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ABSTRACT 
When writing today’s distributed programs, which frequently span 
both devices and cloud services, programmers are faced with 
complex decisions and coding tasks around coping with failure, 
especially when these distributed components are stateful. If their 
application can be cast as pure data processing, they benefit from 
the past 40-50 years of work from the database community, which 
has shown how declarative database systems can completely isolate 
the developer from the possibility of failure in a performant 
manner. Unfortunately, while there have been some attempts at 
bringing similar functionality into the more general distributed 
programming space, a compelling general-purpose system must 
handle non-determinism, be performant, support a variety of 
machine types with varying resiliency goals, and be language 
agnostic, allowing distributed components written in different 
languages to communicate. This paper introduces Ambrosia, the 
first system to satisfy all these requirements. We coin the term 
“virtual resiliency”, analogous to virtual memory, for the platform 
feature which allows failure oblivious code to run in a failure 
resilient manner. We also introduce novel programming language 
constructs for resiliently handling non-determinism. Of further 
interest is the effective reapplication of much database performance 
optimization technology to make Ambrosia more performant than 
many of today’s non-resilient cloud solutions. 
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INTRODUCTION 
When writing today’s distributed programs, which span both 
devices and cloud, programmers are faced with complex decisions 
and coding tasks around coping with failure, especially when 
applications are stateful: Consider an application consisting of two 
objects, Client and Server, where Server keeps a counter, initially 
0, and exposes a method called Inc() to increment the counter and 
return the new value. Furthermore, assume Client calls Inc() twice 

and prints the value of the counter after each call. If both objects 
are run in a single process, the outcome is clear: the values 1, and 2 
are displayed in Client output. In contrast, consider the possibilities 
when Client and Server run on different machines, where state is 
maintained locally, and method calls are performed through an 
RPC (remote procedure call) mechanism. 

First let’s consider possible outcomes when Client fails and is 
naively restarted from scratch and reconnected: If Client fails after 
the first call and after the return value is received, the output will 
instead be 2, 3, which is incorrect. If Client fails after successfully 
issuing the RPC request, but before receiving the return value, 
Server will initially try to provide to Client an unexpected return 
value, which is problematic. Even worse, consider that Client may 
be restarted on a different machine, with a different IP address. 

Outcomes when Server fails are further complicated by the loss, 
and subsequent reinitialization of the counter. If Server fails after 
Client has completed the first RPC, the output will be 1, 1, which 
is incorrect. Furthermore, if Server fails after receiving the first 
RPC request, but before communicating the return value, Client is 
left waiting for a return value which never arrives. 

In order to get the answer consistent with no failures occurring, 
developers face varying challenges, depending on the type of 
application they are writing. 

If a task is pure data processing, it benefits from the past 40-50 
years of work from the database community, which has shown how 
declarative database systems, which produce deterministically 
replayable behavior through logging, along with technology to 
make database sessions robust ([1], [30]) can completely isolate the 
developer from the possibility of failure in a performant manner. 
Most recently, map-reduce and its progeny ([2], [3], [42]), by 
pursuing similar strategies, have achieved similar results. 

Unfortunately, while there have been attempts at bringing some of 
these capabilities to general purpose distributed programming, 
frequently called “exactly once execution” ([1], [30], [4]), the 
failure to address a number of important issues (details below) has 
prevented their widespread use. As a result, developers either give 
up entirely on fully reliable applications, or implement solutions 
that involve complex, error-prone, and difficult to administer 
strategies to make applications reliable in today’s cloud 
environments (Section 2). A compelling general-purpose solution 
to this problem must address the following:  

• Virtual Resiliency - In this paper, we coin the term virtual 
resiliency, which provides developers the illusion that machines 
never fail, by automatically fully healing the system after physical 
failure, analogous to how virtual memory provides developers the 
illusion that physical memory never runs out by automatically 
paging memory to disk. While most data processing platforms 
already provide efficient programming and execution environments 
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with virtual resiliency, there are no commonly used analogous 
systems for general purpose distributed programming. 

• Non-determinism – Most distributed applications contain non-
determinism, like generating timestamps, or collecting user input. 
Reliable systems must handle sources of non-determinism 
gracefully, providing virtual resiliency in the face of such 
challenges. In this paper, we introduce impulses, a novel platform 
feature for handling non-determinism. Database logging provides 
some hints for handling these situations, capturing non-
deterministic choices in the replay log before committing. 

• Performance/Cost - Any general-purpose implementation of 
virtual resiliency, must have performance comparable to failure-
sensitive code with a good application specific strategy. Only data 
processing systems have achieved this today. 

• Machine Heterogeneity - While machines inside a datacenter 
can be homogenous, distributed apps typically span devices and 
datacenters. Additionally, some devices may be heavy and able to 
persist information necessary to hide failure while others may be 
best effort. The end-to-end semantics must be easy to understand, 
reason about, and code against. Today, [4] is the closest to 
achieving this goal. 

• Language Heterogeneity - Because distributed applications 
span across a variety of machines and settings, distributed 
components written in different languages must be able to work 
together. Architecture (e.g. .NET DataContract [25]) and language 
independent serialization formats (e.g. Protobuf [26], Avro [27], 
JSON [28]) effectively solve this problem. 

In this paper, we present Ambrosia (Actor Model Based Reliable 
Object System for Internet Applications), the first general purpose 
distributed programming platform for non-deterministic 
applications, with virtual resiliency, high performance, and 
machine and language heterogeneity. Ambrosia is a real system, 
available on GitHub [29], and is used in a cloud service which 
manages the machine images of hundreds of thousands of machines 
running a cloud application [40]. 

Ambrosia’s high performance was achieved by incorporating the 
decades’ old wisdom used to build performant, reliable, and 
available database systems. For instance, we make extensive use of 
batching, high-performance log writing, high-performance 
serialization concepts, and group commit strategies. 

Using the technology mentioned above, we implement virtual 
resiliency with only a 25% reduction in throughput for the worst 
case. We also achieve throughput comparable to gRPC, a popular 
RPC framework which lacks any kind of failure protection. 
Compared to gRPC, ping latency increases by only 5.5ms. We 
vastly outperform today’s typical cloud-based, fully resilient 
designs, in some cases achieving about a 1000x improvement in 
cost per unit of work served, and with 1 to 3 orders of magnitude 
lower latency. In active/active configurations, typical Ambrosia 
failover times are less than 2 seconds, and, excluding service logic, 
recovery costs are roughly half the primary running costs, leading 
to generally low recovery times. 

Because Ambrosia’s virtual resiliency implementation is based on 
database style logging technology, we also offer familiar related 
features, like transparent high availability through active standbys. 
In addition, we also provide application centric features less 
familiar to databases, such as time-travel debugging [23], 
retroactive code testing, and inflight application upgrades. 

Ambrosia’s machine heterogeneity goes beyond allowing 
applications on different types of machines to communicate. For 

instance, .NET core applications written in Ambrosia can 
seamlessly recover from a Windows PC to a Raspberry Pi running 
Linux, without requiring help from developers. 

While constructing Ambrosia, we learned a number of important 
lessons about modern performant system design. Most of these are 
based on the following observation: the cost of transferring and 
storing bytes is going down rapidly, while the cost of processing 
bytes is improving very slowly. Looking through historical trade 
magazines, we determined that until 7 years ago, network, storage, 
and CPU price/performance (i.e. p/p) were all improving 
comparably. Over the last 7 years, however, network and storage 
throughput p/p have both improved by about 10x and 7x 
respectively, while CPU p/p has only improved by about 1.5x. The 
future, with terabit networking and NVRAM persistent memory 
looks to hold more of the same. This encourages approaches and 
system designs, like Ambrosia, which exploit cheap network and 
storage bandwidth. By carefully optimizing CPU costs through 
adaptive batching and minimal byte interpretation, Ambrosia’s 
design results in very low costs for the protection it affords. 

Paper organization: Section 1 introduces a running example used 
throughout the paper, and a naive implementation, where we 
simply assume failure never happens. Section 2 describes how to 
implement our running example resiliently using standard cloud 
application building blocks. Section 3 describes the basic Ambrosia 
design and presents the Ambrosia implementation of our running 
example. Section 4 describes how externally originating non-
determinism (e.g. user input) is handled by Ambrosia, and extends 
our running example to demonstrate. Section 5 describes important 
Ambrosia features enabled by its logging oriented approach 
towards resiliency. Section 6 contains an experimental evaluation 
which compares Ambrosia against the strategy described in Section 
2, as well as a comparison to gRPC. Additionally, we test failover 
and recovery times. Sections 7, and 8 present related work, and 
conclusions and future work, respectively. 

