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ABSTRACT

Persistent memory (PM) is fundamentally changing the way database
index structures are built by enabling persistence, high performance,
and (near) instant recovery all on the memory bus. Prior work has
proposed many techniques to tailor index structure designs for PM,
but they were mostly based on volatile DRAM with simulation due
to the lack of real PM hardware. Until today is it unclear how these
techniques will actually perform on real PM hardware.

With the recent released Intel Optane DC Persistent Memory, for
the first time, this paper provides a comprehensive evaluation of
recent persistent index structures. We focus on BT -Tree-based range
indexes and carefully choose four representative index structures
for evaluation: wBTree, NV-Tree, BzTree and FPTree. These four
tree structures cover a wide, representative range of techniques that
are essential building blocks of PM-based index structures. For fair
comparison, we used an unified programming model for all trees
and developed PiBench, a benchmarking framework which targets
PM-based indexes. Through empirical evaluation using representa-
tive workloads, we identify key, effective techniques, insights and
caveats to guide the making of future PM-based index structures.
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1. INTRODUCTION

Next-generation, scalable persistent memory (PM) promises low
latency (comparable to DRAM’s), byte-addressability, scalability
(large capacity) and non-volatility on the memory bus. These prop-
erties make PM attractive for index structures (e.g., BT-Tree and
its variants) in OLTP systems: the index can be directly accessed
and persisted in PM and be recovered (nearly) instantly, saving
much rebuild/loading time, improving performance (compared to a
disk-based index), and easing the effort to manage a large index.

PM exhibits several properties that are distinct from DRAM and
flash memory. It has a higher endurance than flash, but not unlimited
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like DRAM. Its latency is comparable and higher than DRAM, but
still an order of magnitude lower than flash. It also presents band-
width lower than DRAM, and asymmetric read/write speeds [23].
Blindly moving existing index structures to run on PM would not
reap PM’s real benefits for these structures. This necessitates non-
trivial efforts in redesigning index structures for PM. There have
been numerous proposals [6,9, 10, 18,25,32,38,42,47] that tailor
index structures for PM. However, prior work mostly had to base
on volatile DRAM and emulation due to the lack of real PM hard-
ware when they were developed. Thus, it is unclear how well the
proposed approaches will in fact work on real PM hardware.

In this paper, we provide a comprehensive evaluation of range
indexes on real PM hardware based on the recently released Intel
Optane DC Persistent Memory Modules (DCPMM). DCPMM uses
the 3D XPoint technology [12] which scales to large capacity (up
to 512GB per DIMM) and provides latency in the range of that of
DRAM. It is so far the only scalable PM product that is in mass
production and we expect it to be mainstream in the near future.

The goals of this work are to (1) qualitatively and quantitatively
compare range indexes designed specifically for PM, (2) under-
stand the behavior and impact of different design decisions in the
context of real PM hardware, and more importantly, (3) distill use-
ful insights and design guidelines for tree structures in PM. To
achieve these goals, we have developed PiBench!, a persistent
index benchmarking framework. PiBench defines a set of common
interfaces (Lookup, insert, update, delete, scan) supported by
index structures and implements unified, highly customizable bench-
marks for all data structures under evaluation. Using a unified frame-
work allows us to fairly compare multiple index structures and rule
out the impact of different benchmark implementations. Through a
shared library, PiBench can support any index structures—including
hash tables, tries and trees—that support the common operations.

We focus on BT-Tree [7] based index structures that support
range scans, because they are arguably the most widely used index
in OLTP systems, have received the most attention, and have the
most mature techniques among all persistent index types [6,9, 10,
18,32,42,47]. We identify and evaluate using PiBench four recent
and representative proposals, including BzTree [6], FPTree [32],
NV-Tree [47] and wBTree [10]. Although we are evaluating only
four tree structures, they cover a wide range of techniques in vari-
ous dimensions. For example, in terms of concurrency control, our
selection covers both lock-based (FPTree and NV-Tree), lock-free
(BzTree), and hardware transactional memory (HTM) based (FP-
Tree) approaches. We describe and compare these index structures
and their key techniques in Section 3.

Our evaluation results obtained using representative workloads (cf.
Section 5) revealed several important insights, highlighted below:

I Available at https://github.com/wangtzh/pibench.
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Contrary to the estimates found in prior work [40,49], our results
corroborate with recent work [37] that PM bandwidth is a scarce
resource and has significant impact on performance. Data struc-
tures thus need to be designed to not exhaust the available PM
bandwidth. This is especially true for machines that are not fully
populated, i.e., with only a few PM DIMMs.

Designing indexes (and data structures in general) for PM re-
quires using a sound programming model provided by some PM
library [19, 31, 42] for correctness and usability. This entails
non-trivial overhead but is largely sidestepped by prior work.
The result is a significant slowdown on real PM compared to the
originally reported numbers using emulations on DRAM. The
interactions between data structures and PM libraries must be
carefully coordinated.

Despite the different designs, there are several effective key build-
ing blocks and principles that should be followed when designing
indexing structures for PM; they are largely orthogonal and can
be applied individually depending on the need.

In the main sections, we elaborate and present more detailed
findings and insights. To the best of our knowledge, this is the first
and most comprehensive evaluation of OLTP index structures on
real, next-generation PM. PiBench is the first and only framework
targeted at evaluating index structures with support for collecting
metrics on real PM.

Next, we first give background on PM in Section 2, including
its hardware characteristics and implications on software. We then
introduce and compare the indexes under evaluation and our bench-
mark framework in Sections 3 and 4, respectively. Section 5 presents
our empirical evaluation results and analysis. We discuss our find-
ings and insights obtained from this evaluation in Section 6. Sec-
tion 7 discusses related work, and Section 8 concludes this paper.

