
ParPaRaw: Massively Parallel Parsing of
Delimiter-Separated Raw Data

Elias Stehle
Technical University of Munich (TUM)

stehle@in.tum.de

Hans-Arno Jacobsen
Technical University of Munich (TUM)

jacobsen@in.tum.de

ABSTRACT
Parsing is essential for a wide range of use cases, such as
stream processing, bulk loading, and in-situ querying of raw
data. Yet, the compute-intense step often constitutes a ma-
jor bottleneck in the data ingestion pipeline, since parsing of
inputs that require more involved parsing rules is challeng-
ing to parallelise. This work proposes a massively parallel
algorithm for parsing delimiter-separated data formats on
GPUs. Other than the state-of-the-art, the proposed ap-
proach does not require an initial sequential pass over the
input to determine a thread’s parsing context. That is, how
a thread, beginning somewhere in the middle of the input,
should interpret a certain symbol (e.g., whether to interpret
a comma as a delimiter or as part of a larger string enclosed
in double-quotes). Instead of tailoring the approach to a
single format, we are able to perform a massively parallel
finite state machine (FSM) simulation, which is more flexi-
ble and powerful, supporting more expressive parsing rules
with general applicability. Achieving a parsing rate of as
much as 14.2 GB/s, our experimental evaluation on a GPU
with 3 584 cores shows that the presented approach is able
to scale to thousands of cores and beyond. With an end-
to-end streaming approach, we are able to exploit the full-
duplex capabilities of the PCIe bus and hide latency from
data transfers. Considering the end-to-end performance, the
algorithm parses 4.8 GB in as little as 0.44 seconds, includ-
ing data transfers.

PVLDB Reference Format:
Elias Stehle, and Hans-Arno Jacobsen. ParPaRaw: Massively
Parallel Parsing of Delimiter-Separated Raw Data. PVLDB, 13(5):
616-628, 2020.
DOI: https://doi.org/10.14778/3377369.3377372

1. INTRODUCTION
Massive amounts of data from a wide range of data sources

are made available using delimiter-separated formats, such
as comma-separated values (CSV), and various log file for-
mats like the Common Log Format and the Extended Log

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 5
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3377369.3377372

Format [37, 30, 19]. The relevancy of the CSV format, for
instance, is highlighted by the plethora of public datasets,
some in excess of hundreds of gigabytes in size, that are pro-
vided using the CSV format [43, 24]. Log files are another
origin of data in a delimiter-separated format that consti-
tute an important source for many analytical workloads. For
instance, Sumo Logic, a cloud-based log management and
analytics service, recently announced that it analyses more
than 100 petabytes of data and 500 trillion records daily
[42]. With an ever increasing amount of data, there is also a
growing need to provide and maintain rapid access to data
in delimiter-separated formats. This is also emphasised by
ongoing research on in-situ processing of raw data and sim-
ilar efforts that aim to lower the time to insight [11, 35, 6,
18, 25, 46, 7, 12, 26, 22, 2, 21].

While systems face an ever increasing amount of data that
needs to be ingested and analysed, processors are seeing
only moderate improvements in sequential processing per-
formance. In order to continue the trend of providing expo-
nentially growing computational throughput, manufactur-
ers have therefore progressively turned towards scaling the
number of cores as well as extending single instruction, mul-
tiple data (SIMD) capabilities. Graphics Processing Units
(GPUs), which have focused on parallelism ever since, now
integrate as much as 5 120 cores on a single chip [1]. Further,
CPUs comprising multiple chiplets, as well as research focus-
ing on package-level integration of multiple GPU modules,
give an indication that hardware parallelism moves even be-
yond a single chip, scaling to multiple inherently parallel
chiplets and GPU modules, respectively, on a package [5].

In order to leverage the current degree of hardware paral-
lelism and benefit from the ongoing trend of an ever growing
number of cores, algorithms have to be designed for massive
scalability from the ground up [23]. Parsing, as a fundamen-
tal and compute-intense step in the data ingestion pipeline
is no exception to this.

Parallel parsing of non-trivial delimiter-separated data
formats, however, poses a great challenge, as symbols have
to be interpreted differently, depending on the context they
appear in. For the CSV format, for instance, RFC 4180 spec-
ifies that delimiters (i.e., commas and line breaks), which
appear within a field that is enclosed in double-quotes, have
to be interpreted as part of the field, instead of being inter-
preted as actual field or record delimiters [37]. In addition,
many formats use a symbol to indicate comments or direc-
tives (e.g., ’#’), following which, all symbols until the end
of line have to be interpreted differently, yet again. Since
the context depends on all symbols preceding the symbol

616

Figure 1: Challenges for parallel parsing: lacking
context leads to misinterpretation

currently being interpreted, it is impossible for a thread to
simply begin parsing somewhere in the middle of the input.
Hence, the input cannot simply be split into multiple chunks
that are processed independently.

This is exemplified in Figure 1, where thread i begins pars-
ing in the middle of the input. The thread is not aware of
the double-quote preceding its chunk that indicates the be-
ginning of a larger string, changing the parsing context. As
a result, the thread misinterprets subsequent commas and
line breaks as delimiters, while they were actually supposed
to be considered as part of the field’s string. A similar chal-
lenge arises for determining the records and columns that
a chunk of the input belongs to, which, again, depends on
all the input preceding the current chunk being interpreted.
Finally, threads have to coordinate and possibly collaborate
in order to assemble field values that span multiple threads.
This may also involve converting symbols to a binary type
(e.g., int, float).

Previous work on parallel loading of delimiter-separated
data formats has addressed the challenge of determining
a thread’s parsing context by either performing an initial
sequential pass over the input or by completely dropping
support for inputs with different parsing contexts, such as
inputs containing enclosing symbols (e.g., double-quotes),
comments, or directives [33, 3]. Another alternative is to
tailor the approach to one specific format and exploit the
format-specific characteristics, which, however, limits the
approach’s flexibility and applicability [29, 28, 39, 36, 16].
One such exploit for a simple CSV format, for instance, is
to count the number of double-quotes, inferring the begin-
ning and end of enclosed strings depending on whether the
count is odd or even, respectively. More recently, Ge et
al. presented an approach for distributed CSV parsing [16].
They aim to circumvent an initial sequential pass by ex-
ploiting CSV-specific characteristics to speculate about the
parsing context. While such a tailored approach works well
with CSV as long as it strictly complies with the format ex-
pected by the algorithm, it requires designing a completely
new approach from the ground up once the input format de-
viates. Parsing other delimiter-separated formats, such as
log files and their multifaceted formats, poses a challenge for
an approach that is tailored to CSVs. Another important
characteristic of state-of-the-art approaches is that they are
designed for coarse-grained parallelism of distributed and
multi-core systems, which renders them infeasible for the
fine-grained parallelism required by GPUs [33, 16].

While constraining the input limits the applicability and
flexibility, performing a sequential pass over the input con-
tributes a substantial portion of sequential work that lim-
its scalability and, following Amdahl’s law, precludes any
speed-ups beyond a certain point. Given the ongoing trend

of increasing hardware parallelism on the one hand and the
diversity of data sources that today’s OLAP systems are
confronted with on the other hand, addressing these short-
comings is a viable endeavour.

We present ParPaRaw, an algorithm for massively parallel
parsing of delimiter-separated raw data on GPUs that over-
comes these scalability issues without compromising appli-
cability or constraining supported input formats. ParPaRaw

is designed from the ground up to scale linearly with the
number of cores, providing robust performance despite the
huge diversity of inputs it is confronted with, by employ-
ing a data parallel approach with fine-grained parallelism.
ParPaRaw is designed to leverage the specifics of GPUs. It
enables parallelism even beyond the granularity of a sin-
gle record and ensures load balancing by splitting the input
into small chunks of equal size that threads can process in-
dependently. Since using a data parallel approach raises the
aforementioned challenges, we present an efficient solution
for correctly identifying the parsing context of a thread’s
chunk, as well as its records and columns. In order to pro-
vide a flexible approach that is applicable to a wide range of
inputs, we allow specifying the parsing rules in the form of
a deterministic finite automaton (DFA). In order to exploit
the full-duplex capabilities of the Peripheral Component In-
terconnect Express (PCIe) bus and lower the end-to-end la-
tency, we present a streaming approach, which parses data
on the GPU, while simultaneously transferring raw data to,
and parsed data from the GPU.