1. Running Example: Message Forwarding 
Consider a message forwarding service which, every thousand 
messages received, reports the current and time elapsed since the 
last report. Further, assume that the forwarded and reporting 
messages go to different destinations, with eventual, but not 
consistent, freshness guarantees. Below is a naive C# 
implementation, where we assume failure never happens, and 
where services communicate with one another through RPC calls 
on proxies to other services, using a single threaded (i.e. one request 
at a time per actor) actor style like Orleans [16]: 
1  public interface IForwarder { 

2    void Process(string userMessage); 

3  } 

4 

5  class Forwarder : IForwarder, Actor { 

6    DateTime startTime; 

7    int count=0; 

8    IForwardToService forwardTo; 

9    IReportToService reportTo; 

10 

11   public Forwarder(ServiceSet services) { 

12     forwardTo = GetProxy<IForwardTo>(“forwardTo”); 

13     reportTo = GetProxy<IReportTo>(“reportTo”); 

14   } 

15 

16   void public Process(string userMessage) { 

17     if (count == 0) { 

18       startTime = DateTime.Now; 

19     } 

20     count++; 

21     if (count%1000 == 0) { 

22       long reportNum = count/1000; 

23       DateTime now = DateTime.Now; 
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24       reportTo.Send(reportNum–1, now, 

25                     now–state.startTime); 

26       state.startTime = now; 

27     } 

28     forwardTo.Send(userMessage); 

29   } } 

In the above example, we assume that an instance of the Forwarder 
class is instantiated in some program which hosts the code, and 
directs incoming requests to the Process method. This could be 
mostly generated given IForwarder, which specifies the signature 
of the Process method. The service could then be started by running 
the code, and providing a string which other services can use to 
connect to the running forwarder instance. 

Connections are made to other services by creating proxies in the 
constructor. These proxies’ methods exactly match the request 
types supported by the destination services. In this case, we can 
deliver messages to the forwardTo and reportTo services by calling 
Send methods on the created proxies. The interface types 
IForwardTo and IReportTo, like IForwarder, exactly define these 
request types as method calls. Names for the actual running services 
to connect to are given when creating the proxies (e.g. 
“forwardTo”, and “reportTo”). Note that GetProxy is a service 
lookup method defined in the actor base class, and the passed 
strings are the names used when the corresponding running 
instances were created. 

When a Send method is called, the arguments are automatically 
serialized and sent to the destination actor, where they are then 
deserialized and executed. 

In the absence of failure, this code would sufficiently define the 
logic of our service: Forwarder contains all necessary state, the 
constructor establishes all necessary outgoing connections, and the 
Process method performs all necessary computation, state changes, 
and sends all required output. Observe that where the Forwarder 
runs is immaterial. It could be running at the edge, in the cloud, or 
even on the same machine as one of the other services. Ideally, an 
implementation of our forwarder in a system with virtual resiliency 
would look very similar to this code. 

Note that we have neglected to address some important issues: do 
the Send method calls execute synchronously with execution on the 
called actors, or do they merely initiate the request and continue. 
Minimally, the send ordering must be respected w.r.t. each 
individual destination actor, but concurrent execution could be 
allowed across destinations. For performance reasons, we should, 
in this example, allow concurrency across destinations, since our 
problem clearly states that eventual consistency is sufficient. This 
may, however, not always be the case, and synchronous execution 
should be possible in a general-purpose framework. Also, 
aggressive batching of both request processing and communication 
is needed for high throughput [8]. How can this be accomplished? 

2. DISTRIBUTED RESILIENCY TODAY 
It is possible, without virtual resiliency, to build fully resilient 
distributed applications with today’s cloud development tools, and 
today’s practitioners do so when necessary. In this section, we 
explore what such implementations, without virtual resiliency, look 
like in the context of our running example. At times, developers 
choose less resilient strategies due to the implementation and 
deployment complexity, as well as performance challenges, most 
of which will be made apparent in this section. 

Figure 1 shows a typical configuration for a cloud application 
today. In this particular example, a client, which may or may not be 
in the datacenter, first durably records its service request in some 

record sink, like Event Hub, Kafka, or Kinesis, ensuring that the 
request is preserved in replicated storage. The application logic is 
then expressed as an Azure/Lambda function and is called on 
batches of requests. Any output (e.g. to other services), is then sent 
to other durable queues, and the pattern is potentially repeated. The 
infrastructure guarantees that every function will run to completion 
exactly once on every input, although multiple failed attempts may 
be made before successful completion. 

Client/s
Event
Hub Q

Service
Logic

Azure
Functions

Event
Hub Q ...

 

Figure 1: Resiliency using stateless compute 

Since Azure and Lambda functions are stateless, to make the 
application resilient, every call must begin by retrieving all 
application state necessary to process the request, and write the 
state back after processing. But since the function may fail at any 
time during execution, and be retried many times before 
succeeding, we will need to add code to recover from partial 
executions when side-effects occur (e.g. communicating), or non-
deterministic code is run (e.g. getting a timestamp). 

While only one Azure function can be run at a time, in order, and 
still guarantee correct behavior, most applications naturally 
partition into independent identical pipelines, which may be run in 
parallel to achieve higher application throughput. Consequently, 
they store application state in key/value stores, keyed on the 
partition id, and present the requests in batches for each partition. 

Consider our message forwarding service: to process a batch of 
messages (per source), the state for that partition is first loaded from 
storage. Then, the messages are processed, forwarding messages 
and sending a time reporting message every thousand user 
messages. Finally, the state is written back to storage. The 
application state type, message types, and initial values for relevant 
state fields follow: 
class State {                class ReportMessage { 

  Id source;                   Id source; 

  long count = 0;              long reportNum; 

  long lastSeqNo = -1;         DateTime reportTime; 

  DateTime startTime;          TimeSpan elapsedTime; 

}                            } 

 

class UserMessage { 

  Id source; 

  long seqNo; 

  string message; 

} 

The following code assumes that when a message sink is asked to 
give the sequence number of the last event received, prior to 
receiving any events, -1 is returned. This code also assumes that 
sequence numbers start at 0 and are consecutive. Finally, when a 
message send is complete, it is assumed that message loss is no 
longer possible, and that message order is determined by the order 
in which they are sent. 
1  void Process(Id source, List<UserMessage> batch,  

2      MessageSink ForwardTo, MessageSink ReportTo)  

3  { 

4    State state = LoadState(source); 

5    long lastSent = ForwardTo.Last().seqNo;   

6    foreach(var m in batch) { 

7      if (m.seqNo > state.lastSeqNo) { 
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8        state.count++; 

9        state.lastSeqNo++; 

10       if (state.count%1000 == 1) { 

11         if (count == 1) { 

12           state.startTime = DateTime.Now; 

13           SaveState(source); 

14         } 

15         else { 

16           state.startTime =  

17               ReportTo.Last().reportTime(); 

18         } 

19       } else if (state.count%1000 == 0) { 

20         long reportNum = count/1000; 

21         if (reportNum > (ReportTo.Last().seqNo+1)) { 

22           DateTime now = DateTime.Now; 

23           ReportTo.Send(new UserMesage(source,  

24               reportNum–1, now, now–state.startTime));  

25         } 

26       } 

27     } 

28     if (m.seqNo > lastSent) 

29       ForwardTo.Send(m); 

30   } 

31   SaveState(source); 

32 }  

Note that great care has been taken in the above code to ensure 
correct behavior in the presence of partial executions: 

• We increment the counter only if the message wasn’t counted in 
the last SaveState, by checking lastSeqNo (lines 7-9). 

• We save state when the first event ever is processed, since we 
need to set startTime for later computation of duration, and failure 
could occur on the first Process call (line 13). 

• We check, before sending a ReportMessage, whether we’ve 
already sent that message in a previous execution (line 21). 

• We put reportTime into ReportMessage, and then retrieve it for 
duration calculations, in order to ensure that durations are 
consistent with the wall clock passage of time (e.g. the sum of 
durations is equal to actual time elapsed), even in the presence of 
partial executions. The timestamp is, in fact, a source of non-
determinism that if improperly handled, would produce nonsensical 
ReportMessages (lines 24, 10-19). 