2. PERSISTENT MEMORY

There are several types of PM based on different materials, such as
memristor [35], STT-RAM [17], phase change memory (PCM) [43],
3D XPoint [12] and DRAM/flash-based NVDIMM [5, 39]. Despite
the different underlying materials, the common features offered
by PM include (1) byte-addressability, (2) non-volatility and (3)
performance in the range of DRAM’s. They can be placed on the
memory bus, thus appear to software as normal memory and can be
accessed directly using load and store instructions.

Optane DC PM and NVDIMM are the only commercially avail-
able PM products, and we expect next-generation, scalable PM (e.g.,
Optane DC) to be mainstream soon. Therefore, we target Optane
DC PM based on the 3D XPoint technology [12]. The rest of this
section provides the necessary background on Optane DC PM’s
properties and discusses PM programming models.

2.1 Optane DC Persistent Memory

Performance. Optane DC PM scales much better than DRAM,
thus it is capable of providing much larger capacity (up to 512 GB
per DCPMM); a single CPU can be equipped with 3 TB of DCPMM.
However, its read/write latency is higher than DRAM’s and it ex-
hibits asymmetric read/write latency (writes being slower). Com-
pared to DDR4 DRAM, Optane DC PM has a 300 ns read latency,
~4x higher that that of DRAM (75 ns). Optane DC PM exhibits
peak sequential read and write bandwidth of 40 GB/s and 10 GB/s,
respectively. These are respectively ~3x and ~11x times lower
than those of DDR4 DRAM. This gap widens even more for ran-
dom read and write bandwidth to respectively ~8x (7.4 GB/s) and
~14x (5.3 GB/s) lower bandwidth than DDR4 DRAM.
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Figure 1: DRAM and Optane DCPMM bandwidth when a server
is fully (x6 modules) and partially (x2 modules) populated.

Given the performance gap between DRAM and PM, it becomes
more important to leverage more memory channels (i.e., equip more
DCPMMs) to reach the peak bandwidth. Figure 1 compares the
bandwidth under two and six DCPMMs with a varying number of
threads. The CPU supports six channels, each of which has two
slots, one for DRAM and one for PM. Therefore, the number of
DCPMMs also indicates the number of memory channels. Similar
to DRAM, adding more DCPMMs significantly increases read per-
formance for PM, while the impact for write bandwidth is relatively
smaller. It is worth noting that in most cases using two threads is
enough to saturate PM write bandwidth. In our experiments, unless
otherwise noted, we use six DCPMMs. As we will see in Section 5,
PM bandwidth is a scarce resource, and higher bandwidth (more
DCPMMs) is critical in obtaining high index performance. Never-
theless, having as many DCPMMs as possible is not always better,
as the optimal setup highly depends on the use case. As an example,
one might benefit from less DCPMMs in favor of more DRAM
modules since the amount of available memory slots is limited per
CPU. In such case, this would imply trading the lower costs and
increase in bandwidth of PM for a more expensive setup and larger
DRAM capacity, benefiting from its lower latency access.

It is difficult to accurately measure write latency for DCPMM,
as writes “succeed” once they reach the memory controller buffers
from CPU caches [33]. Measuring the latency of cache-flushing
instructions does not give real latency to the actual PM device.
A comprehensive evaluation on DCPMM raw performance can
be found elsewhere [23]; we focus on understanding how more
complex, range indexes perform on DCPMM.

Operating modes. Optane DCPMM can be configured to run in
two modes: Memory and App Direct [20]. Both allow direct access
to PM by normal load and store instructions and can leverage
CPU caches for higher performance. Under the Memory mode,
DCPMM acts as large memory without persistence; DRAM is used
as a cache to hide the longer latency. The App Direct mode pro-
vides persistence. There is no DRAM cache in front to hide the
high latency; the application should judiciously use PM and handle
persistence, recovery, concurrency and optimize for performance.
More details can be found in Intel manuals [3].

The crux of persistent indexes is leveraging non-volatility and
guaranteeing failure atomicity, so the Memory mode is not useful for
them, as data will be wiped across reboots. Therefore we configure
DCPMM to run in the App Direct mode. The system can also feature
a certain amount of volatile DRAM, and it is up to the software
(indexes in our case) to determine the roles of DRAM. As Section 3
describes, some indexes are entirely in PM, while some leverage
both DRAM and PM. Note, however, that this is not to be confused
with the aforementioned “Memory” mode where DRAM is used as
a cache for PM and is transparent to persistent data structures.



2.2 Programming Persistent Memory

The use of PM introduces new challenges in data persistence,
memory management and concurrency. Solving these challenges
requires the use of a sound programming model [32] that consists
of the use of cacheline flush instructions and PM-aware pointers,
allocators and concurrency control mechanisms. This constitutes a
key part in designing persistent data structures and is usually done
using PM programming libraries [19,31,42]. This section gives an
overview of these issues; we elaborate in detail in Sections 3 and 5.

Persistence. Since CPU caches are volatile and there is no way
in software to prevent cachelines from being evicted, data must
be properly flushed from the cache to PM eagerly for safe persis-
tence. This can be done using the CLFLUSH, CLFLUSHOPT or CLWB
instructions, which will flush the specified cacheline contents to the
memory controller (write buffers) that cover PM. Through asyn-
chronous DRAM refresh [33] the write buffers are guaranteed to be
persisted in PM upon power failure. CLFLUSHOPT and CLFLUSH will
evict the cachelines being flushed, so they can significantly impact
performance; CLWB is a new instruction for PM that flushes a cache-
line without evicting it. Also, applications that rely on a specific
ordering of writes to guarantee consistency must issue SFENCE to
avoid stores from being re-ordered by the CPU. Moreover, modern
CPUs only guarantee 8-byte atomic writes” in a single cycle. As a
result, data chunks larger than 8 bytes might be written back to PM
in separate cycles, leading to partial writes upon power failure.

