
Planting Trees for scalable and efficient
Canonical Hub Labeling

Kartik Lakhotia†, Rajgopal Kannan‡, Qing Dong†, Viktor Prasanna†
†Ming Hsieh Department of Electrical Engineering, University of Southern California

‡U.S Army Research Lab, Los Angeles, CA 90094
†{klakhoti, dongqing, prasanna}@usc.edu; ‡rajgopal.kannan.civ@mail.mil

ABSTRACT
Hub labeling is widely used to improve the latency and
throughput of Point-to-Point Shortest Distance (PPSD) qu-
eries in graph databases. However, constructing hub label-
ing, even via the state-of-the-art Pruned Landmark Labeling
(PLL) algorithm is computationally intensive. PLL further
has a sequential root order label dependency that makes it
challenging to parallelize. Hence, the existing parallel ap-
proaches are often plagued by label size increase, poor scal-
ability and inability to process large weighted graphs.

In this paper, we develop novel algorithms that construct
the minimal (guaranteed) Canonical Hub Labeling on shared
and distributed-memory parallel systems in a scalable and
efficient manner. Our key contribution, the PLaNT algo-
rithm, provides an embarrassingly parallel approach for la-
bel construction that scales well beyond the limits of current
practice. Our approach is the first to employ a collaborative
label partitioning scheme across multiple nodes of a cluster,
for completely in-memory labeling and parallel querying on
massive graphs whose labels cannot fit on a single node.

On a single node with 72-threads, our shared-memory al-
gorithm is up to 47.4× faster than sequential PLL. While our
labeling time is comparable to the state-of-the-art shared-
memory paraPLL, our label size is 17% smaller on average.

PLaNT demonstrates superior parallel scalability. It can
process significantly larger graphs and construct labeling or-
ders of magnitude faster than the state-of-the-art distributed
paraPLL. Compared to the best shared-memory parallel al-
gorithm, it achieves up to 9.5× speedup on a 64 node cluster.

PVLDB Reference Format:
Kartik Lakhotia, Rajgopal Kannnan, Qing Dong, Viktor Prasan-
na. Planting Trees for scalable and efficient Canonical Hub La-
beling. PVLDB, 13(4): 492-505, 2019.
DOI: https://doi.org/10.14778/3372716.3372722

1. INTRODUCTION
Point-to-Point Shortest Distance (PPSD) computations

are one of the most important primitives encountered in
graph databases. PPSD computations on large weighted

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 4
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3372716.3372722

graphs forms an important part of many applications such
as phylogenetics [46, 35, 33], analysis of protein interaction
networks [53, 49] in bioinformatics, context-aware search on
knowledge graphs [47, 54], route navigation on roads [55], so-
cial network analysis [31, 43] etc. These applications gener-
ate a large number of PPSD queries and fast online query re-
sponse is crucial to their performance. While graph traversal
can be used to answer PPSD queries,, even state-of-the-art
traversal methods [32, 14, 48, 44, 21, 56, 25] take hundreds
of milliseconds to answer a single query on large graphs. On
the other hand, pre-computing all pairs shortest paths en-
ables constant time query response, but is impractical due
to quadratic storage and time complexity.

Hub labeling offers a practical solution to this problem.
By pre-computing for each vertex, the distance to a ‘small’
subset of vertices known as hubs, hub labeling enables fast
response to PPSD queries, without incurring quadratic time
and storage costs. The set of (hub, distance)-tuples for a
vertex v are known as the hub labels of v. There are several
labeling approaches that differ in terms of the number of
hops (two [17, 4] or more [7]), completeness of labels (par-
tial [26] vs complete cover [17, 4]), target graphs (complex
[26, 10] vs road [7] networks) etc. Among these, 2-hop Hier-
archical Hub Labeling (HHL) [17, 4] is a particularly com-
prehensive complete cover approach that uses a given vertex
ranking R (also called network hierarchy) to define the use-
fulness of labels It only allows the appearance of the highest
ranked vertex as a hub on any shortest path, thus enabling
(1) reasonable labeling size for graphs with varied topology,
dimensionality and edge weights; and (2) query response in
microseconds on large graphs.

Pruned Landmark Labeling (PLL) [8] is arguably the most
efficient sequential algorithm for constructing HHL. PLL it-
eratively selects vertices in rank order and constructs Short-
est Path Trees (SPTs) rooted at the selected vertices. The
root along with the distance is added as a new hub label
for each vertex explored in an SPT. Significantly, PLL ex-
ploits the existing labels from previous SPTs to prune those
paths in the current (under-construction) SPT, that are al-
ready covered by other hubs. This pruning forms the basis
of PLL’s efficiency and results in the minimal labeling (for
a given R), also known as Canonical Hub Labeling (CHL)
[4] (see section 2 for details). However, it also introduces
a sequential root order label dependency between the SPTs,
wherein pruning in an SPT depends on the knowledge of
previously generated labels with higher-ranked hubs.

Despite aggressive pruning, PLL is computationally very
demanding. We attempted labeling several real-world graphs
using PLL and its parallel variants [45, 22], and observed
that large weighted graphs such as Pokec (1.5M nodes, 30M

492

edges) and LiveJournal (4.8M nodes, 69M edges) can take
several hours to days to process1. We also note that the size
of CHL for weighted graphs can be significantly larger than
the graph itself, stressing the available main memory on a
single machine2. While disk-based labeling can extend sys-
tem capabilities beyond DRAM, disk access and resulting
algorithms [34, 26] are substantially slower than PLL.

These examples illustrate the fundamental challenges in
scaling CHL construction to large weighted graphs - high
computational requirements and memory space demand (due
to large label sizes). This motivates the use of massively par-
allel systems for hub labeling, such as distributed-memory
multi-node clusters that offer large amounts of extendable
computational resources and main memory capacity. How-
ever, parallelizing CHL construction on such systems comes
with its own set of challenges. Most existing parallel ap-
proaches [45, 24] concurrently construct multiple SPTs in
PLL using parallel threads on a single multicore server. Such
simple parallelization breaks the root order label depen-
dency of PLL, violating the network hierarchy and resulting
in larger label sizes. Many mission critical applications re-
quire the CHL for a specific network hierarchy and larger
label sizes will directly impact query performance. Paral-
lelizing label construction on a cluster of nodes exacerbates
these problems, as the labels generated on a node are not
immediately visible to other nodes for pruning. To the best
of our knowledge, none of the existing parallel labeling ap-
proaches efficiently utilize the available main memory and
parallelism in a cluster.

Motivated by these drawbacks in existing approaches to
hub labeling, in this paper, we design novel parallel algo-
rithms that address the multiple challenging facets of the
parallel CHL construction problem. Two key perspectives
drive the development of our algorithmic innovations and
optimizations. First, we approach simultaneous construc-
tion of multiple SPTs in PLL as an optimistic paralleliza-
tion that can result in mistakes. We develop PLL-inspired
shared-memory parallel Global Local Labeling (GLL) and
Distributed-memory Global Local Labeling (DGLL) algo-
rithms that

1. only make mistakes from which they can recover, and

2. efficiently correct those mistakes.

Second, we note that mistake correction in DGLL gener-
ates huge amount of label traffic, thus limiting its parallel
scalability. Therefore, we shift our focus from paralleliz-
ing PLL to the primary problem of parallel CHL construc-
tion. Drawing insights from the fundamental concepts be-
hind CHL, we develop an embarrassingly parallel and com-
munication avoiding algorithm called PLaNT (Prune La-
bels and (do) Not (Prune) Trees). Unlike PLL which prunes
SPTs but inserts labels for all explored vertices, PLaNT does
not prune SPTs but inserts labels selectively. PLaNT en-
sures correctness and minimality of output hub labels (for a
given R) generated from an SPT without consulting previ-
ously discovered labels, as shown in fig. 1. This allows label-
ing to be partitioned across multiple nodes without increase

1While CHL construction is a one-off task for static
graphs, several real-world applications encounter dynamic
graphs [16, 15, 13, 50] that require periodic relabeling [9],
entailing fast CHL construction.
2For example, it requires < 1GB to store the LiveJournal
graph but > 100GB to store its hub labels.

Table 1: Frequently used notations

G(V,E,W) a weighted undirected graph with vertex set V and edges E
n,m number of vertices and edges; n = |V |,m = |E|
Nv neighboring vertices of v
wu,v weight of edge e = (u, v) ∈ E
SPu,v (vertices in) shortest path(s) between u, v (inclusive)
SPTv shortest path tree rooted at vertex v
d(u, v) shortest path distance between vertices u and v

(h, d(v, h)) a hub label for vertex v with h as the hub
Lv set of hub labels for vertex v
q number of nodes in the cluster

in communication traffic and enables us to simultaneously
scale effective parallelism and memory capacity using a clus-
ter of nodes. By seamlessly transitioning between PLaNT
and DGLL, we achieve both computational efficiency and
high scalability.

Overall, our contributions can be summarized as follows:

• We develop the first shared and distributed-memory par-
allel algorithms that output the minimal hub labeling
(CHL) for a given weighted graph and network hierarchy.

• We develop PLaNT - a new embarrassingly parallel al-
gorithm for distributed-memory CHL construction, that
eschews all label order dependencies to completely avoid
inter-node communication and achieve high scalability (at
the cost of some extra computation). We then extend it
to a Hybrid algorithm that combines the scalability of
PLaNT with the efficiency of label-based pruning. The
Hybrid algorithm can label the aforementioned Pokec and
LiveJournal graphs in just 13 and 37 minutes, respectively.

• Our distributed approach is the first to use the memory of
multiple cluster nodes in a collaborative fashion to enable
completely in-memory processing of large graphs whose
labels do not fit on the main memory of a single node.
For instance, we can process the Livejournal graph with
> 100 GB labeling size on a cluster with only 64 GB
DRAM per node, in contrast to existing main memory
based approaches.

• We develop different schemes for label data distribution in
a cluster to increase query throughput by utilizing parallel
processing power of multiple nodes. None of the exist-
ing works apportion labels and parallelize query response
computation on multiple nodes.

We use 12 real-world datasets to evaluate our algorithms.
On a 64 node cluster, our distributed-memory approach
achieves 42× self-relative speedup. It exhibits up to 9.5×
speedup over the state-of-the-art shared-memory algorithm
and orders of magnitude improvement over the state-of-the-
art distributed-memory algorithm.

2. BACKGROUND
Table 1 lists some frequently used notations in this pa-

per. For clarity of description, we consider G(V,E,W) to
be weighted and undirected. However, the techniques de-
scribed here can be easily extended to directed graphs by
using forward and backward labels for each vertex [4].