• Before forwarding a message, we check to see if a previous 
execution already forwarded the message by checking the sequence 
number. We are careful to forward at the end of the loop iteration 
since we don’t want message forwarding to interfere with 
timestamp generation (line 28). 

The subtle design issues discussed above illustrate some of the 
challenges associated with writing resilient code today without 
virtual resiliency. As we’ll see in Section 6, there are also serious 
performance problems with these deployments in practice. 

3. AMBROSIA DESIGN 
3.1 Ambrosia’s Approach and Architecture 
Ambrosia’s approach for implementing virtual resiliency is an 
evolution of past approaches for creating deterministic robust 
distributed systems ([1], [6], [30], and [33]). 

In particular, these other systems advocate logging incoming 
requests, and using replay to recover the system to an equivalent 
state prior to failure. Some are even able to transparently reconnect 
after failure. For instance, Pheonix [1] can fully recover 
deterministic components and their connections, ensuring that 
failure does not change overall application state or behavior, even 
though the application writer’s code is oblivious to the possibility 
of failure. We are now ready for a more precise definition of virtual 
resiliency: 

Virtual Resiliency – A distributed platform capability which 
enables developers to produce applications whose behavior, other 
than performance, are unaffected by failure, but where developers 
write failure oblivious code. This capability is supported through a 
combination of logging and language idioms which make the 
application deterministically replayable, as well as automatic 
reconnection protocols which ensure that disconnected/recovered 
components may reconnect and continue as if failure didn’t occur.  

Note the use of the phrase “deterministically replayable”. 
Transactional databases provide deterministic replayability, even 
though they have many sources of non-determinism, like thread 
scheduling. They are, however, deterministically replayable, which 
means that with the aid of the recovery log, they can recover to a 
state consistent with previous interactions. 

Map-reduce systems, and their progeny, like Spark (excluding 
Spark Streaming), had virtual resiliency from their inception. 
Always, the capability relied on deterministic replay.  

Unfortunately, none of the general purpose distributed platforms 
which provide virtual resiliency, like Pheonix, handle non-
determinism, have designs which make Ambrosia’s level of 
performance possible, or provide machine and language 
heterogeneity. 

The following diagram illustrates the architectural components of 
two communicating Ambrosia services/objects/actors, called 
“immortals”: 

Immortal 
Coordinator

Immortal 
Coordinator

Application
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Figure 2: Resiliency using Ambrosia 

Ambrosia is a peer to peer system. Any Ambrosia immortal can 
make RPC style requests of any immortal it’s connected to, 
including itself, given a published API. 

For recovering the state of a failed immortal, Ambrosia’s approach 
is similar to previous work. In particular, all input requests are 
logged to replicated storage prior to execution, guaranteeing correct 
state reconstruction during replay-based recovery. Additionally, 
upon reconnection, like previous work, Ambrosia employs a 
protocol using internal sequence numbers to ensure 
deterministically ordered exactly once delivery of requests. 
Through an open-source process and communication virtualization 
layer called the Common Runtime for Applications (CRA) [20], 
successful reconnection happens even if an immortal comes up on 
a different machine. The end result is virtually resilient, an 
ecosystem which can fully self-heal without assistance from the 
immortal developer, where all failure is turned into waiting. 

While the basic viability of Ambrosia’s approach should be clear 
for deterministic immortals, there are important challenges which 
need to be overcome for this approach to be practical: 
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• How should Ambrosia handle non-deterministic immortals? 
Non-determinism can come from a variety of sources, including 
non-deterministic results like getting the current time, and 
accepting input from non-replayable sources, like user input. 

• How do we make Ambrosia’s approach performant? 

• How do we achieve language and machine heterogeneity? 

We begin with a deeper discussion of Ambrosia’s architecture, 
shown in Figure 2, which addresses the issues of language and 
machine heterogeneity, and will frame our explanation of how we 
support C#. 

First, note that each immortal is composed of two running 
processes, which are expected to run on the same container/VM 
/machine. The choice to run each immortal as two separate 
processes is an implementation convenience which allows us to 
more easily add support for multiple languages, at additional 
latency cost, but is not fundamental to Ambrosia’s design.  

We assume that the two processes that comprise each 
immortal share a failure domain. That is, if one process crashes, the 
other will also crash or will stop prior to any attempt at restarting. 
In clusters, a recommended deployment model uses Kubernetes 
pods, which correctly establish failure domains. Ambrosia relies on 
TCP for network connections; as a result, we assume messages are 
always delivered reliably and in order. Any failures at the network 
level are handled by the TCP protocol (e.g., missing packets). On 
Windows, Ambrosia uses fast TCP loopback, reducing the penalty 
for a two-process design.  

Note that Ambrosia is intentionally careful to NOT make 
deployment decisions. For instance, Ambrosia’s only responsibility 
is to run correctly in a properly deployed environment, and not 
pollute the log when infrastructure failure occurs. Being in the same 
failure domain, deployers are expected to ensure that both 
processes are brought down before restarting them on the same, or 
a different node. Whether to try again on the same node, or move 
to another node, is in the hands of the deployer, and is intentionally 
not Ambrosia’s concern. In this manner, Ambrosia may be used in 
a maximally flexible way. Note that there are certain situations 
which will cause one or both of the processes to crash, like a 
primary losing the file write lock on the log, losing access to the 
log or metadata, or running out of memory. Deployers are expected 
to monitor the health of deployed immortals, and fully fail (and 
possibly restart) the instance when these error situations are 
encountered. 

The first process is the immortal coordinator (IC), which handles 
all log interactions, and communication with other immortals. This 
process is also responsible for orchestrating immortal recovery, 
including both broken connections to other immortal coordinators. 
and handling failover when active secondaries are present. 

The IC relies on CRA [20] as an application hosting layer that 
virtualizes the TCP connections between a graph of vertices, which 
are, in our case, Immortals. For instance, when an immortal fails 
and is restarted on another machine, after the state has been 
recovered through replay, all previously connected immortals are 
automatically reconnected by CRA to the restarted instance, going 
through an Ambrosia specific sequence number based reconnection 
protocol guaranteeing logically exactly once delivery.  

The IC is blissfully unaware of types, or even the nature of requests 
passed between immortals. From the IC’s point of view, messages, 
in the form of byte arrays, are passed along the connections that 
they share, are logged, and sent to a language binding. Any 

information about types, endianness, and even whether the message 
is a new request or return value, is immaterial to the IC. 
Furthermore, we’ve implemented the IC in both .NET Framework 
and .NET Core, enabling it to run on a wide variety of architectures 
and operating systems. There will be a more detailed discussion of 
the IC in Section 3.3, which will be revisited in Section 4.2 to 
describe how impulses are implemented. 

The second process is divided into 2 parts: the first part is a 
language-specific Ambrosia binding, responsible for interacting 
with the IC. The IC sends messages to the language binding, which 
interprets those messages as new requests or return values 
associated with previous outgoing requests. The language binding 
then executes service logic in response to these messages, and sends 
to the IC any outgoing requests or return values in the form of new 
messages. We now state an overly strong language binding contract 
which guarantees virtual resiliency: 

Strong Language Binding Contract: From some initial state, any 
execution of the same incoming requests in the same order must 
result in both an equivalent final state, as well as the same outgoing 
requests in the same order. In addition, the binding must also 
provide a state serializer. 

Note that the above definition does not specify anything about 
threading, language idioms or style, or even if the language needs 
to be Turing complete. Rather, it only requires determinism w.r.t. 
the log. Also, to avoid replaying from the start of the service during 
recovery, the IC must occasionally checkpoint the state of the 
immortal, which includes the application state. The specific method 
of, and format for, serialization can vary from language to 
language, or even amongst bindings for the same language. 

Machine heterogeneity in Ambrosia is achieved by the 
architecture described above. Since ICs pass untyped byte arrays 
amongst themselves, leaving it to the language binding layer to 
interpret these messages, machines with varying operating systems 
and architectures need only to agree on the serialization format of 
these messages to successfully communicate. Furthermore, our 
choice to implement .NET core versions of both our IC and C# 
language binding, combined with support for C#’s architecture 
independent binary data contract serialization [25], makes this 
capability available in Ambrosia today for a wide variety of 
architectures and operating systems. 