Memory management. PM can be mapped to the application’s
address space using a PM-aware file system [2,4,14,45] that provides
direct access without file system caching, using the mmap interface.
The application then uses virtual memory pointers to access data in
PM. However, mmap does not guarantee the application will obtain
the same address space across reboots, invalidating all the stored
pointer values. So the system needs to be able to correctly store
and transform pointers to use the new address space upon recovery.
This is typically handled by some PM programming library, e.g., by
recording only offsets in PM and generating pointers on-the-fly by
adding the offset to a base address. We use the Ext4 file system with
Direct Access (DAX) [1] to manage PM.

PM applications also require the memory allocator to properly
handle transfer of memory ownership to prevent permanent PM
leaks. The allocator must guarantee that an allocated PM block is
atomically “given” to the application and never leaves it in a state
where the memory is tracked by neither the application nor the
allocator. Most persistent allocators [8, 19,31] follow an allocate-
activate approach using a posix_memalign-like interface. A pro-
tocol needs to be in place for the allocator to determine the right
memory ownership upon recovery.

Concurrency and recovery. After a reboot, DRAM-only struc-
tures can be re-created or recovered from storage without inconsis-
tencies, and start with a clean slate. But PM applications need to
recover both data and program states (e.g., critical sections) back to
a consistent state upon reboot, because they are all persistent in PM.
For instance, in a BT-Tree that uses lock-based concurrency control,
a split operation that manipulates multiple pointers may be done
in a critical section. Since the lock is typically also PM-resident,
a crash may cause the tree to hold the lock forever and be in an
inconsistent state. One solution is to devise a recovery mechanism
that releases the lock and rolls back the changes upon recovery.
Similarly, a lock-free B™-Tree may expose intermediate states (e.g.,
half-finished split [27]). As a result, the synchronization mechanism
needs to be tailored for PM to ensure correctness.

2 Not to be confused with atomic visibility, which can be achieved
at larger sizes with instructions such as CHPXCHG16B.
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Figure 2: Comparison of inserting a record d with key 5 in (a) sorted
node, (b) unsorted node and (c) unsorted node with indirection slot
array. Using unsorted node reduces writes but requires linear search
for lookup, which can be avoided by using an indirection slot array.

3. PERSISTENT B+-TREE STRUCTURES

In this section, we survey representative PM-based B*-Tree [7]
indexes, including wBTree [10], NV-Tree [47], BzTree [6] and FP-
Tree [32]. For completeness we discuss other indexes in Section 7.

3.1 Write-Atomic B+-Tree (wBTree)

wBTree [10] is a persistent, single-threaded BT -Tree that achieves
high performance by reducing cacheline flushes and writes to PM.
Traditional B*-Tree nodes are sorted for faster binary search. How-
ever, as Figure 2(a) shows, keeping a node sorted requires a shift of
data to make place for the new key, which might leave the node in
an inconsistent state upon crashes, and incurs more (expensive) PM
writes. wBTree solves this problem with unsorted nodes proposed
in prior work [9]. Figure 2(b) illustrates the idea. A bitmap is used
to indicate if each slot contains valid (green box in the figure) record
or not (red box). The new record is inserted into a free slot (out-of-
place), and the bitmap is atomically modified using 8-byte writes to
set the validity of the inserted record. Using unsorted nodes reduces
the number of (expensive) PM writes and eases implementation, but
requires linear search for lookups, which might be more expensive
than a binary search. Nevertheless, as we will see later, the use of
unsorted nodes is a common and effective design in PM trees.

To enable binary search (thus reducing PM accesses), wBTree
uses an indirection slot array in each node, as shown in Figure 2(c).
Each entry of the array records the index position of the correspond-
ing key in sorted order, i.e., the n-th array element will “point” to
the n-th smallest key by recording the key’s index into the key-value
slots. In the example, after inserting key 5, in step 3 the bitmap
needs to be modified so that the third element records the position
of key 7, which is stored as the second element (index 1) in the
key-value storage area. One bit (left-most box in the figure) in the
bitmap is reserved to indicate the validity of the array. wBTree
relies on the atomic update of the bitmap to achieve consistency,
and on logging for more complex operations such as node splits.
After inserting the record out-of-place in a free slot, the indirection
slot array is flagged as invalid and updated, as shown in step 3 of
Figure 2(c). In case of a failure, the indirection slot array will be
detected as invalid and reconstructed upon recovery. Finally, the
bitmap is atomically updated to set both the indirection slot array
and the new record as valid. This last step imposes that the bitmap
be no larger than 8 bytes. When the indirection slot array is smaller
than 8 bytes, the bitmap could be removed as the indirection slot
array can be atomically updated and serve as the validity flag.
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3.2 NV-Tree