2-hop Hub Labeling [17]: A 2-hop hub labeling di-
rectly connects each vertex to its respective hubs such that
the shortest distance between vertices u and v can be com-
puted by hopping from u to a common hub h and from h to
v. Such a labeling can correctly answer any PPSD query if it
satisfies the following cover property: Every connected pair

493

𝑅(𝑣1) >𝑅(𝑣2) > 𝑅(𝑣3) >𝑅(𝑣4) >𝑅(𝑣5)

𝑣1

𝑣2

𝑣3𝑣5

𝑣4

5 3

10

2

4

14

ℎ 𝑑

𝑣1 0

ℎ 𝑑

𝑣1 3

ℎ 𝑑

𝑣1 11

ℎ 𝑑

𝑣1 9

ℎ 𝑑

𝑣1 5

𝑑1 = ∞
𝑎 = 𝑣1

𝑑4 = ∞
𝑎 = 𝑣4

𝑑5 = ∞
𝑎 = 𝑣5

𝑑3 = ∞
𝑎 = 𝑣3

𝑑2 = 0
𝑎 = 𝑣2

(a) Graph G with labels
from SPTv1(blue tables),
rank R and initial distan-

ces(di) & ancestors(a)

𝑣1

𝑣2

𝑣3𝑣5

𝑣4

5 3

10

2

4
14

𝑑1 = 3

𝑑2 = 0

𝑑3 = 10𝑑5 = 14

𝑑4 = ∞

pop 𝑣2
common hub = 𝑣1

dist. via hub = 6 > 𝑑2
Ins. Label (𝑣2, 0) in 𝐿2

Relax edges

𝑣1

𝑣2

𝑣3𝑣5

𝑣4

5 3

10

2

4
14

𝑑1 = 3

𝑑2 = 0

𝑑3 =10𝑑5 = 14

𝑑4 = ∞

pop 𝑣1
common hub = 𝑣1

dist. via hub = 3 ≤ 𝑑1
Prune

𝑣1

𝑣2

𝑣3𝑣5

𝑣4

5 3

10

2

4
14

𝑑1 = 3

𝑑2 = 0

𝑑3 =10𝑑5 = 12

𝑑4 = ∞

pop 𝑣3
common hub = 𝑣1

dist. via hub = 14 > 𝑑3
Ins. Label (𝑣2, 10) in 𝐿3

Relax edges

𝑣1

𝑣2

𝑣3𝑣5

𝑣4

5 3

10

2

4
14

𝑑1 = 3

𝑑2 = 0

𝑑3 =10𝑑5 = 12

𝑑4 = ∞

pop 𝑣5
common hub = 𝑣1

dist. via hub = 12 ≤ 𝑑5
Prune
Finish

(b) SPTv2 Construction and Label Generation for G in PLL (after SPTv1)

𝑣1

𝑣2

𝑣3𝑣5

𝑣4

5 3

10

2

4
14

𝑑1 = 3
𝑎 = 𝑣1

𝑑2 = 0
𝑎 = 𝑣2

𝑑3 = 10
𝑎 = 𝑣2

𝑑5 = 14
𝑎 = 𝑣2

𝑑4 = ∞
𝑎 = 𝑣4

pop 𝑣2
ancestor 𝑎 = 𝑣2
𝑅 𝑎 ≤ 𝑅(𝑣2)

Ins. Label (𝑣2, 0) in 𝐿2
Relax Edges

𝑣1

𝑣2

𝑣3𝑣5

𝑣4

5 3

10

2

4
14

𝑑1 = 3
𝑎 = 𝑣1

𝑑2 = 0
𝑎 = 𝑣2

𝑑3 = 10
𝑎 = 𝑣2

𝑑5 = 14
𝑎 = 𝑣2

𝑑4 = 8
𝑎 = 𝑣1

pop 𝑣1
ancestor 𝑎 = 𝑣1
𝑅 𝑎 > 𝑅(𝑣2)

Relax Edges

𝑣1

𝑣2

𝑣3𝑣5

𝑣4

5 3

10

2

4
14

𝑑1 = 3
𝑎 = 𝑣1

𝑑2 = 0
𝑎 = 𝑣2

𝑑3 = 10
𝑎 = 𝑣2

𝑑5 = 12
𝑎 = 𝑣1

𝑑4 = 8
𝑎 = 𝑣1

pop 𝑣4
ancestor 𝑎 = 𝑣1
𝑅 𝑎 > 𝑅(𝑣2)

Relax Edges

𝑣1

𝑣2

𝑣3𝑣5

𝑣4

5 3

10

2

4
14

𝑑1 = 3
𝑎 = 𝑣1

𝑑2 = 0
𝑎 = 𝑣2

𝑑3 = 10
𝑎 = 𝑣2

𝑑5 = 12
𝑎 = 𝑣1

𝑑4 = 8
𝑎 = 𝑣1

pop 𝑣3
ancestor 𝑎 = 𝑣2
𝑅 𝑎 ≤ 𝑅(𝑣2)

Ins. Label (𝑣2, 10) in 𝐿3
Relax Edges

𝑣1

𝑣2

𝑣3𝑣5

𝑣4

5 3

10

2

4
14

𝑑1 = 3
𝑎 = 𝑣1

𝑑2 = 0
𝑎 = 𝑣2

𝑑3 = 10
𝑎 = 𝑣2

𝑑5 = 12
𝑎 = 𝑣1

𝑑4 = 8
𝑎 = 𝑣1

pop 𝑣5
ancestor 𝑎 = 𝑣1
𝑅 𝑎 > 𝑅(𝑣2)

Relax Edges
Finish

(c) SPTv2 Construction and Label Generation for G in PLaNT (after SPTv1)

Figure 1: Steps of PLL Dijkstra and PLanT Dijkstra for constructing SPTv2 , along with the corresponding actions taken
at each step (Red = label pruned; Green = label generated). For any vertex vi visited, PLL confirms if SPv2,vi is already covered
by a higher ranked hub (v1 in this case), by performing a set intersection on the previously generated labels(shown in fig1a) of v2

and vi. Contrarily, PLaNT only uses information intrinsic to SPTv2 by tracking the most important vertex (ancestor a) in the shortest
path(s) SPv2,vi . PLaNT generates the same (non-redundant) labels as PLL, albeit at the cost of additional exploration in SPTv2 .

of vertices u, v is covered by a hub vertex h from their short-
est path i.e. there exists an h ∈ SPu,v such that (h, d(u, h))
and (h, d(v, h)) are in the label sets of u and v, respectively.

Canonical Hub Labeling [4]: Querying on a 2-hop la-
beling requires intersecting the labels of source and destina-
tion vertices. Clearly, the query response time is dependent
on the average label size. However, finding the optimum
labeling (with minimum label size) is NP-hard [17]. Let
RV→N denote a total order on all vertices i.e. a ranking func-
tion, also known as network hierarchy. Rather than find the
optimum labeling, Abraham et al.[4] conceptualize CHL in
which only the highest-ranked hub on SPu,v is added to the
labels of u and v. The CHL satisfies the cover property. Im-
portantly, the CHL is minimal for a given R since removing
any label from it results in a violation of the cover property.
Intuitively, a good ranking function R will prioritize highly
central vertices. Such vertices are good candidates for being
hubs - a large number of shortest paths in the graph can
be covered with a few labels. Therefore, a labeling which is
minimal for a good R will be quite efficient overall.

Pruned Landmark Labeling (PLL) [8]: Distance be-
tween a hub h and other vertices in the graph can be found
by constructing an SPT rooted at h. However, within SPTh,
further exploration from a vertex v is futile if SPh,v is cov-
ered by a higher-ranked hub. This motivates the PLL al-
gorithm which constructs SPTs in decreasing rank order of
root vertices, pruning them on-the-fly by querying on pre-
viously discovered labels. Fig.1 gives an example of SPT
construction and pruning in PLL with v2 as root. For ev-
ery visited vertex v, we determine if there exists a higher-

ranked hub h (v1 in this case) in both Lv2 and Lv such
that d(h, v2) + d(h, v) ≤ dv, where dv is the distance to v
in SPTv2 . In fig.1b, this condition holds for v1 and v5, be-
cause of which their adjacent edges are not explored and v4
is never visited. We denote this as distance query pruning.
Thus, pruning not only restricts label size, but also limits
graph traversal resulting in an efficient labeling algorithm.

3. RELATED WORK
Hub labeling for shortest distance computation has been

heavily studied in the last decade. Since its inception (cred-
ited to Cohen et al.[17]), several labelings and correspond-
ing algorithms have been developed [17, 4, 5, 8, 10, 7, 26,
34, 3, 38]. In particular, CHL [4] is a popular labeling in
which the labels cover all shortest paths in a graph (com-
plete cover), typically allowing query responses within mi-
croseconds. With the use of network hierarchies based on
betweenness [3, 4, 12] and degree [8, 34], the applicabil-
ity of CHL has been extended to road networks as well as
complex graphs such as social networks. Delling et al.[18]
propose an optimized greedy hub labeling algorithm which
produces smaller labels than CHL, but is limited to small
graphs due to high complexity of the algorithm.

Abraham et al. develop a series of CHL construction algo-
rithms primarily intended for road networks [3, 5, 2, 4, 19].
Their algorithms are based on the notion of Contraction
Hierarchies built by shortcutting vertices in rank order. A
vertex’s hub labels are generated by merging the label sets of
neighbors [4] (or from reachable vertices in a CH search [5])
in the augmented graph. However, Akiba et al. show that

494

this approach can be prohibitively expensive due to the cost
of building (and searching) augmented graphs and merging
neighbors’ labels therein [8, 39]. They propose the state-of-
the-art sequential algorithm PLL [8], that pushes a vertex
as a hub into the labels of vertices reachable in a pruned
search. Yet, even with PLL, labeling large weighted graphs
using a single thread is often infeasible due to the high exe-
cution time [22, 45]. Moreover, the label size of a complete
cover such as CHL, can be much larger than the graph size.

To enable better scalability in terms of graph size, several
partial labeling approaches have been developed [10, 26].
IS-label [26] is a well-known labeling technique that builds
an increasing hierarchy of independent sets and augmented
graphs obtained by removing those sets. Hub labels are con-
structed in top-down order of the hierarchy (of augmented
graphs). The total label size can be controlled by stopping
the hierarchy at any desired level. PPSD computation re-
quires querying on these labels along with traversal on the
highest augmented graph in the hierarchy. Similarly, [10]
also generates labels only from the dense core structure of
a graph, to assist graph exploration. Querying on partial
labels requires additional graph traversal and hence, their
response time can be orders of magnitude larger than a com-
plete labeling [34, 39]. Moreover, IS-label does not guarantee
small label sizes and is not applicable to road networks [39].
As shown in [34], IS-label execution time can be higher than
PLL or the disk-based 2-hop doubling algorithm of [34].

