQL triggers,
rewriting them into putdelta programs can be automated.

735

https://github.com/dangtv/BIRDS
https://github.com/dangtv/BIRDS

Table 1: Validation results. S, P, SJ, IJ, LJ, RJ, FJ, U, D and A stand for selection, projection, semi join,
inner join, left join, right join, full join, union, set difference and aggregation, respectively. PK, FK, ID, and
C stand for primary key, foreign key, inclusion dependency, and domain constraint, respectively.

ID View
Operator
in view

definition

Program
size

(LOC)
Constraint

LVGN-
Datalog

NR-
Datalog¬,=,<

Validation
Time (s)

Compiled
SQL

(Byte)

L
it

er
a
tu

re

1 car master P 4 X X 1.74 8447
2 goodstudents P,S 5 C X X 1.86 9182
3 luxuryitems S 5 C X X 1.77 8938
4 usa city P,S 5 C X X 1.77 9059
5 ced D 6 X X 1.72 8847
6 residents1962 S 6 C X X 1.73 9699
7 employees SJ,P 6 ID X X 1.76 9358
8 researchers SJ,S,P 6 X X 1.79 9058
9 retired SJ,P,D 6 X X 1.76 9048

10 paramountmovies P,S 7 X X 1.81 9721
11 officeinfo P 7 X X 1.8 9963
12 vw brands U,P 8 C X X 1.78 10932
13 tracks2 P 8 X X 1.81 9824
14 residents U 10 X X 1.77 13504
15 tracks3 S 11 C X X 1.88 14430
16 tracks1 IJ 12 PK 5 X 1.92 95606
17 bstudents IJ,P,S 13 PK 5 X 2.13 22431
18 all cars IJ 13 PK, FK 5 X 1.89 25013
19 measurement U 13 C, ID X X 1.78 12624
20 newpc IJ,P,S 15 JD 5 X 2.06 44665
21 activestudents IJ,P,S 19 PK, JD 5 X 2.19 31766
22 vw customers IJ,P 19 PK, FK, JD 5 X 2.92 26286
23 emp view IJ,P,A - 5 5 - -

Q
&

A
si

te
s

24 ukaz lok S 6 C X X 1.79 10104
25 message U 8 C X X 1.8 15770
26 outstanding task P, SJ 10 ID, C X X 10.07 18253
27 poi view P,IJ 12 PK 5 X 2.1 24741
28 phonelist U 14 C X X 1.94 16553
29 products LJ 16 PK, FK, C 5 X 3.6 58394
30 koncerty IJ 17 PK 5 X 1.93 29147
31 purchaseview P,IJ 19 PK, FK, JD 5 X 1.89 27262
32 vehicle view P,IJ 20 PK, FK, JD 5 X 2.03 25226

strategies for many views defined by selection, projection,
union, set difference and semi join. Inner join views such as
all car (#18) are not expressible in LVGN-Datalog because
the definition of inner join is not in guarded negation Dat-
alog6. LVGN-Datalog is also limited in expressing primary
key (functional dependency) or join dependency because
these dependencies are not negation guarded7. Even for
the cases that LVGN-Datalog cannot express, thus far, all
the well-behavedness checks in our experiment terminate
after an acceptable time (approximately a few seconds). The
validation time almost increases with the number of rules
in the Datalog programs (program size), but this time also
depends on the complexity of the source and view schema.
For example, the update strategy of message (#25) has the
longest validation time because this view and its source rela-
tions have many more attributes than other views. Similarly,
the size of the generated SQL program is larger for the more
complex Datalog update strategies.

