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ABSTRACT
Solid State Drives (SSDs) are complex devices with varying
internal implementations, resulting in subtle differences in
behavior between devices. In this paper, we demonstrate
how a database engine can be optimized for a particular de-
vice by learning its hidden parameters. This can not only
improve an application’s performance, but also potentially
increase the lifetime of the SSD. Our approach for optimiz-
ing a database for a given SSD consists of three steps: learn-
ing the hidden parameters of the device, proposing rules to
analyze the I/O behavior of the database, and optimizing
the database by eliminating violations of these rules.

We obtain two different characteristics of an SSD, namely
the request size profile and the location profile, from which
we learn multiple internal parameters. Based on these pa-
rameters, we propose rules to analyze the I/O behavior of a
database engine. Using these rules, we uncover sub-optimal
I/O patterns in SQLite3 and MariaDB when running on our
experimental SSDs. Finally, we present three techniques to
optimize these database engines: (1) use-hot-locations on
SSD-S, which improves the SELECT operation throughput
of SQLite3 and MariaDB by 29% and 27% respectively; it
also improves the performance of YCSB on MariaDB by
1%-22% depending on the workload mix, (2) write-aligned-
stripes on SSD-T, reduces the wear-out caused by SQLite3
write-ahead log (WAL) file by 3.1%, and (3) contain-write-
in-flash-page on SSD-T, which reduces the wear-out caused
by the MariaDB binary log file by 6.7%.
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1. INTRODUCTION
Solid State Drives (SSDs) are widely used persistent stor-

age devices, typically built with NAND Flash [7] and more
recently with 3D XPoint memory [2]. They are integrated
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circuit assemblies with no mechanical parts, and are faster
than hard disks as a result [1,21,32]. The behavior of SSDs
is greatly influenced by their hierarchical architecture (§2.1),
and the properties of the storage medium used (§2.2). For
instance, a distinctive feature of SSDs is the abundance of
internal parallelism, which is a consequence of their hierar-
chical organization.

Behind the block interface of SSDs, the internal operation
and the organization of flash memory varies from one device
to another. There is no silver bullet when it comes to com-
pletely determining the internal operation of an SSD. Differ-
ent manufacturers use different internal policies with hidden
parameters, which results in a spectrum of device character-
istics. However, external measurements can be used to study
these characteristics, and can sometimes reveal information
regarding the internal parameters of the device.

While previous work (§2.2) prescribes general guidelines
to use SSDs effectively, it is possible to further optimize an
application for a specific device by studying its unique char-
acteristics. The aim of this paper is to describe ways to
learn hidden parameters of an SSD, and demonstrate how
these parameters can be used to optimize a database engine
for a given device. The benefits of optimizing a database
for an SSD are twofold: it can improve the immediate per-
formance of the database engine through better utilization
of the SSD’s internal parallelism, and can have long-term
benefits such as increasing the lifetime of the device.

To motivate why optimizing for a particular SSD could be
useful, consider a datacenter with a million SSDs of the same
make [49] running a common service. Let us assume that
the average lifetime of an SSD in the fleet is one year [39]. A
1% improvement in lifetime would equal an additional 3.65
days for an individual SSD, but 3,650,000 machine days for
the whole fleet. Thus, even the slightest improvement in
lifetime (or performance) by optimizing the service for that
particular make of SSD can cumulatively be very beneficial.

Our contribution towards optimizing a database system
for a given SSD consists of the following three parts (§3):

1. Obtaining SSD characteristics and learning inter-
nal parameters (§3.1): We study two different charac-
teristics of an SSD, namely the request size profile (§3.1.1)
and the location profile (§3.1.2, [25]). From these charac-
teristics, we learn five different internal parameters: the
desirable write request sizes, the stripe size, the chunk
size, the flash page size, and hot locations in the logi-
cal address space. We have performed experiments on
SSDs from four different manufacturers, and the internal
parameters learned have been summarized in Table 1.
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(a) The architecture and internal operation of an SSD. The Host issues
commands to the SSD through the interface (NVMe, SATA, etc). The
FTL processes the commands and issues events to the flash control, which
operates the multiple internal channels (buses). The RAM cache controlled
by the FTL is used for intermediate storage during the operation of the
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(b) Hierarchical organization of flash memory inside
a flash package. Attached to each channel inside an
SSD are multiple flash packages. Each flash package
has multiple chips, which in turn have multiple planes.
Each plane has multiple flash blocks, each of which is a
collection of flash pages (size 2KB to 16KB).

Figure 1: The Architecture of an SSD and Hierarchical Organization of Flash Memory. The block interface
is implemented by the Flash Translation Layer (FTL). Flash pages (typically 2KB to 16KB in size) and flash
blocks (order of MBs) are the unit of read(write) and erase operations respectively, and are fixed for a device.
Flash memory is organized hierarchically over channels, packages, chips, and planes (in that order).

2. Proposing rules to analyze the I/O patterns of a
database engine (§3.2): Informed by the parameters
learned, we propose rules (§3.2.1) to analyze the I/O be-
havior of a database when running on a particular SSD.
These rules depend on the internal parameters, and thus
vary between devices1. By identifying I/O calls that vi-
olate these rules, we uncover sub-optimal patterns that
could potentially be corrected to improve performance.

3. Optimizing disk data structures to improve perfor-
mance (§3.3): We examine the data structures used by
the database engine, and describe techniques to modify
them such that the sub-optimal I/O patterns found are
eliminated. We present three techniques (§3.3), namely
use-hot-locations (Fig. 9), write-aligned-stripes (Fig. 11),
and contain-write-in-flash-page (Fig. 10).

In this paper, we have studied two popular open-source
databases, namely SQLite3 [15] and MariaDB (with InnoDB
storage module) [11,13]. While the former is a minimalistic
database engine with uses spanning from mobile applica-
tions to data science platforms like pandas [4,16], the latter
is widely deployed in multiple large-scale enterprises [3]. We
apply the proposed rules to study these database engines,
and present techniques to optimize them on our experimen-
tal SSDs. These techniques have been evaluated in §4.

Applying the technique use-hot-locations to optimize SQL-
-ite3 and MariaDB on SSD-S increased their SELECT oper-
ation throughput by 29% and 27% respectively in the pres-
ence of memory buffering (§4.1). In addition to this, we
benchmarked MariaDB using YCSB [18], and obtained an
improvement in performance ranging from 1%-22% for dif-
ferent workloads (Fig. 13b). On the other hand, the tech-
niques write-aligned-stripes and contain-write-in-flash-page
reduce the device wear out caused by the log files of SQLite3
and MariaDB by 3.1% and 6.7% respectively (§4.2). Thus
we demonstrate that the knowledge of internal parameters
can be used to tune a database engine for a given SSD.

1We refer to a particular make of an SSD as “a device”.

2. BACKGROUND
In this section, we give an overview of the hierarchical

architecture of SSDs (§2.1), followed by an in-depth discus-
sion on their internal operation (§2.2). We also discuss some
common recommendations for applications informed by the
general structure and behavior of SSDs.