Parallel Hub Labeling: Parallelization offers great av-
enues to scale the performance and input size of an appli-
cation. It is the backbone of big graph analytics in the
modern era [41, 28, 48, 44, 56, 29]. Specifically, distributed-
memory parallelism allows modular expansion of the DRAM
capacity and the computing resources in a system, by sim-
ply adding more nodes in the cluster. Even though several
parallel hub labeling approaches have been proposed [24, 45,
22, 38], these are only suitable for multi-threaded execution
on a single server. This is because all of these methods re-
quire (complete) prior label information for pruning. Inter-
node communication and synchronization needed for label
exchange can quickly bottleneck their performance, render-
ing a large cluster slower than even a single node [42, 40].

Many of the existing techniques [24, 22, 45] parallelize
PLL [8] using multiple threads on a single machine. Feri-
zovic et al.[24] construct a task queue of all vertices. Every
thread then atomically pops the highest ranked vertex v still
in the queue and constructs a pruned BFS tree rooted at v.
Dong et al.[22] propose a hybrid scheme for weighted graphs,
utilizing parallel Bellman ford for the large SPTs, and con-
current dijkstra instances for small SPTs in the later half of
the execution. While this approach ensures close to minimal
label size, its parallel performance is dependent on graph
topology, and could be even worse than sequential PLL due
to high complexity of Bellman Ford. In a very recent work,
Li et al.[38] remark on the sequential dependencies of PLL
and its unsuitability for parallelization. They propose the
highly scalable Parallel Shortest distance Labeling (PSL) al-
gorithm which replaces the root order label dependency of
PLL with a distance label dependency. In a given round
i, PSL generates all hub labels with distance i in parallel,
pruning redundant labels using labels from previous rounds.
PSL is very efficient on unweighted small-world networks
which exhibit small diameter and hence, require less num-
ber of rounds. Contrarily, we target a generalized problem

of labeling weighted graphs with arbitrary diameters, where
these approaches are either not applicable or not effective.

paraPLL: Qiu et al.[45] propose the paraPLL framework
that uses Dijkstra’s algorithm to process weighted graphs.
Similar to [24], threads in paraPLL select the highest-ranked
unselected vertex and construct a pruned SPT rooted at
that vertex. While this approach benefits from the dynamic
rank order task scheduling, it may not respect R as paral-
lel Dijkstra instances can finish at varying times, allowing
low-ranked SPTs to generate labels that prune high-ranked
SPTs. The label size can also be significantly larger than
CHL if the number of threads is large.

paraPLL also provides a distributed-memory implementa-
tion (DparaPLL) that statically divides the tasks (root IDs)
to multiple nodes in a circular manner. Each node then runs
the multi-threaded version on the assigned vertices, periodi-
cally synchronizing with other nodes to exchange generated
labels for future pruning. DparaPLL generates large amount
of label traffic and requires storing all hub labels on every
node. Hence, it does not scale well and its capability is lim-
ited by the memory of a single node instead of the cluster.
Further, DparaPLL generates substantial amount of redun-
dant labels due to (1) massive parallelism in clusters, and
(2) absence of labels generated on other nodes (required for
pruning), in-between the synchronization points.

[8, 38] propose label size reduction methods, some of which
are specific to unweighted graphs, such as bit-parallel label-
ing. This study focuses on scalable parallel labeling algo-
rithms which is a complementary approach and thus, only a
friend and not a foe. Our ideas will not impact the efficacy
of such techniques when used in conjunction with them.3

Fundamental Differences with existing work: Unl-
ike PLL (and variants) [8, 45, 24, 22] and PSL that exhibit
root order and distance label dependency, respectively, our
main algorithm PLaNT eliminates all dependencies while
guaranteeing the minimal CHL as the output. Thus, it is
embarrassingly parallel and applicable to a variety of graphs:
weighted or unweighted, complex or road networks. PLaNT
achieves this by avoiding label based pruning, albeit with
extra exploration overhead. This makes PLaNT a good fit
for massively parallel distributed systems, where most labels
are not locally accessible to the compute nodes.

4. SHARED-MEMORY LABELING
4.1 Label Construction and Cleaning

In this section, we discuss LCC - a two-step Label Con-
struction and Cleaning (LCC) algorithm that generates the
CHL for a given graph G(V,E,W) and ranking R. LCC
utilizes shared-memory parallelism and forms the basis for
the other algorithms discussed in this paper.

We first define some labeling properties. Recall that a
labeling can correctly answer any PPSD query if it satisfies
the cover property.

Definition 1. A hub label (h, d(v, h)) ∈ Lv is said to be
redundant if it can be removed from Lv without violating the
cover property (section 2).

3For example, the Local Minimum Set Elimination (LMSE)
technique [38] can be incorporated in our algorithms by sim-
ply not inserting labels for locally minimal ranked vertices.
Our rank query optimization (section 4) ensures that labels
for such vertices are never used for pruning. However, LMSE
inherently increases final query response time.

495

Definition 2. A labeling L satisfies the minimality prop-
erty if it has no redundant labels.

Let R be any network hierarchy. For any pair of connected
vertices u and v, let hm = arg maxw∈SPu,v{R(w)}.

Definition 3. A labeling respects R if (hm, d(u, hm)) ∈
Lu and (hm, d(v, hm)) ∈ Lv, for all connected vertices u, v.

Lemma 1. A hub label (h, d(v, h)) ∈ Lv in a labeling that
respects R is redundant if h is not the highest ranked vertex
in SPv,h.

Proof. WLOG, let w = arg maxu∈SPv,h{R(u)}. By as-

sumption, w 6= h. By definition, w ∈ SPv,v′ , ∀v′ ∈ Svh,
where Svh = {v′|h ∈ SPv′,v }. Since the labeling respects
R, for any v′, we must have (w′, d(v, w)) ∈ Lv and also
(w′, d(v′, w)) ∈ Lv′ , where w′ = arg maxu∈SPv,v′ {R(u)}.
Clearly, R(w′) ≥ R(w) > R(h) which implies that w′ 6= h.
Thus, for every v′ ∈ Svh, there exists a hub w′ 6= h that
covers v and v′ and (h, d(v, h)) can be removed without af-
fecting the cover property.

Lemma 2. Given a ranking R and a labeling that respects
R, a redundant label (h, d(v, h)) ∈ Lv can be detected by a
PPSD query between the vertex v and the hub h.

Proof. Let w′ = arg maxu∈SPv,h{R(u)}. By Lemma 1,

w′ 6= h. Further, since the labeling respects R, w′ must
be a hub for v and h. Thus a PPSD query between v and
h (with hub rank priority) will return hub w′ and distance
d(v, w′)+d(h,w′) ≤ d(v, h), allowing us to detect redundant
label (h, d(v, h)) in Lv.

Lemmas 1 and 2 show that redundant labels (if any) in a
labeling can be detected if it respects R. Next, we describe
our parallel LCC algorithm and show how it outputs the
CHL. Note that the CHL [4] respects R and is minimal.

The main insight underlying LCC is that simultaneous
construction of multiple SPTs can be viewed as an opti-
mistic parallelization of sequential PLL - that allows some
‘mistakes’ (generate redundant labels not in CHL) in the
hub labeling. However, only those mistakes shall be allowed
that can be corrected to obtain the CHL. LCC addresses
two major parallelization challenges:

• Label Construction → Construct in parallel, a labeling
that respects R.

• Label Cleaning→ Remove all redundant labels in parallel.

Label Construction: In addition to the distance query
pruning, LCC also incorporates a crucial element – Rank
Query pruning (algorithm 1–Line 5). Specifically, during
construction of SPTh, if a higher ranked vertex v is visited,
we 1) prune SPTh at v and 2) do not insert h as a hub
into Lv even if the corresponding distance query is unable
to prune. Since LCC constructs multiple SPTs in parallel,
it is possible that the SPT of a higher ranked vertex which
should be a hub for h (for example v above) is still under
construction and thus the hub list of h is incomplete. Step
(2) above guarantees that for any pair of connected vertices
(h, v) with R(v) > R(h), either v is labeled a hub of h or
they both share a higher ranked hub. This fact will be cru-
cial in proving the minimal covering property of LCC after
its label cleaning phase. Note that h might get unnecessarily

inserted as a hub for some other lower-ranked vertex u even
if SPh,u is covered by v. However, as we will show subse-
quently, such ‘optimistic’ labels can be cleaned (deleted).

The parallel label construction step in LCC is shown in
algorithm 2. Similar to [45, 24], each concurrent thread se-
lects a unique vertex in rank order R (by atomic updates to a
global counter), and constructs the corresponding SPT using
pruned Dijkstra. This parallelization strategy exhibits good
load balance as all threads are working until the very last
SPT and there is no global synchronization barrier where
threads may stall. However, unlike previous works, LCC’s
pruned Dijkstra is also enabled with Rank Queries.

Algorithm 1 Pruned Dijkstra in LCC (pruneDijRQ)

Input: G(V,E,W), R, root h, current labels L =
∪v∈V Lv; Output: hub labels with hub h
δv → distance to v, Q→ priority queue

1: LR = hash(Lh), δh = 0, δv =∞ ∀v ∈ V \ {h}. initialize
2: add (h, 0) to Q
3: while Q is not empty do
4: pop (v, δv) from Q
5: if R(v) > R(h) then continue . Rank-Query

6: if DQ(v, h, δv, LR,Lv) then continue . Dist. Query

7: Lv = Lv ∪ {(h, δv)}
8: for each u ∈ Nv
9: if δv + wv,u < δu then

10: δu = δv + wv,u; update Q

11: function DQ(v, h, δ, LR,Lv)
12: for each (h′, d(v, h′)) ∈ Lv
13: if (h′, d(h, h′)) ∈ LR then
14: if d(v, h′) + d(h, h′) ≤ δ then return true

15: return false

Algorithm 2 LCC: Label Construction and Cleaning

Input: G(V,E,W), R; Output: L = ∪v∈V Lv
p→ # parallel threads, tc → tree count
Q→ queue containing vertices ordered by rank

1: Lv = φ ∀ v ∈ V . initialization
2: for tid = 1, 2...p do in parallel . LCC-I: Label

Construction
3: while Q 6= empty do
4: atomically pop highest ranked vertex h from Q
5: pruneDijRQ(G,R, h, L)

6: for v ∈ V do in parallel
7: sort labels in Lv using hub rank

8: for v ∈ V do in parallel . LCC-II: Label Cleaning
9: for each (h, δv,h) ∈ Lv

10: if DQ Clean(v, h, δv,h, Lh, Lv, R) then
11: delete (h, δv,h) from Lv

12: function DQ Clean(v, h, δ, Lh, Lv, R). Cleaning Query
13: compute the set W of common hubs in Lh and Lv

such that d(w, v) + d(w, h) ≤ δ ∀ w ∈W
14: find the highest ranked vertex u in W
15: if (W = empty) or R(u) ≤ R(h) then return false

16: else return true

Claim 1. The labeling generated by LCC’s label construc-
tion step (LCC-I) satisfies the cover property and respects R.