We perform the second experiment to evaluate the effi-
ciency of the incrementalization algorithm in optimizing view
update strategies. Specifically, we compare the performance

6An example of inner join is v(X,Y, Z) :− s1(X,Y), s2(Y,Z),
which is not a guarded negation Datalog rule.
7Primary key A on relation r(A,B) is expressed by the
rule ⊥ :− r(A,B1), r(A,B2),¬B1 = B2, where the equality
B1 = B2 is not guarded.

of the incrementalized update strategy with the original one
when they are translated into SQL trigger programs and run
in PostgreSQL database. For this experiment, we select some
typical views in our benchmarks including: luxuryitems (Se-
lection), officeinfo (Projection), outstanding task (Join)
and vw brands (Union). For each view, we randomly gener-
ate data for the base tables and measure the running time of
the view update strategy against the base table size (number
of tuples) when there is an SQL statement that attempts to
modify the view. Figure 6 shows the comparison between
the original view update strategies (black lines) and the in-
crementalized ones (blue lines). It is clear that as the size
of the base tables increases, our incrementalization signifi-
cantly reduces the running time to a constant value, thereby
improving the performance of the view update strategies.

7. RELATED WORK
The view update problem is a classical problem that has a

long history in database research [22, 20, 21, 11, 34, 48, 33,
40, 29, 16, 36, 44, 45, 46, 42, 41]. It was realized very early
that a database update that reflects a view update may not
always exist, and even if it does exist, it may not be unique
[20, 21]. To solve the ambiguity of translating view updates
to updates on base relations, the concept of view complement
is proposed to determine the unique update translation of
a view [11, 35, 43, 41]. Keller [34] enumerates all view

736

0 1 2 3

Base table size (x106)

0

5

10

15

20

25

T
im

e
 (

s
)

luxuryitems

incremental luxuryitems

30

(a) luxuryitems

0 1 2 3

Base table size (x106)

0

10

20

30

40

T
im

e
 (

s
)

officeinfo

incremental officeinfo

50

(b) officeinfo

0 1 2 3

Base table size (x106)

0

10

20

30

40

50

T
im

e
 (

s
)

outstanding_task

inc outstanding_task

60

(c) outstanding task

0 1 2 3

Base table size (x106)

0

20

40

60

80

T
im

e
 (

s
)

vw_brands

incremental vw_brands

(d) vw brands

Figure 6: View updating time.

update translations and chooses the one through interaction
with database administrators, thereby solving the ambiguity
problem. Some other researchers allow users to choose the
one through an interaction with the user at view definition
time [34, 42]. Some other approaches restrict the syntax
for defining views [21] that allow for unambiguous update
propagation. Recently, intention-based approaches have been
proposed to find relevant update policies for several types of
views [44, 45, 46]. In another aspect, because some updates
on views are not translatable, some works permit side effects
of the view update translator [48] or restrict the kind of
updates that can be performed on a view [33]. Some other
works use auxiliary tables to store the updates, which cannot
be applied to the underlying database [40, 29]. The authors
of [16, 36] studied approximation algorithms to minimize
the side effects for propagating deletion from the view to
the source database. However, these existing approaches can
only solve a very restricted class of view updates.

By generalizing view update as a synchronization problem
between two data structures, considerable research effort
has been devoted to bidirectional programming [19] for this
problem not only in relational databases [15, 31] but also
for other data types, such tree [25, 47], graph [30] or string
data [14]. The prior work by Bohannon et al. [15] employs
bidirectional transformation for view update in relational
databases. The authors propose a bidirectional language,
called relational lenses, by enriching the SQL expression for
defining views of projection, selection, and join. The lan-
guage guarantees that every expression can be interpreted
forwardly as a view definition and backwardly as an update
strategy such that these backward and forward transforma-
tions are well-behaved. A recent work [31] has shown that
incrementalization is necessary for relational lenses to make
this language practical in RDBMSs. However, this language

is less expressive than general relational algebra; hence, not
every updatable view can be written. Moreover, relational
lenses still limit programmers from control over the update
strategy.

Melnik et al. [49] propose a novel declarative mapping
language for specifying the relationship between application
entity views and relational databases, which is compiled into
bidirectional views for the view update translation. The
user-specified mappings are validated to guarantee the gen-
erated bidirectional views to roundtrip. Furthermore, the
authors introduce the concept of merge views that together
with the bidirectional views contribute to determining com-
plete update strategies, thereby solving the ambiguity of
view updates. Though, merge views are exclusively used
and validating the behavior of this operation with respect
to the roundtripping criterion is not explicitly considered.
In comparison to [49], where the proposed mapping lan-
guage is restricted to selection-projection views (no joins),
our approach focuses on a specification language, which is
in lower level but more expressive that more view update
strategies can be expressed. Moreover, the full behaviour
of the specified view update strategies is validated by our
approach.

