
Panorama: A Data System for Unbounded Vocabulary
Querying over Video

Yuhao Zhang
University of California, San Diego

yuz870@eng.ucsd.edu

Arun Kumar
University of California, San Diego

arunkk@eng.ucsd.edu

ABSTRACT

Deep convolutional neural networks (CNNs) achieve state-
of-the-art accuracy for many computer vision tasks. But us-
ing them for video monitoring applications incurs high com-
putational cost and inference latency. Thus, recent works
have studied how to improve system efficiency. But they
largely focus on small “closed world” prediction vocabular-
ies even though many applications in surveillance security,
traffic analytics, etc. have an ever-growing set of target en-
tities. We call this the “unbounded vocabulary” issue, and
it is a key bottleneck for emerging video monitoring appli-
cations. We present the first data system for tacking this
issue for video querying, Panorama. Our design philosophy
is to build a unified and domain-agnostic system that lets
application users generalize to unbounded vocabularies in an
out-of-the-box manner without tedious manual re-training.
To this end, we synthesize and innovate upon an array of
techniques from the ML, vision, databases, and multime-
dia systems literature to devise a new system architecture.
We also present techniques to ensure Panorama has high
inference efficiency. Experiments with multiple real-world
datasets show that Panorama can achieve between 2x to 20x
higher efficiency than baseline approaches on in-vocabulary
queries, while still yielding comparable accuracy and also
generalizing well to unbounded vocabularies.

PVLDB Reference Format:

Yuhao Zhang and Arun Kumar. Panorama: A Data System for
Unbounded Vocabulary Querying over Video. PVLDB, 13(4):
477-491, 2019.
DOI: https://doi.org/10.14778/3372716.3372721

1. INTRODUCTION
Videos are a ubiquitous and growing fraction of real-world

data. For instance, YouTube alone gets 100s of Petabytes of
videos each year [9]. Thus, real-time video monitoring appli-
cations involving automatic recognition of objects in videos
are gaining importance in many domains, including surveil-
lance security [1], crowd control [2], traffic analytics, species

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 4
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3372716.3372721

monitoring, and more. The state-of-the-art approach for
visual recognition is to use deep convolutional neural net-
works (CNNs) [24, 40]. However, deep CNNs are compute-
intensive and have high inference latency, e.g., the popular
Mask-RCNN [26] takes 1s for just five frames. Thus, en-
abling efficient visual recognition queries over video streams
is a pressing data systems challenge.

Several recent lines of work in the multimedia, database,
and systems communities aim to build more efficient sys-
tems for real-time video querying [66, 34, 62, 27, 33]. A
common theme is to reduce CNN inference latency with
cheaper models with smaller prediction vocabularies and us-
ing “cascades” of classifiers. But from conversations with
video monitoring application users across domains such as
surveillance and species monitoring, we find a pressing gap
in the existing landscape of systems: unbounded vocabulary.

Problem: Unbounded Vocabulary. Almost all pop-
ular object recognition CNNs today handle only a finite
“closed world” vocabulary of known targets. This is a natu-
ral consequence of their training dataset, typically a bench-
mark dataset like ImageNet [53], Pascal VOC [18], or MS
COCO [43]. For instance, Pascal VOC has a tiny vocab-
ulary of only 20 classes, e.g., “person,” “bird,” and “car.”
So, models trained on it only tell apart these 20 classes.
This may suffice for some applications that only need to tell
apart these classes (e.g., for self-driving cars), but for many
emerging video monitoring applications, the query require-
ments are more granular : “Who is this person?,” “What car
model is this?,” “What bird species is this?,” and so on. In
these applications, the target class set is not universally fixed
and finite but rather growing over time, sometimes rapidly.
For instance, the set of all people or all car models evolves.
We call such a prediction target with a fast-evolving set
of objects an unbounded vocabulary. Note the vocabulary
needs to be the sub-classes of a common class, sometimes
also known as “subclassing”.

Example. Consider a CNN trained to tell apart dog breeds.
Suppose its training dataset had a vocabulary of only three
popular breeds: Corgi, Labrador, and Poodle. What will it
output on an image of a rare dog breed, say, Azawakh? It
will output junk probabilities for Corgi, Labrador, and Poo-

dle. Of course, this not an issue with the model but rather
its prediction vocabulary–a limited multi-class vocabulary
is too restrictive. One might ask: Why not get labeled data
for all possible classes? Apart from being impractical, such
an approach also assumes new dog breeds will not arise.
This is a fundamental issue for such applications: the pre-

477

Cascaded central
multitask CNN
(PanoramaNet)

Great
albatross

Car, Model T,
(x,y,w,h)CNN

Part detectors

MLP

Classifier

CNN
Clustering
&nearest
neighbor

Human expert

For each category Category-specific methods

A)

B)
For each task&
bounded voc.

Deeply
supervised

training
&

Short-
circuiting

configuration

Car, Model T,
(x,y,w,h)

Fine-grained
object detection

Flamingo
Unbounded voc.
recognition

True
Verification/
re-identification

Deploy and specialize
on any category

For any
supported task&
unbounded voc.

Figure 1: High-level qualitative comparison of
existing vision stacks to Panorama’s system de-
sign philosophy. (A) Each domain has a bespoke
pipeline and a finite vocabulary. (B) Panorama en-
ables unbounded vocabulary querying with a unified
domain-agnostic data system that is automatically
specialized for a given domain.

diction vocabulary is effectively unbounded. This issue is
even starker for identifying faces in videos, e.g., for surveil-
lance security, because it is impossible to get labels for all
possible faces beforehand; furthermore, the set of faces is
not bounded because new people will keep appearing.