496

Proof. Let HP
v (HS

v , respectively) denote the set of hub
vertices of a vertex v after LCC-I (sequential PLL, respec-
tively). We will show that HS

v ⊆ HP
v . Suppose h 6∈ HP

v for
some vertex h. Consider three cases:
Case 1: h 6∈ HP

v because a Rank-Query pruned SPTh at v
in LCC-I. Thus we must have R(v) > R(h). Since sequential
PLL is also the CHL, h 6∈ HS

v also.
Case 2: h 6∈ HP

v because a Distance-Query pruned SPTh
at v in LCC-I. This can only happen if LCC found a shorter
distance d(h, v) through a hub vertex h′ ∈ SPh,v (alg. 1 :
lines 13-14). Since LCC with Rank-Querying identified h′ as
a hub for both h and v, we must have R(h′) > R(h) > R(v)
and thus h 6∈ HS

v .
Case 3: h 6∈ HP

v because v was not discovered by SPTh due
to pruning. Similar to Case 2 above, this implies ∃h′ ∈ SPv,h
with R(h′) > R(h) and therefore h 6∈ HS

v .
Combining these cases, we can say that HS

v ⊆ HP
v . Since

sequential PLL generates the CHL, the claim follows.

Label Cleaning: The extra labels created due to concurrent
construction of multiple SPTs in LCC-I are redundant, since
there exists a canonical subset of HP

V (i.e. HS
V) satisfying

the cover property. LCC eliminates redundant labels using
the DQ Clean function (alg 2, lines 12-16)4 - for a vertex
v, a label (h, d(v, h)) is redundant if a distance query on
(v, h) finds a common hub u such that R(u) > R(h) and the
distance between v and h via u, is not greater than d(v, h).

Claim 2. The final labeling generated by LCC after the
Label Cleaning step (LCC-II) is the CHL.

Proof. Claim 1 implies that the labeling after LCC-I re-
spects R and satisfies cover property. Lemma 2 implies that
LCC-II removes all redundant labels, resulting in a minimal
labeling which by definition, is the CHL.

Lemma 3. LCC is work-efficient. It performs
O(wm log2 n+w2n log2 n) work, generates O(wn logn) hub
labels and answers each query in O(w logn) time, where w
is the tree-width of G.

Proof. Consider the centroid decomposition
(χ, T (VT , ET)) of minimum-width tree decomposition of the
input graph G, where χ = {Xt ⊆ V ∀ t ∈ VT } maps vertices
in T (bags) to subset of vertices in G [8]. Let R(v) be
determined by the minimum depth bag {bv ∈ VT | v ∈
Xbv} i.e. vertices in root bag are ranked highest followed
by vertices in children of root and so on. Since we prune
using Rank-Query, SPTv will never visit vertices beyond
the parent of bv. A bag is mapped to at most w vertices and
the depth of T is O(logn). Since the only labels inserted
at a vertex are its ancestors in the centroid tree, there are
O(w logn) labels per vertex.

Each time a label is inserted at a vertex, we evaluate all its
neighbors in the distance queue. Thus the total number of
distance queue operations is O(wm logn). Further, distance
queries are performed on vertices that cannot be pruned
by rank queries. This results in O(n · w logn · w logn) =
O(w2n log2 n) work.

Label Cleaning step sorts the label sets and executes PPSD
queries performing O(nw logn logw log log n+w2n log2 n) =

4Actual implementation of DQ Clean stops at the first com-
mon hub (also the highest ranked) in sorted Lh and Lv which
satisfies the condition in line 13 of alg. 2.

O(w2n log2 n) work. Thus, overall work complexity of LCC
is O(wm log2 n + w2n log2 n) which is the same as the se-
quential algorithm [45], making LCC work-efficient.

Note that labeling generated by paraPLL[45] may not re-
spect R and hence, Label Cleaning after paraPLL may result
in a labeling that violates the cover property.

Although LCC is theoretically efficient, in practice, the
Label cleaning step adds non-trivial overhead to the execu-
tion time. In the next subsection, we describe an algorithm
that drastically reduces the overhead of cleaning.

4.2 Global Local Labeling (GLL)
The main goal of GLL is to severely restrict the size of la-

bel sets used for label cleaning queries. A natural way to ac-
celerate label cleaning is by avoiding futile computations (in
DQ Clean) over hub labels that were already consulted dur-
ing label construction. However, to achieve notable speedup,
these pre-consulted labels must be skipped in constant time
without actually iterating over all of them.

GLL overcomes this challenge by using a novel Global
Local Label Table data structure and interleaved cleaning
strategy. Unlike LCC, GLL utilizes multiple synchroniza-
tions where the threads switch between label construction
and cleaning. We denote the combination of a label con-
struction and the subsequent label cleaning step as a su-
perstep. During label construction, the newly generated la-
bels are pushed to a Local Label Table and their volume is
tracked. Once the number of labels in the local table be-
comes greater than αn, where α > 1 is the synchronization
threshold, the threads synchronize, sort, clean the labels in
local table and commit them to the Global Label Table.

In any superstep, it is known that all labels in the global
table were consulted during the label construction. There-
fore, label cleaning only needs to query on the local table
for redundancy check, thus dramatically reducing the num-
ber of repeated computations. After a label construction
step, the local table holds αn labels. Assuming O(α) aver-
age labels per vertex (we empirically observe that labels are
almost uniformly distributed except few highest ranked ver-
tices), each cleaning step should perform on average O(nα2)
work. The number of cleaning steps is O

(
wn logn
αn

)
and

thus we expect the total complexity of cleaning in GLL to
be O(nαw logn) as opposed to O(nw2 log2 n) in LCC. If
α� w logn, cleaning in GLL is more efficient than LCC.

GLL also reduces locking during distance queries. LCC
locks label sets before reading because label sets are dynamic
arrays that can undergo memory (de)allocation when a label
is appended. Contrarily, in GLL, most pruning distance
queries are answered by label sets in the global table whereas
labels are only appended to the local table.

5. DISTRIBUTED-MEMORY LABELING
Distributed-memory systems present strikingly different

challenges than shared-memory systems, in general as well
as in the specific context of hub labeling. Therefore, a trivial
extension of GLL algorithm is unsuitable for a multi-node
cluster. Particularly, the labels generated on a node are not
readily available to other nodes until they synchronize and
exchange labels. Further, unlike paraPLL, our aim is to
harness not just the compute but also the collective mem-
ory capability of multiple nodes to construct CHL for large

497

graphs. This mandates that labels be partitioned and dis-
tributed across multiple nodes at all times, and severely lim-
its the knowledge of labels created on other nodes even after
synchronization. This absence of labels dramatically affects
the pruning efficiency during label construction, resulting
in large number of redundant labels and consequently, huge
communication volume that bottlenecks the performance.

In this section, we present novel algorithms and optimiza-
tions that systematically conquer these challenges. We begin
by discussing a distributed extension of GLL that highlights
the basic data distribution and parallelization approach.

5.1 Distributed GLL (DGLL)
DGLL divides the task queue for SPT creation uniformly

among q nodes in a rank circular manner. The set of root
vertices assigned to node i is TQi = {v | R(v) mod q = i}.
Every node loads the graph (and ranking R for rank queries)
and executes GLL on its allotted task queue. DGLL has two
key optimizations tailored for distributed implementation:

1. Label Set Partitioning: In DGLL, nodes only store
labels generated locally i.e. all labels at node i are of the
form (h, d(v, h)), where h ∈ TQi. Equivalently, the labels
of a vertex v are disjoint and distributed across nodes i.e.
Lv = ∪iLi,v. Thus, all nodes collaborate to provide main
memory space to store the labels and the effective memory
scales in proportion to the number of nodes. This is in stark
contrast with paraPLL that stores {∪v∈V Lv} on every node,
rendering effective memory same as that of a single node.

2. Synchronization and Label Cleaning : For every
superstep in DGLL, we decide the synchronization point
apriori in terms of the number of SPTs to be created. The
synchronization point computation is motivated by the la-
bel generation behavior of the algorithm. Fig.2 shows that
the number of labels generated by initial SPTs rooted at
high-ranked vertices is very large and it drops exponentially
as the rank decreases. To maintain cleaning efficiency with
few synchronizations, we increase the number of SPTs con-
structed in each superstep by a multiplicative factor of β
i.e. if superstep i constructs x SPTs, superstep i + 1 will
construct β · x SPTs. Contrarily, distributed paraPLL [45]
constructs the same number of trees in every superstep.

After synchronization, all labels generated in the super-
step are broadcasted to all nodes for redundancy check.
Each node creates a bitvector containing response of all
cleaning queries. The bitvectors are then combined using an
all reduce operation to obtain final redundancy information.

Note that DGLL uses both global and local tables to an-
swer cleaning queries. Yet, interleaved cleaning is beneficial
as it removes redundant labels, thereby reducing query re-
sponse time for subsequent cleaning steps. For some datasets,
we empirically observe > 90% redundancy in labels gener-
ated in some supersteps. Presence of such large number of
redundant labels can radically slow down future queries.

#
𝐿
𝑎
𝑏
𝑒𝑙
𝑠

p
er

 S
P

T→

𝑆𝑃𝑇 ID →

California Road Network

#
𝐿
𝑎
𝑏
𝑒𝑙
𝑠

p
er

 S
P

T→

𝑆𝑃𝑇 ID →

Skitter AS Links

Figure 2: Labels generated by SPTs. ID of SPTv is n−R(v).

5.2 Prune Labels and (do) Not (prune) Trees
(PLaNT)

The redundancy check in DGLL can severely restrict scal-
ability of the algorithm due to huge label broadcast traffic
(redundant + non-redundant labels), motivating the need
for an algorithm that can avoid redundancy without com-
municating labels with other nodes.

To this purpose, we propose the Prune Labels and (do)
Not (prune) Trees (PLaNT) algorithm that accepts some
loss in pruning efficiency to achieve a dramatic decrease
in communication across cluster nodes, by outputting com-
pletely non-redundant labels without additional label clean-
ing. We note that the redundancy of a label (h, d(v, h)) ∈ Lv
is only determined by whether or not h is the highest ranked
vertex in SPv,h. This is the key idea behind PLaNT: When
constructing SPTh, if, when resolving distance queries, em-
bedded information about high-ranked vertices on paths can
be retrieved, SPTh will intrinsically have the requisite in-
formation to detect redundancy of h as a hub.

