
Mining an “Anti-Knowledge Base” from Wikipedia Updates
with Applications to Fact Checking and Beyond

Georgios Karagiannis, Immanuel
Trummer, Saehan Jo, Shubham

Khandelwal
Cornell University, NY, USA

{gk446,it224,sj683,sk3266}@cornell.edu

Xuezhi Wang, Cong Yu
Google, NY, USA

{xuezhiw,congyu}@google.com

ABSTRACT
We introduce the problem of anti-knowledge mining. Our
goal is to create an “anti-knowledge base” that contains fac-
tual mistakes. The resulting data can be used for analysis,
training, and benchmarking in the research domain of auto-
mated fact checking. Prior data sets feature manually gen-
erated fact checks of famous misclaims. Instead, we focus
on the long tail of factual mistakes made by Web authors,
ranging from erroneous sports results to incorrect capitals.

We mine mistakes automatically, by an unsupervised ap-
proach, from Wikipedia updates that correct factual mis-
takes. Identifying such updates (only a small fraction of the
total number of updates) is one of the primary challenges.
We mine anti-knowledge by a multi-step pipeline. First,
we filter out candidate updates via several simple heuris-
tics. Next, we correlate Wikipedia updates with other state-
ments made on the Web. Using claim occurrence frequen-
cies as input to a probabilistic model, we infer the likelihood
of corrections via an iterative expectation-maximization ap-
proach. Finally, we extract mistakes in the form of subject-
predicate-object triples and rank them according to several
criteria. Our end result is a data set containing over 110,000
ranked mistakes with a precision of 85% in the top 1% and
a precision of over 60% in the top 25%. We demonstrate
that baselines achieve significantly lower precision. Also, we
exploit our data to verify several hypothesis on why users
make mistakes. We finally show that the AKB can be used
to find mistakes on the entire Web.

PVLDB Reference Format:
Georgios Karagiannis, Immanuel Trummer, Saehan Jo, Shubham
Khandelwal, Xuezhi Wang, Cong Yu. VLDB. PVLDB, 13(4):
xxxx-yyyy, 2019.
DOI: https://doi.org/10.14778/3372716.3372727

1. INTRODUCTION
Constructing a knowledge base of high quality facts at

large scale is one of the main topics of many research com-
munities ranging from natural language processing to se-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 4
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3372716.3372727

mantic web and data mining. The research work has been
impactful—leading to significant advancement in major search
engine features such as Google’s Knowledge Graph [26] and
Bing’s Satori [19]. Little attention, however, has been paid
to the large number of erroneous facts on the Web. While
storing all the world’s wrong facts would be infeasible and
not particularly useful, we argue that a knowledge base of
common factual mistakes, what we call an anti-knowledge
base, can complement the traditional knowledge base for
many applications including, but not limited to, automated
fact checking. Specifically, collecting common factual mis-
takes enables us to develop learning algorithms for detect-
ing long tail factual mistakes in a much more precise way
than verification against a traditional knowledge base can
accomplish. Furthermore, an anti-knowledge base can pro-
vide values for the research community in conducting new
studies such as how users make mistakes and designing novel
systems such as alerting users when they are working on
mistake-prone topics.

In this paper, we formally introduce the concept of an
anti-knowledge base (AKB) and propose the first algorith-
mic approach for anti-knowledge mining (AKM). Similar to
traditional knowledge bases, an anti-knowledge base con-
tains 〈subject, predicate, object〉 triples with associated meta-
data, where each triple represents a factually mistaken claim
that has been asserted by users on the Web. Whenever pos-
sible, we pair each mistaken triple with a correction triple in
the anti-knowledge base so that users get the correct knowl-
edge as well. A formal and more elaborate definitions can
be found in Section 3.

At first, it may seem possible to mine mistakes by com-
paring claims extracted from text against an existing knowl-
edge base. As we will show in Section 8, this approach
leads however to an excessive number of false positives (i.e.,
claims erroneously marked up as mistakes) due to incom-
plete knowledge bases and imperfect extraction. We could
leverage prior work on detecting conflicting statements on
the Web [28]. However, conflicting statements may simply
indicate a controversial topic where different users have dif-
ferent opinions, rather than a factual mistake. Our key idea
is to exploit a property that distinguishes factual mistakes
from generally accepted claims as well as subjective topics:
a diligent user community will correct factual mistakes once
they are spotted.

A static view on the Web is insufficient to leverage this
property. Hence, we assume that we are given an update
log on a collection of documents. By comparing original
and updated text versions for each update, we obtain can-

561

didates for factual mistakes. Of course, text updates may
not only correct factual mistakes (but also expand text, cor-
rect spelling mistakes, or update controversial statements
to reflect one author’s personal opinion). One of the main
challenges solved by our approach is therefore to filter out
those updates that correct factual mistakes to form AKB
entries. To do so, we exploit a multi-stage pipeline com-
bining simple heuristics, a probabilistic model trained via
unsupervised learning, as well as feedback obtained from
a static Web snapshot (counting the number of supporting
statements for text before and after updates).

Example 1.1. Imagine the sentence “Heineken is Danish”
is updated to “Heineken is Dutch”. This update is correct-
ing a factual mistake since Heineken is indeed based in the
Netherlands (as can be learned from authoritative sources
such as the company’s Web site). Our goal is to distinguish
such updates from other types of updates. We use this exam-
ple (an actual update mined by our approach) throughout
most of the paper.

For this paper, we leverage the Wikipedia update log as
source for factual mistake candidates (while we exploit a
snapshot of the entire Web for feedback). We select Wikipedia
due to its size, breadth of topics, and due to its large and ac-
tive user community. Furthermore, mistakes that appear on
Wikipedia tend to propagate further (we show some exam-
ples for mistakes propagating from Wikipedia to the rest of
the Web in Section 8). Therefore, the potential impact (e.g.,
via fact checking tools) of mining mistakes from Wikipedia
is higher than for other Web sources. While we focus on
Wikipedia in this paper, please note that the general ap-
proach we propose is not specific to Wikipedia and could
also be applied to different sources of updates and static
feedback (e.g., an update log of Web documents in a com-
pany’s intranet). Finally, note that Wikipedia is imperfect
and may contain uncorrected mistakes. We will not be able
to spot those mistakes by mining the update log. However,
our goal is to mine common factual mistakes. Each occur-
rence increases the likelihood that at least one corresponding
correction appears in the update log. The fact that our ap-
proach works best for mistakes that are corrected at least
once is therefore in line with our overall goals.

We summarize our original scientific contributions:

• We introduce the problem of mining factual mistakes
from dynamic document collections.

• We present a first corresponding approach that uses a
multi-step pipeline and is able to handle large amounts
of input data.

• We provide extensive experimental results, analyzing
the quality and other properties of the provided data
set and demonstrating that our mining algorithms are
efficient and effective.

The remainder of this paper is organized as follows. We
discuss differences to prior work in Section 2. In Section 3,
we formalize our problem model and terminology. We give
a high-level overview of our mining pipeline in Section 4. In
Sections 5, 6 and 7, we describe each of the three pipeline
stages in detail. In Section 8, we analyze our approach and
the generated data set. We also compare against baselines.

2. RELATED WORK
Prior efforts [29] at generating corpora for fact checking

based on the ClaimReview standard [24] leverage manual an-
notations by human fact checkers. This limits coverage and
size of generated data sets. Prior work on mining conflicting
Web sources has focused on extracting correct facts [31] or
subjective opinions [28] as opposed to mining factual mis-
takes with high precision. A large body of work in the area
of fact checking is aimed at supporting human fact check-
ers in verifying specific claims or documents [9–13], e.g. by
identifying relevant text documents for verification [29]. The
proposed approach is fully automated and targeted at min-
ing factual mistakes from large document collections. Note
that tools such as ClaimBuster [11, 12] link claims to verify
to previously annotated fact checks. Automatically gener-
ated fact checks may extend the coverage of tools working
according to that principle.