Limitations of Existing Landscape. We see two main
limitations. First, existing querying systems do not sup-
port unbounded vocabularies. Thus, their architectural as-
sumptions and modeling choices need to be revisited. While
the ML community has studied learning schemes to support
new class labels, e.g., one-shot and zero-shot learning [39,
37], using them requires tedious manual intervention to re-
train the model and provide metadata and/or more labels.
This needs ML expertise, but video monitoring applications
typically have only non-technical domain users in the loop
of a deployed system (e.g., mall security). Second, making
existing CNN-based stacks support unbounded vocabular-
ies is not practical because they are often too application-
specific and may involve bespoke pipelines, as illustrated by
Figure 1(A). Such an ad hoc per-domain approach will du-
plicate the efforts of building, testing, and maintaining this
capability across domains. Overall, the lack of support for
unbounded vocabularies in a unified domain-agnostic data
system is a bottleneck for emerging video applications.

System Desiderata.We have three related desiderata for
a practical data system to support unbounded vocabulary
queries over video. (1) Generalizing to new classes in the
domain’s vocabulary in an automatic manner without man-
ual ML re-training. (2) Being unified and domain-agnostic
to enable existing applications to adopt it without expen-
sive manual customization. (3) Being resource-efficient and
ideally real-time.

Our Proposed System. We present Panorama, the first
information system architecture for unbounded vocabulary
queries over video. It supports two kinds of queries popu-
lar in video monitoring. First is recognition: identify which

Figure 2: Example Panorama use-case (1): un-
bounded vocabulary recognition. Left: the frame
shows two out-of-vocabulary faces (identities un-
known) and the model only labels them as faces.
Right: After the user freezes the video, clicks on
the bounding boxes and labels them with names,
Panorama can recognize these two objects in future
frames. The scores shown on the left frame are the
probabilities of being faces; on the right frame are
the distances from the faces to their nearest neigh-
bor in the Known Objects set.

known object (or set of objects) appear in a video feed (or
an image database), e.g., a mall security officer checks a
video feed against an image roster of wanted criminals to
spot them in the crowd. Second is verification: tell if two
frames (or images) have the same object in them regardless
of whether the object is known, e.g., the officer compares an
old frame with the current video feed to see if anyone reap-
peared. Our system design philosophy, illustrated by Fig-
ure 1(B), is to devise a unified and domain-agnostic system
that can be automatically specialized for a given application.

Summary of Our Techniques. Panorama has three main
components as Figure 1(B) shows: a new unified CNN archi-
tecture we call PanoramaNet, an automated offline training
pipeline, and an online inference subsystem. PanoramaNet
is a careful synthesis of three techniques (Section 4.1): multi-
task learning from ML, embedding extraction from vision,
and short-circuiting of inference from data systems. It helps
meet desiderata (1) and (2). Our automated offline training
pipeline is a synthesis of deep supervision (Section 4.2) and
weak supervision (Section 4.3) ideas from ML. It helps meet
desideratum (2). Finally, our online inference subsystem fea-
tures a novel short-circuiting configuration technique (Sec-
tion 4.4) that enables a tunable accuracy-efficiency tradeoff
and a synthesis of nearest neighbor search from multime-
dia systems and query caching from databases to improve
efficiency (Section 4.5). It helps meet desideratum (3).

Example Use-Cases. We present two example use-cases
to highlight Panorama’s functionalities. Section 3 presents
the full query API of Panorama and a usage example. Note
the user interface is application-specific and orthogonal to
our work, here we only show some possibilities of custom-
built interfaces.

(1) Unbounded vocabulary recognition. Figure 2 shows,
say, a journalist spotting people in a news video feed. The
vocabulary did not have Donald Trump or Kim Jong-Un
to start with. Our system constantly detects faces and ex-
tracts embeddings from them. In this case, the journalist
can select the bounding boxes and type in names for these
two faces and their corresponding embeddings, respectively.
Once it is done, these named embeddings are added into the
known objects which serves as the vocabulary. From then
on Panorama can recognize Donald Trump or Kim Jong-
Un. This entire process happens on-the-fly and without any
re-training of the CNN.

478

Figure 3: Example Panorama use-case (2): un-
bounded vocabulary embeddings extraction for
faces. The embeddings are then clustered, yielding
somewhat coherent clusters.

(2) Unbounded vocabulary embeddings. Panorama can also
output object embeddings (vectors) for further analyses.
Figure 3 shows, say, a data scientist analyzing the represen-
tation of racial and gender groups in an Oscars video feed.
The user runs an off-the-shelf clustering algorithm on the
embeddings to get somewhat coherent clusters. Note that
Panorama did not have any of these faces in its vocabulary.

Our focus is on a new crucial system functionality for
video monitoring applications: the deployed model need not
be retrained when new classes (objects) arise. That is, users
can just name the new objects from the video feed and add
them to the known objects set–Panorama will automatically
start recognizing them in the future. So, the users do not
need any ML-related expertise or worry about retraining
too often. The main technical novelty of this work is a new
data system architecture that solves our real-world prob-
lem in a domain-agnostic, automated, and efficient man-
ner. To achieve our goal, we draw techniques from diverse
fields–vision, ML, databases, and multimedia systems–and
synthesize and adapt them for our setting. We developed a
new general CNN architecture, weak supervision scheme and
auto-training scheme to enable such applications. We also
studied trade-off spaces between accuracy and throughput.
Overall, this paper makes the following contributions:

• To the best of our knowledge, this is the first paper to
propose a unified information system architecture for
unbounded vocabulary queries over video using CNNs.