Our work was greatly inspired by the putback-based ap-
proach in bidirectional programming [32, 50, 51, 24, 38, 37].
The key observation in this approach is that thanks to well-
behavedness, putback transformation uniquely determines
the get one. In contrast to the other approaches, the putback-
based approach provides languages that allow programmers
to write their intended update strategies more freely and
derive the get behavior from their putback program. A
typical language of this putback-based approach is BiGUL
[38, 37], which supports programming putback functions
declaratively while automatically deriving the corresponding
unique forward transformation. Based on BiGUL, Zan et
al. [56] design a putback-based Haskell library for bidirec-
tional transformations on relations. However, this language
is designed for Haskell data structures; hence, it cannot run
directly in database environments. The transformation from
tables in relational databases to data structures in Haskell
would reduce the performance of view updates. In contrast,
we propose adopting the Datalog language for implementing
view update strategies at the logical level, which will be op-
timized and translated to SQL statements to run efficiently
inside an SQL database system.

8. CONCLUSIONS
In this paper, we have introduced a novel approach for

relational view update in which programmers are given full
control over deciding and implementing their view update
strategies. By using nonrecursive Datalog with extensions as
the language for describing view update strategies, we pro-
pose algorithms for validating user-written update strategies
and optimizing update strategies before compiling them into
SQL scripts to run effectively in RDBMSs. The experimental
results show the performance of our framework in terms of
both validation time and running time.

Acknowledgments We would like to thank the anony-
mous reviewers for their insightful comments on this work.
We would also like to thank the BISCUITS project mem-
bers for useful discussions. This work is partially supported
by the Japan Society for the Promotion of Science (JSPS)
Grant-in-Aid for Scientific Research (S) No. 17H06099.

737

9. REFERENCES
[1] Database Administrators Stack Exchange.

https://dba.stackexchange.com.

[2] MySQL Tutorial. http://www.mysqltutorial.org.

[3] Oracle Tutorial. https://www.oracletutorial.com.

[4] PostgreSQL. https://www.postgresql.org.

[5] PostgreSQL 9.6.15 Documentation.
https://www.postgresql.org/docs/9.6/.

[6] PostgreSQL Tutorial.
http://www.postgresqltutorial.com.

[7] Questions - Stack Overflow.
https://stackoverflow.com/questions.

[8] SQL Server Tutorial.
http://www.sqlservertutorial.net.

[9] Z3: Theorem Prover. https://z3prover.github.io.

[10] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[11] F. Bancilhon and N. Spyratos. Update semantics of
relational views. ACM Trans. Database Syst.,
6(4):557–575, Dec. 1981.

[12] V. Bárány, B. T. Cate, and L. Segoufin. Guarded
negation. J. ACM, 62(3):22:1–22:26, June 2015.

[13] V. Bárány, B. ten Cate, and M. Otto. Queries with
guarded negation. PVLDB, 5(11):1328–1339, 2012.

[14] D. M. Barbosa, J. Cretin, N. Foster, M. Greenberg,
and B. C. Pierce. Matching lenses: Alignment and view
update. In Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming,
pages 193–204, 2010.

[15] A. Bohannon, B. C. Pierce, and J. A. Vaughan.
Relational lenses: A language for updatable views. In
Proceedings of the Twenty-fifth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pages 338–347, 2006.

[16] P. Buneman, S. Khanna, and W.-C. Tan. On
propagation of deletions and annotations through
views. In Proceedings of the Twenty-first ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pages 150–158, 2002.

[17] A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. A general
datalog-based framework for tractable query answering
over ontologies. Journal of Web Semantics, 14:57 – 83,
2012.

[18] S. Ceri, G. Gottlob, and L. Tanca. What you always
wanted to know about datalog (and never dared to
ask). IEEE Transactions on Knowledge and Data
Engineering, 1(1):146–166, March 1989.

[19] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel,
A. Schürr, and J. F. Terwilliger. Bidirectional
transformations: A cross-discipline perspective. In
Theory and Practice of Model Transformations, pages
260–283. Springer Berlin Heidelberg, 2009.