Knowledge Base Construction has received wide attention
in both academia and industry [7,18,25,27,33]. Open infor-
mation extraction is a closely related area, where the goal
is to extract relational tuples from massive corpora without
a pre-specified vocabulary [1, 8]). Our work is complemen-
tary as we mine anti-knowledge. We apply our approach to
Wikipedia update logs. In that, our work connects to prior
work leveraging Wikipedia as data source (e.g., identifying
relevant articles to controversial topics [23], identifying up-
date intentions [30], or mining data sets for grammatical
error corrections [16]). The goal of our work (as well as
the method) differs however from all of those. Our work is
also complementary to prior work leveraging different types
of data from the Wikipedia corpus (e.g., analyzing logs of
structured Wikidata queries [3], as opposed to logs of up-
dates to natural language Wikipedia text).

Our approach uses a probabilistic model and unsuper-
vised learning (in one stage of the pipeline) to classify up-
dated sentences as factual mistakes, based on several in-
put features. In that, it connects in general to systems
performing weakly supervised learning such as Snorkel [20]
and approaches for efficient inference, e.g. based on Gibbs
sampling [5]. Compared to those generic approaches and
systems, our contribution lies in developing a probabilistic
model (among other pipeline stages) that is specialized to
the problem we are addressing. We also compare against
Snorkel in multiple variants in Section 8.

We leverage input from the crowd (i.e., Wikipedia au-
thors and Web authors) to identify factual mistakes. This
connects to prior work on inferring truth from crowd in-
put [2, 4, 15, 17, 21, 32]. We compare against multiple algo-
rithms from this line of work in Section 8. Finally, our prob-
abilistic model uses two separate data sources, update logs
and Web hits. In that, it connects to other work leveraging
different input sources to come to more reliable conclusions,
e.g. auto-completion and click logs [14]. Those prior ap-
proaches are not directly applicable to our scenario as input
(update logs and Web claims instead of query and click logs)
and desired output are different.

3. DEFINITIONS
We introduce terminology used throughout the paper.

Definition 3.1. An Update is in this paper a pair of sen-
tences, 〈s1, s2〉, such that s1 was changed to s2 by a Web

562

author. A Correcting Update is in update where s1 con-
tains a factual mistake while s2 does not.

Definition 3.2. An Entity-Swap Update is an update
〈s1, s2〉 where the only difference between s1 and s2 is that
one entity is replaced by another one. We consider entities
that can be resolved against entries in a large knowledge
base. A Number-Swap Update is an update where only
one number is replaced by another number.

Example 3.1. The update used as running example is an
entity-swap update as only the country entity is replaced.

Definition 3.3. An Anti-Knowledge (AK) Triple is a
subject-predicate-object triple 〈S, P,O〉. Its semantics is a
claim that associates a property (the object) with the sub-
ject over the predicate. This claim is however factually in-
correct, i.e. it contradicts a generally accepted ground truth.

Definition 3.4. A Correction to an AK triple 〈Sa, Pa, Oa〉
is another subject-predicate-object triple 〈Sc, Pc, Oc with
the following properties. First, the correction changes ex-
actly one of the three components (subject, predicate, or
object) compared to the AK triple (i.e., either Sa 6= Sc or
Pa 6= Pc or Oa 6= Oc). Second, the claim represented by the
correction is factually correct.

Definition 3.5. Each pair of an AK triple and a correc-
tion is associated with Meta-Data of the form 〈u, h〉 where
u = 〈s1, s2〉 is the update a triple was extracted from, h =
〈hO, hU 〉 is the number of times the original sentence s1 and
the updated sentence s2 appears on the Web.

Definition 3.6. An Anti-Knowledge Base (AKB) En-
try is a tuple of the form 〈t, c,m〉 where t is an AK triple,
c its correction, and m associated meta-data. An Anti-
Knowledge Base is a collection of AKB entries.

This leads to the following, novel, variant of knowledge
mining.

Definition 3.7. The Anti-Knowledge Mining problem
is defined as follows. We are given as input a set U of up-
dates (or, alternatively, a time sequence of Web snapshots
from which updates are extracted). Also, we are given a doc-
ument collection D that can be used to correlate updates in
U . Given 〈U,D〉, the goal is to mine an AKB.

4. OVERVIEW OF MINING APPROACH
Figure 1 shows an overview of the AKB extraction pipeline.

The input to the pipeline is a set of sentence pairs, repre-
senting updates to a document collection (e.g., Wikipedia).
The output is a list of triples representing factual mistakes
(together with associated meta-data, e.g. the sentences they
have been extracted from). Those triples are extracted from
sentence updates we believe to represent factual corrections.
We rank output triples by their likelihood to describe mis-
takes without ambiguity.

There are many reasons to update document collections
such as Wikipedia. Updates may simply polish the formula-
tion, make a given statement more precise or extend it. We
describe the filtering stage in more detail in Section 5.

Next, we use information extraction methods to extract
SPO triples from those updates. We extract only from those
triples that have been kept during the initial filtering step.
Our ultimate goal is to obtain triples representing mistakes.

Filtering

Extraction

Classification

Ranking

Sentence Updates

Filtered Updates

Updated Triples

Likely Corrections

Ranked Triples

Web Content

Figure 1: Overview of the AKB mining pipeline.

Hence, we focus extraction on those sentence parts that have
been changed by correcting updates.

The triples extracted at this point still contain a high per-
centage of correct triples (which we are not interested in).
We use unsupervised learning to classify triples as AKB can-
didates. Our probabilistic model is seeded by correlating
updates with Web content. Statements that appear more
frequently on the Web are less likely to be erroneous. The
final classification is based on several factors, including oc-
currence frequencies but also natural language models. Sec-
tion 6 describes the classification approach in detail.

The resulting triples vary in quality. Typically, a large
fraction of result triples lack relevant context or are ambigu-
ous, among other problems. We therefore use several rank-
ing criteria in order to associate triples with quality scores.
Ranking gives AKB users the possibility to trade precision
for recall by selecting quality thresholds. To calculate qual-
ity scores, we consider the extraction set holistically and
exploit similarities between triples for ranking. The ranking
methodology is described in detail in Section 7.

5. FILTERING UPDATES
The input to our pipeline is the Wikipedia update stream.

More precisely, we obtain for each Wikipedia page a se-
quence of page versions. We consider the last 1,000 updates
for each page on the English version of Wikipedia. Our goal
is to identify those updates that correct factual mistakes and
to mine mistake and corrected version.

We focus on claims that link an entity to a property (e.g.,
another entity or a numerical property). Such claims are
common and are the typical focus of prior work in knowl-
edge mining. They can be represented as subject-predicate-
object triples. Hence, the output of the first pipeline stage
are pairs of triples, extracted from updates. The first triple
is extracted from the Wikipedia page version before the up-
date, the second triple is the corresponding triple after the
change. We are interested in triple pairs where the second
triple is a correction of the first.

Next, we describe the sequence of heuristics that is used
to identify promising updates. We initially compare for each
update prior and updated page version. We compare both
version sentence by sentence and retain sentences that match
the two patterns (entity swaps and number swaps) described
in Section 3. Considering sentence pairs with a small delta
makes a correcting update more likely. It reduces the chance

563

that the purpose of the update was a reformulation or replac-
ing prior (presumably correct) information with new infor-
mation. Also, if the update is a correction, both considered
patterns make it easy to identify the correction focus.