2.1 The Hierarchical Architecture of SSDs
Figure 1 shows the architecture of an SSD. The Flash

Translation Layer (FTL) is a key component responsible for
managing the resources inside the SSD (Fig. 1a). Internally,
NAND flash cells are aggregated into larger units of flash
pages (Fig. 1b), which usually range from 2KB to 16KB in
modern SSDs [6,31,45]. Flash pages are further aggregated
into flash blocks, which are typically in the order of MBs
in size. Flash pages and blocks are the smallest units of
read(write) and erase operations respectively inside an SSD
(discussed further in §2.2).

This hierarchical organization of flash memory is typical
to SSDs2 (Fig. 1), and greatly influences their behavior.
SSDs have multiple internal channels (i.e., buses) which can
be operated independently, each of which is shared by mul-
tiple flash packages (also known as dies). Each flash package
consists of chips, which in turn consist of multiple planes.
Overall, we have four levels of internal parallelism, corre-
sponding to each level of the storage hierarchy:

• Channel-level: Multiple internal channels (or buses) can
be operated simultaneously and independently. Each chan-
nel is operated by at most one attached flash package at
any time.
• Package-level: Access to all the packages on a single

channel can be interleaved, and commands can be pro-
cessed by packages simultaneously.

2Intel Optane SSD (SSD-I in Table 1) is not flash based. It is
built with 3D XPoint Memory, but also has a hierarchical internal
architecture with multiple channels [30].
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Table 1: SSDs used in experiments and their internal parameters learned. In all expressions used, i is an
integer. The desirable write request sizes and the stripe size are learned from the request size profile (§3.1.1),
whereas the chunk size, hot locations and the flash page size are learned from the location profile (§3.1.2).

Label Name Capacity Interface
Desirable Write
Request Sizes

Stripe
Size

Chunk
Size

Hot
Locations

Page
Size

SSD-S Samsung 960 EVO 512GB NVMe 32KB×i 64KB 64KB 64KB×i+32KB -
SSD-I Intel Optane 905P 480GB NVMe 1KB×i - 4KB 4KB×i 4KB
SSD-T Toshiba XG5 256GB NVMe 64KB×i 64KB 4KB 4KB×i 4KB
SSD-M Micron M500 120GB SATA 64KB×i 64KB 4KB 4KB×i 4KB

• Chip-level & Plane-level: Chips inside a flash package,
and planes within chips can be accessed simultaneously.

The choice of physical parameters like the size of flash
pages, number of channels, as well as the logic of the FTL are
trade secrets of SSD manufacturers. Although the specific
details may vary from one make of SSD to another, the
internal operation follows similar principles informed by the
properties and organization of flash memory.

2.2 Internal Operation of SSDs and Common
Recommendations for Applications

Three important low-level operations inside an SSD are
read, write/program, and erase. Read and write operations
are executed in units of flash pages. Unlike HDDs, flash
memory is never overwritten directly; it has to be erased
before writing again3. The erase operation is performed in
units of flash blocks, and data is written sequentially in an
erased block in units of flash pages. The number of write-
erase operations that can be performed on flash memory are
limited, thus causing the SSD to wear out over time.

The FTL is responsible for implementing the block in-
terface of SSDs. This requires the FTL to physically store
the data onto the flash memory4, and also maintain the the
mapping of the logical block address to the physical flash
address (logical-to-physical address mappings) where data
stored. Thus, the FTL plays a critical role of deciding the
physical layout of data on flash memory, which is important
in determining the immediate performance of the SSD.

Figure 2 details the steps performed by an SSD to satisfy
a read/write request. In both cases, address translation is
performed by fetching the (logical-to-physical) address map-
pings corresponding to the logical address, followed by fetch-
ing the flash pages (if any) containing data. Accessing flash
pages takes a significant portion of the time in satisfying
a request. Hence the physical layout of data in the flash
memory hierarchy, as well as the number of flash pages in-
ternally accessed is important in determining the immediate
performance of an SSD (see Fig. 4 for an example).

SSD manufacturers have varying FTL implementations
with different physical data layout policies. However, the
following recommendations for applications have been made
[20,24,25,31,37] based on the general operation of SSDs:

• Issue large or sequential write requests. This al-
lows the SSD to have more compact address mappings
by storing information for larger logical units (clustered
pages [23, 37] instead of flash pages).

3However, Intel’s 3D XPoint Memory need not be erased before
being overwritten.
4Aside from managing the physical layout of data, the FTL is also
responsible for various background tasks like garbage collection
and wear leveling [26].
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(a) Satisfying a read request. The SSD performs address trans-
lation by fetching the necessary logical-to-physical address map-
pings. Once the physical address(es) is(are) obtained, the flash
pages containing the required data are fetched. The result for the
read request is assembled and returned.
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(b) Satisfying a write request. The SSD first performs address
translation by fetching the necessary logical-to-physical address
mappings. If the write request overwrites existing data, the flash
pages containing the existing copy of the data are fetched. The
updated data is assembled and written to flash memory. The ad-
dress mappings corresponding to the updated data are persisted
and the older mappings invalidated.

Figure 2: Steps performed internally by an SSD to
satisfy a read and write request.

• Issue write requests with temporal locality . This can
result in faster address translation for subsequent read re-
quests, as the address mappings are likely to be co-located
and already present in the SSD’s RAM cache.
• Issue large or multiple concurrent read requests.

Large read requests are likely to span over multiple sub-
units inside an SSD, utilizing internal parallelism. The
same holds true for multiple concurrent read requests.
• Issue large or multiple concurrent write requests.

This leads to better utilization of the internal parallelism
of the SSD, and better performance as a result.
• Issue sequential read requests. SSDs often prefetch

data internally [46], resulting in better performance for
sequential accesses.
• Issue aligned write requests that are multiples of the

flash page size. For these requests, the SSD can skip
fetching the existing pages being overwritten completely
(step 2 in Fig. 2b). In contrast, requests smaller than
the flash page size would need to be padded to fill the
page causing write amplification, as more flash memory
is being used than necessary. This can also cause read
amplification for subsequent read requests.

The last recommendation requires knowledge of the flash
page size, which is a hidden internal parameter of an SSD
and is not readily shared by the manufacturers. Our aim
in this paper is to go beyond generic recommendations, and
make recommendations specific to a device by learning its
characteristics through measurements (see §3.2).
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Experiment 1 The Request Size Profile of an SSD

1: procedure GetRequestSizeProfile
2: /* Generate files with increasing request sizes */
3: fileSize← 1GB
4: filesCreated← []
5: numFiles← 10
6: for fId in 1:numFiles do
7: requestSize← 2(fId−1)KB
8: filename← {requestSize}-seq
9: file← open(filename)

10: filesCreated.append(filename)
11: numReqs← fileSize/requestSize
12: for i in 1:numReqs do
13: data← malloc(requestSize)
14: offset← (i− 1)× requestSize
15: write(file, data, offset)
16: fsync(file)

17:
18: // Issue read requests to the files in a random
19: // order to avoid read-ahead inside the SSD
20: readReqSize← 1MB
21: numReadReqs← fileSize/readReqSize
22: randOrder ← random shuffle(1 : numReadReqs)
23: for filename in filesCreated do
24: file← open(filename)
25: latencies← [ ]
26: for idx in randOrder do
27: offset← (idx− 1)× readReqSize
28: startT ime← time.now()
29: data← read(file, readReqSize, offset)
30: endT ime← time.now()
31: latencies.append(endT ime− startT ime)

32: plot(latencies, filename)

3. OPTIMIZING DATABASES FOR AN SSD
In this section, we describe our approach towards opti-

mizing databases for an SSD. We first measure the SSD’s
characteristics and learn some internal parameters (§3.1).
Informed by these parameters, we describe rules to identify
any sub-optimal I/O requests issued by the database engine
(§3.2). Finally, we propose techniques to eliminate these
sub-optimal I/O requests, and improve the performance of
the database engine on the SSD (§3.3). The SSDs used
for experiments in this section, as well as their parameters
learned have been summarized in Table 1. SSD-S, SSD-T,
and SSD-M are NAND flash based, whereas SSD-I is built
with 3D XPoint memory.