With a generally applicable approach that does not im-
pose constraints on the input, we are able to parse as much
as 14.2 GB/s on the GPU. For end-to-end workloads, includ-
ing data transfers via the PCIe bus, ParPaRaw parses 4.8 GB
from the yelp reviews dataset in as little as 0.44 seconds.
In summary, the contributions of this paper are four-fold.

1. We present an approach to massively parallel parsing
of delimiter-separated data formats that is designed for
scalability without sacrificing applicability and flexibility.
The approach develops a scalable, data parallel algorithm
that addresses three challenges: a) determining a thread’s
parsing context without requiring a prior sequential pass,
b) determining the records and columns that a thread’s
symbols belong to, and c) efficiently coordinating threads
to collaboratively generate field values.

2. We address the major challenges that arise when mapping
our algorithm to GPUs, which provide only very limited
addressable on-chip memory (tens of KB) and, due to
their limited register file size, require lightweight threads
with only very limited context.

3. We show how to exploit the full-duplex capabilities of
the PCIe bus with a streaming extension. This lowers
the end-to-end latency and allows parsing data on the
GPU, while simultaneously transferring raw data to, and
returning parsed data from the GPU.

4. Our experimental evaluation highlights that, given to-
day’s level of hardware parallelism, it is worth to design
algorithms for scalability from the ground up, even if it
implies a significant increase in the overall work being
performed.

This paper is organised as follows. Section 2 gives an
overview of related approaches. Section 3 presents the al-
gorithm, its building blocks, and the processing steps. Sec-
tion 4 introduces optimisations, extensions, and implemen-
tation details. Section 5 evaluates the presented approach.

617

2. RELATED WORK
Even though parsing is fundamental for in-situ processing

of raw files and constitutes a major bottleneck in the data
ingestion pipeline, there is only limited work on accelerating
the process. This is also highlighted by Dziedzic et al., who
show that modern Database Management Systems (DBMSs)
are unable to saturate available I/O bandwidth [14]. Using a
variety of hardware configurations and datasets, Dziedzic et
al. provide an extensive analysis of the data loading process
for multiple state-of-the-art DBMSs [14]. Their evaluation
reveals that data loading is CPU-bound [14].

A notable advancement for parsing delimiter-separated
formats is made by Mühlbauer et al. who present improve-
ments along two lines [33]. On the one hand, they introduce
optimisations to reduce the number of control flow branches
by utilising SIMD instructions for the identification of delim-
iters. On the other hand, they present an approach for par-
allel parsing. Their approach splits the input into multiple
chunks of equal size that are processed in parallel. Threads
start parsing their chunk only from an actual record bound-
ary onward, i.e., the first record delimiter in their chunk.
Threads continue parsing beyond their chunk until encoun-
tering the end of their last record. This ensures that threads
always process complete records, yet makes the approach
sensible to the chosen chunk size and the input’s record
sizes. For instance, the majority of threads, which work on
a record that spans multiple chunks, unsuccessfully search
for the beginning of their first record, without performing
actual parsing work. Another shortcoming is that threads
are not aware of the actual parsing context of their chunk.
That is, whether to interpret a field or record delimiter as
an actual delimiter or as part of a field’s value. To address
this, they introduce a safe mode for formats that may con-
tain more involved parsing rules. In safe mode a sequential
pass over the input is performed, which keeps track of the
parsing context, such as quotation scopes, splitting chunks
only at actual record delimiters. Safe mode, however, intro-
duces a considerable portion of serial work, which, according
to Amdahl’s law, precludes any speedup beyond a certain
point. By exploiting CSV-specific characteristics, Ge et al.,
who look at distributed CSV parsing, are able to bypass
that initial pass by speculating about the parsing context
[16]. Similar to the approach of Mühlbauer et al., Ge et
al. require coarse-grained parallelism (distributed parsing),
as threads begin parsing only from a chunk’s first record
boundary onward. As a result their approach is also sensible
to the chosen chunk size and the input’s record sizes. The
authors highlight that the performance of their approach de-
grades with decreasing chunk sizes, once a chunk approaches
the size of a record [16]. Moreover, both solutions do not
provide parallelism beyond the granularity of an individual
record, which makes them susceptible to load-balancing is-
sues, particularly for small chunks and large, varying record
sizes. These circumstances render the two approaches infea-
sible for the fine-grained parallelism required by GPUs [33,
16].

Apart from work addressing delimiter-separated formats,
multiple approaches tailored to processing JSON have been
proposed. Li et al. present Mison, a JSON parser that
supports projection and filter pushdown by speculatively
predicting logical locations of queried fields based on previ-
ously seen patterns [29]. Mison deviates from the classic ap-
proach of using an FSM while parsing, which allows it to use

SIMD vectorisation to identify structural characters, such as
double-quotes, braces, and colons. Whenever a structural
character is encountered, its occurrence is recorded in the
respective bitmap index (e.g., the double-quotes bitmap in-
dex). The beginning and end of a string enclosed in double-
quotes can be inferred from looking at the odd and even
number of set bits, respectively. While this enables SIMD
vectorisation and avoids branch divergence, circumventing
the use of an FSM and, hence, tailoring the approach specifi-
cally to the JSON format, limits the approach’s applicability
to formats with more involved parsing rules. Bonetta et al.
introduce FAD.js, a runtime system for processing JSON
objects that is based on speculative JIT compilation and se-
lective access to data [9]. Palkar et al. propose a technique
referred to as raw filtering, which is applied on the data’s
raw bytestream before parsing [35]. Langdale et al. recently
introduced simdjson, a standard-compliant, highly-efficient
JSON parser that makes use of SIMD instructions. Simi-
lar to Mison, they focus on the JSON format, which allows
them to avoid the use of an FSM while parsing [28].

The parallel prefix scan is a fundamental algorithm of
ParPaRaw and a frequently recurring building block for data
parallel algorithms. Over the years many approaches for a
parallel prefix scan have been proposed [31, 44, 17, 32, 13, 8,
20, 10, 27, 40]. For a given binary reduction operator (e.g.,
addition), it takes an array of input elements and returns an
array, where the i-th output element is computed by apply-
ing the reduction operator to all input elements up to and
including the i-th element [31]: yi =

⊕i
k=0 xk

A prefix scan that excludes the i-th input element is called
exclusive prefix scan. The prefix scan using addition is called
prefix sum. The following table shows an example of the
inclusive and exclusive prefix sum, respectively:

xi 3 5 1 2 9 7 4 2

yi (incl.) 3 8 9 11 20 27 31 33

yi (excl.) 0 3 8 9 11 20 27 31

It is worth noting that all efficient parallel approaches re-
quire the binary operator to be associative. The prefix scan
used in ParPaRaw builds on the more recent work from Mer-
rill et al., who propose a single-pass prefix scan [31]. Using
the parallel prefix scan has also been considered for parallel
parsing of regular languages. In fact, the theory for parallel
parsing dates back as long as four decades. In particular,
Fischer presents an algorithm that instantiates one FSM for
each state defined by the FSM [15]. Hillis et al. illustrate
the use of the parallel prefix scan computation by presenting
an algorithm that is similar to earlier work from Fischer [20].
Even though the theory dates back several decades, it be-
came feasible only more recently with modern hardware, i.e.,
GPUs with thousands of cores, that would set off the cost
of running multiple FSM instances. We believe that this is
the main reason why, to the best of our knowledge, this idea
has not been considered for identifying the parsing context
when parsing delimiter-separated formats on GPUs. Our
approach reconsiders the idea behind the work from Fischer
and Hillis et al. to address the sub-problem of identifying
the parsing context. For identifying the parsing context, we
devise a solution that respects the characteristics of GPUs.
We show that, given todays degree of hardware parallelism,
the cost of running multiple FSM instances can be set off
with our efficient and scalable solution.