NV-Tree [47] proposes the concept of selective consistency, which
as shown in Figure 3, enforces the consistency of leaf nodes and
relaxes that of inner nodes. This design simplifies implementation
and reduces consistency costs by avoiding many cacheline flushes.
Inner nodes, however, have to be rebuilt upon recovery because
the copy in PM might be inconsistent and unable to guide lookups
correctly. We note that inner nodes could also be placed in DRAM
since their consistency is not enforced. Similar to the wBTree, N'V-
Tree also uses unsorted leaf nodes with an append-only strategy to
achieve fail-atomicity. Figure 3(bottom) shows an example of an
insertion in an NV-Tree leaf node. The record is directly appended
with a positive flag (or a negative flag in case of a deletion) regardless
of whether the key exists or not. Then, the leaf counter is atomically
incremented to reflect the insertion. To lookup a key, the leaf node
is scanned backwards to find the latest version of the key: if its flag
is positive, then the key exists and is visible; otherwise, the key has
been deleted. The inner nodes are stored contiguously to abstract
away pointers and improve cache efficiency. However, this implies
the need for costly rebuilds when a parent-to-leaf node needs to be
split. To avoid frequent rebuilds, inner nodes are rebuilt in a sparse
way, which may lead to high memory footprint. As inner nodes are
immutable (except parent-to-leaf nodes) once they are built, threads
can access them without locking and only need to take locks at the
leaf and their parents level when traversing the tree.

3.3 BzTree

BzTree [6] is a lock-free BT-Tree for PM that uses persistent
multi-word compare-and-swap (PMwCAS) [42] to handle concur-
rency and ease implementation. PMwCAS is a general-purpose
primitive that allows atomically changing multiple arbitrary 8-byte
PM words in a lock-free manner with crash consistency. To achieve
this, PMwCAS uses a two-phase approach. In Phase 1, it uses a
descriptor d to collect the “expected” and “new” values for each
target word, persist the descriptor, and atomically installs (using
single-word CAS) a pointer to the descriptor on each word. If Phase
1 succeeded, Phase 2 will install the new values; otherwise the
operation is aborted with all changes rolled back.

BzTree uses PMwCAS for insert, delete, search, scan, and struc-
tural modification operations which may need to change multiple
PM words. Because of the use of PMwCAS, while being lock-free,
BzTree implementation is easier to understand than typical lock-free
code. PMwCAS ensures that any multi-word changes are done
atomically and recovery is transparent to BzTree, removing the need
for customized logic for logging and recovery.

As Figure 4 shows, BzTree stores both inner and leaf nodes in
PM. Inner nodes are immutable (copy-on-write) except for updates
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to existing child pointers; leaf nodes can accommodate inserts and
updates. Inserting to a parent node causes it to be replaced with a
new one that contains the new key. Then, an update in the grand-
parent node is conducted to point to the new parent node. Splits
can propagate up to the root and grow the tree. Records in inner
nodes are always sorted, while records in leaf nodes are not. Initially,
records are inserted to the free space serially. Periodically leaf nodes
get consolidated (sorted) and subsequent inserts may continue to
insert into the free space serially. After searching the sorted area
(using binary search), the tree must linearly search the unsorted area
to get correct result. The design rationale is that inner nodes are not
updated as often as leaf nodes and should be search-optimized; leaf
nodes, however, need to be write-optimized.

3.4 Fingerprinting Persistent Tree (FPTree)

Unlike the other trees being evaluated, FPTree [32] uses both
DRAM and PM to achieve near-DRAM performance. As Figure 5
shows, it stores inner nodes in DRAM, and leaf nodes in PM. This
way, FPTree accelerates lookup performance while maintaining
persistence of primary data (leaf nodes), as only leaf accesses are
more expensive during a tree traversal compared to a fully transient
counterpart. The rationale behind is that while losing leaf nodes
leads to an irreversible loss of data, inner nodes can always be rebuilt
from leaf nodes. Since the inner nodes must be rebuilt upon recovery,
FPTree trades recovery time for higher runtime performance.

FPTree uses fingerprints to accelerate search. They are one-byte
hashes of in-leaf keys, placed contiguously in the first cacheline-
sized piece of the leaf node. FPTree also uses unsorted leaf nodes
with in-leaf bitmaps [9], such that a search iterates linearly over all
valid keys in a leaf. A search will scan the fingerprints first, limiting
the number of in-leaf key probe to one on average, which signifi-
cantly improves performance. FPTree applies different concurrency
control methods for the tree’s transient and persistent parts. It uses
hardware transactional memory (HTM) and fine-grained locks for
inner and leaf nodes, respectively. Such selective concurrency de-
sign solves the apparent incompatibility of HTM and persistence
primitives required by PM such as cacheline flushing instructions
which always cause HTM transactions to abort directly.



Table 1: Comparison of key design choices of the tree structures being evaluated.

Architecture Node structure Concurrency
wBTree  PM-only Unsorted Single-threaded
NV-Tree PM-only (optionally hybrid PM-DRAM) Unsorted leaf nodes; inconsistent inner nodes  Locking
BzTree PM-only Partially unsorted leaf; sorted inner nodes Lock-free (PMwCAS [42])
FPTree DRAM (inner nodes) + PM (leaf nodes)  Unsorted leaf nodes Selective (HTM + locking)

3.5 Discussion

We summarize the design trade-offs in Table 1. The design space
includes (1) deciding the roles of PM and DRAM, (2) achieving safe
persistence while reducing consistency cost and PM accesses, and
(3) handling concurrency. The techniques are mostly orthogonal and
can be used as building blocks to design novel PM data structures.
Here we compare the four trees in terms of each design decision.

Architecture. FPTree and NV-Tree can leverage both DRAM
and PM to store inner and leaf nodes in DRAM and PM, respectively.
This removes the need to access PM until the end of the traversal at
the leaf level. This approach can achieve near DRAM performance,
but trades off recovery time as inner nodes must be rebuilt upon
recovery. The other two indexes, wBTree and BzTree, store the
entire tree in PM, thus may suffer longer lookup time.