Ambrosia today goes even further: a .NET core immortal running 
on a Windows PC is recoverable on a Raspberry Pi running Linux, 
including all the connections to other immortals. This is a 
consequence of .NET core applications running on a wide variety 
of platforms, and state serialization for both the C# language 
binding and IC depending exclusively on architecture independent 
serialization strategies. 

Since the IC is serialization format oblivious, as long as two 
language bindings agree on an argument serialization format, like 
Avro, or Protobuf, they may successfully invoke each other’s 
RPCs, achieving language heterogeneity. 

At this point, it is interesting to point to a few important differences 
between Ambrosia’s architecture, and the architecture described in 
Section 2: 

• Because the log of requests is hidden in the IC, there is great 
flexibility in storing the log. For instance, the IC could store the log 
in a local file, or some form of cloud storage, depending on an 
application’s needs. This decision may even be delayed until 
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deployment time, with different decisions made for different 
deployments. 

• Application developers no longer write logic to recover from 
partial executions, since this is all handled by the IC. For the same 
reason, they also no longer write code to retrieve and store state, 
since all state is made implicitly durable through logging. 

• Since the log implicitly contains all state changes for the 
application, debugging is greatly facilitated. To perform “time 
travel debugging” [23], we simply execute from a checkpoint 
before a bug occurred, and roll forward with the debugger attached, 
without involving any distributed components outside the 
immortal. This kind of debugging convenience is very difficult to 
replicate when applications explicitly write recovery code and 

durable state. 

3.2 C# Language Binding 
We begin by observing that the Ambrosia C# code for our running 
example is very similar to the naive code presented in Section 1. 
This is facilitated by a few similar assumptions about how code is 

run by our C# language binding: 

• The public API for an Immortal is given using a C# interface. 
• We assume that all incoming requests and interleaved return 
values of previous outgoing calls are processed sequentially in a 
single threaded manner 
• Asynchrony (but not parallelism) is achieved using the standard 
C# async framework, where outgoing asynchronous calls may be 
awaited, resulting in a suspension of the request execution until the 
return value arrives in the incoming request and return value 
stream. 

The biggest difference between our naive C# code and actual C# 
code derives from the use of DateTime.Now, which is non-
deterministic upon replay. Specifically, upon recovery, a different 
timestamp is generated from the original, violating the language 
binding contract by producing different outgoing message 
argument values for the Send calls. 

We overcome this problem by relaxing the language binding 
contract:  

Weak Language Binding Contract: From some initial state, any 
execution of the same incoming requests in the same order must 
result in an equivalent final state. In addition, the outgoing requests 
must be deterministic in their number and destination ordering, but 
the contents may vary. Finally, the binding must also provide a state 
serializer. 

The IC then guarantees that for each Immortal, only the first 
successfully logged incoming message is actually used for 
execution, regardless of content differences if the source recovers. 
This weak language binding contract, combined with the first 
logged replay guarantee together provide deterministic 
replayability across the whole distributed system by guaranteeing 
the integrity of message position, and ensuring that only one 
version of each message is ever acted upon. 

We exploit this relaxed language binding contract to harden values 
from polled non-deterministic sources like DateTime.Now. 
Specifically, we perform an awaited Ambrosia self-call, passing the 
current time. Like all other incoming calls, the IC logs the self-call 
before processing. Upon execution, the self-call assigns the passed 
timestamp to a member, which is used when the awaiting original 
request continues. 

The interface for the Ambrosia message forwarding immortal in 
our running example is shown below: 

public interface IForwarder { 

  void Process(string userMessage); 

  void setStart(DateTime newSTime); 

} 

First, note the similarity to our naive code from Section 1. Also 
observe the existence of setStart, which is the self-call used to 
harden the polled timestamps.  

Additionally, some important differences with the example in 
Section 2 are immediately apparent. First, note that there is no need 
for a batch interface. As we will see in Section 3.3, Ambrosia 
automatically batches requests when needed. Also, note the lack of 
sequence numbers. Since Ambrosia handles correct reconnection 
upon failure, there is no need to surface sequence numbers in the 
application code. Finally, Ambrosia today does not have automatic 
parallelization, which remains an item for future work, so there is 
no need to pass source. 

The implementation of the forwarder contains the application logic, 
some attributes to support state serialization, and initialization to 
set up proxies for sending messages and reports:  
1  [DataContract] class Forwarder: 

2               Immortal<IForwarderProxy>, IForwarder { 

3    [DataMember] DateTime startTime; 

4    [DataMember] int count=0; 

5    [DataMember] IForwardToProxy forwardTo; 

6    [DataMember] IReportToProxy reportTo; 

7 

8    protected override async Task<bool> OnFirstStart() { 

9      forwardTo = GetProxy<IForwardTo>(“forwardTo”); 

10     reportTo = GetProxy<IReportTo>(“reportTo”); 

11   } 

12 

13   void override async Task Process(string userMessage)  

14   { 

15     if (count == 0) { 

16       await thisProxy.setStartAsync (DateTime.Now); 

17     } 

18     count++; 

19     if (count%1000 == 0) { 

20       long reportNum = count/1000; 

21       DateTime lastTime = startTime; 

22       await thisProxy.setStartAsync (DateTime.Now); 

23       reportTo.Send(reportNum–1, startTime, 

24                     startTime–lastTime); 

25     } 

26     forwardTo.SendFork(userMessage); 

27   } 

28 

29 void override async Task setStart(DateTime newSTime)  

30   { 

31     startTime = newSTime; 

32 } } 

From the IForwarder interface, we generate C# libraries which 
contain abstract base classes with associated abstract method calls, 
which are implemented by the application writer. For instance, the 
Forwarder class in the above example implements IForwarder, 
which is in the associated generated C# library. 

These generated libraries also contain proxies for making method 
calls on immortal instances of this type from other Ambrosia 
applications. For instance, in the above example, forwardToProxy 
is of type IForwardToProxy, which is a generated type for 
interacting with immortals which implement IForwardTo, which is 
not shown here. Like the naive version of our code, GetProxy is 
used to get a handle to an immortal registered in a catalog of 
immortals stored in a table. (Ambrosia uses Azure tables.). The two 
GetProxy calls reside in OnFirstStart, which is a logical constructor 
and is called once at the logical start of an application. 

Observe that Forwarder is data contract serializable, and relevant 
fields, including references to other immortals (proxies), are 
labeled as data members. This ensures that when a checkpoint is 
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taken, the forwarder’s state is serialized. This state is then 
automatically deserialized during recovery. 

In C#, Ambrosia calls to other immortals can be executed in either 
an awaitable (called async), or non-awaitable (called fork) fashion. 
For instance, the Send call on forwardToProxy is a forked call, 
which means it is not awaitable. This corresponds to the call version 
assumed for best performance in the naive code. Both RPC versions 
are automatically generated in the proxy for using an Ambrosia 
immortal. If an RPC is executed in a non-awaitable fashion, no 
return value is expected or sent, similar to sending an event. If an 
awaitable Ambrosia call is awaited, as in the call to setStart, the 
executing call is suspended until the return value arrives through 
the message queue from the coordinator. When the return value is 
handled, the suspended RPC is woken up, and continues execution.  

Again, note the use of the setStart method. By making an Ambrosia 
call to itself with the newSTime argument, the IC ensures that each 
time the setStart call is successfully logged, all subsequent replays 
will use the logged timestamp argument rather than the one from 
the call generated by replay. 

Note, in Forwarder, the lack of sequence number logic, LoadState 
and SaveState, and the disregard for the possibility of partial 
execution followed by failure. The code will nevertheless execute 
in Ambrosia in a fully fault tolerant manner, and is deterministically 
replayable as a result of Ambrosia being virtually resilient. 

3.2.1 Consistency and the C# Binding Model 
Consider the overall programming model presented in this section: 
Aside from the influence of non-replayable sources, like getting the 
current time, Ambrosia reduces the standard fully distributed cloud 
programming model with exposed failure and migration, to failure 
free independently executing actors running on a single node, 
where each actor is single threaded. Concurrency is allowed within 
an actor, specified using C#’s async framework. Specifically, each 
Immortal maps to an object, and Ambrosia method calls, which can 
be made as either async or fork calls, correspond to traditional C# 
method calls. 