• We create a new multi-task CNN architecture, Panora-
maNet, that supports unbounded vocabularies in a
unified and unsupervised manner based on embedding
extraction and content-based image retrieval (CBIR).
We present an automated and domain-agnostic train-
ing pipeline combining deep and weak supervision.

• We devise a novel self short-circuiting configuration
scheme for PanoramaNet to enable practical accuracy-
efficiency tradeoffs. We also create a query cache to
improve efficiency further at scale.

• We present an extensive empirical evaluation of the
accuracy, efficiency (throughput), and scalability of

Panorama on multiple real-world videos. Overall, it of-
fers between 2x and 20x higher throughput with com-
petitive accuracy for in-vocabulary queries, while also
generalizing well to out-of-vocabulary queries.

2. SETUP AND BACKGROUND
We start by explaining our problem setup and defining

some standard terminology from computer vision relevant
for video monitoring applications. We then provide some
technical background on multi-task deep learning and em-
bedding extraction needed to understand our system.

2.1 Visual Querying Tasks
A video X is logically a sequence of image frames Fi,

i.e., X ≡ F1F2F3 This sequence can be unending for
streaming video. The application specifies a vocabulary V

of objects of interest it wants to identify in the images/video.
The objects can be at any granularity, ranging from high-
level generic categories (e.g., “person,” “car,” or “bird”) to
more fine-grained entity-level categories (e.g., “the person
Donald Trump,” “the car model Ford Mustang,” or “the
bird species California Quail”). Most prediction tasks in
computer vision, as well as a suite of recent video querying
systems, assume V is finite, perhaps even small. For exam-
ple, NoScope [34] uses |V | = 2, viz., yes or no for a given
object type like buses. In our setting, |V | can potentially be
infinite–we call this an unbounded vocabulary.
We are now ready to define the types of visual querying

tasks of interest to us. We will then explain the implications
of an unbounded vocabulary.

Definition 2.1. Recognition: Given an image frame F ,
identify an object v ∈ V present in F (if at all). The recog-
nition is called coarse-grained if V only has generic object
categories. It is called fine-grained if V contains entity-level
categories too. A frame can have any number of objects.
This task is also called multi-object classification in image-
based applications.

Definition 2.2. Localization: Given an image frame F ,
identify the “regions” of F (e.g., bounding boxes) where all
instances of objects from V are present (if at all).

Definition 2.3. Verification: Given two image frames
F1 and F2, identify if the same “object” arises in both im-
ages; the object is assumed to be from V .

The above tasks are not entirely orthogonal to each other.
Real-world video frames often do not have only one object.
Thus, localization is needed before or during recognition.
The distinction between coarse- and fine-grained recognition
is also not universal but rather application-defined; a fine-
grained V typically distinguishes entities of the same type,
e.g., identify the person instead of just is it a person. Fine-
grained recognition often leads to unbounded V in real-world
video monitoring applications, the focus of this work. For
example, a recognition system may be trained on a finite set
of people, but it should be able to recognize other people too
during usage.

Recall that our goal is to enable unbounded vocabulary
querying, both verification and recognition, for video mon-
itoring applications. We now make a key observation that
we exploit later in Section 3. If V is finite, verification can
be mapped to two recognition queries and comparing the la-
bels. However, this is impossible for unbounded V . Instead,

479

Model

Parameters
shared

Known objects set

Model

Bob

Alice

Charlie

Label: Bob

Query

Embeddings within latent space

Figure 4: The embedding extracted from the query
image is nearest to the known embedding for Bob in
the metric space and farther from Charlie’s or Al-
ice’s. This capability allows the model to distinguish
between these entities.

we reverse the mapping, since verification does not need to
identify the label: cast recognition as multiple verification
queries against known V .

2.2 Background: Multi-task Deep CNNs
Deep convolutional neural networks (CNNs) offer state-

of-the-art accuracy for many computer vision tasks [40, 35]
and have won many benchmark competitions [17, 53, 43,
18]. CNNs offer two critical ML engineering benefits [35].
First, they automatically learn salient features from the im-
age during training instead of requiring extensive manual
feature engineering [24]. This is done in the form of mul-
tiple layers of feature transformations involving operations
such as convolutions, pooling, and non-linearity. Second,
deep learning is highly flexible in terms of the structures of
the inputs and outputs. In particular, multi-task deep learn-
ing can predict multiple related targets simultaneously while
sharing most of the internal features for each task [50]. This
capability is especially attractive for our problem since most
of the processing for verification and recognition queries can
be shared inside a single deep CNN. Later in Section 4.1,
we explain how we leverage this capability in Panorama for
unified processing.

2.3 Background: Embeddings
In both vision and language understanding, an embedding

is an abstract representation of an entity in a metric space.
Essentially, given a set of entities S, one learns a mapping
f : S → Rd that maps each entity to a d-dimensional vec-
tor. Embeddings are especially popular in deep learning
since they enable almost all predictive processing compu-
tations to use only linear algebra operations. Embeddings
have interesting semantic properties that allow us to tell
apart entities. For example, FaceNet [56] can classify faces
in a known set by extracting embeddings for each, while
DeepFace [47] can extract such embeddings even without
specific labels. In particular, one can often use distance
measures in the high-dimensional space to distinguish be-
tween entities, as illustrated by Figure 4. This remarkable
capability of embeddings has recently enabled more accu-
rate CBIR applications [63, 69, 31]. Later in Section 4.1,
we explain how we leverage this capability in Panorama to
tackle the unbounded vocabulary problem.