Algorithm 3 (PLaNTDijkstra) depicts the construction of
a shortest path tree using PLaNT, which we call PLaNT-
ing trees. Instead of pruning using distance or rank queries,
PLaNTDijkstra tracks the most important ancestor a[v] en-
countered on the path from h to v by allowing ancestor
values to propagate along with distance values. When v is
popped from the distance queue, a label is added to Lv if
neither v nor a[v] are ranked higher than the root. Thus, for
any shortest path SPh,v, only hm = argmaxw∈SPh,v

{R(w)}
succeeds in adding itself to the labels of u and v, guarantee-
ing minimality of the labeling while simultaneously respecting
R and satisfying cover property. Fig.1c provides a detailed
graphical illustration of label generation using PLaNT and
shows that it generates the same labeling (CHL) as the PLL.

If there are multiple shortest paths from h to v, the path
with the highest-ranked ancestor is selected. This is achieved
in the following manner: when a vertex v is popped from
the dijkstra queue and its edges are relaxed, the ancestor of
a neighbor u ∈ Nv is allowed to update even if the newly
calculated tentative distance to u is equal to the currently
assigned distance to u (line 12 of algorithm 3). For example,
in fig.1c, the shortest paths to v5, P1 = {v2, v1, v4, v5} and
P2 = {v2, v3, v5} have the same length and P1 is selected by
setting a[v5] = v1 because R(v1) > R(v2).

Note that PLaNT not only avoids dependency on the la-
bels on remote nodes, it rids SPT construction of any de-
pendency on the output of other SPTs, effectively providing
an embarassingly parallel solution for CHL construction
with O(m + n logn) depth (complexity of a single instance
of dijkstra) and O(mn + n2 logn) work. Due to its em-
barassingly parallel nature, PLaNT does not require SPTs
to be constructed in a specific order. However, to enable
optimizations discussed later, we follow the same rank de-
termined order in PLaNT as used in DGLL (section 5.1).

Early Termination: To improve the computational ef-
ficiency of PLaNT and prevent exploring the full graph for
every SPT, we propose the following early termination strat-
egy: stop further exploration when the rank of either the
ancestor or the vertex itself is higher than the root, for all
vertices in dijkstra’s queue5. Early termination can dramat-
ically cut down traversal in SPTs with low-ranked roots.

5Further exploration from such vertices only creates shortest
paths with at least one vertex ranked higher than the root.

498

Algorithm 3 PLaNTDijkstra algorithm to plant SPTs

Input: G(V,E,W), R, root h
δv → distance to v, a[] → ancestor array, Q → priority
queue, cnt→ number of vertices v with a[v] = h

1: δh = 0, a[h] = h and a[v] = v, δv =∞ ∀ v ∈ V \ h
2: add h to Q; cnt = 1
3: while Q is not empty do
4: if cnt = 0 then exit . Early Termination

5: pop (v, δv) from Q; compute nA = argmax
x∈{v,a[v]}

R(x)

6: if a[v] = h then cnt = cnt− 1

7: if R[nA] > R[h] then continue

8: Lv = Lv ∪ {(h, δv)}
9: for each u ∈ Nv

10: pA = a[u]
11: if δv + wv,u < δu then a[u] = argmax

x∈{nA,u}
R(x)

12: else if δv+wv,u = δu then a[u] = argmax
x∈{nA,pA}

R(x)

13: if a[u] = h and pA 6= h then cnt = cnt+ 1
14: else if a[u] 6= h and pA = h then cnt = cnt− 1

15: δu = min(δu, δv + wv,u); update Q

Despite early termination, PLaNTed trees can possibly ex-
plore a large part of the graph which PLL would have avoided
by pruning. For each SPT, let Ψ denote the average #
vertices explored per label generated. Fig.3 shows that in
PLaNT, Ψ for many SPTs can be even higher than 10000.

Ψ
→

𝑆𝑃𝑇 ID →

California Road Network

Ψ
→

𝑆𝑃𝑇 ID →

Skitter AS Links

Figure 3: Ψ for SPTs in PLaNT.

5.2.1 Hybrid PLaNT + DGLL
Apart from its embarrassingly parallel nature, an impor-

tant virtue of PLaNT is its compatibility with DGLL. Since
PLaNT also constructs SPTs in rank order and generates
labels with root as the hub, we can seamlessly transition be-
tween PLaNT and DGLL to enjoy the best of both worlds.
We propose a Hybrid algorithm that initially uses PLaNT
and later, switches to DGLL. The initial SPTs rooted at high
ranked vertices generate most of the labels in CHL (fig.2)
and exhibit low Ψ value (fig.3).

By PLaNTing these SPTs, we (1) efficiently parallelize
bulk of the computation and avoid communicating a large
fraction of the overall labeling at at the cost of little extra
exploration in the trees, and (2) avoid a large number of
distance queries that PLL or DGLL would have done on all
the visited vertices in these SPTs. In the later half of execu-
tion, when Ψ becomes high and few labels are generated per
SPT, the Hybrid algorithm uses DGLL to exploit the heavy
pruning and avoid the inefficiencies associated with PLaNT.

The Hybrid algorithm is a natural fit for scale-free net-
works. These graphs have a large tree-width w but they ex-
hibit a core-fringe structure where removal of a small dense
core leaves a fringe like structure with very low tree-width

[51, 10]. Typical degree and betweenness based hierarchies
also prioritize vertices in the dense core. In such graphs,
the Hybrid algorithm PLaNTs SPTs rooted at core vertices
which generate a large number of labels. SPTs rooted on
fringe vertices generate few labels and are constructed using
DGLL which exploits heavy pruning to limit computation.

For graphs with a core-fringe structure, a relaxed tree
decomposition (χ, T (VT , ET)) parameterized by an integer
c can be computed such that |Xtr | = wm ∧ |Xt| ≤ c ∀ t ∈
VT \ tr, where tr is the root of T and χ = {Xt ⊆ V ∀ t ∈
VT } maps vertices in T (bags) to subset of vertices in G
[10]. In other words, except root bag, |Xt| is bounded by a
parameter {c|c� w ≤ wm}.

Lemma 4. The hybrid algorithm performs O(m · (wm +
c log2 n) + nc logn · (wm + c logn)) work, broadcasts only
O(cn logn) data, generates O(n · (wm + c logn)) hub labels
and answers each query in O(wm + c logn) time.

Proof. Consider the relaxed tree decomposition
(χ, T (VT , ET)) with root tr and perform centroid decom-
position on all subtrees rooted at the children of tr to ob-
tain tree T ′. The height of any tree in the forest generated
by removing tr from T ′ is O(logn). Hence, the height of
T ′ = O(logn+ 1) = O(logn).

Consider a ranking R where R(v) is determined by the
minimum depth bag {b ∈ VT ′ |v ∈ Xb}. For GLL, the num-
ber of labels generated by SPTs from vertices in root bag is
O(wmn). Combining this with lemma 3, we can say that to-
tal labels generated by GLL is O(n·(wm+c logn)) and query
complexity is O(wm + c logn). The same also holds for the
Hybrid algorithm since it outputs the same CHL as GLL.

If Hybrid algorithm constructs wm SPTs using PLaNT
and rest using DGLL, the overall work-complexity is O(wm ·
(m + n logn)) + O(mc log2 n + nc logn · (wm + c logn)) =
O((m · (wm + c log2 n) + nc logn · (wm + c logn))).

The Hybrid algorithm only communicates the labels gen-
erated after switching to DGLL, resulting in O(cn logn)
data broadcast. In comparison, doing only DGLL for the
same ordering will broadcast O(wmn+ cn logn) data.

In reality, we use the ratio Ψ as a heuristic, dynamically
switching from PLaNT to DGLL when Ψ becomes greater
than a threshold Ψth.

Lemma 5. The Hybrid algorithm consumes
O (n · (wm + c logn)/q + n+m) main memory per node,
where q is the number of nodes used.

Proof. Storing labels requires O (n · (wm + c logn)/q)
space per node and graph requires O(n+m) space.

5.3 Enabling efficient multi-node pruning
We propose an optimization that simultaneously solves

the following two problems:
1. Pruning traversal in PLaNT → The reason why PLaNT
cannot prune using rank or distance queries is that if we
prune using partial labels, an SPT can still visit those ver-
tices which would be pruned if all prior labels were available
and possibly, through non shortest paths with the wrong an-
cestor information. This can lead to redundant label gener-
ation and defeat the purpose of PLaNT. In general, if a node
prunes using Hu, it must have {Hv∀v ∈ V |R(v) ≥ R(u)} to
guarantee non-redundant labels. In this situation, a vertex
is either visited through the shortest path with correct an-
cestor or is pruned. We skip the proof details for brevity.

499

2. Redundant labels in DGLL→ Fig.4 shows the label count
generated by PLL if pruning queries are restricted to use
hub labels from few top-ranked hubs only. We observe that
label count decreases dramatically even if pruning utilizes
only few highest-ranked hubs.

#
𝐿
𝑎
𝑏
𝑒𝑙
𝑠
→

Vertices for Query →

California Road Network

#
𝐿
𝑎
𝑏
𝑒𝑙
𝑠
→

Vertices for Query →

Skitter AS Links

Figure 4: # Labels generated if pruning queries in PLL use
few (x-axis) highest rank hubs. X-axis= 0 means rank queries

only. When pruning is completely absent, # labels = |V |2

Thus, for a given integer η, if we store all labels from η
most important hubs on every compute node i.e. HC =
∪v∈V |R(v)≥n−η{Hv}, we can

• use distance queries on HC to prune PLaNTed trees, and

• drastically increase pruning efficiency of DGLL.

To this purpose, we allocate a Common Label table on ev-
ery node that stores common labels HC. These labels are
broadcasted even if they are generated by PLaNT. For η =
O(1), using common labels incurs additional O(n) broadcast
traffic, O(wmn) queries of O(1) complexity each , and con-
sumes O(n) more memory per node. Thus, it does not alter
the theoretical bounds on work-complexity, communication
volume and space requirements of the Hybrid algorithm. In
our implementation, we store labels from η = 16 highest
ranked hubs in the Common Label Table.

5.4 Extensions
Our algorithms are not restricted to clusters and can be

used for any massively parallel system, such as GPU. On
GPUs, simply parallelizing PLL can blow up the label size,
as thousands of concurrent threads when working on their
very first tree, will not have any label information for prun-
ing. This can make Label Cleaning infeasible or even make
the system run out of memory. Instead, we can use PLaNT
to construct first few SPTs for every thread and switch to
GLL afterwards. Our approach can also be extended to disk-
based processing where access cost to labels is very high.
The Common Label Table can be mapped to faster memory
in the hierarchy (DRAM) to accelerate labeling.