We are not interested in updates that correct spelling mis-
takes (as our goal is to support research on fact checking).
Hence, for entity swaps, we compare prior and updated ver-
sion via the Levenshtein distance. If the distance is below
a threshold, we discard the corresponding update. Updates
that replace words by synonyms are no corrections. We use
WordNet to filter out synonym updates. Another common
type of update replaces one entity by a specialization (to
make the previous sentence version more precise). This type
of update often applies to entities that represent geographic
regions. We use geographic containment relationships, taken
from the Google knowledge graph, to discard corresponding
updates. On the remaining updates, we use the BERT [6]
language model, fine-tuned on a Natural Language Infer-
ence task, to identify updates where prior and new version
contradict each other (a prerequisite for a factual mistake
correction).

We observed a large number of Wikipedia updates on con-
troversial topics (e.g., concerning the attribution of certain
geographic areas in case of territorial conflicts). In such
cases, groups of Wikipedia authors mutually revert each
other’s changes. We discard such cases as it is difficult to
identify the ground truth from updates (there may not even
be a generally accepted ground truth). We therefore com-
pare all remaining updates and only keep the ones that are
uncontested (i.e., the corresponding update was never re-
verted in the update stream). We use information extraction
to extract triples from before and after the update. Triple
pairs that were affected by the update are passed on to the
next pipeline stages.

Example 5.1. The running example update passes the
heuristic filters (e.g., the edit distance between Danish and
Dutch is sufficiently high and Dutch is not a specialization
of Danish). Hence, the output of the filtering stage will
contain corresponding triples (〈Heineken, is,Danish〉 and
〈Heineken, is,Dutch〉).

6. CLASSIFYING UPDATES
We apply a probabilistic model to assess the probability

that a given update represents the correction of a factual
mistake.

6.1 Model Overview
The goal of the model is to determine the likelihood that

a given update corrects a factual mistake. We can mine
anti-knowledge from the original triple in such updates.

The scale and diversity of our input data motivates a com-
pletely unsupervised approach. The structure of our model
is based on commonsense principles (e.g., correct statements
are more likely than incorrect statements). The model con-
tains parameters whose values we cannot know a priori (e.g.,
the probability that an average Wikipedia author makes a
mistake). We therefore apply an expectation-maximization
approach, that learns model parameters and likely values for
random variables in an iterative approach.

Using Wikipedia updates as model input is insufficient.
For instance, how can we determine whether a given update
corrects or introduces a factual mistake? Hence, we use

TO
i TU

iCi

Ki

HiHO
i HU

iS
c
o
p

e
:
i-

th
U

p
d
a
te

S
c
o
p

e
:

A
ll

W
ik

ip
e
d
ia

uT

wT

TM

Figure 2: Overview of probabilistic model.

the entire Web text as a (noisy) source of feedback. Given
sentence pairs (before and after an update), we mine the
Web to count the number of occurrences for each of them.
The number of occurrences forms one out of several input
features for our model.

We deliberately use the number of sentence occurrences
instead of the number of triple occurrences as input (even
though we are ultimately interested in finding triples repre-
senting factual mistakes). Considering entire sentences in-
stead of shorter triples reduces the chances of accidental
matches. For instance, counting occurrences for the triple
〈Michael Jordan,born in,1963〉 is likely to include erroneous
matches (for the American baseball player of that name), if
the triple was extracted from the sentence “Michael Jordan,
the English goalkeeper, was born in 1983”.

6.2 Detailed Description
Figure 2 shows an overview of our probabilistic model. We

introduce several random variables for each updated triple.
For the i-th update, we binary random variable TO

i , indi-
cating whether the original statement was true, and TU

i in-
dicating whether the updated statement is factually correct.
We associate each updated triple with the updated sentence
it was extracted from. As discussed previously, we count
the number of occurrences for each such sentences. Vari-
ables HO

i and HU
i designates the number of occurrences for

the original and updated sentence. Their value domains are
non-negative integers. They are dependent on the truthful-
ness of the sentence whose occurrences they count (assum-
ing that incorrect sentences are less likely to appear). Next,
we introduce binary variables Ci, representing the class of
the i-th update. We distinguish two classes: we distinguish
updates introducing or removing factual mistakes from all
other updates. The first category is interesting to us as we
can extract factual mistakes. The class of update therefore
depends only on the truthfulness of the two triple versions.
Finally, we introduce variablesKi to represent the set of key-
words that appear in the updated sentence. The keywords
in the sentence influence the expected number of Web hits
(e.g., we would expect more hits for claims about movies
than about birth dates of specific persons).

Variables Hi, H
O
i , HU

i , and Ki are observable. We mine
the Web to count the number of occurrences for the original

564

and updated sentence. Keywords are given by the update
text. All other variables are latent. We are ultimately inter-
ested in finding out the value for variable Ci, representing
the update class, for each update. To do so, we must link
that variable to the observable ones. We start by analyzing
the distribution of variables Hi, H

O
i , and HU

i .
Variable Hi is the number of Web hits for the i-th update.

It is Hi

∑
j X

i
j where the Xi

j ∈ {0, 1} are binary variables.
Each variable XJ indicates whether a Web hit for the i-th
update was found in sentence number j. Summing over all
sentences parsed on the Web yields the total number of Web
hits. We treat the Xi

j as independent, identically distributed

Bernoulli variables. Hence, Pr(Xi
j = 1) is the probability

that an average Web author expresses an opinion on the
topic of the i-th update in any given sentence. As variables
Xi

j are independent and identical Bernoulli variables, the

sum
∑

j X
i
j follows a binomial distribution with parameters

n (the number of Web sentences) and pi (the probability
that any given sentence refers to the i-th update):

∑
j

Xi
j ∼ Bin(n, pi) (1)

The number of Web sentences (n) is large, the probabil-
ity to find any specific topic in any given sentence is very
small. This means that we can approximate the Binomial
distribution by a Poisson distribution (counting the number
of rare events over many tries). Hence, we obtain

∑
j

Xi
j ∼ Poisson(λi) (2)

where λi = n ·pi (the expected number of Web hits). The
expected number of hits depends on the claim topic. Certain
topics are more popular on the Web than others. We dis-
tinguish several popularity classes that are associated with
different numbers for λi. Different popularity classes are as-
sociated with different keyword distributions. As discussed
later, we learn to classify popularity based on keywords in
an unsupervised approach.

For a given topic, it is possible to make accurate or inac-
curate claims. We denote by wT the probability of finding
accurate statements on the Web. Then 1− wT is the prob-
ability of finding an inaccurate Web statement. If λi is the
expected number of Web hits that address the i-th topic
then wT · λi is the expected number of hits for an accurate
claim (using one specific formulation). Also, (1 − wT) · λi

is the expected number of hits for an inaccurate claim. The
distribution of HO

i and HU
i depends therefore on the values

for variables TO
i and TU

i . We obtain

HO
i ∼

{
Poisson(wt · λi) if TO

i = true

Poisson((1− wt) · λi) if TO
i = false

(3)

for HO
i (and analogously for HU

i). Next, we analyze the
distribution of the remaining random variables in our model.
For TO

i and TU
i we assume an a-priori probability for correct

and incorrect statements, i.e. Pr(TO
i = true) = Pr(TU

i =
true) = uT (where uT ∈ [0, 1] is the probability of cor-
rect updates). We use different parameters to represent
truth probability for Web claims and Wikipedia updates.

This seems required, especially since we consider a sub-
set of Wikipedia updates that are more likely than other
Wikipedia updates to correct factual mistakes.

Example 6.1. We illustrate semantics for some variables
for our running example update (update 1). The correct
assignment is of course TO

1 = false and TU
1 = true which

means that this is a correcting update (C1 = true). We
cannot observe the values of those latent variables but must
infer them. Assume HO

1 = 3 and HU
1 = 9. Given suitable

parameter values representing the probability of Web and
Wikipedia authors to issue truthful claims, we will infer the
correct assignments for latent variables from the hits.