Node structure. All the evaluated trees use unsorted nodes to
reduce consistency costs and accesses to PM, at the expense of
potentially more expensive lookup. FPTree solves this problem with
bitmaps and fingerprints; NV-Tree and BzTree have to scan unsorted
nodes linearly. NV-Tree allows inner nodes to be inconsistent to
reduce cacheline flushes. BzTree periodically consolidates leaf
nodes in sorted order; inner nodes are always kept sorted using
copy-on-write (CoW) to accelerate traversal using binary search.

Concurrency. Except wBTree which is single-threaded, the other
trees employ different approaches. NV-Tree uses locking. FPTree
uses locking for leaf nodes and HTM for inner nodes (selective
concurrency). BzTree is lock-free using PMwCAS. It is important
to note that HTM is not compatible with PM as a cacheline flush
will directly abort the transaction, as shown by the design of FPTree.

4. EVALUATION FRAMEWORK

We designed PiBench to allow unified and fair comparison of
different indexes, and easy adoption by future work. As Figure 6
shows, the index being tested must be compiled into a shared library
and linked to PiBench following a defined API, or through a wrapper
that translates requests from PiBench’s API. The API consists of
a pure abstract class that encapsulates common operations (insert,
lookup, delete, scan, update) and a create_index function for
instantiating the benchmarked data structure. To use PiBench, the
user only needs to derive a class that implements the API. PiBench
then issues requests against the instantiated index object.

PiBench executes a 1oad phase and a run phase, like YCSB [11].
It provides various options for customization, such as key/value
sizes, the number of records to be loaded, the numbers and types of
operations to be executed, and ratio of each type of operation. Keys
and values are generated randomly following a chosen distribution
and seed to allow reproducible executions. PiBench supports three
random distributions as defined by Gray et al. [16]: uniform, self
similar, and zipfian. Since the random distributions generate in-
tegers in a contiguous range, with the skewed distributions favoring
smaller values, we apply a multiplicative hashing function [24] to
each generated integer to scatter the keys across the complete inte-
ger domain, thus avoiding frequently accessed keys to be clustered
together. A prefix can be prepended to keys to analyze the impact of
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key compression.PiBench uses multiple threads to issue requests and
relies on the index under evaluation to handle concurrent accesses.

PiBench dedicates a thread to periodically collect statistics. This
allows a better understanding of performance over time by enabling
standard deviation to be easily calculated in addition to the average
throughput. Finally, we use the Processor Counter Monitor (PCM)
library [21] and ipmwatch? to collect hardware counter metrics
(such as memory accesses and cache misses). PCM measures mem-
ory traffic between CPU caches and both DRAM and DCPMMs at
64-byte granularity. The DCPMMs rely on a buffer layer to hold hot
data [3,46]. We use ipmwatch to measure the traffic between the
buffer and the media itself, which happens at 256-byte granularity.

5. EXPERIMENTAL EVALUATION

This section presents our evaluation results. We first introduce the
experimental setup and our implementation of the index structures.
Then we present and discuss the results in detail.

5.1 Environment and Setup

Hardware. We run experiments on a Linux (5.3) server equipped
with an Intel Xeon Platinum 8260L CPU, 1.5 TB of Optane DC PM
(6 x 256 GB DCPMMs) configured in the App Direct mode, and
96 GB of DRAM (6 x 16 GB DIMMs). The CPU has 24 cores (48
hyperthreads), 36 MB of L3 cache, and is clocked at 2.40 GHz.

Software. To reduce the impact of different implementations, we
implemented all indexes using the Persistent Memory Development
Kit (PMDK) 1.7 [19]. PMDK provides primitives for managing PM,
including a PM allocator. wBTree, FPTree and N'V-Tree interact
directly with PMDK; BzTree interacts only with PMwCAS [42],
which is extended to use PMDK.* For DRAM allocations, we use
jemalloc [15]. Threads are pinned to cores to avoid migration.
PiBench collects the number of operations completed every 100 ms,
which allows us to observe throughput over time.

We tested with different node sizes and fixed the sizes with the
best performance for each tree. For FPTree and NV-Tree we use
128-record inner nodes and 64-record leaf nodes. For wBTree each
inner node has 32 records and each leaf node has 64 records. We set
BzTree’s node size to 1 KB, same as the original paper’s setup [6].

3 Available as part of Intel VTune Amplifier 2019 since Update 5.
4 Available at https://github. com/Microsoft/pmwcas.
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Figure 9: Memory accesses with a single thread under uniform distribution.

5.2 Index Implementations 80% accesses focus on 20% of the keys) [16]. We then extend our
We highlight important details for implementing the evaluated experiment to cover different skew factors. Scans are performed by
trees, especially changes we made either to make them compatible selecting a random initial key according to the distribution and then
with PMDK’’s programming model such that they can perform on reading the following 100 records in ascending sorted order. We
real PM, or due to necessary details not covered in original papers.’ detail the mixed workload when discussing the specific tests later.
FPTree. The original paper [32] proposed two versions: a single- Unless otherwise specified, each run starts with a new tree pre-
thread version and a concurrent version. We focus on the concurrent filled with 100 million records with 8-byte keys and 8-byte values.
version since we are most interested in multi-thread experiments. We then measure and report tree performance during the run phase,
However, we note that optimizations in the single-thread version, in which 100 million operations are executed by a specified number
such as allocating leaf nodes in groups, could be applied to all trees. of threads. The numbers reported here refer only to the run phase,
wBTree. wBTree originally uses undo-redo logs for failure atom- excluding the load phase. We use the list of operations completed in
icity [10]. We improved it with more efficient micro-logs used by every time window (100 ms) of a single run to calculate the average
FPTree [32] and implemented it using the same code template as throughput (depicted as the bars and points) as well as the standard
FPTree’s to reduce the impact of different implementations. We also deviation (depicted as the error bars) in Figures 7, 8, 11, 12, 14. We
changed wBTree to use PMDK persistent pointers. also report average and tail latency numbers collected for single-
NV-Tree. The original paper [47] did not cover concurrency, so thread and multi-thread runs.