3.1 Learning SSD Parameters
We study two types of characteristics of an SSD, which

help us infer various internal parameters. First, we describe
how to obtain the request size profile (§3.1.1), from which we
learn the desirable write request sizes and the stripe size of
an SSD. Next, we obtain the location profile (§3.1.2) of the
SSDs, from which we identify their respective chunk sizes,
hot locations, and flash page sizes.

3.1.1 The Request Size Profile
Experiment 1 describes how to obtain the request size

profile of an SSD. We start by creating files of size 1GB
with sequential write requests of sizes ranging from 1KB
to 512KB (filename 512kb-seq refers to a 1GB file created
with sequential write requests of size 512KB; likewise for
other request sizes). Following this, the latency of read re-
quests to all the files is measured. This experiment helps
determine which write request sizes are desirable for a given

Experiment 2 The Location Profile of an SSD

1: procedure GetLocationProfile
2: filename ← 512KB-seq
3: file ← open(filename)
4: fileSize← 1GB
5: chunkSizeMin← 4KB
6: chunkSizeMax← 512KB
7: offsetUnit ← 1KB
8: expChunkSize← chunkSizeMin
9: while expChunkSize <= chunkSizeMax do

10: numChunks ← fileSize/expChunkSize
11: randChunks ← random shuffle(1:numChunks)
12: numOffsetGroups ← chunkSize/offsetUnit
13: for i in 0:(numOffsetGroups-1) do
14: latencies ← []
15: for j in randChunks do
16: chunkOffset← (j − 1)× chunkSize
17: offset ←chunkOffset+i× offsetUnit
18: startTime ← time.now()
19: data ← read(file, chunkSize,offset)
20: endTime ← time.now()
21: latencies.append(endT ime− startT ime)

22: plot(expChunkSize, latencies, offsetGroup=i)

23: expChunkSize← 2× expChunkSize

SSD; a higher latency of read requests indicates an undesir-
able write request size during file creation.

Fig. 3 shows the request size profile of all the SSDs, and
we find that different devices have different characteristics.
For a given SSD, we identify the request size at which min-
imum latency is attained, and all sizes greater than that,
as desirable write request sizes. Two factors contribute to
higher latency of a read request, namely read/write amplifi-
cation and higher address translation time. The request size
at which the lowest latency is obtained suggests absence of
these factors, and is thus desirable. Thus, for SSD-S, request
sizes 32KB and above are desirable, whereas for SSD-T and
SSD-M, the desirable request sizes are 64KB and above.

Next, we attempt to learn the stripe size of the SSDs. We
define the stripe size as the unit of decision of physical layout
inside an SSD. Two (aligned) stripes of data have similar
layout in terms of the sub-units occupied at each level of
the flash hierarchy. The latency of read requests depends
on the internal parallelism utilized inside the SSD, which in
turn depends on the physical layout of data. Thus, similar
latency of read requests indicates a similarity in physical
layout of data. Therefore, for SSD-T, files 64kb-seq to 512kb-
seq have similar physical layout, indicating that 64KB is the
stripe size. By a similar argument, the stripe size of SSD-S
and SSD-M is also 64KB.

Unlike the others, SSD-I has constant latency for all the
files. Flash-based SSDs can incur read/write amplification,
as flash pages are units of read/write operations. However,
unlike flash memory, Intel’s 3D XPoint memory is byte-
addressable and need not be erased before overwriting, and
this is perhaps the reason behind the difference in SSD-I’s
behavior. Although we find that none of the request sizes
are particularly undesirable for SSD-I, this experiment is
insufficient to learn its stripe size.

3.1.2 The Location Profile
We define the chunk size of an SSD as the amount of

contiguous data stored on a single channel. Due to the hi-
erarchical architecture of SSDs, the latency of read requests
(of chunk size) can vary at different logical address locations.
Fig. 4 shows the multiple cases that can arise. If a request
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(a) SSD-S. Request sizes 32KB and up are desirable. The la-
tency becomes roughly constant after request size 64KB, indi-
cating that it is the stripe size.

(b) SSD-T. Request sizes 64KB and up are desirable. The
latency becomes roughly constant after request size 64KB, in-
dicating that it is the stripe size.

(c) SSD-I. All request sizes are desirable. This experiment is
insufficient to learn the stripe size of this SSD.

(d) SSD-M. Request sizes 64KB and up are desirable. The
latency becomes roughly constant after request size 64KB, in-
dicating that it is the stripe size.

Figure 3: The Request Size Profile. We learn the stripe size and desirable request sizes from Experiment 1.

(a) An example of an 8KB
write request to an SSD with
chunk size 4KB. Two chunks of
4KB are stored on each chan-
nel.

FTL

Channel 
#0

Channel 
#1

Read
[0, 4KB)

[0, 4KB)

[0, 4KB)

[4KB, 8KB)

(b) A 4KB read request align-
ing with a chunk; data on
Channel #0 alone is accessed.

FTL

Channel 
#0

Channel 
#1

Read
[2KB, 6KB)

[2KB, 6KB)

4-6KB

2-4KB

(c) A 4KB read request offset
into a chunk. If the flash page
size is 2KB, required pages are
accessed in parallel, which will
be faster than Fig. 4b.

(d) A 4KB read request off-
set into a chunk. If the flash
page size is 4KB, both the
chunks(pages) will be fetched.
Will be slower than Fig. 4b.

Figure 4: Impact of channel-level parallelism on the
latency of read requests at different logical address
locations. If the flash page size is smaller than the
chunk size, channel-level parallelism reduces latency
by doubling the bandwidth (Fig. 4c). Otherwise, it
increases latency due to read amplification (Fig.4d).

internally spans over multiple channels, its latency can be
relatively lower or higher depending on the flash page size
and chunk size of the SSD. This is the motivation behind
Experiment 2, which is inspired by Chen et al. [25].

In the experiment, we repeatedly guess a chunk size and
issue read requests (of chunk size) at different logical address
locations, giving rise to the location profile of an SSD (for
that chunk size). We define an offset group as the group of
logical addresses with the same relative offset into a chunk5.
If a significant variation in latency between different offset
groups is observed, it indicates an influence of channel-level
parallelism in some form.

Fig. 5 shows the result of this experiment. For SSD-
S, we observe that for a chunk size of 64KB, offset group
32KB has 39% lower latency than offset group 0. Thus, the
32KB location group constitutes the set of hot locations on
SSD-S. This behavior is similar to Fig. 4c, where channel-
level parallelism helps reduce latency. On the other hand,
the remaining SSDs have behavior similar to Fig. 4d with
minimum latency at offset group 0, with a flash page size
and chunk size of 4KB. We find that the reduction in latency
at hot locations varies from one device to another, and this
has been reported in Fig. 5.