6.3 Expectation-Maximization
The goal of expectation-maximization is generally to max-

imize a likelihood function L(θ; X,Z) where θ is a vector
of (unknown) parameters, X observed and Z latent data.
Here, θ = 〈wT , uT ,TM〉 includes Web and Wikipedia truth
probabilities as well as parameters TM of a Naive-Bayes
model that classifies sentences into one out of several popu-
larity categories, each associated with an expected number
of Web hits. The observed data X = 〈hO, h, hU ,K〉 include
Web hits (hO, hU , and h for original, updated, and both ver-
sions) and sentence keywords K (we denote the component
for the i-th update via subscript notation). For the values
of latent variables, we have Z = 〈tO, tU , c〉 (i.e., the truth
value for each original and updated sentence and the implied
update type). The likelihood function is the product of all
update-specific variable probabilities (which we assume to
be independent): L(θ; X,Z) =

∏
i Pr(Hi ∧Ti|θ,X,Z) where

Hi designates the event HO
i = hO

i ∧ HU
i = hU

i ∧ Hi = hi

of obtaining the observed number of Web hits for the i-th
update and Ti designates the event TO

i = tOi ∧ TU
i = tUi of

original and updated sentence having the latent truth values
specified in Z. Our goal is to find a combination of latent
data (i.e., truth assignments for sentences) and unknown
parameter values that maximize the likelihood function. To
do so, we iteratively alternate between optimizing parame-
ter values for fixed truth assignments and optimizing truth
assignments for fixed parameters.

Before the first iteration, we assign tentative values to
random variables according to a (simple) heuristic. For each
Wikipedia update, we distinguish three cases. If we find
more Web hits for the original sentence of the i-th update,
compared to the updated one, we set TO

i = true and TU
i =

false. If we find more Web hits for the updated version, we
set TO

i = false and TU
i = true. If the number of Web hits

is the same, we set TO
i = TU

i = true. Note that we make
the default assumption that correct claims are more likely
than incorrect claims in the absence of further information.
This corresponds to commonsense knowledge and prior work
in data cleaning often makes similar assumptions [22]. The
initial value assignment is simplistic but we refine it in the
following iterations. The initial values of other variables can
be inferred from the value assignments for TO

i and TU
i , as

well as from the number of Web hits.
In each iteration, we first infer parameter values from the

variable value assignments. Denoting by m the total number
of Wikipedia updates, we use

uT =

∑
i(1(TO

i = true) + 1(TU
i = true))

2 ·m (4)

565

to estimate the probability of correct updates on Wikipedia.
Also, we use the formula

wT =

∑
i(h

O
i · 1(TO

i = true) + hU
i · 1(TU

i = true))∑
i(h

O
i + hU

i)
(5)

to estimate the probability of true claims on the Web
(where hO

i and hU
i are the number of Web hits collected

for original and updated sentence of the i-th update).
To infer the popularity of a topic (i.e., the expected num-

ber of Web statements that refer to it), we need to take
into account the number of Web hits collected but also
whether they refer to accurate or inaccurate claims about
the topic. We only detect Web hits for sentences that appear
in Wikipedia updates which may include only inaccurate or
only accurate claims on the topic (in different formulations)
or one accurate and one inaccurate claim. We estimate the
popularity of a claim topic as

pi = (
hO
i

wO
i

+
hU
i

wU
i

)/2 (6)

where wO
i = wT ·1(TO

i = ·true)+(1−wT)·1(TO
i = false))

is the truth-related “scaling factor” for the original sentence
and wU

i the analogue scaling factor for the updated sentence.
We introduce several discrete “popularity classes” that

are associated with an expected number of Web hits (pow-
ers of ten up to the maximal number of Web hits in our
data set). We assume that popularity for a sentence can be
roughly estimated based on keywords it contains. We train
a Naive Bayes classifier to predict the popularity category
of an update based on keywords that appear in original and
updated sentence. Since popularity, as defined above, is a
function of observed hits as well as latent truth assignments,
we cannot train that classifier before applying expectation-
maximization. Instead, we train the classifier anew in each
iteration (its internal model parameters are part of the pa-
rameters to optimize, θ).

In the second part of each iteration, we use the tentative
parameter values to infer the most likely value for each vari-
able. To do so, we simply use the formulas representing the
distribution of each variable. We use the previously trained
classifier to assign each update to a popularity category. For
each Wikipedia update, there are four truth combinations
(settings for binary variables TO

i and TU
i) with regards to

original and updated sentence. We calculate probability for
each combination and assign the values with highest proba-
bility. We repeat iterations until convergence. We observed
convergence (i.e., change in parameter values of less than
0.1%) already after 10 iterations. Based on the final re-
sult, we identify updates that correct a prior mistake. From
those, we extract subject-predicate-object triples that rep-
resent mistakes and their corrections. The next section de-
scribes how we rank the resulting triples.

7. RANKING AKB ENTRIES
In the final step of the AKB mining pipeline, we rank ex-

tracted triples by their quality. Ideally, each extracted triple
describes one factual mistake completely and concisely. A
triple describes a mistake completely if it identifies subject,
predicate, and object without ambiguity. A triple is concise
if it does not provide additional information beyond the mis-
take it represents. Both, completeness and conciseness, are

required to spot mistakes based on AKB triples. We rank
triples based on their likelihood to satisfy both properties.

Example 7.1. The triple (book,released in,1978) is incom-
plete as it does not identify a specific book (and differ-
ent books have different release dates). The triple (Ein-
stein,published,special and general theory of relativity in
1905) is not concise as it states multiple facts (thereby mak-
ing it unclear, which of them is erroneous).

Determining completeness and conciseness requires com-
monsense knowledge and deep natural language understand-
ing. For instance, consider the triples (the book,was released
in,1978) and (the book,was invented in,1450 along with the
printing press). Here, the same subject is ambiguous for the
first triple but not for the second. To maximize our cover-
age, we therefore rely on a set of simple and robust heuristics
for ranking triples instead.

We associate each triple with a score. The higher the
score, the higher the assumed triple quality. We calculate
triple scores St as the weighted sum of four terms:

St = ws · Ss + wp · Sp + wo · So + wc · Sc. (7)

Here, Ss is based on the triple subject, Sp is based on
the triple predicate, and So is based on the object. Sc is
based on the complexity of the sentence structure and ranks
simpler sentences higher. Next, we explain how to calculate
those factors.

Our goal is to obtain triples with non-ambiguous subject.
Pronouns (e.g., “It”), broad categories (e.g., “company”),
or clauses (e.g., “The aforementioned items”) may lead to
ambiguous subjects. Intuitively, non-ambiguous subjects
should appear less frequently (as ambiguous subjects accu-
mulate occurrences over all entities they represent). Hence,
we base our subject rank on the number of occurrences. Us-
ing the number of subject occurrences directly is insufficient.
It fails for cases in which the subject is formed from a rare
combination of unspecific words (e.g., subject “The com-
pany mentioned in the previous paragraph”). As a refine-
ment, we consider occurrences frequencies fw of the words
Ws that subject s is composed of:

Ss = 1/(1 + log(max
w∈Ws

(fw))) (8)

This formula penalizes subjects that contain very frequent
words. On the other side, occurrence frequency depends
on many factors beyond ambiguity. We use the logarithm
to lessen the chances of pruning out non-ambiguous sub-
jects that are frequently mentioned. Using the maximum
(instead of the average) of occurrence counts puts subjects
with higher word counts at a disadvantage. This is intended
as more subject text often hints at ambiguous paraphrases
or superfluous information.

Ranking predicates is harder. We found that predicate
occurrences frequency does not correlate well with ambigu-
ity. The least frequent predicates are often due to extraction
mistakes. Many highly specific and useful predicates (e.g.,
“be born in”) contain frequent words. Hence, we judge pred-
icates not based on the predicate text directly. Instead, we
judge predicates based on the subjects they connect to.