An interesting corollary of Ambrosia’s single threaded Immortal 
execution model is that if all Immortal calls across the application 
are made using the async version of the call, and immediately 
awaited, and only one Immortal has an OnFirstStart, the application 
becomes a globally single-threaded job. 

This does NOT mean that Ambrosia eliminates the need for further 
mechanisms required for consistency. Consider that locks and 
transactions are useful mechanisms for maintaining consistency 
even within a single node, when concurrent execution is present. In 
fact, these mechanisms may now be used in a manner consistent 
with single node execution without failure, eliminating failure 
induced mechanism inconsistency (e.g., losing lock state). Clearly, 
such consistency mechanisms are still potentially useful in 
Ambrosia applications which require consistency in the presence of 
concurrent calls across Immortals. 

3.3 Performant IC Design 
In Ambrosia, most of the heavy lifting for virtual resiliency is done 
in the IC. In particular, it is responsible for maintaining connections 
to other immortals, including reconnecting after disconnection or 
after recovery, as well as coordinating logging, checkpointing, and 
recovery. In addition, Ambrosia’s IC design is very performance 
oriented, to great benefit (see Section 6). 

We discuss the IC design in the context of an example shown in 
Figure 3. In this example, we follow an immortal method call, m, 
through the caller and callee’s immortal coordinators, and all the 
logging and other activity caused by the call. We discuss our 
various performance optimizations in this context. 

We begin with a method call on Immortal 2, labeled “1)”, for step 
1, made from Immortal 1’s application. Once the method call is 
made in the application code, it is passed to the language binding, 
which serializes all the arguments, including the destination, and 
adds the result to a queue of page buffers for later sending (step 2). 
After serialization, the entire message associated with m, except the 
destination, which comes first, is considered one big byte array, and 
is not interpreted until the language binding in Immortal 2. This 
greatly facilitates high performance. Also, the strategy of queueing 
serialized requests for sending, as a result creating batches of 

requests, similar to the strategy used in Trill [8], is a strategy used 
throughout the system. In particular, while a batch is being sent, all 
arriving messages are added to the next batch, which is sent after 
the previous one is sent. These batches have a maximum size to 
control memory footprint, which can result in blocking the 
enqueueing source. Visually, buffers in the diagram imply that 
batching is happening. 

Data Connection

Immortal 1 Immortal 2
IC 1 IC 2

1) m

2) m

3) m

4) m,s 5) m,s

6) m,s

8) m
7) m,s

8) s
Control Connection

9) s

11) s

10) s

Ambrosia
Binding

Application

 

Figure 3: Method call protection example 

(m = a message, s = m’s sequence number) 

In the IC, each outgoing connection to another immortal has an 
associated set of output buffers for batching, so when the method 
call is passed as part of a batch to the IC (step 3), the IC looks at 
the destination of each message in the batch, and adds it to the 
appropriate output buffer (step 4). It is worth pointing out that the 
batches (in addition to the individual messages!) produced in this 
output buffer aren’t unpacked or interpreted until they reach the 
language binding which dispatches the individual method calls. 
This greatly facilitates performance. Also, notice the introduction 
of s, which is the sequence number associated with the message. 
This sequence number is associated with the outgoing connection, 
and monotonically increases with each message (not batch) sent 
through that connection. As a consequence, the association of 
sequence number to messages is the same for both Immortal 1 and 
Immortal 2, and is independent of batching decisions. While it’s not 
actually transmitted, we include it here to note the importance of 
associating sequence numbers with messages. The batch is then 
sent to Immortal 2’s IC (step 5), where it is added to a buffer, which 
serves as a log page (step 6).  

When the buffer page is flushed to disk (step 7), the new high 
sequence number watermarks for all inputs which contributed to 
the flushed page are recorded as part of the log record. This enables 
a recovering immortal to know how much input has been 
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consumed, which is important in establishing correct reconnection. 
Once the log page has been flushed, it is sent to the language 
binding for Immortal 2 (step 8), which dispatches the method. By 
waiting to send the page to the language binding until after it has 
been flushed, we are preventing the creation of side effects, in the 
form of outgoing calls, until the input has been “committed”. This 
is similar, in spirit, to batch commit. 

If this concluded our activity, the output buffer in IC 1 for the 
connection to IC 2 would grow infinitely, because, it couldn’t 
release buffer pages until it knew that their contents had been 
flushed to disk by IC 2. For this reason, after IC 2 flushes the page 
to disk, it sends a batched message (step 8) back to IC 1 (step 9) 
containing the high sequence number watermark for the messages 
just flushed to disk originating from IC 1. Since these messages 
have been successfully flushed, there is no longer a need for IC 1 
to remember them, and IC 1 may release the memory used to store 
them. These cleanup messages arrive along a different TCP 
connection than data to avoid possible deadlocks, when limitations 
on buffer sizes could prevent cleanup messages from getting 
through. As a result, for each unidirectional logical connection 
between immortals, there are 2 TCP connections, one for data and 
one for “control” messages. 

Finally, IC 1 flushes changed per output high watermarks for 
received cleanup messages, each time log pages are flushed to disk 
(steps 10 and 11). This enables the IC, during recovery, to discard 
output produced during replay which consumers have already 
durably consumed. 

In additional to the adaptive batching and batch committing, in 
order to improve performance, we also employ strategies familiar 
to DBMS architects for concurrently writing to in-memory log 

pages efficiently. While a log write is taking place, input arriving 
from multiple immortals, each with its own thread, contend for 
space in the log buffer page, effectively creating a serial order for 

arriving input from different sources. 

We therefore take the usual approach, described in [18], where each 
thread grabs the position in the current log page in which it will 
write its bytes. Threads then concurrently write their bytes to the 
log record, where the last writer, which closes the page to further 
writes, waits for the concurrent writers to finish before writing the 
page to storage. After the page is closed to writing, new writers 
write to the next log page etc. Our implementation uses compare 
and swap to execute this strategy in a highly efficient manner, as is 
described in [18]. Like other page buffers, these buffers are size 

limited, and may cause blocking which cascades to senders. 

It is also worth pointing out that checkpoints are periodically taken, 
when the log file exceeds a particular file size, at which point a new 
log file is started with all records which follow the checkpoint. 
Checkpoints contain both serialized application state, as well as 
immortal coordinator state, which includes the state of all send and 
log buffers. While checkpointing causes loss of availability in non 
active-active configurations, for active-active configurations, the 
primary simply starts a new log file without taking a checkpoint, 
and one of the secondaries is used to create the actual checkpoint. 

This allows checkpointing without associated loss of availability. 

4. IMPULSES 

4.1 Non-replayable sources and impulses 
While polled non-replayable sources can be handled in a manner 
similar to the example in Section 3.2, which makes calls to 
DateTime.Now, what should we do about non-replayable sources 
that push data into an immortal? This could include data sources 

like live Twitter feeds, where best effort is all that’s available, or 
even UI input, where a user can’t be expected to reenter input 
during recovery. For applications with UI input, the immortal 
represents the state of a running application, including all 
information needed to render, and the UI makes calls into the 
immortal to modify that state from the same process. 

When faced with such sources of non-determinism, Ambrosia 
developers use a novel feature called impulses, which are special 
RPCs that can only be called on a fully recovered and operating 
immortal instance. Specifically, this means that impulse calls 
cannot be made during recovery. When receiving an impulse call, 
the arguments are recorded in the log before execution, and will be 
replayed during recovery. 

Impulses are identified in the immortal interface, like other RPCs, 
but are tagged with the property “ImpulseHandler”. For instance, 
consider the following extension to our running example, where 
new messages may also originate from user input entered through 
the keyboard. We use “…” to represent previously presented code. 
The interface and immortal follow: 
1  public interface IForwarder { 

2    … 

3    [ImpulseHandler] 

4    void AcceptInput(string newInp); 

5  } 

6 

7  [DataContract] class Forwarder: 

8               Immortal<IForwarderProxy>, IForwarder { 

… 

9 

10   void override async Task AcceptInput(string newInp){ 

11     thisProxy.Process(newInp); 

12   } 

13 

14   protected override void BecomingPrimary() { 

15     new Thread(() => { 

16     while (true) { 

17       var line = Console.ReadLine(); 

18       thisProxy.AcceptInputFork(line); 

19 } } } } 

Note that the background thread which accepts and submits user 
input, through our impulse, is created in BecomingPrimary. 
BecomingPrimary is an overrideable immortal method which is 
called after recovery is over, when the instance takes a primary role 
(see Section 5.1 for a discussion of Ambrosia’s active-active 
capabilities). By starting the input thread in this method, we ensure 
that new input isn’t being submitted through our impulse during 
recovery, and that none of the secondaries, if we are running in an 
active-active deployment, are requesting input. 