618

Figure 2: Determining the parsing context

3. MASSIVELY PARALLEL PARSING
In order to achieve scalability, even beyond thousands of

cores, we pursue a data parallel approach, which splits the
input into multiple chunks (e.g., 32 bytes per chunk) that
can be processed independently by the threads. While a
data parallel approach allows for massive scalability, there
are three key challenges to overcome:

1. Determining the parsing context of a thread’s chunk.
That is, how a thread is supposed to interpret the sym-
bols within its chunk (Section 3.1).

2. Determining the records and columns that the symbols
of a thread’s chunk belong to (Section 3.2).

3. Efficient coordination and collaboration between threads
to transform a sequence of symbols to the data type of
the respective column, e.g., float (Section 3.3).

ParPaRaw addresses these challenges in multiple steps.
With each step, ParPaRaw gains additional information
about each thread’s chunk. This information is captured
in meta data that subsequent steps can build on.

3.1 Parsing
The first step addresses the challenge of identifying the

parsing context of a thread’s chunk, allowing a thread to
meaningfully interpret its symbols. That is, distinguishing
whether a symbol is a control symbol (e.g., delimiting a field
or a record) or whether it is part of a field’s value.

It is important to note that without constraining the sup-
ported input formats and therefore sacrificing the approach’s
applicability, it is impossible to determine a thread’s pars-
ing context without considering all symbols preceding its
chunk. However, if a thread is supposed to consider all sym-
bols preceding its chunk, the approach has to either per-
form an initial sequential pass over the input or wait for all
threads working on preceding chunks to finish. Considering
all symbols preceding a thread’s chunk introduces severe im-
plications on the approach’s scalability.
ParPaRaw, however, aims to neither constrain the input

nor to introduce sequential work. In order to achieve this, we
exploit the fact that there are only few different contexts to
consider while parsing. While this increases the overall effort
by a constant factor, it enables a fully concurrent approach
and allows to scale linearly with the number of cores.

In pursuit of a flexible approach that is generally appli-
cable, ParPaRaw uses a DFA while parsing. The current
parsing context is represented by the DFA’s state. While a
thread iterates over its symbols, it transitions the states of
its DFA according to its transition table. One example of a

DFA for parsing a simple CSV format is shown in Figure 3
(for simplicity it omits the invalid state (INV) used to track
invalid formats, e.g., reading quotes in FLD state). A sequen-
tial approach would simply set the starting state of its DFA
and read the symbols of the input beginning to end, always
being aware of the current state when reading a symbol.
For a data parallel approach, however, a thread, starting to
parse somewhere in the middle of the input, cannot simply
infer the state it is supposed to start in.

In order to perform meaningful work despite lacking the
correct starting state, each thread instantiates one DFA for
every state, si ∈ S, defined by the DFA, setting the start-
ing state of the i-th DFA-instance to state si (see state-
transition vectors in Figure 2). For reasons of clarity, in
the following we assume si = i, i.e., representing a state
by its index, to avoid the intricate differentiation between
a state and a state index. An efficient implementation uses
the same mechanism during preprocessing to ensure efficient
lookups into data structures like the transition table. While
the thread is reading the symbols of its chunk, it transi-
tions the states of all its DFA-instances accordingly. Once
all the symbols of a chunk have been read, the final state of
each DFA-instance is noted in a state-transition vector. We
maintain one state-transition vector per thread, with each
state-transition vector holding |S| elements. The i-th entry
of the state-transition vector represents the final state of the
i-th DFA-instance (i.e., the DFA-instance that has originally
started in state si). Hence, the algorithm can infer that if
a thread had started parsing in state si, it would end up
in the state given by the i-th entry of that thread’s state-
transition vector after the thread has read all its symbols
(see Figure 2).

Figure 3: Example for a simple DFA parsing CSVs

619

Figure 4: Identifying columns and records

By computing the composite of these state-transition vec-
tors, the algorithm can deduce the starting state for every
thread. We define the composite operation a◦b of two state-
transition vectors a and b as:[a0

a1...
a|S|−1

]
◦

 b0
b1...

b|S|−1

 =


ba0
ba1...

ba|S|−1


Since the composite operation is associative, the algorithm

can compute a parallel exclusive scan using the composite
operation, which is seeded with the identity vector. After
the exclusive scan, the i-th entry of each thread’s resulting
vector now corresponds to the state that the thread’s DFA
is supposed to start in, if the sequential DFA’s starting state
was si. For instance, if the sequential DFA’s starting state
was s3, each thread finds its starting state by reading the
element at index three from its resulting vector.

Once each thread is aware of its starting state, threads can
correctly interpret the symbols from their chunk by simulat-
ing a single DFA-instance. While iterating over its symbols,
a thread identifies field delimiters, record delimiters, and
other control symbols (e.g., an escape sequence) according to
the parsing rules specific to the current format being parsed.
Since the algorithm addresses delimiter-separated formats,
the relevant meta data for each symbol can be represented
using three bitmap indexes: one marking symbols that are
delimiting a record, one flagging symbols that are delimit-
ing a field, and one indicating whether a symbol is a control
symbol (e.g., escape symbol) or whether it is part of the
field. Subsequent steps can build on these bitmap indexes
without requiring to repeatedly simulate the DFA-instance.

3.2 Identifying Columns and Records
The bitmap indexes from the previous step are used to

identify the column and record offset. That is, the record
and column that the first few symbols of a thread’s chunk be-
long to, until it encounters the first delimiting symbol. De-
termining the column and record offsets requires two steps.

First, each thread computes the offset that its chunk adds
to the preceding chunk’s offset. For the records, the relative
offset can easily be computed by counting the records (i.e.,

the number of set bits of a thread’s record delimiter bitmap
index using POPCNT). For columns, however, this is slightly
more involved. If a thread encounters a record delimiter
and therefore the beginning of a new record, it can infer
the absolute column offset for the subsequent chunk (e.g.,
thread 2 in Figure 4). Otherwise, all it can infer is that it
has seen k field delimiters and, therefore, the next chunk’s
column offset has an additional offset of k, relative to the
preceding chunk’s column offset. In Figure 4, for instance,
thread 1 encounters one column delimiter but no record de-
limiter. As thread 1 is not yet aware of its own column offset,
it can only infer that the subsequent thread’s column offset
increases by one, relative to its own column offset. We dis-
tinguish between an absolute and a relative column offset,
which are denoted as abs and rel, respectively, in Figure 4.
A column offset is absolute, if there is at least one set bit
in the thread’s record delimiter bitmap index. The column
offset can be computed by zeroing all bits of the column
delimiter bitmap index that precede the last set bit in the
record delimiter bitmap index, counting the remaining set
bits, i.e.: POPCNT((∼BLSMSK(rec bidx)) & col bidx)

In a subsequent step, the algorithm computes the exclu-
sive prefix sum over the record counts, which yields each
thread’s record offset. In order to retrieve the column off-
sets, we perform an exclusive scan using the following op-
eration, where, for a column offset x, xt denotes whether
a column offset is relative (rel) or absolute (abs) and xo
denotes the offset value:

[at
ao]⊕

[
bt
bo

]
=


[
bt
bo

]
if bt is abs[at

ao+bo

]
if bt is rel

Once all absolute column and record offsets have been
calculated, threads can correctly identify the column and
record that each of its symbols belongs to. In preparation
for the next step, which transforms the row-oriented input
to a columnar format and, if applicable, converts strings of
symbols to the data type of the corresponding column, we
tag the symbols with the column and record they belong to,
as illustrated at the bottom of Figure 4.

620

Figure 5: Preparing data in a columnar format and type conversion

3.3 Columnar Format & Type Conversion
Now, that each thread is fully aware of the associated

columns and records, threads still need to generate the indi-
vidual field values in a columnar format. Depending on the
column that a string of symbols belongs to, this may require
converting to the respective column’s type (e.g., int, float).
As shown at the top of Figure 5, symbols belonging to the
same field may still span multiple chunks, requiring involved
threads to collaborate on generating a single field value. To
circumvent the collaboration between threads entirely, one
option would be to change the assignment of threads, as-
signing exactly one thread to exclusively process all symbols
required for generating a single field value. This approach,
however, may cause considerable load-balancing issues, as
the number of symbols per field may be subject to high vari-
ance. In particular, values of columns with variable-width
types, such as text or Binary Large Objects (BLOBs), may
be arbitrarily large.