3. SYSTEM ARCHITECTURE AND API

Overview. Recall that we have three main desiderata: sup-
port for unbounded vocabulary, automated domain-agnostic
pipeline, and efficiency. To achieve all these, we design
Panorama in a top-down manner with three main compo-
nents, as shown in Figure 5. (1) A centralized multi-task

deep CNN we call PanoramaNet whose parameters are au-
tomatically specialized for a given application, video feed,
and a reference model; (2) An online phase to answer verifi-
cation and recognition queries efficiently by short-circuiting
PanoramaNet, also called self-cascading, possibly combined
with nearest neighbor search; (3) A one-time offline process
of automatic training data creation, training, and configu-
ration of short-circuiting.

Queries and API. Panorama supports verification and
recognition queries (Section 2.1). It also supports variable
numbers of objects per frame, since it also performs local-
ization implicitly. Table 1 lists the functions in our API,
and Listing 1 gives an end-to-end usage example. The main
querying routines are verify and recognize. The album is
a set of known object images to recognize the video stream,
e.g., known people or car models. Panorama allows this set
to grow without retraining–this supports an unbounded vo-
cabulary, as was shown by the application in Figure 2. The
detect routine is a fall back for bounded vocabulary recog-
nition. The embedding routine extracts object embeddings
from a frame; this was used for the application in Figure 3.
The other routines are used for the offline phase, which we
introduce next.

Table 1: Functions in Panorama API.

Methods Action

verify(frame a, frame b, target acc) Verification
recognize(frame, album, target acc, cache) Unbounded-voc recognition
detect(frame) Bounded-voc object detection
embedding(frame) Embedding extraction
data gen(video) Data creation on the video feed
fit(data) DSN training on the data
qualify(data, delta, task) Configure short-circuiting

Parameters

ref_model: the reference model required for model specialization and

cascaded query processing

min_cluster_size: <optional > the minimum cluster size , as required by

HBSCAN algorithm , only needed if the ref_model is embedding extractor

data_path: the directory to the dataset for model specialization

delta_i: <optional > the slack variable for the cascade intervals

task: the name of the task to qualify and

a_g: the target accuracy for query processing on verification tasks

album_path: the directory to the known objects set for recognition

cache: use the query cache or not for recognition

Examples

>>> model=Panorama(ref_model , min_cluster_size)

invoke data creation , model training and short -circuiting config

>>> model.data_gen(video_feed)

>>> model.fit(data_path)

>>> model.qualify(data_path , delta , task =[" verification", "recognition "])

run a verification query

>>> ver_result=model.verify(file :// frame_1324 , file :// frame_3325 , a_g =0.9)

run a recognition query

>>> rec_result=model.recognize(file :// frame_1324 ,album ,a_g=0.9, cache=False)

Listing 1: Panorama API and example usage.

Offline Phase. The user provides a video/image feed, a
relevant reference model, and optional configuration param-
eters for Panorama. The reference model solves the bounded
vocabulary recognition task, e.g., identify a known set of
faces. Panorama’s goal is to mimic this model’s accuracy
on the known object set while generalizing beyond that set
with higher efficiency. Using the reference model, Panorama
automatically generates training data on the video feed (Sec-
tion 4.3) and trains PanoramaNet (Section 4.2). If the refer-
ence model yields embeddings instead of labels, then a con-
figuration parameter can ask Panorama to generate labels
instead. The training of PanoramaNet implicitly configures
its short-circuiting using a novel mechanism (Section 4.4).

480

 Panorama

PanoramaNet

Panorama API

Training data
creation

Deeply
supervised
training

Specify one frame/image

Training data

Video/image
 Input UserRef. model (Optional) model configs

Verification query
Recognition

query

a) Offline phase b) Online phase

Specify a pair of frames/images

Known objects

Short-
circuiting

configuration

Figure 5: Overall system architecture of Panorama. Solid arrows represent invocations/interactions, while
dashed arrows represent the flow of data/results. PanoramaNet is built once offline and then deployed for
online video monitoring.

Online Phase. The user specifies the verify and/or rec-
ognize query as explained above for monitoring the video.
The user interface is application-specific and orthogonal to
this work. The interface shown in Figure 2 is only an exam-
ple. They also specify an accuracy goal (relative to the ref-
erence model) to customize Panorama’s accuracy-efficiency
tradeoff. Panorama extracts embeddings from the given
frames and compares them for verification or recognition
as appropriate. For recognition, a nearest neighbor search
is performed during inference.

4. COMPONENTS AND TECHNIQUES
Most existing video querying models perform localization

and recognition separately, and they do not support un-
bounded vocabulary. Adapting them to recognize new en-
tities could require tedious manual retraining. In contrast,
Panorama builds a single multi-task deep CNN that is auto-
matically customized to each application. It “short-circuits”
itself at query time to improve efficiency. Figure 6 illus-
trates Panorama’s working in more detail. Next, we dive
into each component: model architecture, training process,
short-circuiting configuration, and inference process.