3.2 Rules to Analyze Database I/O Patterns
In the previous section, we described how to learn some

internal parameters of an SSD. In this section, we use these
parameters to propose rules for applications when running
on a given SSD (§3.2.1).

5For example, offset group 1KB for chunk size 4KB refers to all
logical address locations of the form 4KB×i+1KB.
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(a) SSD-S. Latency of reads at
offset group 32KB is 39% lower
than offset at group 0. The chunk
size is 64KB, and the hot loca-
tions are at offset group 32KB.

(b) SSD-T. Latency of read re-
quests at offset group 0 is 38%
lower compared to others. The
chunk size is 4KB, and the hot
locations are at offset group 0.

(c) SSD-I. Latency of read re-
quests at offset group 0 is 9%
lower compared to others. The
chunk size is 4KB, and the hot
locations are at offset group 0.

(d) SSD-M. Latency of read re-
quests at offset group 0 is 20%
lower compared to others. The
chunk size is 4KB, and the hot
locations are at offset group 0.

Figure 5: The Location Profile. We learn the chunk size and hot locations of the SSDs from Experiment 2.

We first run a benchmark experiment (§3.2.2) to obtain
the I/O patterns of a database engine, followed by applying
the rules to analyze the I/O requests (§3.2.3 and §3.2.4).
Requests that violate the rules are considered sub-optimal,
and identifying such requests reveals opportunities for im-
proving the performance of a database engine on a particular
SSD. Thus, by using this approach, we study SQLite3 and
MariaDB on two of our experimental SSDs, namely SSD-S
and SSD-T, and we find sub-optimal I/O patterns in both
of these database engines.

3.2.1 Rules to Identify Sub-Optimal I/O Requests
We propose the following rules for applications to follow

when issuing I/O requests to a particular SSD. Requests
violating these rules are considered sub-optimal.

• Rule 1: Issue write requests that are multiples of the min-
imum desirable write request size. Requests not obeying
this rule either cause write amplification, or require more
flash memory for storing logical-to-physical address map-
pings.

• Rule 2 : Issue read requests of chunk size at hot locations
whenever possible. Hot locations in the logical address
space provide significantly lower latencies, and the appli-
cation should use this advantage if it can.

• Rule 3 : Issue write requests aligned with stripe bound-
aries, preferably of stripe size. Overwriting stripes com-
pletely is desirable, as any existing data and address map-
pings can be invalidated without fetching additional flash
pages. Also, unaligned requests can disturb the regularity
of hot locations (discussed further in Rule 4).

• Rule 4 : Do not issue unaligned write requests of chunk
size. The distribution of chunks over channels determines
where hot locations occur in the logical address space.
Issuing write requests not aligned with chunks can destroy
the regularity of hot locations.

• Rule 5 : Issue write requests such that the number of flash
pages modified are minimum. For instance, write requests
smaller than the flash page size will internally be padded
up to a page, and thus require at least a single flash page.
However, a small write request spanning two flash pages
will require modifying both the pages, causing greater
write amplification than necessary, and should be avoided.

It should be noted that these rules help with maximizing
the performance of the SSD alone. However, the require-
ments of the application also need to be considered for an
overall improvement in performance. For instance, it would
be incorrect to conclude that the database engine should
always issue an I/O of 64KB (stripe size) instead of say,
16KB. Doing so might entail more I/O time than necessary
and could degrade the overall performance.

3.2.2 The Benchmark Experiment
We run a benchmark experiment and record the I/O calls

issued by the database engine for subsequent analysis us-
ing the above rules. This experiment helps isolate the in-
sert/select operation throughput of the database engine as
a measure of its performance. The experiment starts with
an initial database containing 10 million key-value pairs in
a single table. The key and value sizes are 32-byte and 100-
byte respectively, and the initial size of the data is about
1.2GB. The experiment involves a single client running mul-
tiple iterations, with each iteration containing the following
two phases:

1. Insert 50,000 new key-value pairs into the database in a
random order.

2. Run 50,000 select queries generated randomly on the set
of keys present in the database.

The size of the database increases by about 6MB (50,000
× 132B) during an iteration. The same workload has been
run in all cases by using a fixed random seed. All the se-
lect operations are run in the same transaction, whereas the
number of insert operations per transaction varies (details
regarding this have been specified wherever applicable).

This experiment is similar to SQLite’s benchmarking of
its backend library [10]. However, informed by previous
work [43], we perform operations on a non-empty database
instead. Required measurements (like measuring insert/select
operation throughput, recording I/O calls using strace [12],
etc.) are made during the experiment.

3.2.3 Analyzing the I/O behavior of B+-Tree Indices
We study the I/O calls issued by SQLite3 and MariaDB to

their primary index database files, to find any sub-optimal
requests violating the rules (§3.2.1) on SSD-S. In both of
these systems, the primary index file is structured as a B+-
Tree [9,14], and is divided into database pages. Each database
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(a) Write requests of sizes
64KB and 128KB are made
aligned with a 64KB block
(rel. offset 0). These corre-
spond to updates to database
pages.

(b) Aligned read requests of
size 64KB to the database
pages are made. The re-
maining small requests are is-
sued by SQLite3 to access its
database header fields.

Figure 6: I/O profile of SQLite3 and MariaDB B+-
Tree index files during an iteration of the benchmark
experiment for a B+-Tree page size of 64KB. Pages
are laid out contiguously in the index file, resulting
in aligned requests that are multiples of 64KB. Both
the databases violate Rule 2, as read requests are
not issued to hot locations on SSD-S.

page corresponds to a node in the B+-tree (Fig. 9a), and
the leaf nodes contain data rows.

We investigate the I/O behavior of both the database
engines for a B+-Tree (database) page size of 64KB. This
matches the stripe size of most of our SSDs, which will
be useful for a more comprehensive discussion involving the
proposed rules. A single iteration of the benchmark exper-
iment (§3.2.2) has been run with each insert operation in a
separate transaction. Both database engines have been run
in their default journaling modes (i.e, rollback journaling for
SQLite3, and undo/redo logging in MariaDB w/InnoDB).

Fig. 6a shows the write requests made by both database
engines to their corresponding primary index files. We see
that all the write requests are issued at aligned offsets, and
are a multiple of the stripe size of SSD-S (64KB). Thus, none
of the rules have been violated while issuing write requests.

Fig. 6b shows the read requests issued to the B+-tree
index file by both the engines. The read requests of size
64KB at aligned offsets correspond to accessing pages from
the index file. These requests violate Rule 2, as they are not
issued to hot locations on SSD-S. The smaller read requests
of size 100B and 4B are issued by SQLite3 to its database
header. These requests are much smaller than a flash page
and will cause read amplification. MariaDB doesn’t issue
any small read requests to its B+-Tree database file.

3.2.4 Analyzing the I/O Behavior of Log Files
We consider the logging behavior of SQLite3 and Mari-

aDB on SSD-T. We have studied SQLite3 in its write-ahead
logging (WAL) mode6 [17], whereas we run MariaDB in its
default mode involving undo/redo logging.