Another challenge arises due to the fact that symbols are
still in a row-oriented format. That is, two threads working
on subsequent chunks may be parsing two different columns
of two different types. Hence, they may require different
rules, executing completely different code segments for pars-
ing the fields’ values. For instance, one thread may require
generating an integer value, while the next one is extracting
a date. The behaviour of different threads executing dif-
ferent code paths is particularly punishing on GPUs, where
all threads within a warp (e.g., a group of 32 threads) are
executing the same instruction in lockstep.
ParPaRaw addresses these challenges by first partitioning

all symbols by the column they are associated with. During
partitioning, ParPaRaw ensures that symbols within a col-
umn maintain their order by using a stable radix sort that
uses the symbols’ column-tags as the sort-key. While sort-
ing, the symbols and the record-tags are moved along with
the associated sort-key. The radix sort iterates over the bits
of the column-tags, performing a stable partitioning pass on
the sequence of bits considered with a given pass. A single
partitioning pass involves (1) computing the histogram over
the number of items that belong to each partition, (2) com-
puting the exclusive prefix sum over the histogram’s counts,
and (3) scattering the items to the respective partition.

After partitioning, all symbols belonging to the same col-
umn lie cohesively in memory. We refer to all symbols be-

longing to the same column as the concatenated symbol
string (CSS) of a column. The histogram that is maintained
while sorting is used to identify the offsets of the columns’
CSSs. Similar to the symbols, all the symbols’ record-tags
lie cohesively in memory, indicating which record a symbol
belongs to.

Having all symbols in a columnar format allows the al-
gorithm to efficiently process each of the columns. This
may include type inference, validation, identifying NULLs,
and converting symbol strings to the column’s type. First,
ParPaRaw uses the record-tags to generate an index into the
CSS. The index is used to identify the offsets and lengths
of the fields’ symbol strings. To generate the index, the
algorithm performs a run-length encoding on the symbols’
record-tags, which yields each field’s record and its num-
ber of symbols. Computing the exclusive prefix sum over
the fields’ symbol counts yields the offsets into the CSS, as
shown in Figure 5. The symbol count of a field can be in-
ferred using the difference of the successive field’s offset and
the field’s own offset.

Building on the index, ParPaRaw can now start generating
the fields’ values by interpreting the strings of symbols, if
that is required for a given column (e.g., numerical or tem-
poral types). In order to address possible load-balancing
issues due to having high variance in the number of symbols
per field, we use three different collaboration levels: thread-
exclusive, block-level, and device-level collaboration. By de-
fault, a thread tries to exclusively generate a field value,
looking up the offset and number of its symbols in the in-
dex. Once the thread has identified the symbols, it starts
converting the symbol string to the column’s type (e.g., int,
float). If, during lookup, a thread detects that its string of
symbols exceeds a certain threshold, it will defer generating
that field value for the block- or device-level collaboration.
The threshold depends on the on-chip memory of a GPU’s
streaming multiprocessor and its number of cores. If there
are fields left for the block-level collaboration, all threads
of a thread-block (e.g., 64 threads) collaborate on generat-
ing a field value. Fields that exceed the on-chip memory
available to a thread-block (typically in the order of tens of
kilobytes) are addressed by the device-level collaboration.
Block- and device-level collaboration use the same data par-
allel approach as the overall approach presented for parsing
delimiter-separated inputs. Hence, the same technique for
determining a thread’s parsing context is employed.

621

4. EXTENSIONS & IMPLEMENTATION
Having presented the fundamental processing steps for a

robust approach to massively parallel parsing in Section 3,
this section focuses on optimisations, extensions, and imple-
mentation details. We develop two optimised specialisations
that can be applied if a given input meets certain conditions
(see Section 4.1). Section 4.2 addresses symbols crossing
chunk boundaries, such as being encountered when dealing
with variable-length encodings. To highlight that not only
efficiency but also the approach’s applicability was of great
importance to this work, we present a few more capabilities
in Section 4.3. With an end-to-end streaming extension, we
aim to hide the latency of data transfers via the PCIe bus
(see Section 4.4). Finally, Section 4.5 presents how we ad-
dress the major challenges of mapping the algorithm to the
GPU.

4.1 Alternative Tagging Modes
ParPaRaw, as presented in Section 3, focuses on robust-

ness. It is even resilient to inputs that contain records
with a varying number of field delimiters per record (e.g.,
”1,Apples\n2\n”). This section focuses on presenting two
optimised specialisations that are chosen, if the input pro-
vides a constant number of columns per record or if the user
prefers to reject records that have an inconsistent number
of field delimiters.

Since many of the presented processing steps work at peak
memory bandwidth, reading and writing record-tags of four
bytes increases the amount of memory transfers and de-
grades performance. Hence, we aim to lower the amount
of memory transfers by reducing the memory footprint of
the record-tags. As illustrated in Figure 6, we provide two
alternatives to record-tags.

The inline-terminated CSS replaces delimiters with a ter-
minator during the tagging phase. Just like the null char-
acter for null-terminated strings, the terminator is a unique
character that indicates the end of a field’s symbols. Good
candidates for terminators are various separators specified
by the ASCII standard, such as the record separator (0x1E)
or the unit separator (0x1F). To generate the CSS’s index,
the algorithm simply writes the offsets of all occurrences of
the terminator symbols to the index. The inline-terminated
CSS requires that the terminator is not part of a column’s
CSS, as those symbols would otherwise get confused for a
terminator.

The vector-delimited CSS can address this scenario by de-
voting its own auxiliary boolean vector that delimits the
fields within a column. The CSS’s index is generated the
same way as for the inline-terminated CSS with the minor
difference that the algorithm identifies non-zero values in
the auxiliary vector instead of terminators from the CSS.

4.2 Variable-Length Symbols
So far, we have not addressed the challenge of symbols

crossing chunk boundaries. While this can be easily pre-
vented for fixed-size symbols spanning multiple bytes by ad-
justing the chunk size to be an integer multiple of the symbol
size, it is more involved for variable-length symbols. For in-
stance, if inputs are encoded using a variable-length Unicode
Transformation Format (UTF), such as UTF-8 or UTF-16,
symbol boundaries become unpredictable and some symbols
might be crossing chunks. If a symbol crosses chunk bound-
aries, the thread working on the chunk at which the symbol

Figure 6: Alternative tagging modes

begins (i.e., the symbol’s leading bytes) is in charge of read-
ing that symbol and transitioning the state of its DFA ac-
cordingly. Threads working on subsequent chunks that only
read trailing bytes of a symbol skip those bytes. For the
variable-length encodings UTF-8 and UTF-16, threads can
identify whether the first bytes of a chunk are only trailing
bytes of an encoded code point (a code point is a numerical
value and most code points are assigned a character). UTF-8
encodes code points using one, two, three, or four bytes. Un-
less a single byte is used, all trailing bytes have the common
binary prefix of 0b10XX XXXX. Hence, for UTF-8 encoded in-
puts, threads simply ignore a chunk’s first few bytes with
that binary prefix. UTF-16 uses either two bytes to encode
code points ranging from 0x0000 to 0xD7FF and from 0xE000

to 0xFFFF, and four bytes for code points beyond 0x010000.
If four bytes are used, the two high order bytes, referred to
as high surrogate, are in the range of 0xD800 to 0xD8FF, and
the low order bytes, referred to as low surrogate, are in the
range of 0xDC00 to 0xDFFF. Since unicode does not assign
any characters in the range of 0xD800 to 0xDFFF, there is
no two-byte combination in that range. Hence, similar to
UTF-8, a thread ignores a chunk’s first two bytes if their
value is in the range of 0xDC00 to 0xDFFF.

4.3 Capabilities
This section focuses on pointing out a few more capa-

bilities to highlight ParPaRaw’s applicability to real-world
requirements.