4.1 Deeply Cascaded Multi-task Model
Goals. At the heart of Panorama is a centralized multi-task
deep CNN we call PanoramaNet. We have three goals for
the design of this model. (1) Supporting both verification
and recognition, as well as localization to identify multiple
objects in a frame. (2) Being Domain-agnostic and not too
tied to one application, e.g., faces or car models. (3) Being
able to gracefully tradeoff inference cost for accuracy.

Basic Idea and Observations. To meet all three goals, we
design PanoramaNet as a multi-task deep CNN with a cas-
caded modular structure. It has multiple trainable “blocks”
of CNN layers, each with its own output block. The low-
est layers of the CNNs act as a shared feature extractor for
all blocks. All output layers have the same semantics, but
they offer different accuracy-runtime tradeoffs. By short-
circuiting at an earlier block, the inference cost goes down.
Each output block has multiple intermediate targets for su-
pervision during training, including bounding box regres-
sion, embedding extraction, and in-vocabulary recognition
loss. This multi-task setup is what allows Panorama to si-
multaneously recognize in-vocabulary objects and generalize
to out-of-vocabulary objects after deployment. During the

training process, short-circuiting is configured based on a
user-given accuracy goal and the model’s accuracy on a val-
idation set.

PanoramaNet Neural Architecture. Our model per-
forms localization and embedding extraction jointly in one
pass. Its base architecture is adapted from Yolov2-tiny [52]
with two major modifications for our problem. First, while
Yolov2 is a one-pass model for localization and recognition,
it does not support unbounded vocabulary. Thus, we aug-
ment it by “wiring in” an embedding extraction module.
Second, inside each grid cell that segregates the feature maps
of the CNN layers in Yolo, the bounding box regressors (for
localization) and recognizers work independently. So, even
if the bounding box is poor, the recognizer may still yield
correct labels. However, in our setting, this property is anti-
thetical for embedding extraction, since the box-segmented
image must align well with the object for embedding extrac-
tors to work properly. To tackle this issue, we confine each
recognizer to its corresponding bounding box regressor via
3D convolutional layers.

Figure 7 shows the high-level architecture of Panora-
maNet. Due to space constrains, Stem1 architecture is pre-
sented in our technical report [68]. Figure 8 expands Output
Blocki; layer are annotated with their size, name, and the
number of filters, e.g., 3x3 Conv2D(1024) means a 3x3 2D
convolutional layer with 1024 filters. PanoramaNet stacks
many such Stem and Output Blocks. We collectively denote
each Stemi along with its Output Blocki as Blocki. We use
an embedding dimension of 128. We use Euclidean distance
(L2 norm) to compare embeddings.

Output Blocks. As Figure 8 shows, Output Blocks have
modules that are used only during the offline phase. In
particular, the embedding extractor is also trained during
the offline phase using in-vocabulary labels. During the on-
line phase, the recognizer module is applicable only for in-
vocabulary recognition, but the embedding extractor applies
to both in- and out-of-vocabulary recognition. Due to our
multi-task setup, all outputs have both bounding boxes and
embeddings (or labels). Outputs are then thresholded based
on the “objectness” of the bounding boxes (explained more
in Section 4.2) and then thresholded with non-maximal sup-
pression. Throughout the paper, we set the former to be
0.1 for verification and 0.03 for recognition, and the latter
to be 0.5.

481

Model2

Fine-grained
recognizer

Model1

Localizer Coarse-grained recognizer

Current solution

Label:
Face

Label:
Face

Label:
Face

Label:
Face

Label:
Face

Label:
Face

Cropping & Resizing

Known
objects

Parameters shared

Panorama

Input
Short-circuit processing

PanoramaNet
Block1 Block2 Blockn...

Extracted
embeddings

Bounding boxes
&Embeddings

K-NN search

PanoramaNet
Block1 Block2 Blockn...

Label: Bob

Label: Alice

Label: Bob

Label: Alice

Label: Bob

Label: Alice

Outputs

Cascade interval
check

Figure 6: Detailed workflow of Panorama’s internals for processing a recognition query. The deeply cascaded
PanoramaNet can be short-circuited and is combined with nearest neighbor search for enabling unbounded
vocabulary recognition in one pass. Also shown is a typical prior art solution; it takes a two-pass approach,
with separate modules for coarse-grained and fine-grained recognition. The prior art solution also does not
support unbounded vocabulary.

St
em

3
St

em
2

Output: (13,13,5,5+128)

(13,13,5,5+128)

Output Block1

Output1

Output: (13,13,512)

Output: (13,13,5,5+128)

(13,13,5,5+128)

Output: (13,13,1024)

Output: (13,13,512)

Output: (13,13,1024)

Output: (13,13,1024)

Output: (13,13,2048)

Output: (13,13,2048)

Output: (13,13,5,5+128)

(13,13,5,5+128)

Output Block3

Output3

Output Block2

Output2

Input

Stem1

(416,416,3)

3x3 Conv2D(1024)

2x2 MaxPool

BatchNorm+LeakyReLU

2x2 MaxPool

3x3 Conv2D(2048)

BatchNorm+LeakyReLU

Figure 7: PanoramaNet deep cascade architecture
with n = 3 blocks. An output has dimensions (grid,
grid, number of bounding boxes, bounding box pa-
rameters+embedding dimension). All layers shown
have a stride of 1 and are same-padded.