For a fixed entity and predicate, the number of other, re-
lated entities is typically limited (many relationships such
as “is capital of country” are even functional and map each

566

entity to at most one other entity). Hence, having a pred-
icate connecting the same entity to many other entities is
atypical. We therefore want to decrease the rank of such
predicates. However, we must distinguish between specific
subjects and ambiguous subjects (e.g., pronouns or broad
categories). Predicates should not be penalized for appear-
ing in many triples with pronouns (such triples will however
receive a low subject score). Hence, we must also consider
the likelihood that subjects are specific which connects to
their occurrence frequency.

We calculate the score of a predicate p based on the set
of triples Tp in which it appears, the occurrence frequency
fp
s of subject s in triples with predicate p, and the general

occurrence frequency fs of subject s:

Sp = 1− (
∑
t∈Tp

(fp
s /fs))/|Tp| (9)

The formula above does not take into account the number
of times that a predicate is used in general. Applying it with-
out further constraints tends to benefit low-quality predi-
cates that appear only very infrequently (but with highly
distinctive subjects). We therefore apply the formula above
to predicates whose number of triples is above a threshold
(while assigning a low standard score to the remaining ones).

Finally, we integrate the triple object. In our experience,
the primary problem with regards to triple objects is concise-
ness. Triple objects often contain superfluous information
after extraction. This can create ambiguity with regards to
which pieces of information are incorrect. We use again the
length of the object text as a proxy for the likelihood that
superfluous information is conveyed. Denoting text length
of object o by |o|, we use the following formula:

So = 1/(1 + dlog10(1 + |o|)e) (10)

Using the logarithm (with base 10) reduces again the im-
pact of this criterion. We additionally round logarithm re-
sults. This ensures that for objects with similar length the
other two factors (related to subject and predicate) take
precedence. This is in line with our observation that triple
objects tend to have the lowest impact on triple quality.

The complexity score, Sc, is based on the complexity of
the sentence parse trees. We penalize high complexity as it
increases the probability of extractor mistakes. Our metric
is based on the number of edges and the tree depth of the
dependency tree. Complexity is Sc = 1− 1/(δ2 + 1) where δ
is the deviation from the average according to those metrics.

The sum over all four factors (subject, predicate, object,
and complexity score) yields a simple but effective ranking
criterion. We clearly trade recall for precision by penalizing
for instance triples with very common subjects. Still, if the
goal is to obtain a reduced number of high-quality triples,
the given heuristic is a useful tool. We analyze its precision-
recall tradeoffs in more detail in Section 8.

8. EXPERIMENTAL RESULTS
We applied the pipeline described before to Wikipedia up-

dates and correlated updates with a snapshot of the entire
Web. We mined over 100,000 ranked factual mistakes with
a precision of up to around 80% (first tier). In this section,
we report generation statistics such as processing time and
input and output sizes for different pipeline stages (see Sec-
tion 8.1). We compare against baselines and assess pipeline

Table 1: Breakdown of processing time on cluster
with 2,500 machines.

Task Processing Time

Extracting entity swaps 10h

Extracting number swaps 5h45

Counting entity-swap Web hits 1h4

Counting number-swap Web hits 2h12

Matching AKB entries to Web 8h

steps (see Section 8.2), evaluate (via manual verification) the
“precision” of mined mistakes (see Section 8.3) and derive
several first insights from the AKB data (see Section 8.4).
Finally, we show that the mined data can be used to find
new mistakes on the Web (see Section 8.5).

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Precision
R

ec
a
ll

Unfiltered Filtered EM Snorkel C-Snorkel

DS LFC PM EM-0 Ranked

Figure 3: Sentence precision and recall of different
approaches for entity-swap updates.

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Precision

R
ec

a
ll

Unfiltered Filtered EM Snorkel C-Snorkel

DS LFC PM EM-0 Ranked

Figure 4: Sentence precision and recall of different
approaches for number-swap updates.

8.1 Pipeline Statistics

Table 2: Sizes of intermediate results.

Data Set Size Card.

Wikipedia Updates (raw input) 16 TB 39.65M

Entity swaps 700 MB 1.7M

Number swaps 600 MB 2.9M

Entity swap AKB 8 MB 41K

Number swap AKB 14 MB 76K

567

0
0.2
0.4
0.6
0.8

1
P

re
ci

si
o
n

Complete Factual Mistakes

0
0.2
0.4
0.6
0.8

1

P
re

ci
si

o
n

Completeness

1K 5K 10K 20K 30K 40K
0

0.2
0.4
0.6
0.8

1

Top-k

P
re

ci
si

o
n

Completeness and Conciseness

Pipeline Input

After EM Classification

After Ranking

Figure 5: Triple precision of AKB single entity-swap
entries as a function of rank.

We processed all English Wikipedia pages along with the
most recent 1000 revisions, up to August 10, 2018. This
amounts to an input size of 16 terabytes, describing 39.65
Wikipedia updates in total. We executed the pipeline on a
large cluster with 2,500 nodes. Running the pipeline on the
full input took around 27 hours.

Table 1 shows processing time for different steps. Extract-
ing entity swaps and number swaps from raw Wikipedia up-
dates accounts for a combined 16 hours of processing time.
The time required for extracting interesting entity swaps is
higher than the time required for number swaps. This is
mostly due to the computational overhead of entity resolu-
tion (for matching entities in text to entries in the Google
knowledge graph). This overhead is specific to the extrac-
tion of entity swaps. To apply the probabilistic model, we
need to count the number of references to original and up-

Table 3: Breakdown of entity swap updates.

Update Type Percentage

Controversial updates 20%

Substring containment 18.7%

Likely spelling mistake 10%

Geographic containment 6.7%

Synonym updates 2.6%

Correction candidates 42%

0
0.2
0.4
0.6
0.8

1

P
re

ci
si

o
n

Complete Factual Mistakes

0
0.2
0.4
0.6
0.8

1

P
re

ci
si

o
n

Completeness

1K 5K 10K 20K 30K 40K
0

0.2
0.4
0.6
0.8

1

Top-k

P
re

ci
si

o
n

Completeness and Conciseness

Pipeline Input

After EM Classification

After Ranking

Figure 6: Triple precision of AKB number-swap en-
tries as a function of rank.

0 5 10 15

0.2

0.22

Number distance

M
is

ta
k
e

P
ro

b
a
b
il
it

y

5 10

0.2

0.4

Edit distance

M
is

ta
k
e

P
ro

b
a
b
il
it

y

Figure 7: Correlating the probability that Web au-
thors confuse numbers or entities with numerical
and edit distance.

0 5 10 15

0

0.2

0.4

Number distance

A
K

B
E

n
tr

y
R

a
ti

o

5 10

2

4

6

8
·10−2

Edit distance

A
K

B
E

n
tr

y
R

a
ti

o

Figure 8: Correlating the ratio of AKB entries with
numerical or edit distance between swapped entities
or numbers.

568

dated sentence. The time required for counting dominates
time for inference. Counting references takes over three
hours in total. As we extract more number swaps (see next),
the time required for counting number swap references is
slightly higher. As discussed later in more detail, we also
matched statements on the Web against AKB entries. This
step took eight hours of processing time.

Table 2 specifies input and output sizes for different pipeline
stages. Clearly, the first stage of the pipeline is the most se-
lective one. It reduces input data by a factor of eight. The
heuristics of the first stage are therefore quite effective at
reducing overheads for the following stages. The input data
sizes correlate with processing overheads (discussed before).
Classification further reduces data by a factor of four. In
total, we extract around 130,000 ranked AKB entries.