[20] U. Dayal and P. A. Bernstein. On the updatability of
relational views. In Proceedings of the Fourth
International Conference on Very Large Data Bases,
pages 368–377, 1978.

[21] U. Dayal and P. A. Bernstein. On the correct
translation of update operations on relational views.
ACM Trans. Database Syst., 7(3):381–416, Sept. 1982.

[22] R. Fagin, J. D. Ullman, and M. Y. Vardi. On the
semantics of updates in databases. In Proceedings of

the 2nd ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, pages 352–365, 1983.

[23] S. Fischer, Z. Hu, and H. Pacheco. A clear picture of
lens laws. In International Conference on Mathematics
of Program Construction, pages 215–223, 2015.

[24] S. Fischer, Z. Hu, and H. Pacheco. The essence of
bidirectional programming. Science China Information
Sciences, 58(5):1–21, May 2015.

[25] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C.
Pierce, and A. Schmitt. Combinators for bidirectional
tree transformations: A linguistic approach to the
view-update problem. ACM Trans. Program. Lang.
Syst., 29(3), May 2007.

[26] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database Systems: The Complete Book. Prentice Hall
Press, 2 edition, 2008.

[27] T. J. Green, D. Olteanu, and G. Washburn. Live
programming in the logicblox system: A metalogiql
approach. PVLDB, 8(12):1782–1791, 2015.

[28] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In Proceedings of the
1993 ACM SIGMOD International Conference on
Management of Data, pages 157–166, 1993.

[29] K. Herrmann, H. Voigt, A. Behrend, J. Rausch, and
W. Lehner. Living in parallel realities: Co-existing
schema versions with a bidirectional database evolution
language. In Proceedings of the 2017 ACM
International Conference on Management of Data,
pages 1101–1116, 2017.

[30] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and
K. Nakano. Bidirectionalizing graph transformations.
In Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming,
pages 205–216, 2010.

[31] R. Horn, R. Perera, and J. Cheney. Incremental
relational lenses. Proc. ACM Program. Lang.,
2(ICFP):74:1–74:30, July 2018.

[32] Z. Hu, H. Pacheco, and S. Fischer. Validity checking of
putback transformations in bidirectional programming.
In FM 2014: Formal Methods, pages 1–15. Springer
International Publishing, 2014.

[33] A. M. Keller. Algorithms for translating view updates
to database updates for views involving selections,
projections, and joins. In Proceedings of the Fourth
ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems, pages 154–163, 1985.

[34] A. M. Keller. Choosing a view update translator by
dialog at view definition time. In Proceedings of the
12th International Conference on Very Large Data
Bases, pages 467–474, 1986.

[35] A. M. Keller and J. D. Ullman. On complementary and
independent mappings on databases. In Proceedings of
the 1984 ACM SIGMOD International Conference on
Management of Data, pages 143–148, 1984.

[36] B. Kimelfeld, J. Vondrák, and R. Williams. Maximizing
conjunctive views in deletion propagation. ACM Trans.
Database Syst., 37(4):24:1–24:37, Dec. 2012.

[37] H.-S. Ko and Z. Hu. An axiomatic basis for
bidirectional programming. Proc. ACM Program. Lang.,
2(POPL):41:1–41:29, Dec. 2017.

[38] H.-S. Ko, T. Zan, and Z. Hu. Bigul: A formally verified
core language for putback-based bidirectional

738

https://dba.stackexchange.com
http://www.mysqltutorial.org
https://www.oracletutorial.com
https://www.postgresql.org
https://www.postgresql.org/docs/9.6/
http://www.postgresqltutorial.com
https://stackoverflow.com/questions
http://www.sqlservertutorial.net
https://z3prover.github.io

programming. In Proceedings of the 2016 ACM
SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, pages 61–72, 2016.

[39] C. Koch. Incremental query evaluation in a ring of
databases. In Proceedings of the Twenty-ninth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pages 87–98, 2010.

[40] Y. Kotidis, D. Srivastava, and Y. Velegrakis. Updates
through views: A new hope. In 22nd International
Conference on Data Engineering (ICDE’06), pages 2–2,
April 2006.