Fig. 7a show SQLite3’s write requests to the WAL file.
The 64KB requests correspond to writing dirty database
pages to the log, and the smaller write requests of 24B
(which violate Rule 1) are for writing the log frame headers
(Fig. 11a). Both these requests are increasingly unaligned
with stripe boundaries, and violate Rule 3. All read requests
(Fig. 7b) are of size 64KB, and are increasingly offset into

6SQLite3 in the rollback journal mode issues a mix of small and
large writes to the log, similar to the WAL mode (see Fig. 7a).
However, we only study the WAL file as a representative example.

(a) Two types of write re-
quests are issued: 24B re-
quests for frame headers, and
64KB requests to write dirty
database pages to the log.

(b) Read requests of size
64KB are issued to dirty
database pages (size 64KB)
during checkpointing. Note
that requests are unaligned.

Figure 7: I/O profile of the SQLite3 WAL log file
in WAL mode during an iteration of the benchmark
experiment for a B+-tree page size of 64KB. The log
file is organized in frames, where a frame contains a
header (24B) and a dirty page (64KB). Rules 1 & 3
are violated by the write requests on SSD-T.

(a) Write requests to the system tablespace file are multiples of
64KB (stripe size for SSD-S) aligning with internal stripes, and
don’t violate any rules. The write requests to the redo log are
of size 512B (aligned with 512B boundaries), and violate Rules
1 & 3. The binary log on the other hand contains small write
requests of varying sizes, which violate Rules 1, 3, and 5.

Figure 8: Write profile of MariaDB/InnoDB logs.
The logs are contained in three files: (1) the System
Tablespace file contains the undo log, doublewrite
buffer, and the change buffer, (2) the Redo Log, and
(3) the Binary Log for database replication. Read
requests to these files follow a similar pattern.

the stripe boundary. These requests are not issued at a 1KB
boundary, and will cause read amplification inside the SSD.

Compared to SQLite3, MariaDB has multiple log files
to provide MVCC (undo logs), ensure crash recovery (redo
logs) , avoid broken pages (doublewrite buffer), and provide
log shipping to replicas (the binary log). These logs are con-
tained in different tablespace files described in Fig. 8, and
the I/O requests to these files are discussed below.
1. The System Tablespace (ibdata): Write requests of

size 64KB aligning with stripe boundaries are issued, and
none of the rules are violated7.

2. The Redo Log (ib logfile): Write requests of size 512B
are issued at offsets aligning with 512B boundary (thus
contained in a single flash page). Rules 1 & 3 are violated.

3. The Binary Log ({hostname}-bin): Small write re-
quests of varying sizes at varying offsets are issued to
this file. Rules 1, 3, and 5 are violated.

7Rule 2 would have been violated on SSD-S, but not on SSD-T
as its hot locations are at offset group 0. This file’s layout is
similar to the B+-Tree index file (Fig. 9a). However, we do not
recommend applying the technique use-hot-locations to this file
(see §4.1.3).

525



Page 1 Page 2 Page 3 Page 4 Page 5

0 64KB 128KB 192KB 256KB 320KB

Offset 64KB, 
Size 64KB Off. 192KB, Size 128KBRead 

Page 2

Write 
Pages 
4 & 5

(a) The original layout of the database file. Pages are laid out
contiguously, aligning with 64KB chunks. Read and write re-
quests are issued to addresses at offset group 0.

Page 1 Page 2 Page 3 Page 4 Page 5

0 32KB 96KB 160KB 224KB 288KB

Offset 96KB, 
Size 64KB 32KBRead 

Page 2
Write 
Pages 
4 & 5

352KB

32KB

fsync

Off. 256KB, 
Size 64KB

(b) The modified layout of the database file. All database pages
are offset by 32KB, such that read requests to pages are issued
to the 32KB offset group which are the hot locations for SSD-S.
Write requests continue to align with a 64KB boundary to retain
the internal chunk pattern (this is ensured by fsync, see §4.1.2).

Figure 9: use-hot-locations on SSD-S. In both
SQLite3 and MariaDB, the original layout of the B+-
Tree database file contains contiguous aligned pages
of size 64KB. Hot locations on SSD-S can be utilized
if the pages are offset by 32KB. Write requests to
pages need to be modified to satisfy Rule 3.

(a) The original layout of the InnoDB binary log file containing
entries of varying sizes. Each entry internally requires the SSD
to write a single flash page. However, entries spanning multiple
flash pages (shown in red), will cause greater write amplification,
as they will require modifying two flash pages instead.

(b) The modified layout of the InnoDB binary log file. Entries
spanning multiple flash pages are offset to align with the next
page boundary. This results in a small varying amount of un-
used space at the end of each flash page, but reduces the write
amplification caused by these entries to a single flash page.

Figure 10: contain-write-in-flash-page on SSD-T
(flash page size 4KB). The MariaDB/InnoDB binary
log file has been modified to eliminate log entries
spanning over multiple flash pages. This reduces the
write-amplification caused by the database engine.

3.3 Techniques to Optimize Performance
Having studied the I/O behavior of SQLite3 and Mari-

aDB, we now propose techniques to improve their perfor-
mance by eliminating sub-optimal I/O patterns. This is
achieved by examining the data-structures used and making
modifications to them to obtain the desired I/O behavior,
while also considering the database engine’s performance.
We propose the following techniques:

Wal Frame

24B
Page 100,

64KB
Page 23,

64KB
Page 1,
64KB

Page 55,
64KB

0 64KB + 56B 128KB + 80B 192KB + 104B

24B 24B 24B32B

Wal Header

32B

(a) The original layout of the WAL log file. The file has mul-
tiple frames, each with a frame header (24B) and a dirty page
(64KB). As the log frame is not a multiple of stripe size (64KB),
read/write requests become increasingly unaligned and violate
Rule 3 (Fig. 7).

Wal Frame

Page 
100,
64KB

24B
Page 
23,

64KB
24B

Page 
1,

64KB
24B

Page 
55,

64KB
24B

0 64KB 128KB 192KB0

32B

Separate File

(b) The modified layout of the WAL log file. The frame header is
a small amount of memory, and can be included in the database
page without reducing the capacity of the page by much. The
new frame size is 64KB, which is equal to the stripe size. The log
header of 32B is stored in a separate file to ensure that the log
frames align with stripe boundaries. Writing the file header also
causes write amplification, and is a one-time unavoidable cost.

Figure 11: write-aligned-stripes on SSD-T. The
SQLite3 WAL log file originally contains frames of
size 64KB+24B. We include the 24B frame header
in the page, to issue write requests of stripe size.

1. use-hot-locations on SSD-S: Fig. 9a shows the origi-
nal layout of the B+-Tree database file of both SQLite3
and MariaDB, where database pages align with internal
stripes of SSD-S. This violates Rule 2 (see Fig. 6b), as
read requests are issued at stripe boundaries instead of
the hot locations (32KB offset group on SSD-S). To place
the pages at hot locations, we offset them by 32KB in the
modified layout of the file (Fig. 9b). However, in order
to comply with Rule 3, write requests should continue to
align with stripe boundaries, as shown in Fig. 9b. This
technique is ineffective on the remaining SSDs as their
hot locations are at offset group 0 (Rule 2 isn’t violated).