Validating format — One notable strength of ParPaRaw
is its ability to simulate an FSM while parsing, which makes
it widely applicable and enables more expressive parsing
rules. With the presented massively parallel approach for
simulating a DFA, ParPaRaw is always aware of the DFA’s
current state when reading a symbol. Hence, invalid state
transitions as well as a non-accepting end state can easily
be detected.

Skipping records and selecting columns — ParPaRaw

is able to ignore a user-specified set of records and columns.
While tagging symbols with their associated column and
record, all symbols that belong to records or columns that
are supposed to be ignored are identified and marked as
irrelevant. Irrelevant symbols can be ignored following the
partitioning step.

Skipping rows – It is worth noting that rows are different
from records, as some records may span multiple rows. Since
ignoring rows may interfere with the assignment of symbols
to columns and records, ParPaRaw has to ensure that rows
are ignored early on. Hence, ParPaRaw ignores a set of rows

622

by performing an initial parallel pass over the input, pruning
symbols of ignored rows (i.e., parallel stream compaction).

Inferring or validating number of columns — If no
schema is provided and therefore the number of columns is
not known a priori, ParPaRaw can infer the input’s num-
ber of columns. Similarly, if ParPaRaw is supposed to re-
ject records that do not conform to the expected number of
columns the same technique is applied. In either case, during
DFA simulation threads need to track three values in addi-
tion to the relative or absolute column offset handed over
to the subsequent chunk. Firstly, every thread keeps track
of the number of field delimiters encountered before reading
its very first record delimiter, which subsequently is referred
to as relative min/max. Further, every thread maintains the
minimum and maximum number of columns it counted per
record for all records following the chunk’s first record de-
limiter. We use an extra bit to denote if no minimum and
maximum was determined, i.e., the chunk does not contain
any record delimiter. After the prefix scan of the column
offsets, ParPaRaw can resolve the relative min/max, turning
it into an absolute column offset. The absolute column off-
set is then incorporated in the respective chunk’s minimum
and maximum column count. A subsequent reduction over
the maximum is then used to infer the number of columns.
Comparing the identified minimum and maximum column
counts indicates whether a given chunk conforms to the ex-
pected number of columns per record.

Default values for empty strings — If the input has a
consistent number of field-delimiters per record, the default
value for empty strings is set during type conversion. That
is, when field values are parsed, the empty string is parsed
as the column’s default value. If the input does not have
a consistent number of field-delimiters per record, the col-
umn’s data is pre-initialised with the user-specified default
value and later overwritten for non-empty fields.

Type inference — ParPaRaw is comparably efficient
when identifying a column’s type, as, prior to type con-
version, all of a column’s symbols lie cohesively in mem-
ory. During an initial pass over the column’s symbols,
threads identify the minimum numerical type being required
to back their field value. A subsequent parallel reduction
over the minimum type yields the inferred type of a column.
ParPaRaw currently only considers type inference for numer-
ical types, but can be extended to cover temporal types.

4.4 End-to-End Streaming
This section provides an extension to ParPaRaw’s on-GPU

parsing algorithm presented in Section 3 to address inputs
that do not reside on the GPU or exceed its available de-
vice memory. In order for the GPU to be able to process
the input, the input first needs to be transferred via the
comparably slow PCIe bus and, once processed, the parsed
data has to be returned. It is worth noting that the PCIe
bus allows for full-duplex communication, enabling simulta-
neous data transfers in either direction at peak bandwidth.
While the PCIe bus does not necessarily limit the through-
put, waiting for the data transfer to complete before and
after parsing, respectively, adds a considerable amount of
latency to the end-to-end processing time. Hence, rather
than waiting for the input to arrive on the GPU, before the
GPU begins processing it and, once finished, starts return-
ing the parsed data, we make use of a streaming approach.
The streaming approach splits the input into multiple par-

Figure 7: End-to-end streaming

titions. Each partition, at some point, is transferred to the
GPU, processed, and its data is returned. Having multiple
partitions allows to overlap these stages for subsequent par-
titions, similar to the pipelined approach in [38, 41]. That
is, transferring a partition, while processing its predecessor
on the GPU and simultaneously returning parsed data via
the interconnect.

For the end-to-end streaming approach, we allocate a
double-buffer and some auxiliary memory on the GPU (see
top of Figure 7). Each buffer comprises memory for the
raw input and the parsed data. One buffer’s raw input al-
location is used as input for parsing on the GPU, while the
opposing buffer’s raw input allocation is receiving data of
the next partition. Similarly, one buffer’s data allocation is
used to output parsed data, while data is being returned via
the interconnect from the opposing buffer’s data allocation.
In addition, we prepend additional memory for a carry-over
to the memory allocated for the input of each buffer. The
carry-over is used for prepending the last, incomplete record
at the end of one buffer’s input to the opposing buffer’s in-
put.

Figure 7 exemplifies the processing steps of the streaming
parsing approach. The stages of a partition are (1) trans-
fer : transferring the raw input of a partition from the host
to the GPU, (2) parse: parsing the input of a given par-
tition, including the prepended carry-over and writing the
parsed data to the data buffer, and (3) return: returning
the parsed data from the data buffer to the host. The re-
sources required by each processing step are illustrated by
the rectangular symbols within a step (e.g., IA representing
the memory allocated for the input of buffer A). A pro-
cessing step’s dependency on a preceding processing step
is depicted by an incoming edge. An important sequence
depicted in Figure 7 is when the GPU switches work from
one double-buffer to the other. For instance, after the GPU
has finished parsing the input of the first partition (raw in-
put provided by input buffer A), the last incomplete record
is prepended to the second partition by copying it to the
memory of the carry-over of buffer B. Since copying the
carry-over is reading from input buffer A, the algorithm en-
sures that the transfer of the third partition to input buffer
A does not take place before the carry-over has been copied,
as the carry-over would otherwise get corrupted.

623

num. items c 10

bits per item b 5

avail. bits per
item-fragment

a =
⌊
32
c

⌋
3

bits per
item-fragment

k = 2blog2 ac 2

fragments db/ke 3

Figure 8: Logical and physical view of the multi-fragment in-register array

4.5 Implementation Details
This section addresses the main challenges faced when

mapping ParPaRaw to the GPU. Specifically, we introduce a
new data structure, referred to as multi-fragment in-register
array (MFIRA), which provides a workaround for the con-
straint that threads cannot dynamically address into the
register file. Since the register file is extremely fast and
provides the most on-chip memory, addressing this short-
coming is a viable endeavour. The presented data struc-
ture allows to dynamically index into and access elements
of a bounded array. MFIRA is particularly efficient for low-
cardinality arrays of small integers. This is a recurring pat-
tern in GPU programming, since the GPU’s threads need
to be very lightweight, allowing for only very limited con-
text (i.e., using only few registers). Hence, even though
MFIRA was designed as an efficient data structure backing
various objects when parsing, MFIRA likely would be useful
for other use cases as well. Further, we present a branchless
algorithm that builds on SIMD within a register (SWAR) to
identify the index of a read symbol in the transition table.
With that approach, we are able to keep the symbols that
the algorithm compares against in the very fast register file.
At the same time, it avoids that threads within a warp are
executing along different branches.

Multi-fragment in-register array — The idea be-
hind the data structure is that even though thread registers
themselves cannot be addressed dynamically, individual bits
within a register can be. Specifically, we use the intrinsic
functions bit-field insert (BFI) and bit-field extract (BFE),
which require only two clock cycles on recent microarchitec-
tures, to efficiently access an arbitrary sequence of bits from
a register. We use these two functions to decompose an item
that is written to the data structure and distribute the item’s
fragments (i.e., partitions of its bits) amongst one or more
registers. Similarly, when an item is accessed, it is reassem-
bled from its fragments. Figure 8 illustrates this principle,
depicting an array containing up to ten items, each five bits
wide. For such an array, the data structure could use up to
three bits per fragment. To efficiently compute bit-offsets
into a register, however, the number of bits actually being
used by the data structure is chosen to be a power of two.
This allows replacing the expensive integer multiplication
with a bit-shift operation. In the example depicted in Fig-
ure 8, the data structure would therefore devote two bits
per fragment, using a total of three fragments. The individ-
ual fragments of the items are colour-coded in Figure 8 to
highlight how the logical view (top of the figure) maps to
the physical view (bottom of the figure).