[41] R. Langerak. View updates in relational databases with
an independent scheme. ACM Trans. Database Syst.,
15(1):40–66, Mar. 1990.

[42] J. A. Larson and A. P. Sheth. Updating relational views
using knowledge at view definition and view update
time. Information Systems, 16(2):145 – 168, 1991.

[43] J. Lechtenbörger and G. Vossen. On the computation
of relational view complements. ACM Trans. Database
Syst., 28(2):175–208, June 2003.

[44] Y. Masunaga. A relational database view update
translation mechanism. In Proceedings of the 10th
International Conference on Very Large Data Bases,
pages 309–320, 1984.

[45] Y. Masunaga. An intention-based approach to the
updatability of views in relational databases. In
Proceedings of the 11th International Conference on
Ubiquitous Information Management and
Communication, pages 13:1–13:8, 2017.

[46] Y. Masunaga, Y. Nagata, and T. Ishii. Extending the
view updatability of relational databases from set
semantics to bag semantics and its implementation on
postgresql. In Proceedings of the 12th International
Conference on Ubiquitous Information Management
and Communication, pages 19:1–19:8, 2018.

[47] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and
M. Takeichi. Bidirectionalization transformation based
on automatic derivation of view complement functions.
In Proceedings of the 12th ACM SIGPLAN

International Conference on Functional Programming,
pages 47–58, 2007.

[48] C. B. Medeiros and F. W. Tompa. Understanding the
implications of view update policies. Algorithmica,
1(1):337–360, Nov 1986.

[49] S. Melnik, A. Adya, and P. A. Bernstein. Compiling
mappings to bridge applications and databases. ACM
Trans. Database Syst., 33(4):22:1–22:50, Dec. 2008.

[50] H. Pacheco, Z. Hu, and S. Fischer. Monadic
combinators for putback style bidirectional
programming. In Proceedings of the ACM SIGPLAN
2014 Workshop on Partial Evaluation and Program
Manipulation, pages 39–50, 2014.

[51] H. Pacheco, T. Zan, and Z. Hu. Biflux: A bidirectional
functional update language for xml. In Proceedings of
the 16th International Symposium on Principles and
Practice of Declarative Programming, pages 147–158,
2014.

[52] R. Ramakrishnan and J. Gehrke. Database
Management Systems. McGraw-Hill, Inc., 2nd edition,
1999.

[53] F. Sáenz-Pérez, R. Caballero, and Y. Garćıa-Ruiz. A
deductive database with datalog and sql query
languages. In Asian Symposium on Programming
Languages and Systems, pages 66–73, 2011.

[54] O. Shmueli. Equivalence of datalog queries is
undecidable. The Journal of Logic Programming,
15(3):231 – 241, 1993.

[55] V.-D. Tran, H. Kato, and Z. Hu. Programmable view
update strategies on relations. CoRR, abs/1911.05921,
2020.

[56] T. Zan, L. Liu, H. Ko, and Z. Hu. Brul: A
putback-based bidirectional transformation library for
updatable views. In ETAPS, pages 77–89, 2016.

[57] Z. Zhu, Y. Zhang, H.-S. Ko, P. Martins, J. a. Saraiva,
and Z. Hu. Parsing and reflective printing,
bidirectionally. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Software
Language Engineering, pages 2–14, 2016.

739

	Introduction
	Preliminaries
	Datalog and Relational Databases
	Bidirectional Transformations

	The Language for View Update Strategies
	Formulating Update Strategies as Queries Producing Delta Relations
	LVGN-Datalog
	Nonrecursive GN-Datalog with Equalities, Constants, and Comparisons
	Linear View
	Integrity Constraints
	Properties

	A Case Study

	Validation Algorithm
	Overview
	Well-definedness
	Existence of A View Definition Satisfying GetPut
	Checking the existence of a steady-state view
	Constructing a view definition

	The PutGet Property
	Soundness and Completeness

	Incrementalization
	Implementation and Evaluation
	Implementation
	Evaluation
	Benchmarks
	Results

	Related work
	Conclusions
	References