we implement lock coupling. We changed NV-Tree to use PMDK

persistent pointers and align records in leaf nodes to 8-byte bound- 54 Slngle-threaded Performance

aries; for 8-byte keys and values, the size of a record is 24 bytes We first examine the performance of each tree under a single
with the validity flag. This is 7 bytes more than necessary, but gives thread when running individual operations (i.e., 100% lookup, in-
better performance. Since the consistency of inner nodes is not sert, update, delete or scan). We show throughput (in millions of
enforced, we place them on DRAM to improve performance. operations per second) under the uniform distribution and skewed
BzTree. Splits in BzTree may propagate to upper levels, replacing distribution with varying skew factors. We begin our discussions
all the nodes along the path (CoW inner nodes). We prepare all the with each individual request type under the uniform distribution.
nodes on the split path and issue a final PMwCAS at the highest level Lookup. As shown in Figures 7(a) and 8(a), trees that place inner
to atomically swap in the new nodes. For this to work, we increased nodes in DRAM (FPTree and NV-Tree) achieve higher throughput
the size of PMwCAS descriptor size from 4 to 12 to accommodate than trees that are fully PM based (BzTree and wBTree). FPTree’s
enough memory word changes and new allocations.® fingerprints further reduce cacheline accesses in leaf nodes to two
in most cases: one for the fingerprints and bitmap, the other for the
5.3 Workloads potentially matched record. This contrasts with NV-Tree which uses

append-only leaves and requires scanning on average half of the leaf
entries to determine if a record exists and is valid. BzTree employs a
hybrid of sorted and unsorted leaf node format, so it needs to search
the unsorted area linearly if the key is not found in the sorted area.
The memory access plots on Figures 9(a) and 10(a) confirm this
behavior by showing more PM reads and more L3 cache misses on
NV-Tree than on FPTree. For PM we differentiate between real me-
dia accesses (Device Reads/Writes, measured with ipmwatch),

We evaluate the indexes with individual operations (lookup, insert,
update, delete, scan) and mixed workloads that combine reads and
writes. All experiments are run under a uniform key distribution and
askewed (self similar) key distribution with a factor of 0.2 (i.e.,

5 Two authors of this paper were respectively the lead author of
FPTree and PMwCAS. All trees were implemented in our best
effort to get the best performance. We also improved PMwCAS

for BzTree; the changes were accepted by Microsoft. and accesses issued by the memory controller (PM Reads/Writes,
6 These strategies were not presented in the original paper [6] but measured with PCM). Note that the bars are overlaid (not stacked).
were confirmed by one of the original authors. In the best case, the application fully exploits the DCPMM buffer in
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Figure 10: Last level cache misses with a single thread under uniform distribution.

which case Device Reads/Writesisthe same asPM Reads/Writes.

In the worst case, Device Reads/Writes is four times higher,
since only 64 bytes (one cacheline) is used from the 256-byte PM
block that is fetched from the media into the buffer.

In Figure 10(a), BzTree incurs very few cache misses during
traversal. We attribute the reason to its small node structure and
search method: it uses small, 1KB pages and for 8-byte keys, our
implementation uses linear search, which yields much better per-
formance and cache behavior than binary search. wBTree performs
binary search in each node using the slot arrays. Although this
results in less cache misses than NV-Tree, all the cache misses pay
the higher latency price of PM, resulting in lower throughput.

NV-Tree and FPTree keep inner nodes in DRAM, but NV-Tree
presents more DRAM reads than FPTree (Figure 9(a)), because it
keeps parent-to-leaf nodes in contiguous memory without a guar-
anteed fill ratio. The tree can be higher than necessary, requiring
more accesses to inner nodes in DRAM. NV-Tree also incurs PM
writes for reads, as it needs to acquire locks in leaf nodes stored in
PM. wBTree and BzTree are purely in PM, but still present DRAM
accesses. This is expected as PCM also collects DRAM accesses for
managing auxiliary data while executing the operation. Finally, we
note that lookup performance strongly impacts the performance of
other operations as they perform a lookup prior to additional work.

Insert. All trees under evaluation enforce the consistency and
durability of single operations using out-of-place writes (possibly
within a node) and a validity bit being atomically flipped to “commit”
the operation (for BzTree, this is delegated to PMwCAS). Therefore,
insert, update and delete operations must always force the changes
to PM using CLWB, making it hard for CPU caches to hide PM’s
high write latency. As discussed in Section 2, PM’s write latency
cannot be measured precisely and varies based on how far data
is propagated (i.e., to the memory controller or DCPMM). This
explains the lower throughput and the increased standard deviation
of these operations when compared with their lookup counterparts.