Specifically for entity swaps, we apply various heuristics in
the first stage to discard irrelevant updates. Table 3 shows
a detailed breakdown of entity swap updates. Only 42%
of entity swap updates pass all heuristic tests and are used
as input to the probabilistic model. Controversial updates
account for the largest percentage (20%) of other updates.
This is not necessarily due to the large number of contro-
versial topics. According to our observations, there are few
controversial topics which motivate Wikipedia authors to
mutually revert their updates. We observed such cases in
particular for religious topics and topics related to territo-
rial conflicts. Specializations are common types of updates
as well and our simple heuristics of substring containment
is already able to discard a large number of cases. Table 8.1
shows a few examples of categories assigned by those heuris-
tics.

8.2 Comparison versus Baselines
We compare our approach against several baselines. Also,

we evaluate output quality achieved after different pipeline
stages. The results are reported in Figures 3 (entity-swap
updates) and 4 (number-swap updates). We use precision
and recall as criteria. Precision is evaluated by manually ver-
ifying for sentences, marked up as erroneous by our pipeline
or baselines, contain factual mistakes indeed. We consider a
factual mistake as verified if it contradicts information ex-
tracted from an authoritative source (e.g., a company’s Web
site for a claim about that company’s founding date). If we
cannot identify a single authoritative source, we correlate
information of different types from multiple sources (e.g.,
exploiting birth year and years at which degrees were ob-
tained to verify age). We evaluated 20 randomly selected
output sentences for each data point. We report the per-
centage of actual mistake sentences as precision. As recall,
we use the estimated number of factual mistakes in the out-
put of a method (obtained by multiplying the precision of
the method by its output size), scaled to the estimated total
number of mistakes in raw input (obtained by multiplying
the fraction of mistakes in a random sample of 20 updates
from the raw input by the total number of updates).

We compare against Snorkel [20], a generic system for
weakly supervised learning. Snorkel uses the results of our
heuristics, described in Section 5, as well as the number
of Web hits (h = 〈hO, hU 〉) as inputs. Snorkel dominates
several of the other baselines but does not reach the preci-
sion of our specialized approach. Our goal is to infer truth
from noisy crowd input (i.e., Wikipedia and Web authors)
in a specific scenario. Hence, we also compare against three

generic algorithms that infer correct answers from noisy
crowd input: PM [2, 15], D&S [4], and LFC [21]. Those al-
gorithms process more fine-grained input, compared to our
model: they integrate not only the number of votes for dif-
ferent answer options (i.e., the number of Web hits in our
scenario) but also model the specific voters (i.e., the URLs
of Web hits in our scenario). This allows them to infer voter-
specific reliability values. We therefore model the URLs of
Web hits as voters and original and updated sentence for
each update as answer options. Beyond the three afore-
mentioned algorithms, we also use Snorkel with URLs as
labeling functions (“C-Snorkel” in the plots). In all cases,
the resulting precision-recall tradeoff is sub-optimal.

The plots show the precision-recall tradeoffs realized by
the output of different pipeline stages: before filtering (“Un-
filtered”), after filtering (“Filtered”), after applying the prob-
abilistic model based on expectation-maximization (“EM”),
and for the top-1 to 40K triples after ranking (“Ranked”).
As intended, each pipeline stage gradually trades recall for
precision. Note in particular that filtering reduces recall
only slightly compared to the reduction in data size. This
means that the number of false negatives of our heuristics is
low. Applying the probabilistic model leads to the largest
increase in precision. To test whether parameter learning via
expectation-maximization is indeed helpful, we also tested
a version that avoids any expectation-maximization itera-
tions and uses instead the labels assigned before the first
iteration (EM-0) before ranking. Clearly, precision is signif-
icantly worse without optimized model parameters.

8.3 Evaluating Triple Quality
In the last subsection, we calculated precision at the sen-

tence level (i.e., the fraction of sentences containing mis-
takes). Doing so was required to allow a fair comparison
against baselines, some of which use input data that is only
available at the sentence level (e.g., the number of Web hits
is only available per sentence, not per triple, and forms the
input for algorithms D&S, LFC, and PM). In this subsec-
tion, we evaluate the final output of our baseline, ranked
triples, according to more fine-grained metrics. Ideally, each
AKB entry has the following properties. First, it describes
a claim completely without ambiguity (completeness). Sec-
ond, the claim is actually a factual mistake. Third, the
entry does not contain any claims beyond the factual mis-
take (conciseness). We evaluate triple precision based on the
subset of desirable properties that they satisfy. The metrics
that we use in this subsection are therefore stricter than the
ones we used before. Hence, triple precision, used here, is
generally lower than sentence precision, used before.

Figure 5 shows results for factual mistakes mined from
entity-swap updates (i.e., replacing one entity by another
one). We report precision as the percentage of completely
described factual mistakes (our primary metric), as the per-
centage of completely described claims, and as the percent-
age of complete and concise entries. Our final output is
ranked and we report precision for entries selected randomly
from the top-k entries (for different values of k, represented
on the x axis). We selected 20 entries for evaluation for each
k. Besides final output, we also report precision for the raw
input (filtered Wikipedia updates) and for the results after
applying the EM stage. Those two intermediate results are
not yet ranked (hence, the results are represented as hori-
zontal lines in Figure 5).

569

Table 4: Examples of Wikipedia sentences with their categories assigned by first pipeline stage.

Wikipedia Sentence Swap Category

He remains one of the most recognisable figures in modern
English music .

English → British Synonym

He was nominated by President Bill Clinton on January 27 ,
1998 , during Clinton ’s second term , and was confirmed by
the Senate on May 5 , 1998 .

Senate → United States Senate Sub-string (spe-
cialization)

Londonderry Air is an air that originated from County Lon-
donderry in Ireland.

Ireland → Northern Ireland Sub-string (spe-
cialization)

John Graham McVie was born on November 26th , 1945 , in
Ealing , West London , England to Reg and Dorothy McVie
and attended Walpole Grammar School .

England → United Kingdom Geo-contained
(generalization)

The Portugese monarchy was abolished on the 5th October
1910 when King Manuel II was deposed following a republican
revolution .

Portugese → Portuguese Spelling Error

It was ready for consecration in the spring of 516 BC , more
than twenty years after the return from captivity .

BC → BCE Controversial

Aqua is the Greek word for water . Greek → Latin Factual Mistake

The official language of Brazil is French . French → Portuguese Factual Mistake

In mid- 2004 , Oracle closed their Newark , California , factory
and consolidated all manufacturing to Hillsboro , Oregon .

Oracle → Sun Factual Mistake

Without further processing, the percentage of completely
described factual mistakes is very low (10%). Applying
expectation-maximization classification increases that pre-
cision to 35%. Triple ranking finally boosts precision to up
to 80% for the first thousand entries (72% for the first twenty
thousand entries). We observe similar tendencies according
to the other two metrics. Clearly, each pipeline steps leads
to a significant increase of the quality. Also, the ranking
approach is effective in putting entries of higher quality to
the front.

Figure 6 shows analogue results for entries mined from
number swap updates. We observe a precision of 74% within
the first thousand entries (and 60% within the first twenty
thousand entries). The relative tendencies between the re-
sults after different pipeline stages are the same as before.

8.4 AKB Insights
We demonstrate that we can test hypothesis and derive

new insights from the AKB. Such insights are generally in-
teresting and may inform the design of future fact check-
ing tools. Analysis results come with a caveat since our
data source and extraction methodology may introduce bias.
Still, the AKB can be used as one of several sources of evi-
dence and AKB results can guide the design of more targeted
studies. We start by verifying a simple hypothesis:

Hypothesis 8.1. The probability to confuse two numbers
or entities increases if they are similar.