6. QUERYING
We provide three modes to the user for distance queries:

• Querying with Labels on Single Node (QLSN)→ All labels
are stored on every node and a query response is computed
only by the node where the query emerges. Existing hub
labeling frameworks [45, 8, 22, 24] only support this mode.

• Querying with Fully Distributed Labels (QFDL) → The
label set of every vertex is partitioned between all nodes.
Queries are broadcasted to all nodes and individual re-
sponses of the nodes are reduced using MPI MIN to ob-
tain the shortest distance. It utilizes parallelism of multi-
ple nodes and consumes only O (n · (wm + c logn)/q) me-
mory per node, but incurs high communication costs.

• Querying with Distributed Overlapping Labels (QDOL) →
In this mode, we divide the vertex set V into ζ partitions.
For every possible partition pair, a node is assigned to
store entire label set of vertices in that pair. Thus, a given
query is answered only by a single node but not by every
node. Unlike QFDL, this mode utilizes the more efficient
P2P communication instead of broadcasting. Each query
(u, v) is mapped to the node that has labels for vertex par-
titions containing u and v and then communicated to this
node which single-handedly computes and sends back the
response. In QDOL, multi-node parallelism is exploited in
a batch of queries where different nodes concurrently com-
pute responses to the respective queries mapped to them.
For a cluster of q nodes, ζ can be computed as follows:(

ζ

2

)
= q =⇒ ζ =

1 +
√

1 + 8q

2

Storing labels of two vertex partitions consumes
2n · (wm + c logn)/ζ = O

(
n · (wm + c logn)

√
q
)

memory
per node (much larger than QFDL).

7. EXPERIMENTS
7.1 Setup

We conduct shared-memory experiments on a 36 core, 2-
way hyperthreaded, dual-socket linux server with two Intel
Xeon E5-2695 v4 processors@ 2.1GHz and 1TB DRAM; all
72 threads are used for labeling. For distributed-memory
experiments, we use a 64-node cluster. Each node has an
8 core, 2-way hyperthreaded, Intel Xeon E5-2665@ 2.4GHz
processor and 64GB DRAM; all 16 threads on each node are
used for labeling. Programs are compiled using G++ 9.1.0
with the highest optimization -O3 flag. We use OpenMP
v4.5 for multithreading within a node and OpenMPI v3.1.2
for parallelization across multiple nodes.

Baselines: We use sequential PLL (seqPLL), paraPLL
shared-memory (SparaPLL) and distributed-memory (Dpar-
aPLL) versions [45] for labeling time comparison. As given
in [45], we use6 dynamic task assignment policy in Spara-
PLL and static circular task division among multiple nodes
in DparaPLL. We also report the performance of DGLL for
effective comparison. Both DGLL and DparaPLL synchro-
nize log8 n times to exchange labels.

Implementation Details: We vary the synchronization
threshold α in GLL and switching threshold Ψth in the Hy-
brid algorithm to empirically assess their impact on the per-
formance. Figure 5 shows the impact of α on GLL. Execu-
tion time of GLL is robust to significant variations in α
within a range of 2 to 32. Intuitively, a small value of α
reduces cleaning time (section 4.2) but making it too small
can lead to frequent synchronizations that hurt parallel per-
formance. Based on our observations, we set α = 4.

Figure 6 shows the effect of Ψth on the hybrid algorithm.
Intuitively, keeping Ψth too large increases the computa-
tion overhead (seen in scale-free networks) because even low-
ranked SPTs that generate few labels, are PLaNTed. On the
other hand, keeping Ψth too small results in poor scalability
(seen in road networks) as the algorithm switches to DGLL
quickly and communication avoidance of PLaNT remain un-
derutilized. Based on these findings, we set Ψth = 100 for
scale-free networks and Ψth = 500 for road networks.

6paraPLL code is not publicly available.

500

𝛼

1

4

16

64

256

1024

1 4 16 64 256

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

GLL Execution Time vs α

CTR

BDU

CAL

SKIT

ACT

YTB

EAS

AUT

Figure 5: GLL execution time vs synchronization threhsold α

Ψ𝑡ℎ

4

16

64

256

1024

4096

16 128 1024 8192

Ex
ec

u
ti

o
n

 T
im

e
(s

)

Road Networks

CTR

CAL

EAS

1

4

16

64

256

16 256 4096

Ex
ec

u
ti

o
n

 T
im

e
(s

)

Scale-free Networks

BDU

SKIT

ACT

YTB

AUT

Ψ𝑡ℎ

Figure 6: Execution time of Hybrid algorithm on 16 compute
nodes vs switching threshold Ψth

7.1.1 Datasets
We evaluate our algorithms on 12 real-world graphs with

varied topologies (high-dimensional (complex) graphs vs low-
dimensional road networks, uniform-degree vs power-law so-
cial networks), as listed in table 27. The ranking R is deter-
mined by degree for scale-free networks [8] and betweenness
for road networks [39]8. As opposed to complex graphs,
road networks typically exhibit smaller label size and effi-
cient early termination in PLaNT due to the high between-
ness of highways that cover most of the shortest paths.

Table 2: Datasets for Evaluation

Dataset n m Description Type
CAL[20] 1,890,815 4,657,742 California Road network Undirected
EAS[20] 3,598,623 8,778,114 East USA Road network Undirected
CTR[20] 14,081,816 34,292,496 Center USA Road network Undirected
USA[20] 23,947,347 58,333,344 Full USA Road network Undirected
SKIT[1] 192,244 636,643 Skitter Autonomous Systems Undirected

WND[11] 325,729 1,497,134 Univ. Notre Dame webpages Directed
AUT[27] 227,320 814,134 Citeseer Collaboration Undirected
YTB[36] 1,134,890 2,987,624 Youtube Social network Undirected
ACT[36] 382,219 33,115,812 Actor Collaboration Network Undirected
BDU[36] 2,141,300 17,794,839 Baidu HyperLink Network Directed
POK[36] 1,632,803 30,622,564 Social network Pokec Directed
LIJ[36] 4,847,571 68,993,773 LiveJournal Social network Directed

7.2 Shared-memory Algorithms
Table 3 compares the performance of GLL, LCC, Spara-

PLL and seqPLL. It also shows the Average Label Size per
vertex (ALS) for CHL (GLL, LCC and seqPLL) and the
labeling generated by SparaPLL. Query response time is di-
rectly proportional to ALS and hence, it is a crucial metric
for evaluating any hub labeling algorithm9.

7Scale-free networks did not have edge weights from the
download sources. For each edge, we choose an integral
weight value between [1,

√
n) uniformly at random.

8Most vertices in road networks have a small degree and
their importance cannot be identified by their degree.
9For LIJ, the ALS of CHL was obtained from distributed
algorithms since none of the shared-memory algorithms fin-
ished execution.

Table 3: Performance comparison of GLL, LCC and baselines.
Time=∞ implies that execution did not finish in 4 hours.

SparaPLL CHL
ALS

seqPLL
Time(s)

LCC Time(s) GLL
Time(s)Dataset ALS Time(s) LCC-I Total

CAL 108.3 51.2 83.4 215 26 41.4 35.4
EAS 138.1 116.3 116.8 680.6 73.8 108.7 88
CTR 178.7 424.2 160.9 5045 415 664.1 567.7
USA 185.6 816.9 166.1 ∞ 715 1149 834
SKIT 88.3 2.5 85.1 95.8 3 4.85 3.9
WND 39.6 2.4 23.5 21.98 1.9 2.94 2.1
AUT 240.2 10.4 229.6 670 10 18.4 14.6
YTB 208.9 69.6 207.5 2693 73.8 126.7 104.6
ACT 376.1 112.4 366.3 2173 114.9 151.3 141.9
BDU 100.1 103.1 90.7 4736 108 133.9 99.9
POK 2243 4159 2231 ∞ 4213 8748 3917
LIJ − ∞ 1223 ∞ ∞ ∞ ∞

To understand the individual benefits of parallelism and
rank queries, we compare the execution times of seqPLL,
SparaPLL (which is essentially parallel PLL without rank
queries) and Label Construction in LCC (LCC-I). The ad-
vantage of pure parallelism is evident in the substantial
speedup achieved by SparaPLL over seqPLL. However, ALS
of SparaPLL is noticeably larger than CHL (see CAL, EAS,
WND). Rank querying improves pruning during parallel ex-
ecution as can be seen by comparing the execution times
of LCC-I and SparaPLL for these datasets. Note that the
(potential) performance improvement is a side-effect of rank
queries. The primary motivation for rank querying was to
ensure that the labeling respects R so that LCC and GLL
can clean redundant labels.

We observe that on average, GLL generates 17% less la-
bels than SparaPLL. Its execution time is comparable to
SparaPLL, even though it re-checks every label using the
cleaning queries. For some graphs such as CAL, GLL is
even 1.3× faster than SparaPLL. This is primarily because
rank queries and interleaved cleaning limit graph exploration
overhead and label size, resulting in faster distance-pruning
queries. GLL also reduces label table locking (section 4.2).

0

0.5

1

1.5

2

CAL EAS CTR USA SKIT WND AUT YTB ACT BDU POK

LCC and GLL Execution Time Breakup

GLL Construct LCC Construct GLL Clean LCC Clean

Figure 7: Time taken for label construction and cleaning in
LCC and GLL, normalized by the total execution time of GLL.

Fig. 7 shows execution time breakup for LCC and GLL.
GLL cleaning is significantly faster than LCC because of the
reduced cleaning complexity (section 4.2). Overall, GLL
is 1.3× faster than LCC on average. However, for some
graphs such as CAL, fraction of cleaning time is > 30%
even for GLL. This is because in the first superstep of GLL,
more than αn labels get generated as there are no labels for
distance query pruning and at least p (p > α is # threads)
SPTs are simultaneously constructed.

7.3 Distributed-memory Algorithms
To assess the scalability of distributed hub labeling algo-

rithms, we vary q from 1 to 64 (# compute cores from 8 to

501

10

100

1000

10000

8 32 128 512

CTR

10

100

1000

8 32 128 512

USA

100

1000

10000

100000

8 32 128 512

Compute Cores

POK

100

1000

10000

8 32 128 512

Compute Cores

LIJ

1

10

100

1000

8 32 128 512

Ti
m

e
(s

)
CAL

1

10

100

1000

10000

8 32 128 512

EAS

1

10

100

1000

8 32 128 512

Ti
m

e
(s

)

SKIT

1

10

100

1000

8 32 128 512

WND

10

100

1000

8 32 128 512

YTB

1

10

100

1000

8 32 128 512

AUT

10

100

1000

10000

100000

8 64 512

Ti
m

e
(s

)

Compute Cores

ACT

10

100

1000

10000

8 64 512

Compute Cores

BDU

Figure 8: Strong scaling results of DparaPLL, DGLL, PLaNT and Hybrid algorithms. Missing curves or points mean that the
algorithm incurred OOM error or did not finish within 4 hours. Also, # compute cores = 8∗(# compute nodes). For effective

comparison, we also show single node execution time for shared-memory parallel GLL algorithm.