From the above, it should be clear that all incoming external 
interactions can be easily handled in an at most once manner with 
impulses. Traditional approaches for handling external incoming 
and outgoing interactions may still be used, similar to what’s 
presented in Section 2, given that code is guaranteed to run at least 
once. Exploiting this guarantee, in conjunction with application 
level sequence numbers and durable queues, one can still achieve 
exactly once semantics, but without the benefits of Ambrosia. 

4.2 Implementing impulses 
Unlike conventional Ambrosia methods, impulses are logically 
executed at most once. If an immortal, which collects and sends an 
impulse, fails prior to transmitting the impulse to the receiving 
immortal, or if both the sender and receiver fail before the impulse 
is made durable, the impulse will be lost. In particular, we cannot 
rely on replay to reproduce the outgoing impulse on the sender. 

As a result, if we tried to treat impulses as ordinary method calls in 
the protocol described in Section 3.3, the sequence numbers in 

595



senders and receivers could become inconsistent. For instance, 
suppose a sender A takes a checkpoint, and at the time of the 
checkpoint, has sent a total of 200 messages to receiver B. After 
checkpointing, assume 100 impulses are sent to B, after which A 
fails. After A’s recovery, during which outgoing impulses are not 
recreated, A will believe it has sent 200 messages to B, while B 
believes it has received 300 messages from A. A will subsequently 
eat the next 100 messages to B, though they’ve never been sent. 

We therefore keep track of two sequence numbers instead of one: 
total, and replayable (i.e. non impulses). The protocol described 
below has the following behavior: 

1) Non-impulses are executed exactly once in the proper order 

2) Logged impulses are executed exactly once in their proper order 

3) Impulses which are not logged are lost 

4) Impulses from a recovering sender not already sent to a receiver 
are lost, including checkpointed impulses in send buffers 

It is easy to see that in the absence of system failure, running the 
protocol described in Section 3.3, but with sequence number pairs, 
will result in correct behavior with no loss of impulses. Similarly, 
broken TCP connections (without system failure), can be similarly 
healed without loss. 

Complications, however, ensue, with system failure and recovery. 
Recovery begins by restoring the last checkpoint, including both 
application and immortal coordinator state. Recovery then cleans 
all impulses out of all restored send buffers. This enforces behavior 
4 above. Note that as recovery processes log records, it retrieves 
both total and replayable sequence numbers for cleanup messages 
(written to the log in step 11 in Figure 3). Since, at this point, the 
recovered output buffers only contain replayable messages, the 
replayable sequence numbers are used to clean output buffers 
during recovery.  

After replay, during reconnection, the receiver sends both the 
replayable and total sequence numbers to the sender. The sender 
then begins replay from the call following the last received 
replayable message, and sets the total sequence number for that 
message to 1 higher than the total sequence number from the 
receiver. In this manner, the receiver receives the first call 
following the last received, and sequence numbers between the 
sender and receiver are made consistent. 

Note that the sequence number consistency enforcing protocol 
described above is only for reconnecting for the first time after 
recovery. When reconnecting in other situations (e.g. after TCP 
connection failure), sequence numbers are already consistent, and 
the sender simply starts from the message after the last received. 

5. LOG BASED AMBROSIA FEATURES 
There are four additional major capabilities enabled by Ambrosia’s 
logging-based approach to virtual resiliency.  

5.1 High Availability 
The first of these features is high availability through active 
standbys. In Ambrosia, the log, and associated checkpoints, are 
written to a directory specified by the immortal deployer. In both 
Windows and Linux, that directory can be backed by either local 
storage, or cloud-replicated storage. For instance, Azure Files [24] 
may be mounted on all internet connected Linux and Windows 
machines. Alternatively, Azure Managed Disks [24] offer a 
performant and very cost-effective alternative for immortals 
running inside Azure datacenters. 

At any given moment, there is one primary, which produces the log 
and is connected to other Ambrosia immortals, and secondaries, 

which consume the log in recovery mode, until they become 
primary. Leader election is simply the result of all instances 
continuously (e.g. every half second) trying to acquire the exclusive 
write lock on the log file. When an instance acquires the lock, it 
becomes primary, and CRA establishes all connections to other 
immortals. If a primary ever loses the file lock, it commits suicide. 

The log is broken into deployer specified chunks, such that 
whenever a threshold is reached, a new log file is created with an 
incremented chunk number as part of the filename. When a 
secondary becomes primary it immediately starts a new log file. 

In Ambrosia’s implementation of high availability, checkpoints are 
generated by a secondary, such that each time a new log file is 
started, there is an associated generated checkpoint which contains 
the state of the immortal instance at the start of the log file. The 
secondary-based checkpointing prevents loss of primary 
availability while checkpointing and turns out to be the optimal 
strategy in a resource-reservation based environment like the cloud 
[21]. A new secondary then starts from the latest checkpoint and 
rolls forward until it is caught up. 

5.2 Time Travel Debugging 
Using checkpoints and log files, Ambrosia exploits application 
deterministic replay to implement time travel debugging: the 
developer starts the application process and attaches the debugger, 
and then starts the immortal coordinator in time travel mode. In this 
mode, the developer points the coordinator to the log and 
checkpoint files (which may still be live) and specifies the 
checkpoint number to begin recovering from. The immortal 
coordinator then runs recovery, never becoming primary. 

Since the debugger is attached to the application process, all the 
usual debugger features may be used, like setting breakpoints, and 
stepping through code. Because replaying the log is deterministic, 
the same application behavior may be replayed and debugged as 
many times as desired, even against a live log. 

5.3 Retroactive Code Testing 
Related to time travel debugging, if the application writer wants to 
test an alternate version of the application which has the same 
interface and state (as is frequently the case when fixing bugs), they 
can perform time travel debugging with the updated version of the 
application, using the debugger, to find a bug or test a fix. A 
developer may even use this feature to create new application 

generated logs against the replay. 

Observe that new versions of services may be rolled out this way, 
where the new version starts as an active secondary and becomes 

primary when all instances associated with old versions are killed. 

5.4 Live Service Upgrades 
Occasionally, services go through significant upgrades, where the 
API to the service broadens, and/or where the type of the 
application state changes (e.g. the addition of new counters). For 
such situations, Ambrosia allows developers to define an 
“upgraded Immortal”, where both old and new versions of the 
application code are present in the process.  

When such an immortal is deployed, it recovers using the old 
version of the service. When it becomes primary, it calls a 
constructor for the new version of the service, which takes as an 
argument the state of the old version at the time it becomes primary. 
A new checkpoint is then taken of the new version of the service, 
and the upgrade is complete. 

To deploy such an upgrade, it is initially added as an active 
secondary. While killing all the instances of the old service, the new 
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version becomes primary and the service continues. Note that any 
old versions of the service still running simply die once the new 
version becomes primary. 

6. EXPERIMENTAL EVALUATION 
In this section, we present performance results comparing 
Ambrosia with alternative baselines. We measure throughput, 
latency, overhead of logging, fail-over and recovery times. 

6.1 Implementations under Test 
We explore the performance of several different implementations 
of a client-server application, where the client sends requests to the 
server, each of which contains a byte array. The server counts the 
total number of requests and bytes sent. We focus on three different 
implementations, which we describe next. 

6.1.1 gRPC 
gRPC is a performance-oriented cloud RPC framework that does 
not do any logging or recovery. It is just straight-up RPC. As such, 
we would expect it to soundly beat Ambrosia, and it should 
represent an upper bound of what’s possible. 

Note that we used the gRPC streaming implementation in C++, 
which according to [22], is the most performant option. In our 
streaming setup, the server has a streaming RPC, called Receive, 
which takes a byte array of the appropriate size and keeps a running 
total of all bytes received. The choice of a byte array is designed to 
minimize serialization and deserialization overhead, which is 
orthogonal to the issues tested here. 

For the latency test, we use a single RPC call, which performs the 
fastest round trip available in gRPC, performing one at a time to 
ensure minimum interference. 