Table 1: Transition table example

symbols groups
states

EOR ENC FLD EOF ESC INV

\n 0 EOR ENC EOR EOR EOR INV

” 1 ENC ESC INV ENC ENC INV

, 2 EOF ENC EOF EOF EOF INV

* 3 FLD ENC FLD FLD INV INV

Symbol matching using SWAR — During DFA sim-
ulation, the algorithm uses a transition table to identify the
state transition from the DFA’s current state and a read
symbol to the DFA’s new state. The transition table is two-
dimensional, with states along one and symbols along the
other dimension. To compress the transition table’s size, we
collapse all the transition table’s symbols that have iden-
tical state transitions into symbol groups. As illustrated
in Table 1, we have one symbol group per row instead of
having symbol groups as columns, which allows coalesced
access to all state transitions of a read symbol. This is par-
ticularly useful when computing the state-transition vectors.
A thread reads a symbol from its chunk, identifies its sym-
bol group, and fetches the row of state transitions for the
matched symbol group. For each of its DFA instances, it
can then efficiently determine the new state from that row.

Having introduced symbol groups, mapping a symbol to
its symbol group is an elementary step. To ensure an effi-
cient mapping, we exploit the fact that delimiter-separated
formats typically have only a few symbols to distinguish
amongst, such as an escaping symbol, field and record de-
limiters, and enclosing symbols like quotes or brackets (see
Table 1). Hence, for the symbols we use a comparison-based
approach, rather than devoting a full lookup-table that maps
each character value to its group. Since symbols are often
only eight bits wide (e.g., ASCII and UTF-8-encoded ASCII

characters), while GPUs implement 32-bit wide arithmetic
instructions, we use a branchless SWAR algorithm to per-
form multiple comparisons at a time (see Table 2). On the
one hand, this avoids inefficiencies due to threads executing
divergent branches. On the other hand, with the follow-
ing approach, we are more space-efficient and are able to
keep the symbols in the very fast register file. As illustrated
in Table 2, we place each of the symbols that we try to
match against in the individual bytes of four-byte registers.
We refer to these registers as lookup-registers (LU-registers).
For later comparison against the LU-registers, whenever a
symbol is read, we replicate that symbol in every byte of

624

Table 2: Identifying a symbol’s index using SWAR
byte 7 6 5 4 3 2 1 0

symbol group 3 2 2 2 1 0
lookup (LU) \t — , ” \n

read symbol (s) , , , , , , , ,
c = LU XOR s -- -- -- 25 50 00 0E 26

swar = H(c) -- -- -- 00 00 80 00 00

bfind(swar)>>3 1F FF FF FF 00 00 00 02

idx = min∀ri(x) 0x00000002

min(idx, 5)) 0x00000002

H(x) = ((x− 0x01010101) & (∼x) & 0x80808080)

a separate register (i.e., the s-register). Computing the ex-
clusive or for each of the LU-registers with the s-register
yields a null-byte if the two bytes match. Subsequently ap-
plying the bit-twiddling hack to determine a null-byte, as
suggested by Mycroft in 1987 [34], sets the most-significant
bit for that byte (see definition of H(x) in Table 2). Using
the intrinsic function bfind, we retrieve the position of the
most-significant set bit. If no bit was set, i.e., the read sym-
bol does not match any byte from the LU-registers, bfind
will return 0xFFFFFFFF. To retrieve the matching index, we
divide the value returned by bfind by eight, using bit-shift
for efficiency reasons (i.e., shifting it three bits to the right).
For LU-registers that contain no match, the matching in-
dex is 0x1FFFFFFF, while for the ones that contain a match,
it yields a value between zero and three. To ensure that
we consider a match, if present, we compute the minimum
over all matching indexes. Finally, in case there was no
match, we map the matching index of 0x1FFFFFFF to the
catch-all symbol group by using the minimum function.
The minimum is computed very efficiently, requiring only
one or two cycles on recent microarchitectures and is there-
fore generally preferable to a conditional expression.

5. EXPERIMENTAL EVALUATION
For the experimental evaluation we use two systems, one

to evaluate CPU-only implementations, referred to as CPU
system, and one system equipped with a GPU (GPU system)
used for evaluating GPU-based approaches. Both systems
are running Ubuntu 18.04. The CPU system has four sock-

ets, each equipped with a Xeon E5-4650 clocked at 2.70 GHz.
It has a total of 512 GB of DRAM (DDR3-1600). The GPU
system is equipped with 128 GB of DRAM (DDR4-2400)
and a Xeon E5-1650 v4 processor with six physical cores,
clocked at 3.60 GHz. The source code was compiled with
the -O3 flag. We used release 10.1.105 of the CUDA toolkit.
The GPU system hosts an NVIDIA Titan X (Pascal) with
12 GB device memory, 3 584 cores, and a base clock of 1 417
MHz (driver version is 418.40.04).

The output of ParPaRaw is configured to comply with the
format specified by Apache Arrow. Apache Arrow specifies
a columnar memory format for efficient analytic operations
[4]. It is used by a multitude of well-known in-memory ana-
lytics projects, such as OmniSci, pandas, and Apache Spark.
For ParPaRaw we use a DFA that is capable of parsing any
RFC4180 compliant input [37]. The DFA defines six states,
including one state to track invalid state transitions.

To evaluate the systems, we choose the two dissimilar real-
world datasets yelp reviews and NYC taxi trips. The yelp
reviews dataset comprises 6.69 million reviews from yelp’s
dataset as CSV, with all fields enclosed in double-quotes
[45]. The dataset is 4.823 GB large with an average record
size of 721.4 bytes per record. Each record is made up of
nine columns, covering text-based, numerical, and temporal
types. The dataset is of particular interest due to the text-
based reviews that may include field and record delimiters,
which poses a challenge for many parallel parsers.

The NYC taxi trips dataset is 9.073 GB large and com-
prises 102.8 million yellow taxi trips taken in the year 2018
provided by the NYC Taxi & Limousine Commission [43].
The dataset’s 17 columns cover numerical and temporal
datatypes. With an average of only 88.3 bytes per record
and 5.2 bytes per field, the majority of the fields are very
short and of a numerical type, putting the emphasis on data
type conversion.

5.1 On-GPU Parsing
This section provides a detailed evaluation of the pre-

sented algorithm using on-GPU workloads. Our on-GPU
evaluation focuses on identifying efficient configurations and
analysing the algorithm’s sensibility to input parameters.
Time measurements for the on-GPU parsing experiments
represent the GPU wall-clock time, measured using CUDA

4 16 32 48 64
0

20

40

60

chunk size (in bytes)

(a) yelp reviews

p
ro

ce
ss

in
g

d
u
ra

ti
o
n

(m
s)

convert scan

partition parse

tag

4 16 32 48 64
0

20

40

60

chunk size (in bytes)

(b) NYC taxi trips

p
ro

ce
ss

in
g

d
u
ra

ti
o
n

(m
s)

convert scan

partition parse

tag

Figure 9: Time spent on individual processing steps depending on the chunk size configuration

625

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

0

5

10

15

input size (MB)

p
a
rs

in
g

ra
te

(G
B

/
s)

NYC taxi trips

yelp reviews

Figure 10: Parsing rate as a function of input size

events. Other than the end-to-end parsing experiments, on-
GPU experiments do not include data transfers between host
and device. Unless noted otherwise, we use the first 512 MB
of each dataset for this evaluation, to be able to evaluate all
tagging modes before running out of device memory.