2. write-aligned-stripes on SSD-T: The SQLite3 WAL
file (Fig. 11a) has a 32B header followed by multiple
frames, each of which has a 24B frame header and a 64KB
dirty page. These small header fields result in write am-
plification, as well as make the read/write requests to the
dirty pages increasingly unaligned, thus violating Rules 1
& 3 (Fig. 7). We propose including the frame header at
the end of the database page (Fig. 11b), and writing the
WAL header (of 32B) to a separate file. This eliminates
all violations of rules on SSD-T, as shown in Fig. 11b.
This technique will be effective on SSD-S and SSD-M as
well, as they have the same stripe size as SSD-T.

3. contain-write-in-flash-page on SSD-T: The MariaDB
redo log and binary log both violate Rules 1 & 3 (Fig. 8),
as the requests are small and unaligned. However, issu-
ing larger write requests would increase the latency of
commit operation, and degrade the DB engine’s perfor-
mance. Additionally, the binary log also violates Rule 5,
as shown in Fig. 10a. This violation can be eliminated
by modifying the layout of the binary file as in Fig. 10b,
where entries spanning multiple flash pages are offset to
align with the next page boundary. This technique will
also be effective on SSD-M, with a flash page size of 4KB.
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(a) Select and Insert operation throughput over the iterations
in a single run of the benchmark experiment with every insert
operation in a separate transaction. Total 100 iterations are ex-
ecuted with 50,000 select and insert operations issued in each
iteration. For select(insert) operations, we see that the perfor-
mance use-hot-locations is consistently higher(lower) compared
to the original. The average increase(decrease) in throughput is
30.4%(15.2%) over all the iterations. The loss in throughput of
insert operations is caused by the additional fsync (Fig. 9b).

(b) Select and Insert operation throughput over multiple runs
of the benchmark experiment with varying granularity of trans-
actions in the insert phase. The gain/loss in throughput during
each run has been indicated. For select operations, we obtain an
almost constant improvement, with a median increase of 29.2%.
For insert operations, as we increase the number of insert oper-
ations/transaction over the runs, the overhead of the additional
fsync call becomes amortized and is compensated by the benefit
of faster seek time. The loss in insert throughput falls under 2%
from 500 insert operations/transaction onwards.

Figure 12: The performance of SQLite3 with use-hot-locations on SSD-S. The B+-Tree index file is modified
such that pages are stored at hot locations (Fig. 9b). This leads to a reduction in latency while accessing
pages, and a median increase of 29.2% in select operation throughput as a result. The overhead of the
additional fsync (see Fig. 9b and §4.1.2) leads to a 15% decrease in throughput of insert operations, but is
compensated by faster seek time as we increase the number of insert operations per transaction.

4. EVALUATION
We evaluate the proposed techniques, namely use-hot-

locations (§4.1), write-aligned-stripes (§4.2), and contain-
write-in-flash-page (§4.3). While the former technique im-
proves the immediate performance of both the database en-
gines on SSD-S, the latter two eliminate write amplification
and increase the lifetime of SSD-T.

4.1 use-hot-locations on SSD-S
We apply the technique use-hot-locations (Fig. 9) to both

SQLite3 and MariaDB, and modify the layout of the B+-
Tree database file as shown in Fig. 9b. Improvement in per-
formance is measured as the increase in operation through-
put when running the benchmark experiment (§3.2.2) on
SSD-S. We first describe our experimental setup (§4.1.1),
followed by discussing the performance of SQLite3 (§4.1.2)
and MariaDB (§4.1.3) with the modified database file lay-
out, and finally summarize our observations (§4.1.4).

4.1.1 Experimental Setup
As before, SQLite3 and MariaDB have been configured

with a B+-Tree database page size of 64KB in their default
journaling modes (rollback journaling and undo/redo log-
ging respectively). The benchmark experiment (described in
§3.2.2) has been run for 100 iterations, and the throughput
of insert and select operations during each iteration has been
measured8. This experiment helps us isolate and quantify
the impact of use-hot-locations, without interference from
any other factors.

Theoretically, the benefit of use-hot-locations would be
the same as the reduction in latency of read requests, i.e.
39% on SSD-S (corresponds to a 64% increase in through-
put of select operations). However, applications seldom run
solely on disk, and we measure the benefit of this technique
in the presence of main memory. Thus, we configure the

8Throughput of insert/select operations in an iteration is mea-

sured as number of operations
time taken in seconds

= 50,000 operations
time taken in seconds

.

buffer pool size of SQLite3 and MariaDB to 128MB; this
size is heuristically chosen to be about 10% of the initial
database size before the start of the experiment (1.2GB).

Modifying the database file layout to use hot locations
on SSD-S required changing the I/O modules of SQLite3
(file os unix.c) and MariaDB (file innobase/os/os0file.cc),
to offset I/O requests to the B+-Tree index file by 32KB.
Additionally, in both the database engines, the module for
flushing dirty pages from the buffer pool to the database
file was modified to issue aligned write requests as shown
in Fig. 9b. Overall, we found that this technique could be
incorporated with about 200 lines of code in both of these
database libraries.

4.1.2 Performance of SQLite3
We run the benchmark experiment with each insert opera-

tion in a separate transaction on SQLite3 with (and without)
use-hot-locations on SSD-S. Figure 12a shows the through-
put of select and insert operations over multiple iterations
of the benchmark experiment. On an average, we see that
the throughput of select operations is 30.4% higher with
use-hot-locations compared to the original layout. As the
database pages coincide with hot locations in the modified
file layout, they can be accessed faster (by 39% on SSD-S)
thus reducing the latency of select operations.

On the other hand, the throughput of insert operations
is 15% lower than the original layout. The first step of an
insert operation is a seek on the B+-Tree (similar to se-
lect), which will be faster with use-hot-locations. However,
an additional fsync needs to be issued at the time of com-
mit (Fig. 9b), to ensure that write requests align with stripe
boundaries. This fsync9 acts like a write barrier which guar-
antees that adjacent write requests are not merged by the
OS; they would otherwise overwrite the stripe boundary and
violate Rule 3. Thus, the overhead of the fsync outweighs
the benefit of faster seek in this case.

9Only one additional fsync call is necessary. Non-adjacent write
requests are not merged by the OS and can be issued together.
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(a) Select and Insert operation throughput over the iterations in
a single run of the benchmark experiment with each insert oper-
ation in a separate transaction. Total 100 iterations are executed
with 50,000 select and insert operations issued in each iteration.
For select(insert) operations, we see that the performance use-
hot-locations is higher compared to the original. The average im-
provement in throughput is 26.6%(0.9%) over all the iterations.
There is no loss in insert operation throughput unlike SQLite3.

(b) We run the YCSB benchmark on MariaDB with 1 mil-
lion records. Each of the workloads(a-f) affect 100K records.
We report an average performance over five runs of the
benchmark, and the gain in performance for each workload
has been indicated in the plot. The highest gain of 22.3%
is obtained for workloadc (all reads), while the lowest is ob-
tained for workloada and workloadf (3% and 1.1% respec-
tively) as writers block readers.