6.1.2 Ambrosia – C# 
The focus of this paper, we provide both .NET framework and core 
implementations, and run on both Windows and Linux. In these 
experiments, we use the .NET framework implementation on 
Windows. We wrote two Immortals: a client and a server. Both are 
fully recoverable and generate their own logs and checkpoints. 
Each write their logs to Azure storage. In particular, we wrote our 
logs to 6x P10 Azure Premium Managed Disks, which were pooled 
together in a software RAID configuration with aggregate 
bandwidth of 600 MB/s. Note that this RAID configuration 
represents the cheapest way to allocate replicated storage with the 

bandwidth we anticipated we’d need for our tests. 

Like the gRPC implementation, the server computes the total bytes 
sent, which is part of the server’s serializable state, and is marked 
as a data member. Except for our resiliency tests, checkpointing 
(but not logging) was turned off for these experiments. 

Like gRPC, we use our streaming RPC calls (Fork). Conceptually, 
there is very little difference between the code written to implement 
this microbenchmark in gRPC and Ambrosia, although differences 
in C# and C++ make the Ambrosia-C# version more readable. 

6.1.3 Serverless and Stateless Compute 
A popular design (see Figure 1) for microservices is to ingress data 
into a fully managed, real-time data ingestion and messaging layer 
such as Azure Event Hubs or AWS Kinesis. The messaging layer 
feeds data to a serverless execution fabric such as Azure Functions 
or AWS Lambda, which pulls data batches from the messaging 
layer and executes the user code. The user code is stateless; it loads 
state from a persistent backend such as Azure Tables or AWS 
DynamoDB, runs application logic, and writes back the state at the 
end of execution. We can compute the total cost to run a 
microservice using this architecture, in terms of dollar amount per 

month, per MB/sec of ingress. We assume that both the messaging 
layer and the serverless functions layer can parallelize as much as 
needed. For Azure, the cost components of a deployment are: 

(1) EventHub ingress cost: It currently costs $0.028 per million 
messages, plus $0.015 per hour, per throughput unit (1 MB/sec 
ingress, 2 MB/sec egress). Event Hubs also offers a dedicated 
option that costs $4999.77 per month; we choose the lower cost 
between these options for our computations. 

(2) Azure Function costs have two components. First, there is a cost 
of $0.20 per million executions, we assume that a function is 
invoked with batches containing up to 256KB of data from Event 
Hubs. Second, there is an execution time cost of $0.000016 per 
GB/sec, a unit of resource consumption. Resource consumption is 

calculated by multiplying average memory size in gigabytes by the 
time in milliseconds it takes to execute the function. We assume 
128MB of average memory (the lowest allowed) and that it takes 
0.1ms per event in the batch fed to Azure functions. 

(3) We perform one read and write to storage per function 
invocation. Azure Tables cost $0.00036 per 10,000 transactions, 
with a $0.07 per GB cost for the actual first terabyte of storage. We 
assume that 1GB is enough to hold the state for our example. 

The costs for AWS were computed similarly and verified using the 
AWS cost calculator [31]. Briefly, AWS Kinesis is priced at $0.015 
per shard-hour (1MB/second ingress, 2MB/second egress), plus 
$0.014 per million PUT payload units, AWS DynamoDB is priced 
at $1.25 per million reads and $0.25 per million writes, and AWS 
Lambda is priced similarly to Azure Functions. 

We vary the per-message size from 16 bytes and up, and compute 
costs over a month if the service ingests 100MB/sec over the entire 
month. We then scale the result down to report the cost per month, 
per MB/sec of ingested data. 

6.2 Experimental Setup 
In all cases except serverless, we perform two types of throughput 
experiments, run on 2xD14v2 (16 cores, unlimited storage 
bandwidth) Azure instances to optimize performance and the most 
efficient of 2xF2S (2 cores, 96 MB/s to storage) and 2xF2SV2 (2 
cores, 47 MB/s to storage) to optimize price/performance. We also 
measure ping latency under minimal load, where one instance acts 
as the client, and the other as the server. The same actual instances 
were used in all experiments to eliminate hardware variation. 

The resilient setup based on Section 2 uses only serverless 
components, and simply calculates costs for comparable work 
done, and measures end-to-end ping latency on Azure, starting 
from a VM, going to Event Hubs, serviced by an Azure Function, 
outputting to Event Hubs, and retrieved by the original VM. 

6.3 Results 
6.3.1 Throughput 
The results of the performance optimized throughput experiments 
are shown in Figure 4. First, observe that even though gRPC is a 
bare RPC framework, without any notion of failure resiliency, it is 
nevertheless significantly less performant for small message sizes 
than Ambrosia. For 16-byte arguments, it is actually more than 10x 
slower than Ambrosia-C#! Also, note that gRPC slightly outper-
forms Ambrosia-C# near the throughput limit, but pulls back, for 
some reason, to efficiency levels indistinguishable from Ambrosia-
C#. We saw this trend continue for even larger message sizes.  

For the throughput -- price/performance optimized experiment, we 
compare the costs of performing our throughput experiment in 
terms of cost per month per MB if we ran the experiment 
continuously for a month. 
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Figure 4: Performance Optimized 

Performing any comparison of this sort is fraught with difficult 
decisions which can make one strategy fare better or worse. For 
instance, EventHub can be run in either basic or standard mode. 
There are several differences, one of which is the ability to write 
queue history to cold storage for later processing. The difference in 
price is a factor of two. Of course, Ambrosia provides this 
capability, making the log directly available. Nevertheless, in our 
calculations, we chose the basic level of support, as some users may 
not care about this feature.  

 

Figure 5: Price/Performance Optimized 

Also, unlike earlier throughput experiments, for gRPC and 
Ambrosia, we chose instances which optimize price/performance, 
even though overall performance is lower, in some cases choosing 
different instances for different message sizes. Also, we use the on- 
demand price of these VMs, which can be reduced by about 30% 
with long term reservations. 

The results are shown in Figure 5. Both gRPC and Ambrosia are 
much cheaper than stateless compute, in some cases, by about 
1000x! For gRPC, this isn’t a surprise, as our stateless compute 
pipeline is resilient to failure, and gRPC isn’t, but Ambrosia 
provides equivalent resiliency with a much easier programming 
model. Another surprise, Ambrosia is significantly cheaper than 
gRPC for message sizes below 1K. One might expect the cost of 
storage bandwidth to be a large component of Ambrosia’s cost to 
run, but this is not the case. The monthly cost of an FS2 instance, 
one of the cheapest VM instances on Azure, is $169.36, while the 
monthly cost of 100MB of continuous storage bandwidth is only 
$19.71. There is a throttle on storage bandwidth, though, for such 
small VM sizes, which is responsible for gRPC pulling ahead of 
Ambrosia for larger message sizes by about a factor of 1.9. 

We also ran the throughput experiment with logging turned off on 
our largest instances. Turning off logging increases throughput by 
33% for message sizes >= 256, and by 0% for 16 byte messages. 
33% reflects network bound scenarios, where per connection TCP 
bandwidth is surpassed, since storage is written to using a different 
connection. Eventually, though, NIC capacity is reached, causing 
1/4 overall loss of throughput. For small message sizes, the CPU is 
the bottleneck and the logging overhead becomes negligible.  

6.3.2 Latency 
This experiment is designed to test the latency of the various 
implementations under light load, which reflects the best latency 
achievable by these systems. For this we perform pings, where only 
one outstanding ping is allowed. The results of the ping experiment 
are shown in Table 1: 

Table 1: Latency in milliseconds 

 0.5 0.9 0.99 0.999 Mean 

Ambrosia 6.57 7.1 8.71 11.34 6.63 

gRPC 0.5 0.59 0.8 61.85 0.58 

Azure Serverless 31.62 130.5 324.7 6708 80.51  

Ambrosia-NoLog 2.15 2.49 3.05 7.59 2.32 

The first four columns show the latencies for various percentiles. 
For instance, 0.5 is the median, 0.9 is the value for which 90% of 
the latencies are lower, etc. Unsurprisingly, gRPC, which simply 
sends a message across the wire from one machine to the other, is 
the clear latency champ. Ambrosia, on the other hand, must make 
two sequential round trips to our P10 disks. What we see here is 
that adaptive batching and asynchrony completely closes the gap 
(and then some) on throughput, but not latency. Oddly, gRPC has 
higher tail latency around 60ms. These are not one-time outliers; 
they occur regularly throughout the workload. It likely reflects 
global locking associated with gRPC periodically cleaning up 
resources. For stateless compute, latency is about 5x higher than 
Ambrosia at the median, but steadily becomes higher and higher as 
the percentile increases, resulting in 600x higher latency than 
Ambrosia at three nines. 