We provide a breakdown of the time spent on the individ-
ual processing steps as a function of chunk size in Figure 9.
Comparing the breakdown of the two datasets highlights the
complexity of converting the many numerical and temporal
types of the NYC taxi trips dataset, which, on average, make
up only 5.2 bytes per value. The type conversion of the NYC
taxi trips dataset accounts for roughly one third of the to-
tal processing time. Type conversion of the yelp reviews
dataset, in contrast, only contributes approximately 20% to
the total processing time, as the text-based reviews make
up the majority of the raw record size. The analysis shows
that the approach is mostly agnostic to choice of the chunk
size, as long as it is reasonably large. Only for tiny chunk
sizes of 15 bytes and less, the overhead of initialising and
scheduling tens of millions of threads becomes noticeable.
For a tiny chunk size, the ratio of actual work being done
in relation to the time spent on initialising threads and the
amount of meta data being written becomes unfavourable.
Choosing a small chunk size is disadvantageous to parsing,
tagging, and the prefix scan. As the prefix scan’s complex-
ity is linear in the total number of chunks, its share of the
processing time becomes noticeable when using very small
chunks. The prefix scan takes less than two percent of the
total processing time for most choices of the chunk size. The
small spikes for parsing and tagging when using 32, 48, and
64 bytes per chunk, respectively, are due to shared-memory
bank conflicts and bad occupancy. The best performance
is achieved for 31 bytes per chunk, which will be used as
default for the remaining evaluations.

Figure 10 shows ParPaRaw’s performance for various dif-
ferent input sizes. Parsing ten megabytes of the yelp reviews
dataset in as little as one millisecond, ParPaRaw shows im-
pressive performance even for small inputs, achieving a pars-
ing rate of 9.75 GB/s. For even smaller inputs, ParPaRaw

is able to process a single megabyte from either dataset in
less than 500 µs, corresponding to a parsing rate of more
than 2.1 GB/s and 2.7 GB/s for the NYC taxi trips and the
yelp reviews dataset, respectively. Even though the abso-
lute performance is impressive, in particular when compared
to available parsers (see Section 5.2), ParPaRaw’s efficiency

parse scan tag partition convert

tagged
inlin

e

deli
mite

d
0

20

40

60

p
ro

ce
ss

in
g

d
u
ra

ti
o
n

(m
s) NYC

yelp

yelp
NYC

0

20

40

60

original

skewed

Figure 11: Time breakdown for different tagging
modes (left) and skewed input (right)

degrades as the input size decreases. When parsing only
five megabytes of either of both datasets, ParPaRaw’s per-
formance achieves roughly 50% of its peak performance. A
major reason for this, especially for inputs that are parsed
in less than a millisecond, is the overhead due to the many
kernel invocations during the type conversion step. Dur-
ing type conversion, there are multiple kernel invocations
per column, required for the CSS-index generation as well
as the type conversion itself. Hence, considering the many
columns of the two datasets, kernel invocations, each with
an estimated overhead in the order of roughly 5 - 10 µs,
account for a reasonable share of the few hundred microsec-
onds that are required for parsing those tiny inputs.

We also analyse the performance of the different tagging
modes (see Figure 11). Compared to the original inputs, the
skewed inputs in Figure 11 (right) contain a single record
that is 200 MB in size, while the remaining records remain
the same. As expected, the use of record-tags (tagged) is
noticeably slower than the two other tagging modes. In par-
ticular the tagging, partitioning, and type conversion steps
take more time, as they depend on the choice of the tagging
mode. The analysis also highlights the approach’s robust-
ness, providing stable performance for the two dissimilar
datasets, even if they are skewed (see Figure 11). On the
one hand, the time breakdown shows that, except for the
type conversion, all steps take roughly the same time for
both datasets. Only type conversion, which involves gener-
ating data for more than an order of magnitude more fields
in case of the NYC taxi trips dataset, shows perceivable
performance differences. On the other hand, the approach
shows robust performance even for highly skewed inputs.

5.2 End-to-End Parsing
For the end-to-end parsing experiments, we measured the

CPU wall-clock time. Measurements include the time for
reading the input from RAM and writing the parsed data
back to system memory. For ParPaRaw, this includes data
transfers between the host and the device. The end-to-end
parsing approach was compared against MonetDB, Apache
Spark, pandas, and the approach presented by Mühlbauer
et al. [33] (Inst. Loading). In addition, we evaluated the
GPU-based parser that is part of NVIDIA’s recently intro-
duced open GPU data science project called RAPIDS. For
RAPIDS we provide two evaluations. Firstly, simply read-

626

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

0

0.5

1

1.5

partition size (MB)

p
ro

ce
ss

in
g

d
u
ra

ti
o
n

(s
)

NYC taxi trips (9.1 GB)

yelp reviews (4.8 GB)

Figure 12: End-to-end parsing performance

ing the input into a GPU-based DataFrame called cuDF
from where the data may be queried and processed with
GPU support (cuDF*). Secondly, exporting the parsed data
to the host in the Apache Arrow columnar memory format
using cuDF ’s to arrow() method (cuDF).

We analyse ParPaRaw’s performance depending on the cho-
sen partition size (see Figure 12). Our evaluation shows
that ParPaRaw’s performance increases with the partition
size. Once the partition size grows beyond 128 MB for the
yelp reviews and 256 MB for the NYC taxi trips dataset,
however, the end-to-end processing duration starts growing
again. This is due to the increased time for copying the very
first partition and returning the parsed data of the very last
partition (see Figure 7). Larger datasets compensate the ef-
fect of larger partitions. It is worth noting that this remains
the only noticeable effect for larger inputs, since, with in-
creasing input size, the number of partitions increases lin-
early, while the time per partition remains the same.

Figure 13 shows the time taken for parsing the respective
input end-to-end. The performance numbers reported for
parsing the 4.8 GB from the yelp reviews dataset highlight
the strength of ParPaRaw, which takes only 0.44 seconds
for the more challenging dataset. Only cuDF, which is still
roughly 16 times slower than ParPaRaw, provides comparable
performance. All CPU-based approaches, i.e., MonetDB,
Spark, and pandas, are more than two orders of magnitude
slower. Unfortunately, the implementation of Inst. Loading
provided to us by the authors could not handle the yelp
dataset due to its incomplete handling of quoted strings in
parallel loads. Compared to yelp reviews, parsing of the
NYC taxi trips dataset is easier to parallelise, as all line
breaks correspond to record delimiters, making it trivial to
identify the parsing context. Hence, even though parsing
of the NYC taxi trips is computationally more expensive
due to its many numerical and temporal fields, all CPU-
based approaches benefit from the simpler format and see
great improvements in the parsing rate. In particular, Inst.
Loading, the approach proposed by Mühlbauer et al. [33],
is about an order of magnitude faster than any other CPU-
based implementation. Even though Inst. Loading is able to
exploit the parallelism of the 32 physical cores for the NYC
taxi trips dataset, ParPaRaw running on a single GPU is still
roughly four times faster, despite the fact that ParPaRaw

performs a full DFA simulation to keep track of the parsing
context. Compared to the remaining approaches, ParPaRaw
is more than ten times faster than RAPIDS loading the
data into cuDF and over 40 times faster than the next best
CPU-based approach.

yelp NYC
0

10

20

0
.4 0
.9

7
.3 9
.41
0
.5

1
6
.5

×

3
.6

5
8
.2

3
8
.0

9
4
.3

9
8
.1

9
1
.3

8
3
.4

dataset

en
d
-t

o
-e

n
d

d
u
ra

ti
o
n

(s
)

ParPaRaw cuDF* cuDF Inst. Loading

MonetDB Spark pandas

Figure 13: End-to-end performance comparison

6. CONCLUSIONS
This work presents ParPaRaw, a novel, massively paral-

lel approach to parsing delimiter-separated formats. Other
than the state-of-the-art that targets multicore and dis-
tributed systems with a coarse-grained approach, ParPaRaw
is designed for fine-grained parallelism. Supporting par-
allelism even beyond the granularity of individual records
makes it suitable for GPUs and ensures load balancing de-
spite small chunks or large and varying record sizes. Be-
ing designed for scalability from the ground up with a data
parallel approach that does not require any serial work,
ParPaRaw is future-proof and can continue to gain speed-ups,
as more cores are being added with future processors. Our
approach identifies the parsing context (quotation scopes,
comments, directives, etc.) without requiring a prior se-
quential pass. ParPaRaw is flexible and generally applica-
ble. It supports even complex formats with involved pars-
ing rules, as ParPaRaw is able to perform a massively paral-
lel FSM simulation. State-of-the-art JSON parsers and the
speculative approach by Ge et al., in contrast, have to de-
viate from the classic approach of using an FSM in order
to be able to use SIMD vectorisation and speculation, re-
spectively. This limits their applicability to other formats
and requires designing completely different algorithms when
confronted with another format (e.g., log files).