Figure 13: The performance of MariaDB with use-hot-locations on SSD-S. We obtain an increase of 26.6%
and 0.9% in select and insert operation throughput respectively. Unlike SQLite3 (in rollback journaling),
where data is written directly to the B+-Tree index file on commit, MariaDB (InnoDB) asynchronously copies
updates to the database file using background threads, hiding the overhead of additional fsync (see §4.1.3).

To reduce the overhead of fsync, we measure the through-
put of insert (and select) operations by running the bench-
mark experiment five times (Fig. 12b) (100 iterations are
run each time) while varying the number of insert operations
running in a transaction from 1 to 50,000 (i.e, varying the
number transactions in the insert phase of an iteration from
50,000 to 1). Increasing the number of insert operations in
a transaction (i.e., batching insert operations) amortizes the
overhead fsync and improves the insert operation through-
put. We find that the loss in throughput becomes less than
2% when running 500 insert operations per transaction, and
ultimately, we obtain a 3% increase in throughput when
running all 50,000 insert operations in a single transaction.
Also, as expected, the performance of select operations does
not depend on the granularity of transactions in the insert
phase, and we obtain a median increase of 29.2% in the
throughput of select operations.

4.1.3 Performance of MariaDB
Once again, the benchmark experiment has been run with

each insert operation in a separate transaction on MariaDB
with (and without) use-hot-locations on SSD-S. Fig. 13a
shows the throughput of select and insert operations over
multiple iterations of the benchmark experiment. Similar to
SQLite3, we obtain an average 26.6% increase in throughput
of select operations.

However, unlike SQLite3, we do not incur any loss in in-
sert operation throughput. This is because MariaDB (Inn-
oDB) writes updates to the redo log at the time of commit,
and asynchronously copies the updates to the database file
using background threads. Thus, the overhead of the addi-
tional fsync is incurred in the background, and the observed
performance of the database engine remains unchanged.

To further evaluate the benefit of use-hot-locations on
MariaDB, we run the YCSB benchmark [18] with a million
database records (Fig. 13b). Each of the workloads(a-f) (re-
fer to Fig. 13b for the composition of these workloads) affect
100K records of the database. The highest gain obtained is
22.3% for workloadc (all reads), while the lowest is obtained
for workloada and workloadf (3% and 1.1% respectively) as
writers seemingly block readers in both these workloads.

The System Tablespace file (Fig. 8a) of MariaDB (Inn-
oDB) also has a layout similar to the primary index file
(Fig. 9a), and one might argue that we could apply use-hot-
locations to this file as well. However, the pages from this
file are seldom accessed (unless there is a transaction access-
ing the undo log), and using hot locations for this file would
not improve the performance by much.

4.1.4 Summary
In conclusion, while the select operation throughput in-

creases (by 29% and 27% for SQLite3 and MariaDB respec-
tively) with use-hot-locations, the throughput of insert op-
erations can vary depending upon how the database engine
handles updates. In the case of SQLite3, the overhead of
the additional fsync reduced the insert operation through-
put by 15%, as dirty pages were written to the database
file directly. However, MariaDB (InnoDB) commits any up-
dates to the redo log instead, and the observed performance
of insert operations is not affected by the fsync.

It should be noted that the reduction in insert operation
throughput of SQLite3 results from the additional fsync call,
for lack of a better way to ensure that write requests align
with stripe boundaries. This exemplifies the lack of synergy
between the database system and the underlying storage,
thus requiring workarounds to obtain the desired behavior.
With a better contract between the system and the storage
device, such an overhead could perhaps be avoided.

4.2 write-aligned-stripes on SSD-T
We apply the technique write-aligned-stripes (Fig. 11) to

SQLite3 and modify the layout of the WAL log file as shown
in Fig. 11b. As the log frames are modified to be of stripe
size (64KB for SSD-T), we eliminate the violation of Rule 3
while writing to this file.

4.2.1 Experimental Setup
Again, SQLite3 has been configured with a database page

size of 64KB in the write-ahead logging (WAL) mode. The
benchmark experiment (§3.2.2) has been run for 20 itera-
tions with a single insert operation per transaction. Auto-
checkpointing in SQLite3 has been turned off (by setting
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Table 2: write-aligned-stripes on SSD-T. While the observed performance remains the same, write amplifica-
tion has been eliminated entirely by modifying the layout of the WAL log file (Fig. 11b).

Property Original
Optimized

(write-aligned-stripes)
Difference

(Optimized vs Original)

Initial DB Size
19424 DB pages
(of size 64KB)

19448 DB pages
(of size 64KB)

increases by 0.12%

Final DB File Size (after 20 iterations)
21418 DB pages
(of size 64KB)

21436 DB pages
(of size 64KB)

increases by 0.08%

Avg. Insert Operation Throughput 288 Insert/s 290 Insert/s increases by 0.7%
Avg. WAL Checkpoint Time 0.087s 0.09s increases by 3.4%

Avg. WAL frames written per iteration 101133 101105 decreases by 0.03%
Write Amplification per iteration 50000 flash pages 0 decreases by 100%

wal autocheckpoint to zero [5]), and an explicit checkpoint
is performed at the end of every iteration.

Various measurements are made during every iteration,
and have been summarized in Table 2. Modifying the layout
of the WAL log file required making changes to the write-
ahead logging module of SQLite3 (file wal.c), along with
reserving space at the end of every database page using
SQLITE TESTCTRL RESERVE [8] operation. Overall, this
change could be incorporated with less than 100 lines of code
in a highly modular manner, without affecting any other
sub-modules of SQLite3.

4.2.2 Observed Performance
Table 2 shows the result of this experiment. We first

discuss the directly measurable performance metrics of the
database engine.
1. The Initial and Final DB file sizes: As 24B of space is

reserved at the end of a database page in the new layout
(Fig. 11b), its capacity is reduced by a small amount.
Thus, we see that the size of the database file is slightly
larger compared to the original format.

2. Average throughput of Insert Operations: We find
that the throughput with the modified WAL layout is
slightly higher (0.7%). This is to be expected as the size
of the log frame is smaller in the modified layout, lead-
ing to faster commit operations as lesser amount of data
needs to be written to the log.

3. Average WAL checkpoint time: At the end of every
iteration, we checkpoint the WAL log and measure the
time taken to complete this operation. We find that the
time taken for the checkpoint operation on an average is
quite low, and is approximately the same in both cases
(3.4% higher for the modified layout).

4. Average number of WAL frames written per itera-
tion : Again, we find that roughly same number of frames
are written to the log in both cases. However, the objec-
tive of recording this is to estimate the amount of flash
wear-out caused during the experiment.

Thus, we find that the observed performance in both cases
is about the same. However, the goal of write-aligned-stripes
is to eliminate write amplification, which we describe next.

4.2.3 Write Amplification and Estimated Wear-out
We measure write amplification as the number of partially

written flash pages. In the original layout of the WAL log
file, the 24B header causes a frame to spill over the 64KB
boundary. WAL frames are written to the log file contigu-
ously on a commit. Thus, the amount of overflow beyond
the 64KB boundary on a commit in the original layout is:

Figure 14: Measuring the benefit of write-aligned-
stripes in terms of reduction in wear-out. The total
flash wear-out caused during the experiment is esti-
mated for different flash page sizes. Decreasing the
wear-out corresponds to increasing the lifetime of
the SSD. Thus, the increase in lifetime ranges from
1.6% to 12.4%.