4.1.1 Answering Verification Queries

We now explain how PanoramaNet answers verification
queries. The model outputs embeddings from each of the
two input frames/images. We then simply threshold on the
L2 distances of the embeddings as follows. Given two frames
fi and fj and their corresponding embedding sets {ei} and
{ej}, the verification answer is yes if the following holds
(otherwise, it is no):

min
i,j

||ei − ej || ≤ �,

In the above, � is a Panorama configuration threshold
to distinguish embeddings of different entities in the metric
space. This approach works because as explained in Section
2.3, well-trained embeddings offer us this geometric capa-
bility to roughly tell apart different entity classes. But how
to set �? We set � based on a held-out validation set dur-
ing the offline training process. This requires a balancing
act between precision and recall. To achieve this balance,
consider the CDFs of the pairwise distances for same-class
(e.g., same person) embeddings and different-class embed-
dings in Figure 9. On the Faces dataset (explained more
in Section 5), a threshold of � = 0.8 reasonably separates
same-class pairs from different-class pairs with high preci-
sion. Similarly, on the Cars dataset, � = 1.1 is suitable.

Offline phase

Recognizer

Em
be

dd
in

g
ex

tra
ct

or

Bo
un

di
ng

 b
ox

re

gr
es

so
r

Output

Loss

Concatenate Output:
(13,13,5,5+C)

1x1x1 Conv3D(C) Output: (13,13,5,C)

L2 Norm Output: (13,13,5,128)

Reshape Output: (13,13,5,128)

1x1 Conv2D(640) Output: (13,13,5x128)

Reshape Output: (13,13,5,5)

1x1 Conv2D(25) Output: (13,13,5x5)

Input

Concatenate Output: (13,13,5,5+128)

Output

Online phase

Online phase

Figure 8: Architecture of Output Blocks from Fig-
ure 7. All layers are stride=1 and same-padded.

Figure 9: CDFs of pairwise Euclidean distances be-
tween the embeddings yielded by Block2 of Panora-
maNet.

We prefer such high-precision thresholds, since overall recall
can be enhanced through other means, e.g., have multiple
different images for known objects.

4.1.2 Answering Recognition Queries

As mentioned earlier, we map a recognition query to mul-
tiple verification queries. Given a query image’s embeddings
(e.g., from a video frame), we perform a nearest neighbor
search against the embeddings in the album. This is done
as bulk matrix arithmetic on the GPU, which turned out
to be much faster than indexing. Thresholding can be used
on top to ensure the retrieved neighbors are similar enough.
Since recognition involves multiple queries, it is more prone
to errors and harder to optimize. Thus, Panorama offers a
configuration option of using the recognizer component in
PanoramaNet for output labels directly for in-vocabulary
recognition; note this is not possible for out-of-vocabulary
recognition and only nearest neighbor search can be used.

482

4.2 Training with Deep Supervision
Since PanoramaNet has multiple output layers, we need

to consider all of their loss functions during backpropaga-
tion. To this end, we use the “deep supervision” approach
introduced in [41]. It was originally devised to tackle the
vanishing gradients issue for accuracy and for better dis-
criminative power of each layer. We repurpose it to enable
our accuracy-throughput tradeoff; to the best of our knowl-
edge, this is the first time deep supervision is exploited this
way. The overall loss is as follows:

L =
X

�klk, (1)

In the above, �k is the weight for output layer k and lk
is that layer’s loss. Each lk is backpropagated only through
its parent layers. �k controls the trade-off between more
opportunities of early-exit vs better over-all performance.
We set each �k inversely proportional to the number of
FLOPS to compute that layer’s output. In particular, we
set (�1,�2,�3) = (8, 2, 1). We conduct experiments in Sec-
tion 5 to study the effect of these weights. Note that our
deeply cascaded architecture is generic; lk can be any form
of loss determined by the multi-task target goals. In partic-
ular, lk in PanoramaNet is the same loss as in Yolov2; due
to space constraints, we present the whole loss function in
our technical report [68].

Given Blockk, B is the number of anchor boxes, S is the
number of grids, (xi, yi, wi, hi) are the location of the cen-
troid, and the width and height of anchor boxes. Ci is the
“objectness” of the output, referred to earlier in Section 4.1.
�coord and �noobj are weights to balance the parts of the loss;
we use the default weights from [51]. Finally, pi(c) is the
classification “confidence” for class c. We adapt the code
from [5] to implement our loss function.

4.3 Automated Training Data Creation
PanoramaNet is domain-agnostic and meets our systems-

oriented goals. But it still needs to be trained on a specific
application’s data. To this end, we create an automated
training process to customize PanoramaNet to a given data-
set in the offline phase. We first run the user-given reference
model on a portion of the video (or subset of images) to cre-
ate “weakly supervised” training data [71]. The reference
model must provide both bounding boxes and labels for the
corresponding bounded vocabulary task. We also support
models that produce embeddings instead of labels; in this
case, Panorama clusters the embeddings and assigns a la-
bel per cluster. We use HDBSCAN [12] for clustering; the
user can set its hyper-parameters during configuration or use
defaults. We also denoise the clustered data by removing
outliers. Overall, the reference model “teaches” Panorama,
which means the reference model caps its in-vocabulary ac-
curacy. If one desires higher accuracy, or if a reference
model is not available for an application, the user has to
give PanoramaNet a whole labeled dataset; we used this
approach for the Cars dataset in Section 5.