Figure 7(b) shows the insert throughput. We observe insert per-
formance is directly affected by (1) the amount of flushes per insert,
(2) the needed maintenance work per insert, and (3) the overhead of
node splits. Table 2 summarizes the amount of flushes needed by
each operation. For all trees, each insert entails at least one flush
for the record being inserted. FPTree and wBTree keep an 8-byte
bitmap per node to indicate which records are valid and enable the
slot of invalid records to be reused. FPTree also requires flushing the
fingerprints, leading to a total of three flushes per insert. In addition
to the bitmap, wBTree keeps a slotted array per node to keep the
order of records and a single validity bit to indicate the validity of
this slotted array. Therefore, three additional flushes are required
by the wBTree (slotted array, validity bit, validity bitmap), to a total
of four flushes per insert. NV-Tree requires one additional flush to
update the size of the node, to a total of two flushes. BzTree uses
two double-word PMwCAS operations per insert to reserve space in
the leaf node and make the new insertion visible to other threads, re-
spectively. Each PMwCAS incurs at least three flushes [42]. In total,
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BzTree incurs 15 flushes per insert. If the current PMwCAS con-
flicts with another on-going PMwCAS, it might incur more flushes
as it helps finish the other operation first. We attribute BzTree’s low
insert performance mainly to the high number of flushes.

In BzTree, FPTree and wBTree a node split might propagate all
the way up to the root level. However, for NV-Tree the inner nodes
must always be completely rebuilt whenever a split happens in the
parent-to-leaf level. When splitting a leaf node, two new nodes are
allocated to split the records of the node that became full, causing
the higher amount of PM writes seen in Figure 9(b). This operation
becomes expensive in comparison to other trees, which has also an
impact in the throughput standard deviation seen in Figure 7(b).

Update. Compared to inserts, an update only operates on an
existing key. As Figure 7(c) shows, overall, the standard deviation
for updates is lower than that of insert operations, due to the absence
of allocations and splits. NV-Tree performs updates slower than
inserts, as it handles updates as a deletion followed by an insertion.
This corresponds to the higher amount of PM writes in Figure 9(c).
wBTree updates are faster than inserts since each update requires
one fewer flush (3 vs. 4 in Table 2), as record order in the node
does not change (the key is not updated). Thus, the slotted array can
be updated atomically without flushing its validity bit, as only the
offset of the updated record changes, while the others remain the
same. This results in lower PM writes in Figure 9. BzTree’s update
is faster than its insert operation, due to the absence of allocation and
splits. But it still needs many flushes, leading to lower throughput.

Delete. As Figure 7(d) shows, delete throughputs follow a similar
trend to those of lookups in Figure 7(a). The reason is that deletion
for FPTree and wBTree is basically a lookup followed by flushing
the validity bitmap to invalidate the record deleted. There is no
deallocation or merging of nodes implemented, as data structures
are more likely to grow rather than shrink. This is also the approach
taken by implementations of C++ STL. In contrast to FPTree and
wBTree, NV-Tree requires two flushes per deletion, one for a tomb-
stone and one for the node size. Therefore, it has about double the
amount of PM writes, as seen in Figure 9(d). For BzTree the process
is similar, but it uses a PMwCAS to mark records invisible which
requires multiple flushes, leading to lower performance.

Scan. Range scans start at a random initial key and read the
following 100 records. wBTree is the only one that directly returns
records in sorted order using its indirection slotted arrays. All the
other trees must perform an additional sorting and filtering step
to return the requested records. According to the amount of PM
reads in Figure 9(e), reading less from PM (e.g., FPTree) does not
compensate the overhead of sorting and filtering.

Skewed Accesses. Figure 8 shows the behavior for the same
set of experiments but with a skewed key distribution with a skew
factor of 0.2 where 80% of the accesses are concentrated on 20% of
the keys. Note that PiBench guarantees inserts and deletes always
succeed by only generating requests to non-existing and existing
keys, respectively. As a result, skew factor does not influence the
generated keys. Since a skewed workload accesses a small subset



—&— FPTree

A= NV-Tree
1

e wBTree18 = BzTree

o

§30 712 2 4

s ig 9 9 3

312 6 6 2

%D 6 3 3 . 1

3 OBty i 0 0 ] )] =

= 1 8 16 23 32 47 1 8 16 23 32 47 "1 8 16 23 32 47 "1 8 16 23 32 47 "1 8 16 23 32 47
= (a) Lookup (b) Insert (c) Update (d) Delete (e) Scan

Figure 11: Throughput under uniform distribution. FPTree and NV-Tree leverage DRAM and perform generally better than pure PM trees
(BzTree and wBTree). All the trees maintain their throughput with hyperthreading (beyond 23 threads). wBTree’s single-thread throughput is

shown for reference as it does not support concurrency.

of keys multiple times, only the first insert/delete for a given key
would succeed and all the subsequent insert/delete operations for
the same key would simply be a lookup. Therefore we omit these
operations under skewed workloads. As Figure 8 shows, the skewed
distribution does enable a better use of CPU caches, which translates
directly to higher throughput, and less DRAM and PM reads, while
DRAM and PM writes remain very similar. We further vary the
skewness of the workload from 0.1 (10% of keys accessed by 90%
of requests) to 0.5 in Figures 13(a) and 13(b). As contention level
decreases from skew factor 0.1 to 0.5, single-thread throughput
drops as a result of more accesses to PM and more cache misses.

5.5 Multi-threaded Performance

Now we evaluate the multi-threaded performance of FPTree, NV-
Tree, and BzTree. We include wBTree’s single-thread performance
for reference as it does not support concurrency. In all experiments
we first load the trees with 100 million key-values pairs (8-byte
keys, 8-byte values), and then measure the run phase consisting of
executing 100 million operations split between the worker threads.
Since PiBench dedicates one thread to collecting statistics, we scale
the number of worker threads until 23, and test with 32 and 47
threads to show the behavior of the trees under hyperthreading.

Individual operations. Figure 11 depicts the throughput under
uniform distribution. It shows a similar trend to the single-threaded
experiments. All the evaluated trees scale as expected for lookup,
insert, update, delete and scan operations using 1-23 threads (no
hyperthreading). With hyperthreading (shaded areas in Figure 11),
all trees maintain or slightly improve compared to using 23 threads.
In particular, FPTree is able to leverage hyperthreading significantly
better than other trees in lookup operation.