Overflow = 24B ×Number of frames written

In the experiment, a single insert operation has been run
per transaction, and the number of frames written on a com-
mit is low (two frames on average). Thus, the overflow is
< 100B, which can easily be contained in a single flash page
irrespective of its size (the size of a flash page ranges from
2KB to 16KB [6, 31, 45]). Therefore, we report the write
amplification in the original layout as 50,000 flash pages, as
a single additional flash page is written on a commit op-
eration. The modified layout of the WAL log file has no
overflow and no write amplification as a result.

Although the write amplification can be accurately mea-
sured in units of flash pages, the total wear-out caused de-
pends on the flash page size. We calculate the wear-out as:

Flash wear-out = Number of frames written× 64KB

+ write amplification× flash page size

Fig. 14 shows the total flash wear-out caused during the
experiment for possible flash page sizes. The difference in
wear-out between the original and modified layout depends
on the size of the flash page, and ranges from 1.6% to 12.4%.
By reducing the wear-out, one can increase the lifetime of
an SSD. Thus, the increase in the lifetime also ranges from
1.6% to 12.4%, depending on the flash page size.

This analysis holds true for any SSD, as the amount of
data written to disk during the experiment remains un-
changed. In particular, SSD-T has a flash page size of 4KB,
and its lifetime should improve by 3.1% through this tech-
nique. Thus, transparency regarding basic parameters such
as flash page size can help applications make informed deci-
sions, while benefiting the SSD as well.
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4.3 contain-write-in-flash-page on SSD-T
We apply the technique contain-write-in-flash-page (from

Fig. 10) to the MariaDB binary log file on SSD-T. We run
the benchmark experiment for 20 iterations, which results
in about one million write operations to the binary log file
(one write request for each insert operation’s commit) of
size 275B on an average. 6.7% of these write requests fall
on the flash page boundary violating Rule 5. Although the
actual size of the binary log is about 262MB, the total flash
wear-out caused is 1.067M×flash page size(4KB)= 4.1GB.
Thus, by offsetting these write requests to align with the
next flash page boundary, we reduce the write amplification
caused by the binary log by 6.7%10 (262MB). This technique
can be applied on any SSD, by making a conservative guess
(say 1KB) if the flash page size is not known.

5. RELATED WORK
There is a fair amount of existing work on adapting B-

Trees for flash-based SSD storage [19,35,38,40,44,48] based
on general recommendations described in §2.2. A large por-
tion of the work focuses on optimizing write operations to
the SSD. Small random write operations deteriorate the
performance obtained for reasons like write amplification,
low bandwidth utilization, and increased address translation
overhead. These can be overcome through buffering to issue
large write requests [19,35,38,48], and through logging [40].

In [44], authors attempt to improve select performance by
utilizing the internal parallelism of SSDs. This is achieved
by issuing multiple read requests corresponding to multiple
concurrent search operations on the B-Tree. In contrast,
using hot locations reduces the latency of a single request
through effective utilization of channel-level parallelism.

The internal operation of SSDs and its impact on applica-
tions has been extensively studied [20,24,25,31,37,42]. Mul-
tiple authors have studied factors like read and write ampli-
fication [33,47], the impact of address translation [20,29,31],
performance of sequential vs. random requests [20,24,25,37],
and proposed rules for applications based on them. These
recommendations are based on the general behavior of SSDs,
and have been summarized in §2.2.

The hierarchical structure of SSDs [20,25,34,37] and uti-
lizing the multiple levels of parallelism [20,34] to improve the
performance of the device have been of interest in the past.
Multiple authors have taken a white box approach [20, 26,
34,36,41] to propose how internal operations such as address
translation should be handled. These studies emphasize the
importance of channel-level parallelism [34], and have helped
us build an analytical model of SSDs to reason about the
performance obtained in different scenarios.

However, in the real world, commercial SSDs are a black
boxes and we have attempted to learn their characteristics
and parameters through measurements. Our experiment
for obtaining the request size profile (§3.1.1) is informed by
previous work which describes the utilization of RAID-like
striping schemes [20, 27] to distribute data at multiple lev-
els of the storage hierarchy, whereas obtaining the location
profile (§3.1.2) has been adapted from [25].

A similar approach of treating SSDs as a black box, and
inferring the internal parameters through measurement has
been taken in [25,37]. Chen et al. [25] propose experiments
to identify the chunk size and number of channels in an SSD.

10The benefit of this technique will vary, as the size of write re-
quests to the binary log depends on the workload.

However, their main focus is to show the benefit of issuing
concurrent requests to an SSD, and their recommendations
make limited to no use of these parameters. Unlike [25],
Jaehong et al. [37] attempt to find the the clustered page
and block size through various measurements, as well as use
these parameters to tune the Linux I/O scheduler. Their ob-
jective is similar to our work, i.e., making SSD-specific opti-
mizations informed by internal parameters. However, there
are two differences between our work and [37]. First, the pa-
rameters considered in our work are different from [37]. Sec-
ond, our recommendations for SSD-specific optimizations
are at the application-level ; for instance, techniques like
write-aligned-stripes cannot be directly implemented in the
OS, and decisions such as applying use-hot-locations to the
primary index file alone, and not to the System Tablespace
file can only be made by the application.

In recent years, open-channel SSDs [22] have been devel-
oped, which do not have an FTL and instead give the user
full control over available resources. However, a vast major-
ity of SSDs used are manufactured by commercial vendors,
who do not reveal their internal policies. With the advent
of persistent memory technologies such as 3D XPoint mem-
ory [30], one can expect hybrid devices to be developed,
possibly requiring newer techniques to learn their parame-
ters as the complexity if these devices increases.

6. CONCLUSIONS AND FUTURE WORK
In conclusion, we have shown that optimizing a database

engine for a particular SSD can be beneficial. Our contri-
butions are threefold; learning hidden parameters of SSDs
(§3.1), proposing rules specific to a device (§3.2), and op-
timizing database engines for the device using these rules
(§3.3). We have studied SQLite3 and MariaDB as part
of our work, and we propose three techniques to optimize
these database engines, namely use-hot-locations (Fig. 9),
write-aligned-stripes (Fig. 11), and contain-write-in-flash-
page (Fig. 10). These techniques increased the throughput
of select operations by 27-29% on SSD-S, and reduced the
wear-out caused to SSD-T by 3.1% and 6.7% respectively.

As future work, it is possible to implement the proposed
rules and techniques in an independent pluggable layer for
applications to use. We envision this layer to be highly con-
figurable, as often applications have the broader view of their
performance goals and some corrections (eg. write-aligned-
stripes) can be best made by them. Overall, SSDs are com-
plex devices with a range of characteristics. We would like to
reiterate that there is no silver bullet to learn all the internal
parameters of every SSD. However, we believe that such an
attempt is worthwhile, and we have found that besides ben-
efiting the database engine they can improve the expected
performance and the lifetime of the SSD as well. The param-
eters learned and the recommendations outlined in this pa-
per are by no means complete, and the most reliable source
of this information are vendors themselves. Thus, we would
like to end with a recommendation for SSD manufacturers
to be more transparent regarding basic parameters such as
the flash page size and the stripe size.
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