4.4 Configuration of Short-Circuiting
Goals and Basic Idea. A critical design decision in
PanoramaNet is its multi-block architecture, which enables
a graceful accuracy-throughput tradeoff by short-circuiting.
But when to short-circuit? Recall that the user sets an accu-
racy goal. We need to satisfy this goal reliably at query time.
Our basic idea is to compute a “score” for a given query at

each block and compare it against a pre-computed “cascade
interval” for that block. If the query’s score at a block falls
in its cascade interval, it means the model is not confident
about this intermediate output and so, subsequent blocks
need to be invoked. Otherwise, we short-circuit at the cur-
rent output and return immediately. We first explain how
we use cascade intervals and then explain how we set them,
including how our approach ensures correctness.

Using Cascade Intervals. We pre-compute a cascade in-
terval [Li, Hi] for Blocki in the offline phase. In the online
phase, we are given a verification query with two frames/im-
ages f and g. Let di denote the distance between the pair
of embeddings output by Blocki for these frames; this is
our score for short-circuiting. We start processing both
frames from the first block until we hit a Blocki such that
di ∈ [Li, Hi]. If no block satisfies this, we invoke the refer-
ence model, which acts as the “pseudo ground truth” in our
weakly supervised setup.

Let ag denote the user’s accuracy goal. Let the actual
accuracy of Blocki be ai on a given labeled set of examples
Dv = {((f, g), y)}, wherein y is the ground truth (yes or
no); denote |Dv| by N . So, Blocki has correctly answered
Nai queries. If ag > ai, it means Blocki has a deficit of
N(ag−ai) queries to meet the accuracy goal. Thus, for short
circuiting to succeed at Blocki, the percentage of queries
that should have been answered correctly within the set of

wrongly answered queries is
N(ag�ai)

N(1�ai)
=

ag�ai

1�ai
≡ qi (say).

Setting Cascade Intervals. In the offline phase, we plot
the CDF of di for queries that did not get correctly answered
at Blocki using the labeled validation set Dv. We set [Li, Hi]
to match the above percentage qi of these queries. A natural
choice is to select an interval around the median:

Li = P (0.5−
ag − ai

2(1− ai)
− �i, Se) (2)

Hi = P (0.5 +
ag − ai

2(1− ai)
+ �i, Se) (3)

In the above, P (x, S) denotes the x percentile of the set
S. Se is the set of di for all examples in Dv such that short-
circuiting at Blocki gives the wrong prediction (i.e., the out-
put is the opposite of y). Under the assumption that the
validation set and deployment data come from the same or
similar distribution, the above values guarantee that the ac-
curacy goal will be met, while short-circuiting as much as
possible. To account for statistical differences between the
deployment data and validation set, we also include a small
slack variable �i.

Correctness Analysis. We now explain why our above
approach guarantees that the accuracy goal ag will be met.
Let the accuracy of Blocki be ai < ag. Queries that fall
into the interval [Li, Hi] at Blocki all get sent to the next
block. Note that since we do not have ground truth in the
online phase, we do not know if Blocki answered any queries
correctly; we can only rely on ci for short-circuiting. But
note that exactly qi fraction of all wrongly answered queries
(and unknown numbers of correctly answered queries) are
sent by Blocki to a later block to be eventually answered
correctly, perhaps ultimately by the reference model itself.
Thus, the overall accuracy goes up from ai to at least ag

by performing more inference computations (invoking more
blocks) for queries that did not get short-circuited.

483

Figure 10: Examples of Panorama’s inference execu-
tion. a). The verification query is short-circuited at
block2. The left and right models including Panora-
maNet and the reference model share parameters,
respectively. b). The recognition query is short-
circuited at block3. Embeddings from the known
objects were pre-extracted and stored.

4.5 Query Cache
Intuition. Video with high frame rates lead to lots of
queries, e.g., 40Hz means 40 queries for 1s. However, videos
also have high temporal redundancy : most successive frames
are similar. Thus, downsampling can raise efficiency with-
out hurting accuracy much (e.g., 1 frame from 1s). But we
can go further to exploit a key property of our target ap-
plications: objects typically do not appear and disappear
too fast. Some objects may even last minutes, e.g., faces in
news videos. This gives us to another systems insight: cache
recent query results to reduce computations for the same ob-
ject. Such a query cache skips the costly nearest neighbor
search for successive recognition queries.

Mechanism. We create an approximate query cache with
the embeddings since they exist in a metric space with Eu-
clidean distance as an indicator of similarity. Denote d(x, y)
as the distance between embeddings x and y. Let ea be
the embedding from a recent frame. Let e0 be the embed-
ding of its nearest neighbor result from known. For a new
frame with embedding eb, we have one observation based
on the triangle inequality; Suppose d(ea, e

0) ≤ �, where � is
the threshold for same-class embeddings (Section 4.1.1). If
d(eb, ea) ≤ d(ea, e

0), return the label of e0 as the result and
skip the search. This approach is an approximation because
a different embedding in the album may be nearer to eb than
ea (although with low probability). Thus, our cache creates
a runtime-accuracy tradeoff.

Corresponding to the observation, we cache the most re-
cent several frames and evict in FIFO manner, the number
of which is the cache size. Given a frame, we check the cache
for hits and return the labels. We then take the misses and
do a normal k-nn search to get labels for them. Finally we
update the cache with all labels acquired in the above steps
for this frame. Overall, this query cache can reduce runtimes
significantly when the known objects set is massive.