Figure 12 shows the throughput of individual operations under the
skewed distribution (skew factor 0.2, we discuss results under other
skew factors later). As mentioned previously, we omit insert and
delete operations for skewed workloads. The results here showed
similar pattern to the ones with the uniform workload: all trees ex-
hibit higher throughput and largely scale under all operations, except
BzTree and FPTree’s update operation, which respectively scales
up to 8 and 16 threads and performs worse as we add more threads.
There are two mains reasons for BzTree’s behavior. First, because of
the use of PMwCAS, a memory word may store a pointer or actual
value. Each PM read is instrumented to check the type of the word
value, adding additional overhead. Second (and more importantly),
the update operation employs an optimistic approach that retries a
PMwCAS until success; it is well known that optimistic approaches
are vulnerable to high contention. FPTree does not scale beyond 16
threads for a similar reason: it uses HTM (Intel TSX which is an
optimistic approach) for traversing the inner nodes and acquiring
leaf-level locks. A skewed workload will incur more conflicts at the
leaf level, hence more HTM aborts and lower throughput.

For lookup operations, as we vary the skew factor from 0.1 to
0.5 in Figure 13(c), we see the similar overall trend of dropping
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Figure 12: Throughput under the skewed distribution (skew factor
0.2). FPTree and BzTree do not scale for updates due to their use of
optimistic concurrency control.
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Figure 13: Throughput under varying skew factors with one (a—b)

and 23 (c—d) threads. Higher skew factor means lower contention.

throughput as the single-thread case for FPTree and BzTree, as lower
contention (e.g., skew factor 0.5) leads to accesses to more keys
and therefore more cache misses and PM accesses. NV-Tree does
not show obvious change when we ease contention. We attribute
this behavior to the fact that it needs to acquire node locks even
for read-only workloads, causing extra inter-core communications
and traffic on the memory bus which is often unscalable for read-
only workloads on multicores [36,41]. Update operations exhibit a
different trend in Figure 13(d), as we ease the contention throughput
increases, although lower contention leads to larger PM footprint
in general, as Figure 13(b) shows. These results highlight two
factors that affect performance under skewed workloads: (1) the
amount of PM accesses and (2) contention level. Both factors impact
performance, and as we add more concurrent threads, contention
takes over to become the major factor, contrasting with the single-
thread case where PM footprint is the dominating factor.

Mixed workloads. Now we examine the trees using three more
realistic, mixed workloads under uniform and skewed distributions:

e Read-heavy: 90% lookups and 10% updates;
e Balanced: 50% lookups and 50% updates;
e Write-heavy: 10% lookups and 90% updates.

As shown by Figure 14(a—c), FPTree, NV-Tree and BzTree all
scale under the uniform distribution, with FPTree performing more
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Figure 16: Latency at different percentiles for each tree and operation under uniform distribution with 23 threads.
than 2 x better than BzTree, due to its various optimizations (leverag- lows a better evaluation of tail latency in isolation, since at this point
ing DRAM, fingerprinting). Under the skewed distribution, however, the throughput of all trees is the most similar. The latter shows the
none of the trees are perfect: they either do not scale across the en- latency behavior under concurrent accesses without hyper-threading,
tire horizontal axis or do not obtain high performance in all the which would introduce additional disturbance.
workloads. BzTree exhibits more performance drop as we add the Figure 15 shows single-thread tail latencies under uniform distri-
percentage of updates to the workload, shown by Figure 14(d—f). bution. For lookups, the minimum latencies for FPTree, NV-Tree
Our profiling results show that under the skewed workload, most and wBTree are all below 0.3us, while the number for BzTree is
CPU cycles were spent on retrying the PMwCAS operation needed 0.46us. As we analyze different latencies percentiles, all trees’
in each update operation which fails more often as we add more latency increases significantly at 99.999 percentile. With modifica-
threads and more update percentage in the workload. FPTree per- tions to the tree structure, in insert, update and delete operations we
forms well under the read-heavy and balanced workloads, but fails observe BzTree and NV-Tree having higher latency than the other
to scale for the write-heavy workload, due to high HTM transaction two trees. As Figure 15(b) shows, BzTree exhibits over ~50us
abort rate under high contention. Although NV-Tree “scales” in all latency starting from 99 percentile, due to its CoW policy for inner
cases, it did not achieve the best performance, with up to 3x slower nodes. NV-Tree needs to rebuild inner nodes when split happens
than the best performer, FPTree, which again does not always scale in its parent-to-leaf level. However, its use of DRAM for inner
in all workloads. nodes helped reduce latency, whereas BzTree is pure PM, putting
. much pressure on the PM allocator to conduct copy-on-write during
5.6 Tail Latency splits. Update and delete operations exhibit similar trends in Fig-
Tail latency is another important metric that impacts end-to-end ures 15(c) and 15(d), with NV-Tree showing the highest tail latency
performance. Measuring tail latency is not as straightforward as starting from 99 percentile. NV-Tree’s behavior for update and
measuring throughput as it adds significant overhead to the tested op- delete operations follows its insert operation’s behavior, because it
erations to accurately store the latency of each operation. Moreover, handles updates as inserts followed by deletions, as we mentioned
tail latency should be considered in the context of the throughput the in Section 5.4. Scan latency in Figure 15(e) in general shows higher
index achieves, since many designs trade tail latency for throughput. latency than lookup because scan operations themselves are more
As an example, tree A