512). Fig. 8 shows the strong scaling of different algorithms
in terms of labeling construction time.

We note that both DparaPLL and DGLL do not scale
well with q. DparaPLL often runs out-of-memory when q
is large. This is because in the first superstep itself, a large
number of hub labels are generated that when exchanged,
overwhelm the memory of the nodes. DGLL, on the other
hand, limits the amount of labels per superstep by synchro-
nizing relatively frequently in the early stage of execution.
Also, it does not store all the labels on every node and hence,
requires less main memory than DparaPLL.

10

100

1000

8 32 128 512#
La

b
el

s
p

er
 v

er
te

x CAL

100

1000

8 32 128 512

EAS

DparaPLL ALS

Hybrid ALS

10

100

1000

10000

8 32 128 512#
La

b
el

s
p

er
 v

er
te

x SKIT

10

100

1000

10000

8 32 128 512

WND

100

1000

10000

8 32 128 512

AUT

100

1000

8 32 128 512#
La

b
el

s
p

er
 v

er
te

x

Compute Cores

YTB

100

1000

10000

8 32 128 512

Compute Cores

ACT

100

1000

10000

8 32 128 512

Compute Cores

BDU

Figure 9: Label size of DparaPLL and Hybrid algorithms.

Moreover, label size of DparaPLL explodes as q increases
(fig.9), partly due to the absence of rank queries. Contrar-
ily, our algorithms (DGLL, PLaNT and Hybrid) generate
the same labeling - CHL and have the same ALS, irre-
spective of q. Efficacy of distance query based pruning in
DparaPLL suffers because on every node, labels from several

high-ranked hubs are missing in between the synchronization
points. Increase in label size further slows down the distance
querying and the labeling process. On the other hand, rank
queries in DGLL allow pruning even at those hubs whose
SPTs were not created on the querying node. Further, it
periodically cleans redundant labels to retain the perfor-
mance of distance queries. Yet, DGLL incurs significant
communication and does not scale well. Neither DparaPLL
nor DGLL can process the large CTR, USA, POK and LIJ
datasets, either running out-of-memory or time limit.

PLaNT on the other hand, paints a completely differ-
ent picture. Owing to its embarrassingly parallel nature,
PLaNT exhibits excellent near-linear speedup up to q = 64
for almost all datasets. On 64 nodes, PLaNT achieves an av-
erage 42× speedup over single node execution. However, for
scale-free graphs, PLaNT is not efficient. It cannot process
LIJ and takes > 1 hr to process POK even on 64 nodes.

The Hybrid algorithm combines the scalability of PLaNT
with the pruning efficiency of DGLL (powered by Common
Labels). It scales well up to q = 64 and for most datasets,
achieves > 10× speedup over single node execution. For
scale-free datasets ACT, BDU and POK, it is able to con-
struct CHL 7.8×, 26.2× and 5.4× faster than PLaNT, re-
spectively, on 64 nodes. Compared to DparaPLL, the Hy-
brid algorithm is 3.8× faster on average when run on 2 com-
pute nodes. For SKIT and WND, the Hybrid algorithm is
47× and 96.8× faster, respectively, than DparaPLL on 16
nodes. When processing scale-free datasets on small num-
ber of nodes, Hybrid beats PLaNT by more than an order
of magnitude difference in execution time.

On a single node, GLL is faster than Hybrid and DGLL, as
it does not incur the overheads associated with distributed
computation, extra graph traversal in PLaNTed Trees and
global table search for cleaning queries. However, Hybrid
algorithm (1) outperforms GLL for all graphs after just 4
nodes, and (2) can process large graphs, such as LIJ, using

502

Table 4: Query Processing Throughput, Latency and Total Memory Consumption for different modes on 16 compute nodes. ”-” =
unsupported due to main memory constraints. DparaPLL only supports single node querying, hence we use QLSN mode as a proxy.

Dataset
Throughput (million queries/s) Latency (µs per query) Memory Usage (GB)
QLSN QFDL QDOL QLSN QFDL QDOL QLSN QFDL QDOL

CAL 10.1 12.1 29.6 2.8 22.3 8.4 43.8 2.4 13.7
EAS 7.1 8.9 14.6 3.6 24 11.4 125.4 7.4 39.2
CTR - 6.5 9 - 26.6 14.7 - 45 242.1
USA - 5.4 10 - 29.5 20 - 80 413.3
SKIT 15.8 18.5 29.8 1 20.7 7.9 4.5 0.3 1.4
WND 37.5 19.6 42.7 0.3 22.7 7.1 0.6 0.1 0.6
AUT 4.9 9.9 27.5 3.7 21.7 12.9 16.6 1 5.2
YTB 10.4 23.3 30.3 2.2 23.9 13.6 74.9 4.6 23.4
ACT 3.2 10.4 21.3 4.8 22.8 18.1 46.1 2.8 14.4
BDU 13.2 16.4 21.5 1.5 22.1 11.1 54.7 3.2 17.1
POK - 5.1 7.5 - 32 34.5 - 77.6 388.9
LIJ - 6 - - 31.6 - - 125.8 -

multiple nodes. SparaPLL performance on single cluster
node was similar to GLL and is not shown in fig.8 for clarity.

We also observe superlinear speedup in some cases (for
eg. Hybrid on CAL and EAS – 1 node vs 4 nodes). This
is because running on few nodes poses high DRAM utiliza-
tion and stress on memory manager due to frequent memory
(re)allocations for several label arrays. In such cases, in-
creasing number of nodes releases the pressure on memory
manager, resulting in a super linear speedup.

Graph Topologies: We observe that PLaNT alone not
only scales well but is also extremely efficient for road net-
works. On the other hand, in scale-free networks, PLaNT
although scalable is not efficient as it incurs large overhead
of additional exploration. This is consistent with our obser-
vations in figure 3 where the maximum value of Ψ for SKIT
was > 10× that of maximum Ψ in CAL dataset. The Hy-
brid algorithm that cleverly manages the trade-off between
additional exploration and communication avoidance, is sig-
nificantly faster than PLaNT for most scale-free networks.
However, it does not scale equally well for small datasets.
This is because even few synchronizations of large number
of nodes completely dominate their small labeling time.

7.4 Evaluating Query Modes
In this section, we assess the different query modes on the

basis of their memory consumption, query response latency
and query processing throughput.

Table 4 shows the memory consumed by label storage un-
der different modes. QLSN requires all labels to be stored
on every node and is the most memory hungry mode. Both
QDOL and QFDL distribute the labels across multiple nodes
enabling queries on large graphs where QLSN fails. Our
experiments also confirm the theoretical insights into the
memory usage of QFDL and QDOL presented in section 6.
On average, QDOL requires 5.3× more main memory for
label storage than QFDL. This is because the label size per
partition in QDOL scales with O

(
1/
√
q
)

and every compute
node has to further store label set of 2 such partitions.

To evaluate the latency of various query modes, we gen-
erate 1 million random PPSD queries and compute their
response one at a time. In QFDL (QDOL) mode, one query
is transmitted per MPI Broadcast (MPI Send, respectively)
and inter-node communication latency becomes a major con-
tributor to the overall query response latency. This is evi-
dent from the results (table 4) where latency of QFDL shows
little variation across different datasets. Contrarily, QLSN
does not incur inter-node communication and compared to
QDOL and QFDL, has significantly lower latency although

it increases proportionally with ALS. For most datasets,
QDOL latency is < 2× compared to QFDL, because of the
cheaper point-to-point communication as opposed to more
expensive broadcasts (section 6). An exception is POK,
where average label size is huge (table 3) and QFDL takes
advantage of multi-node parallelism to reduce latency.

To evaluate the query throughput, we create a batch of
100 million random PPSD queries and compute their re-
sponses in parallel. For most datasets, the added multi-node
parallelism of QFDL and QDOL10 overcomes the query com-
munication overhead and results in higher throughput than
QLSN. QDOL is further 1.8× faster than QFDL because of
reduced communication overhead11.

8. CONCLUSION AND FUTURE WORK
In this paper, we propose novel algorithmic innovations

and optimizations that effectively utilize the massive par-
allelism in shared and distributed memory systems. Our
embarrassingly parallel algorithm PLaNT is the first dis-
tributed memory approach that enables collaborative mem-
ory usage by partitioning the labels across multiple nodes,
while simultaneously ensuring high parallel scalability.

There are several interesting directions to pursue in the
context of this work. System level aspects, such as branch
mispredictions [30], cache misses [52, 6] and memory stalls
[37, 23] are known to exert great influence on the perfor-
mance of graph algorithms. Exploring optimizations for
these aspects of hub labeling could be a great avenue for fur-
ther acceleration. We will also explore the use of distributed
atomics and RMA calls to dynamically allocate tasks in a
cluster for better load balancing.

Acknowledgements. This material is based on work supported

by the Defense Advanced Research Projects Agency (DARPA)

under Contract Number FA8750-17-C-0086 and National Science

Foundation (NSF) under Contract Number CNS-1643351. Any

opinions, findings and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily

reflect the views of DARPA or NSF. The U.S. Government is

authorized to reproduce and distribute reprints for Government

purposes notwithstanding any copyright notation here on.

10Results for QDOL mode also include the time taken to sort
the queries and reorder the responses.

11QDOL has better memory access locality as every node
scans all labels of vertices in the assigned queries. Contrar-
ily, each node in QFDL scans a part of labels for all queries,
frequently jumping from one vertex’s labels to another.

503

9. REFERENCES
[1] The skitter as links dataset, 2019. [Online; accessed

8-April-2019].

[2] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and
R. F. Werneck. Vc-dimension and shortest path
algorithms. In International Colloquium on Automata,
Languages, and Programming, pages 690–699.
Springer, 2011.

[3] I. Abraham, D. Delling, A. V. Goldberg, and R. F.
Werneck. A hub-based labeling algorithm for shortest
paths in road networks. In International Symposium
on Experimental Algorithms, pages 230–241. Springer,
2011.

[4] I. Abraham, D. Delling, A. V. Goldberg, and R. F.
Werneck. Hierarchical hub labelings for shortest paths.
In European Symposium on Algorithms, pages 24–35.
Springer, 2012.