The last row in Table 1 shows the result of the latency experiment 
with logging turned off. As expected, with logging turned off 
Ambrosia’s latencies are roughly 3x lower than with logging. But 
they are still higher than those of gRPC’s because Ambrosia 
requires strictly more network hops vs. gRPC due to its multi-
process design (Figure 2).  

6.3.3 Testing Ambrosia’s Resiliency 
This last set of experiments measures (a) the fail-over time, and (b) 
the recovery time. In doing these measurements our goal is to 
provide evidence that in the presence of failures, Ambrosia can fail-
over quickly and also that Ambrosia’s recovery overhead is low.  

To test Ambrosia’s failover performance, we performed our latency 
test continuously with 3 active instances for the server, where the 
log is backed by Azure Files. We induced periodic failure of the 
primary server, resulting in failover to an active secondary, and 
restarted the failed server to setup for the next failure. We then 
found the corresponding spikes in ping latency. Since failover time 
was orders of magnitude higher than ping latency, we simply used 
these measured latency spikes as our failover time measurements. 

The result of this experiment shows that with this setup, Ambrosia 

fails-over in 1.8 seconds, on average, with little variation.  

To measure recovery time, we conduct an experiment where we 
perform our throughput test on 20GB of 64K messages, with only 
the initial checkpoint generated. We measure the total execution 
time of this experiment, without failures, to be 77 seconds. 
Ambrosia is able to recover from the initial checkpoint and log from 
start to finish in 40 seconds. This shows that Ambrosia recovery 
costs are less than the Ambrosia costs of running the service with 
logging in the first place, which puts a bound on recovery time. 

Shrink [21] combines this sort of per service information with other 
information, like the availability target, and rate of failure, and 
additionally tunes parameters like checkpointing frequency and 
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number of active instances to achieve optimal cost for an 
availability target. For instance, consider the following tradeoffs: 
adding more active secondaries to mask recovery time increases 
availability, but at additional cost. More frequent checkpointing 
decreases recovery time, but increases the cost of overall 
checkpoint generation, and is limited by the size of the checkpoint 
compared to the size of the log between checkpoints. Connecting 
Ambrosia and Shrink to create a highly efficient, adaptive 
deployment framework is a subject of future work. 

7. FURTHER RELATED WORK 
Ambrosia builds on ideas first proposed in Phoenix ([1], [30]). 
Similar to Ambrosia, Phoenix provides virtual resiliency focusing 
on database applications but lacks support for non-determinism, 
design elements that would provide performance comparable to 
Ambrosia, and language and machine heterogeneity. In [33], 
authors propose a light-weight logging and replay technique 
namely, command logging. Their goal is to overcome the overhead 
of fine-grained logging typically required by the ARIES protocol 
[32]. Command logging records all the transactions which were 
executed on the database, taking transactionally consistent 
checkpoints of the log periodically. During recovery, starting from 
a recent checkpoint, it replays all the commands in the log to bring 
the database to a consistent state. At a high-level, Ambrosia also 
uses a light-weight logging and recovery technique and thus 
benefits from this research. However, Ambrosia's use-cases go 
beyond database systems, and thus certain assumptions do not hold. 
For example, as opposed to [33], in Ambrosia all the commands are 
logged before they are executed and it assumes no transactions 
support (and hence no aborts).  

Support for deterministically replayable computation is relevant for 
language bindings, or maybe even the construction of languages 
and runtimes specifically for use with Ambrosia. In C#, 
deterministic replayability is accomplished via a combination of 
programmer obligations and language-specific mechanisms. 
Ensuring deterministic execution has been the subject of a 
substantial body of research in operating systems ([10], [11]), 
threading libraries ([12], [13]), and programming languages ([14], 
[15]). When developing a service to run on top of Ambrosia, any 
combination of these approaches may be used, as deterministic 
replayability is a local property of each communication endpoint.   

One of the important design goals for Ambrosia is to support 

machine heterogeneity. Sapphire [4] is the system that comes 
closest to our work in this respect. Sapphire provides a distributed 
runtime, which can be extended to run code across a variety of 
devices ranging from cloud data center machines to mobile devices. 
Unlike Ambrosia, the main focus in Sapphire is on flexibility and 
extensibility, which is achieved by separating the application logic 
from the deployment logic. Sapphire could benefit from and build 
on top of the virtual resiliency guarantees provided by Ambrosia. 

Ambrosia also takes inspiration from actor-based systems, such as 
Orleans [16] and Erlang [34], which provide simple abstractions to 
build scalable distributed applications. In contrast, Ambrosia 
provides virtual resiliency guarantees with high performance. 
Reactor [41] extends actor-based frameworks with support for 
transactions. As discussed earlier, transactions are orthogonal to the 
virtual resiliency guarantees provided by Ambrosia. 

There is also work on VM/container level replication for resiliency 
based on checkpointing ([37], [38], [39]). These are all relatively 
high cost physical approaches to logging that require infrastructure 
support, as opposed to our lightweight logical approach which 
doesn’t rely on special infrastructure support. While some of these 

approaches ([36], [35]) enable virtual resiliency on servers, even 
with arbitrary multithreaded code, clients are out of scope, and must 
deal with broken TCP connections. In addition, since they don’t 
have a logical understanding of the workload, they are unable to 
support retroactive code testing, live service upgrades, and efficient 
migration across architectures and operating systems. Finally, the 
most efficient of these is based on an epoch mechanism which loses 
state changes, meaning that users have to choose between lower 
overhead and time travel debugging. 

8. CONCLUSIONS AND FUTURE WORK 
This paper introduces Ambrosia, the first general purpose platform 
for distributed nondeterministic applications that provides its 
developers virtual resiliency with unprecedented performance, and 
the flexibility of working across a variety of machines, operating 
systems, and languages. Furthermore, Ambrosia supports high 
availability, time-travel debugging, retroactive debugging, and live 
service upgrades. Ambrosia is a real system, used to build a service 
which manages hundreds of thousands of machines. The service 
development team, when asked for feedback, indicated that 
Ambrosia, in practice, significantly improved the time it took to get 
their service to an acceptable level of quality, due to the elimination 
of failure associated bugs, and always-on time travel debugging. 

Ambrosia’s performance depends upon technology, developed by 
the database community, used to develop performant data 
processing systems. For instance, we make extensive use of 
adaptive batching from the streaming community, efficient log 
writing, and batch commit concepts. 

Therefore, Ambrosia achieves competitive throughput with gRPC, 
a widely used non-resilient RPC framework, but with higher 
latency costs due to cloud storage latency. Furthermore, Ambrosia 
is both simpler to program, and cheaper to run, than a typical 
stateless compute cloud configuration designed to be resilient to 
failure, outperforming this configuration by about 1000x for small 
message sizes on cost, and 1-3 orders of magnitude on latency.  

These results also indicate that the stateless compute approach 
embraced by most cloud developers is likely a temporary 
workaround until systems like Ambrosia mature. 

While Ambrosia is immediately useful, there are many related 
research problems worth thinking about. The most obvious next 
step is elastic scale out. While databases have certainly solved the 
problem for transactional systems, they rely on the ability to abort 
in flight transactions. In an exactly once system, this is not an 
option, and performant solutions to this problem must be found as 
part of a desirable implementation. 

While this work hasn’t emphasized the ability to relocate immortals 
on other machines, this is potentially very exciting in the world of 
devices, where Ambrosia facilitates the construction of easily 
migratable apps from one device to another, without loss of state. 

Figuring out how to support other languages is both useful and 
interesting. For instance, the language binding choices made for 
Javascript, a single-threaded language, may be quite different from 
a language like C#, where thread non-determinism can complicate 
achieving deterministically replayable behavior. 

Finally, as the number of CPUs and distributed state proliferates 
with IOT, the problem of distributed state management in 
distributed applications will become excruciating. Ambrosia 
provides a crucial building block to tame this complexity. 
Understanding Ambrosia’s role, and potential gaps, for these 
scenarios is very important. 
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