We measure the similarity between numbers by the ab-
solute distance between them. We measure the similarity
between entities by the edit distance. We use two indicators
for the probability to make a mistake. We consider the ra-
tio of AKB entries for a fixed (numerical or edit) distance.
Also, for a correcting update with hO Web hits for the origi-
nal (incorrect) version and hU hits for the updated (correct)

0 200 400 600 800 1,000 1,200
0

0.2

0.4

0.6

0.8

Sentence Length (#Characters)

M
is

ta
k
e

P
ro

b
a
b
il
it

y

Figure 9: Mistake probability versus sentence
length.

version, we use hO/(hO +hU) as a proxy for the probability
that an average Web author makes the mistake.

Figure 7 shows the dependency between similarity and
the probability that Web authors confuse two numbers or
entities. In particular for number swaps, there is a clear
correlation. The probability of confusing two numbers de-
creases with the distance between those numbers. For the
edit distance, the tendency is less clear. Note that we report
results only for entity swaps with an edit distance of at least
three (since we filter out swaps with a lower edit distance).

Figure 8 shows the ratio of AKB entries as a function of
numerical or edit distance. Again, the ratio of AKB en-
tries is higher for cases in which close numbers are confused.
Staggering 40% of numerical AKB entries concern cases in
which two numbers with a distance of one were confused
(e.g., people commonly confuse the year of an event with
the preceding or following one). The correlation is less clear
for the edit distance.

570

Table 5: Examples for Web matches generated by baseline using large knowledge base.

Sentence Triple Paths found by KG Category

Peter Williams is synonymous with
UK fast fashion .

{Peter Williams, national-
affiliation, UK}

{Peter Williams, national
affiliation, Jamaica}

Extractor Error

Gloria Steinem and Dorothy Pit-
man Hughes - 1971 Dorothy Pitman
Hughes is a writer , speaker , activist
and a lifelong champion for women
, children and families .

{Dorothy Pitman Hughes,
profession, writer}

{Dorothy Pitman
Hughes, profession, Au-
thor/Orator/Advocate}

KG Incomplete

Brenntag recently agreed to acquire
the assets of Lubrication Services
LLC (LSi) .

{Lubrication Services
LLC, parent organization,
Brenntag}

{Lubrication Services
LLC, parent organiza-
tion, Coastal Chemical
Co., LLC/Enterprise
GP Holdings/TEPPCO
Partners}

KG not up-to-date

Table 6: Ratio of occurrences in AKB versus occur-
rences in raw input for triples with certain predi-
cates.

Predicate AKB Boost

be bear in 5.7

direct by 5

be bear on 4.8

star 4

graduate in 4

open in 4

be hold on 4

move in 4

form in 4

be found in 3.7

In summary, we find clear evidence that people are more
likely to confuse similar numbers. This insight can be di-
rectly used to improve existing fact checking tools. For in-
stance, a recently proposed tool assesses the probability that
natural language statements about numerical properties are
incorrect [13]. Our findings could be used to refine the prob-
ability model by taking into account the distance between
the number claimed in text and the value the system believes
to be correct.

It is less clear whether people are likely to confuse entities
with a small edit distance. Perhaps, a different metric of
similarity (e.g., based on entity type or semantic similarity)
between entities must be used. We leave further analysis to
future work. Now, we verify a second hypothesis:

Hypothesis 8.2. The probability to make a mistake de-
pends on the relationship that a claim refers to.

We collect evidence for this hypothesis as follows. We
consider the ratio of triples with certain predicate extracted
from the raw Wikipedia update stream. Then, we compare
that ratio against the ratio of triples with that predicate

in the AKB. We verify whether there are certain predicates
that appear over-proportionally often in the AKB.

Table 6 shows the 10 predicates for which the number of
occurrences increased by the highest factor, comparing raw
input and AKB result. The higher that ratio (called “AKB
Boost” in the table), the higher the probability to make mis-
takes. Clearly, certain predicate are over-represented in the
AKB. This provides supporting evidence for our hypothe-
sis. For instance, the ratio of triples for the predicate “be
bear in” (associating a person with birth year or place) in-
creases by nearly factor six. Such insights can be useful to
set a-priori probabilities for erroneous claims in verification,
based on predicates.

Finally, we consider the following hypothesis:

Hypothesis 8.3. The probability to make mistakes in-
creases when writing longer sentences.

To test this hypothesis, we calculate mistake probability
of Web users (as described before) as a function of sentence
length (measured as the number of characters). Figure 9
shows the results. Clearly, we find not strong evidence to
support our hypothesis. We cannot confirm that Web au-
thors are more likely to make mistakes when writing longer
sentences.

8.5 Application: Fact-Checking the Web
We demonstrate a first use case for the AKB. We show

that the mistakes we mine can be used to fact check other
Web sites beyond Wikipedia. We thereby verify our hypoth-
esis that factual mistakes tend to be made more than once.
Also, we show that naive approaches to exploit knowledge
bases for identifying factual mistakes on the Web fail.

Our goal is to find factual mistakes on the Web. We com-
pare two approaches. The first approach exploits a sam-
ple from our AKB (we use the first thousand or 20K sam-
ples from the number swaps AKB). We match AKB entries
against subject-predicate-object triples extracted from the
entire Web. To do so, we mine a snapshot containing 2.3 bil-
lion Web sentences and apply information extraction meth-
ods. We match the extracted triples against AKB entries.
We consider Web sentences as erroneous if they match one
of the AKB entries. To increase efficiency, we only extract
triples from sentences that contain subject and object string
from one of the AKB entries. Still, matching the entire Web

571

Table 7: Examples for Web matches generated for AKB entries.

Wikipedia Sentence Correction Web Sentence

Mr. Khera is the author of 12 books including his
first book You Can Win (Jeet Aapki in Hindi)
was published in 1998

12 to 16 Mr. Khera is the author of 12 books including
international bestseller You Can Win , which has
sold over 2 million copies in 16 languages.

The P8 was adopted as the standard issue hand-
gun for the Bundeswehr in 1994 and the G36 was
adopted in 1997.

1997 to 1995 HK felt their HK50 project , in development since
the mid-1970s was a better bet than the heavier
G41 , and following Bundeswehr trials the G36
was subsequently adopted in 1997.

The subgenus Glycine consists of at least 16
wild perennial species : for example , Glycine
canescens F.J. Herm.

16 to 25 At present , the subgenus Glycine consists of at
least 16 wild perennial species : for example ,
Glycine canescens , and G. tomentella Hayata
found in Australia , and Papua New Guinea.

Buland Darwaza , also known as the Gate of Mag-
nificence , was built by Akbar in 1601 A.D. at
Fatehpur Sikri.

1601 to 1576 Buland Darwaza was built by the great Mughal
Emperor Akbar in 1601 A.D.

The first recorded use of the present-day kanji (
characters) , which mean “ carrying rice , ” (lit-
erally is “ rice load ”) was in the Ruij Kokushi in
827 A.D. Other sets of kanji with the same pho-
netic readings , most of which contained a refer-
ence to rice , were in use earlier , and most scholars
agree that the name Inari is derived from.

827 to 892 The first recorded use of the present - day kanji (
characters) , which mean “ carrying rice , ” was
in the Ruij Kokushi in 827 A.D.

Table 8: Identifying mistakes on the entire Web:
comparing AKB and KB based approach.

Approach #Matches Precision

AKB 1K: Match is Mistake 330 75%

AKB 20K: Match is Mistake 6147 50%

KB Miss is Mistake (Sample) 469 0%

against an AKB extract took around eight hours on a cluster
with 2,500 nodes.

For comparison, we exploit the Google knowledge graph
for fact checking via a simple approach. We exploit text
analysis tools that extract triples from Web sentences and
match subject, predicate, and objects to entities and rela-
tions in the Google knowledge graph. We consider sentences
as incorrect if extracted triples do not match entries in the
knowledge base. This approach classifies a large number of
Web sentences as likely mistakes. We therefore use a small
sample of only 0.0002% of the entire Web containing 324, 580
sentences. We extracted 2, 253 triples that we were able to
fully match to KB entries (i.e., we need to resolve subject,
predicate, and object). Note that the number of extracted
triples would be much higher without that requirement. Out
of those, 469 triples were classified as likely mistakes (since
they do not correspond to a registered relationship).