We show that ParPaRaw provides scalability without sac-
rificing applicability and flexibility. Achieving a parsing rate
of as much as 14.2 GB/s, our experimental evaluation shows
that ParPaRaw is able to scale to thousands of cores and be-
yond. With ParPaRaw’s end-to-end streaming approach, we
are able to exploit the full-duplex capabilities of the PCIe
bus while hiding latency from data transfers. For end-to-
end workloads, ParPaRaw parses 4.8 GB of yelp reviews in
as little as 0.44 seconds, including data transfers.

7. ACKNOWLEDGMENTS
This research has been supported in part by the Alexan-

der von Humboldt Foundation. We would like to thank the
authors of ”Instant loading for main memory databases”, in
particular Thomas Neumann, for providing their implemen-
tation [33].

627

8. REFERENCES
[1] NVIDIA Tesla V100 GPU Architecture. Whitepaper.

Technical report, NVIDIA, 2017.

[2] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and
A. Ailamaki. Nodb: Efficient query execution on raw
data files. SIGMOD, 2012.

[3] Alenka. Alenka - a gpu database engine.
https://github.com/antonmks/Alenka, 2012.

[4] Apache Software Foundation. Apache Arrow.
https://arrow.apache.org, 2019.

[5] A. Arunkumar, E. Bolotin, B. Cho, U. Milic,
E. Ebrahimi, O. Villa, A. Jaleel, C.-J. Wu, and
D. Nellans. Mcm-gpu: Multi-chip-module gpus for
continued performance scalability. SIGARCH, 2017.

[6] T. Azim, M. Karpathiotakis, and A. Ailamaki.
Recache: Reactive caching for fast analytics over
heterogeneous data. PVLDB, 11(3):324–337, 2017.

[7] S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani.
Parallel data analysis directly on scientific file formats.
SIGMOD, 2014.

[8] G. E. Blelloch. Scans as primitive parallel operations.
IEEETransComp, 1989.

[9] D. Bonetta and M. Brantner. Fad.js: Fast json data
access using jit-based speculative optimizations.
PVLDB, 10(12):1778–1789, 2017.

[10] R. P. Brent and H. T. Kung. A regular layout for
parallel adders. IEEETransComp, 1982.

[11] B. Chandramouli, D. Xie, Y. Li, and D. Kossmann.
Fishstore: Fast ingestion and indexing of raw data.
PVLDB, 12(12):1922–1925, 2019.

[12] Y. Cheng and F. Rusu. Parallel in-situ data
processing with speculative loading. SIGMOD, 2014.

[13] Y. Dotsenko, N. K. Govindaraju, P.-P. Sloan,
C. Boyd, and J. Manferdelli. Fast scan algorithms on
graphics processors. ICS, 2008.

[14] A. Dziedzic, M. Karpathiotakis, I. Alagiannis,
R. Appuswamy, and A. Ailamaki. Dbms data loading:
An analysis on modern hardware. DaMoN, 2016.

[15] C. N. Fischer. On parsing context free languages in
parallel environments. Technical report, 1975.

[16] C. Ge, Y. Li, E. Eilebrecht, B. Chandramouli, and
D. Kossmann. Speculative distributed csv data
parsing for big data analytics. SIGMOD, 2019.

[17] S. Ha and T. Han. A scalable work-efficient and
depth-optimal parallel scan for the gpgpu
environment. TPDS, 2013.

[18] R. Hai, S. Geisler, and C. Quix. Constance: An
intelligent data lake system. SIGMOD, 2016.

[19] P. M. Hallam-Baker and B. Behlendorf. Extended Log
File Format. https://w3.org/TR/WD-logfile, 1996.

[20] W. D. Hillis and G. L. Steele Jr. Data parallel
algorithms. CACM, 1986.

[21] S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki.
Here are my data files. here are my queries. where are
my results? CIDR, 2011.

[22] M. Ivanova, Y. Kargin, M. Kersten, S. Manegold,
Y. Zhang, M. Datcu, and D. E. Molina. Data vaults:
A database welcome to scientific file repositories.
SSDBM, 2013.

[23] R. Johnson and I. Pandis. The bionic dbms is coming,
but what will it look like? CIDR, 2013.

[24] Kaggle. Kaggle datasets.
https://www.kaggle.com/datasets, 2018.

[25] M. Karpathiotakis, I. Alagiannis, and A. Ailamaki.
Fast queries over heterogeneous data through engine
customization. PVLDB, 9(12):972–983, 2016.

[26] M. Karpathiotakis, M. Branco, I. Alagiannis, and
A. Ailamaki. Adaptive query processing on raw data.
PVLDB, 7(12):1119–1130, 2014.

[27] P. M. Kogge and H. S. Stone. A parallel algorithm for
the efficient solution of a general class of recurrence
equations. IEEETransComp, 1973.

[28] G. Langdale and D. Lemire. Parsing gigabytes of
JSON per second. CoRR, 2019.

[29] Y. Li, N. R. Katsipoulakis, B. Chandramouli,
J. Goldstein, and D. Kossmann. Mison: A fast json
parser for data analytics. PVLDB, 10(10):1118–1129,
2017.

[30] A. Luotonen. Logging Control In W3C httpd. https:
//www.w3.org/Daemon/User/Config/Logging.html,
1995.

[31] D. Merrill and M. Garland. Single-pass parallel prefix
scan with decoupled look-back. NVIDIA, Tech. Rep.
NVR-2016-002, 2016.

[32] D. Merrill and A. Grimshaw. Parallel scan for stream
architectures. Technical report, 2009.

[33] T. Mühlbauer, W. Rödiger, R. Seilbeck, A. Reiser,
A. Kemper, and T. Neumann. Instant loading for main
memory databases. PVLDB, 6(14):1702–1713, 2013.

[34] A. Mycroft. String Processing Instruction.
https://groups.google.com/forum/embed/#!topic/

comp.lang.c/2HtQXvg7iKc, 1987. comp.lang.c.

[35] S. Palkar, F. Abuzaid, P. Bailis, and M. Zaharia.
Filter before you parse: Faster analytics on raw data
with sparser. PVLDB, 11(11):1576–1589, 2018.

[36] RAPIDS. Rapids - open gpu data science.
https://rapids.ai, 2012.

[37] Y. Shafranovich. RFC4180 - Common format and
MIME type for comma-separated values (CSV) files.
https://tools.ietf.org/html/rfc4180, 2005.

[38] A. Shahvarani and H.-A. Jacobsen. A hybrid b+-tree
as solution for in-memory indexing on cpu-gpu
heterogeneous computing platforms. SIGMOD, 2016.

[39] Simantex. Simantex - csvimporter.
https://github.com/Simantex/CSVImporter, 2012.

[40] J. Sklansky. Conditional-sum addition logic. IRE
Transactions on Electronic Computers, 1960.

[41] E. Stehle and H.-A. Jacobsen. A memory
bandwidth-efficient hybrid radix sort on gpus.
SIGMOD, 2017.

[42] Sumo Logic. Press release. https://www.sumologic.
com/press/2018-02-27/growth-milestones, 2018.

[43] Taxi and Limousine Commission. Tlc trip record data.
http://www.nyc.gov/html/tlc/html/about/trip_

record_data.shtml, 2016.

[44] S. Yan, G. Long, and Y. Zhang. Streamscan: Fast
scan algorithms for gpus without global barrier
synchronization. PPoPP, 2013.

[45] Yelp Inc. Yelp Dataset Challenge.
www.yelp.com/dataset/challenge, 2019.

[46] W. Zhao, Y. Cheng, and F. Rusu. Vertical partitioning
for query processing over raw data. SSDBM, 2015.

628