[5] I. Abraham, A. Fiat, A. V. Goldberg, and R. F.
Werneck. Highway dimension, shortest paths, and
provably efficient algorithms. In Proceedings of the
twenty-first annual ACM-SIAM symposium on
Discrete Algorithms, pages 782–793. Society for
Industrial and Applied Mathematics, 2010.

[6] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A.
Wood. Dbmss on a modern processor: Where does
time go? In VLDB’99, Proceedings of 25th
International Conference on Very Large Data Bases,
September 7-10, 1999, Edinburgh, Scotland, UK,
number CONF, pages 266–277, 1999.

[7] T. Akiba, Y. Iwata, K.-i. Kawarabayashi, and
Y. Kawata. Fast shortest-path distance queries on
road networks by pruned highway labeling. In 2014
Proceedings of the Sixteenth Workshop on Algorithm
Engineering and Experiments (ALENEX), pages
147–154. SIAM, 2014.

[8] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact
shortest-path distance queries on large networks by
pruned landmark labeling. In Proceedings of the 2013
ACM SIGMOD International Conference on
Management of Data, pages 349–360. ACM, 2013.

[9] T. Akiba, Y. Iwata, and Y. Yoshida. Dynamic and
historical shortest-path distance queries on large
evolving networks by pruned landmark labeling. In
Proceedings of the 23rd international conference on
World wide web, pages 237–248. ACM, 2014.

[10] T. Akiba, C. Sommer, and K.-i. Kawarabayashi.
Shortest-path queries for complex networks: exploiting
low tree-width outside the core. In Proceedings of the
15th International Conference on Extending Database
Technology, pages 144–155. ACM, 2012.

[11] R. Albert, H. Jeong, and A.-L. Barabási. Internet:
Diameter of the world-wide web. nature,
401(6749):130, 1999.

[12] M. Babenko, A. V. Goldberg, H. Kaplan,
R. Savchenko, and M. Weller. On the complexity of
hub labeling. In International Symposium on
Mathematical Foundations of Computer Science, pages
62–74. Springer, 2015.

[13] L. Backstrom, D. Huttenlocher, J. Kleinberg, and
X. Lan. Group formation in large social networks:
membership, growth, and evolution. In Proceedings of
the 12th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 44–54.
ACM, 2006.

[14] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker,
D. Schultes, and D. Wagner. Combining hierarchical
and goal-directed speed-up techniques for dijkstra’s
algorithm. ACM Journal of Experimental
Algorithmics, 15(2.3), 2010.

[15] F. Busato, O. Green, N. Bombieri, and D. A. Bader.
Hornet: An efficient data structure for dynamic sparse
graphs and matrices on gpus. In 2018 IEEE High
Performance extreme Computing Conference (HPEC),
pages 1–7. IEEE, 2018.

[16] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng,
M. Wu, F. Yang, L. Zhou, F. Zhao, and E. Chen.
Kineograph: taking the pulse of a fast-changing and
connected world. In Proceedings of the 7th ACM
european conference on Computer Systems, pages
85–98. ACM, 2012.

[17] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels.
SIAM Journal on Computing, 32(5):1338–1355, 2003.

[18] D. Delling, A. V. Goldberg, R. Savchenko, and R. F.
Werneck. Hub labels: Theory and practice. In
International Symposium on Experimental Algorithms,
pages 259–270. Springer, 2014.

[19] D. Delling, A. V. Goldberg, and R. F. Werneck. Hub
label compression. In International Symposium on
Experimental Algorithms, pages 18–29. Springer, 2013.

[20] C. Demetrescu, A. Goldberg, and D. Johnson. 9th
dimacs implementation challenge–shortest paths.
American Mathematical Society, 2006.

[21] L. Dhulipala, G. Blelloch, and J. Shun. Julienne: A
framework for parallel graph algorithms using
work-efficient bucketing. In Proceedings of the 29th
ACM Symposium on Parallelism in Algorithms and
Architectures, pages 293–304. ACM, 2017.

[22] Q. Dong, K. Lakhotia, H. Zeng, R. Karman,
V. Prasanna, and G. Seetharaman. A fast and efficient
parallel algorithm for pruned landmark labeling. In
2018 IEEE High Performance extreme Computing
Conference (HPEC), pages 1–7. IEEE, 2018.

[23] S. Eyerman, W. Heirman, K. D. Bois, J. B. Fryman,
and I. Hur. Many-core graph workload analysis. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and
Analysis, SC ’18, pages 22:1–22:11, Piscataway, NJ,
USA, 2018. IEEE Press.

[24] D. Ferizovic and G. E. Blelloch. Parallel pruned
landmark labeling for shortest path queries on
unit-weight networks. 2015.

[25] J. S. Firoz, M. Zalewski, T. Kanewala, and
A. Lumsdaine. Synchronization-avoiding graph
algorithms. In 2018 IEEE 25th International
Conference on High Performance Computing (HiPC),
pages 52–61. IEEE, 2018.

[26] A. W.-C. Fu, H. Wu, J. Cheng, and R. C.-W. Wong.
Is-label: an independent-set based labeling scheme for
point-to-point distance querying. Proceedings of the
VLDB Endowment, 6(6):457–468, 2013.

[27] R. Geisberger, P. Sanders, and D. Schultes. Better
approximation of betweenness centrality. In
Proceedings of the Meeting on Algorithm Engineering

504

& Expermiments, pages 90–100. Society for Industrial
and Applied Mathematics, 2008.

[28] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In Presented as part
of the 10th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 12),
pages 17–30, 2012.

[29] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw,
M. J. Franklin, and I. Stoica. Graphx: Graph
processing in a distributed dataflow framework. In
11th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 14), pages
599–613, 2014.

[30] O. Green, M. Dukhan, and R. Vuduc. Branch-avoiding
graph algorithms. In Proceedings of the 27th ACM
symposium on Parallelism in Algorithms and
Architectures, pages 212–223. ACM, 2015.

[31] S. Hangal, D. MacLean, M. S. Lam, and J. Heer. All
friends are not equal: Using weights in social graphs
to improve search. In Workshop on Social Network
Mining & Analysis, ACM KDD, 2010.

[32] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal
basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[33] S. Horvath. Weighted network analysis: applications
in genomics and systems biology. Springer Science &
Business Media, 2011.

[34] M. Jiang, A. W.-C. Fu, R. C.-W. Wong, and Y. Xu.
Hop doubling label indexing for point-to-point
distance querying on scale-free networks. Proceedings
of the VLDB Endowment, 7(12):1203–1214, 2014.

[35] B. H. Junker and F. Schreiber. Analysis of biological
networks, volume 2. Wiley Online Library, 2008.

[36] J. Kunegis. Konect: the koblenz network collection. In
Proceedings of the 22nd International Conference on
World Wide Web, pages 1343–1350. ACM, 2013.

[37] K. Lakhotia, R. Kannan, and V. Prasanna.
Accelerating pagerank using partition-centric
processing. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 427–440, 2018.

[38] W. Li, M. Qiao, L. Qin, Y. Zhang, L. Chang, and
X. Lin. Scaling distance labeling on small-world
networks. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD ’19,
pages 1060–1077, New York, NY, USA, 2019. ACM.

[39] Y. Li, M. L. Yiu, N. M. Kou, et al. An experimental
study on hub labeling based shortest path algorithms.
Proceedings of the VLDB Endowment, 11(4):445–457,
2017.

[40] A. Lumsdaine, D. Gregor, B. Hendrickson, and
J. Berry. Challenges in parallel graph processing.
Parallel Processing Letters, 17(01):5–20, 2007.

[41] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference
on Management of data, pages 135–146. ACM, 2010.

[42] F. McSherry, M. Isard, and D. G. Murray. Scalability!
but at what {COST}? In 15th Workshop on Hot
Topics in Operating Systems (HotOS {XV}), 2015.

[43] M. E. Newman. Scientific collaboration networks. ii.
shortest paths, weighted networks, and centrality.
Physical review E, 64(1):016132, 2001.

[44] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight
infrastructure for graph analytics. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 456–471. ACM, 2013.

[45] K. Qiu, Y. Zhu, J. Yuan, J. Zhao, X. Wang, and
T. Wolf. Parapll: Fast parallel shortest-path distance
query on large-scale weighted graphs. In Proceedings
of the 47th International Conference on Parallel
Processing, page 2. ACM, 2018.

[46] S. A. Rahman, P. Advani, R. Schunk, R. Schrader,
and D. Schomburg. Metabolic pathway analysis web
service (pathway hunter tool at cubic).
Bioinformatics, 21(7):1189–1193, 2004.

[47] P. Shiralkar, A. Flammini, F. Menczer, and G. L.
Ciampaglia. Finding streams in knowledge graphs to
support fact checking. In 2017 IEEE International
Conference on Data Mining (ICDM), pages 859–864.
IEEE, 2017.

[48] J. Shun and G. E. Blelloch. Ligra: a lightweight graph
processing framework for shared memory. In ACM
Sigplan Notices, volume 48, pages 135–146. ACM,
2013.

[49] Y. Tang, M. Li, J. Wang, Y. Pan, and F.-X. Wu.
Cytonca: a cytoscape plugin for centrality analysis
and evaluation of protein interaction networks.
Biosystems, 127:67–72, 2015.

[50] B. Viswanath, A. Mislove, M. Cha, and K. P.
Gummadi. On the evolution of user interaction in
facebook. In Proceedings of the 2nd ACM workshop on
Online social networks, pages 37–42. ACM, 2009.

[51] F. Wei. Tedi: efficient shortest path query answering
on graphs. In Graph Data Management: Techniques
and Applications, pages 214–238. IGI Global, 2012.

[52] H. Wei, J. X. Yu, C. Lu, and X. Lin. Speedup graph
processing by graph ordering. In Proceedings of the
2016 International Conference on Management of
Data, pages 1813–1828. ACM, 2016.

[53] J. Xu and Y. Li. Discovering disease-genes by
topological features in human protein–protein
interaction network. Bioinformatics,
22(22):2800–2805, 2006.

[54] S. A. Yahia, M. Benedikt, L. V. Lakshmanan, and
J. Stoyanovich. Efficient network aware search in
collaborative tagging sites. Proceedings of the VLDB
Endowment, 1(1):710–721, 2008.

[55] D. Zhang, C.-Y. Chow, A. Liu, X. Zhang, Q. Ding,
and Q. Li. Efficient evaluation of shortest travel-time
path queries through spatial mashups.
GeoInformatica, 22(1):3–28, 2018.

[56] X. Zhu, W. Chen, W. Zheng, and X. Ma. Gemini: A
computation-centric distributed graph processing
system. In 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16),
pages 301–316, 2016.

505