We assess the precision of the two approaches. For each
approach, we select 20 random entries from the result set
(i.e., Web sentences that were classified as likely mistakes).
We manually verify whether the sentences contain actual
mistakes. Table 8 summarizes the result. Clearly, consider-
ing the absence of KB entries as evidence for factual mistakes
is impractical. in three out of ten cases, false positives were

due to the KB being incomplete. In seven out of ten cases, a
mistake of the extractor prevents a KB match. The number
of likely mistakes returned by the AKB-based approach is
much lower. However, 70% of returned matches are actual
mistakes. Three false positives are due to wrong AKB en-
tries (i.e., entries that are no actual mistakes). The other
three are due to ambiguous AKB entries (i.e., the AKB en-
try was a mistake in its original context but the extracted
triple is too generic).

Table 8 shows a few examples for Web matches, gener-
ated from AKB entries. It shows the updated sentence on
Wikipedia, from which the AKB entry was extracted. It also
shows the Web sentence in which the same mistake appears.

9. CONCLUSION AND OUTLOOK
We described our efforts to build an anti-knowledge base

from Wikipedia updates. We describe a three-stage pipeline
that uses raw updates as input and produces ranked anti-
knowledge triples as output. We produced over 110,000
ranked triples from 16 terabytes of input data, exploiting
over 24 hours of computation time on a large cluster.

We presented first evidence that the mined data can be
useful. In particular, we verified several hypothesis around
why users make mistakes. We also exploited the mined
knowledge for fact checking other parts of the Web, success-
fully identifying factual mistakes with high precision. This
demonstrates that the mined mistakes are not uncommon
and can be used for fact checking.

10. REFERENCES
[1] G. Angeli, M. J. Premkumar, and C. D. Manning.

Leveraging linguistic structure for open domain
information extraction. In ACL, pages 344 –354, 2015.

572

[2] B. I. Aydin, Y. S. Yilmaz, Y. Li, Q. Li, J. Gao, and
M. Demirbas. Crowdsourcing for multiple-choice
question answering. In AAAI, pages 2946–2953, 2014.

[3] A. Bonifati, W. Martens, and T. Timm. Navigating
the maze of wikidata query logs. In WWW, pages
127–138, 2019.

[4] A. P. Dawid and A. M. Skene. Maximum likelihood
estimation of observer error-rates using the em
algorithm. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 28(1):20–28, 1979.

[5] C. M. De Sa, C. Zhang, K. Olukotun, and C. Ré.
Rapidly mixing gibbs sampling for a class of factor
graphs using hierarchy width. In NIPS, pages
3097–3105, 2015.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[7] O. Etzioni, M. J. Cafarella, D. Downey, S. Kok, A.-M.
Popescu, T. Shaked, S. Soderland, D. S. Weld, and
A. Yates. Web-scale information extraction in
knowitall: (preliminary results). In WWW, pages
100–110, 2004.

[8] A. Fader, S. Soderland, and O. Etzioni. Identifying
relations for open information extraction. In EMNLP,
pages 1535–1545, 2011.

[9] FullFact. The state of automated factchecking. 2016.

[10] N. Hassan, B. Adair, J. T. Hamilton, C. Li,
M. Tremayne, J. Yang, and C. Yu. The quest to
automate fact-checking. In Proceedings of the 2015
Computation+Journalism Symposium, 2015.

[11] N. Hassan, F. Arslan, C. Li, and M. Tremayne.
Toward automated fact-checking: detecting
check-worthy factual claims by claimbuster. In KDD,
pages 1803–1812, 2017.

[12] N. Hassan, G. Zhang, F. Arslan, J. Caraballo,
D. Jimenez, S. Gawsane, S. Hasan, M. Joseph,
A. Kulkarni, A. K. Nayak, et al. Claimbuster: the
first-ever end-to-end fact-checking system. VLDB,
10(12):1945–1948, 2017.

[13] S. Jo, I. Trummer, W. Yu, X. Wang, C. Yu, D. Liu,
and N. Mehta. Verifying text summaries of relational
data sets. In SIGMOD, pages 299–316, 2018.

[14] L. Li, H. Deng, A. Dong, Y. Chang, R. Baeza-Yates,
and H. Zha. Exploring query auto-completion and
click logs for contextual-aware web search and query
suggestion. In WWW, pages 539–548, 2017.

[15] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han.
Resolving conflicts in heterogeneous data by truth
discovery and source reliability estimation. In
SIGMOD, pages 1187–1198. ACM, 2014.

[16] J. Lichtarge, C. Alberti, S. Kumar, N. Shazeer,
N. Parmar, and S. Tong. Corpora generation for
grammatical error correction. In NAACL, pages
3291–3301, 2019.

[17] X. Lin and L. Chen. Domain-aware multi-truth

discovery from conflicting sources. VLDB,
11(5):635–647, 2018.

[18] F. Niu, C. Zhang, C. Ré, and J. W. Shavlik. Deepdive:
Web-scale knowledge-base construction using
statistical learning and inference. VLDS, 12:25–28,
2012.

[19] R. Qian. Understand Your World with Bing.
https://blogs.bing.com/search/2013/03/21/understand-
your-world-with-bing/,
2013.

[20] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu,
and C. Ré. Snorkel: Rapid training data creation with
weak supervision. VLDB, 11(3):269–282, 2017.

[21] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez,
C. Florin, L. Bogoni, and L. Moy. Learning from
crowds. JMLR, 11(Apr):1297–1322, 2010.

[22] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré.
Holoclean: Holistic data repairs with probabilistic
inference. VLDB, 10(11):1190–1201, 2017.

[23] H. Roitman, S. Hummel, E. Rabinovich, B. Sznajder,
N. Slonim, and E. Aharoni. On the retrieval of
wikipedia articles containing claims on controversial
topics. In WWW, pages 991–996, 2016.

[24] schema.org. ClaimReview.
https://schema.org/ClaimReview, 2016.

[25] W. Shen, A. Doan, J. F. Naughton, and
R. Ramakrishnan. Declarative information extraction
using datalog with embedded extraction predicates.
VLDB, pages 1033–1044, 2007.

[26] A. Singhal. Introducing the Knowledge Graph: things,
not strings.
https://googleblog.blogspot.com/2012/05/introducing-
knowledge-graph-things-not.html,
2012.

[27] F. M. Suchanek, M. Sozio, and G. Weikum. Sofie: A
self-organizing framework for information extraction.
In WWW, pages 631–640, 2009.

[28] I. Trummer, A. Halevy, H. Lee, S. Sarawagi, and
R. Gupta. Mining subjective properties on the Web.
In SIGMOD, pages 1745–1760, 2015.

[29] X. Wang, C. Yu, S. Baumgartner, and F. Korn.
Relevant document discovery for fact-checking
articles. In WWW, Journalism, Misinformation, Fact
Checking Track, pages 525–533, 2018.

[30] D. Yang, A. Halfaker, R. Kraut, and E. Hovy.
Identifying semantic edit intentions from revisions in
wikipedia. In EMNLP, pages 2000–2010, 2017.

[31] X. Yin, J. Han, and P. S. Yu. Truth discovery with
multiple conflicting information providers on the web.
In KDD, pages 796–808, 2007.

[32] Y. Zheng, G. Li, Y. Li, C. Shan, and R. Cheng. Truth
inference in crowdsourcing: Is the problem solved?
VLDB, 10(5):541–552, 2017.

[33] J. Zhu, Z. Nie, X. Liu, B. Zhang, and J.-R. Wen.
Statsnowball: a statistical approach to extracting
entity relationships. In WWW, pages 101–110, 2009.

573