4.6 Online Phase Inference Process
Figure 10 depicts how queries are processed in the on-

line phase. For verification, both frames are passed to
PanoramaNet for embedding extraction one block at a time.
Pairwise distances between the embeddings are checked for
short-circuiting. If short-circuiting succeeds, we threshold
the distance against � for the final answer (yes or no). For
recognition queries, Panorama extracts embeddings from
given frames and compares against the embeddings (for the
corresponding block) in the known object set via a nearest

neighbor search. This search might potentially be skipped
by the query cache (Section 4.5). Once again, if short-
circuiting succeeds at some block, we stop and return the
nearest result’s label. As mentioned in section 4.4, the ref-
erence model is the fallback option in case none of the blocks
of PanoramaNet can answer the query with high confidence.

5. EXPERIMENTS
We now evaluate Panorama with several real-world work-

loads and datasets for both verification and recognition
queries. In summary, our results show the following:

(1) For in-vocabulary verification, Panorama offers between
2x and 8x higher throughput (lower latency) than a strong
baseline, while offering competitive accuracy. For in-voc.
recognition; the speedups are up to 20x.

(2) Panorama generalizes well for out-of-vocabulary queries,
offering much higher accuracy than random guessing base-
lines, while still offering high throughput.

(3) Panorama configuration parameters enable a graceful
tradeoff between accuracy and throughput.

(4)As the known objects set size scales up for recognition,
Panorama’s query cache helps raise throughput up to 6x.

We first describe the datasets and workloads used. We
then present the end-to-end performance results followed by
a drill-down study of the contributions of Panorama’s tech-
niques. Finally, we present the scalability test.

5.1 Experimental Setup
Datasets. Table 2 lists our datasets. Faces[14] and
Birds[36] are videos recorded from online surveillance cam-
eras at 30Hz frame rate. Faces is for recognizing people;
Birds, for recognizing bird species. All videos are decoded
and unpacked into frames. We sample 1 frame per sec-
ond. Our baseline models also operates on the downsampled
frames instead of the original video, which makes them al-
ready strong baselines for the throughput-accuracy tradeoff
we study. Cars is an image dataset for car model recogni-
tion [64].

Table 2: Datasets and reference models.

Dataset Source |Voc.| #Frames Ref. model

Faces CBSN[14] 60 5.4m MTCNN[67]+FaceNet[56]
Birds Bird Cam[36] 6 5.4m Yolo[52]+Inceptionv3[16]
Cars CompCars[64] 431 45k Yolo[52]+GoogLeNetCars[65]

Reference Models. Each reference model has two sub-
models, as Table 2 shows. The reference model for Faces
produces embeddings; thus, we create pseudo-labels after
un-supervised clustering. Overall, the reference models
operate on a bounded vocabulary. For Faces and Birds,
Panorama is weakly supervised by the respective reference
model (Section 4.3), but for Cars, we used the Comp-
Cars [64] dataset to show that Panorama can work on
strongly supervised image data as well, not just week-
supervised videos.

Data Split Methodology. Figure 11 shows how we split
the datasets. We first split all examples into train, val

and test. At the same time, we split the vocabulary into

484

Train

in-voc	
train

out-voc
test

in-voc	
test

Deploying phase

known

valtrain test

entire
dataset

Model

Determine [Li, Hi] Test Test

Figure 11: Schematic diagram about dataset split.

in-voc and out-voc. Then, test is further split into in-

voc test, with test examples that have in-voc labels, and
out-voc test, the rest of test. Only the in-voc train of
train is used in the CNN training. val serves for the val-
idation during training and short-circuiting configuration.
Then at deploying time, we poll 5 best frames per class,
based on Panorama’s confidence score of object detection,
from train and val to form known for subsequent recog-
nition queries. Then known becomes the new vocabulary.
For videos, we chunk the videos, instead of random order,
into 60:20:20 ratio for the train-val-test split. The vocabu-
lary is also chunked into 80:20 for in-out-voc split, sorted in
descending order by the cardinality of each class. But for
Cars, we reuse the pre-existing 70:30 train-test split in its
original labeled dataset; however, its vocabulary is also split
80:20. The val split is 10% of train. Overall, PanoramaNet
is trained only with in-voc train, which allows us to sim-
ulate the unbounded vocabulary scenario. At deployment
time, we use known as the album for recognition queries.

Training Panorama. We train PanoramaNet with Adam
optimizer. Adam is configured with an initial learning rate
of 0.5 × 10�4, �1 = 0.9, �2 = 0.999, and ✏ = 10�8. We use
a batch size of 64 for Faces and Birds and 8 for Cars. The
training is terminated if for 10 consecutive epochs the vali-
dation loss does not improve. Training for face terminates
after 48 epochs taking 2 day 15 hours. Training for bird

terminates after 109 epochs taking 1 day 3 hours. Training
for car terminates after 208 epochs taking 8 days 6 hours.

Accuracy Methodology. As explained in Section 4.3, we
use the denoised outputs of the reference model as labeled
data for Panorama. Thus, all in-voc test accuracy is re-
ported relative to the reference model. This methodology is
fair because our focus is not on improving absolute accuracy
but rather systems issues of functionality and efficiency.

Evaluation Metrics. We have three main metrics:
throughput, verification accuracy, and recognition accuracy.
Throughput is the number of queries answered per second;
it is based on the wall-clock time taken for all queries put
together. Since we have no batch processing or task paral-
lelism, the higher the throughput, the lower the query la-
tency. We omit all frame preprocessing time (e.g., decoding
or resizing) for all compared approaches because they were
minor.

Verification accuracy is defined based on standard prac-
tice [29] as the ratio of the number of queries that were
correctly answered to the total number of queries. Given a
verification query with a pair of frames/images (f, g), de-
note the sets of classes appearing in f and g by Of and Og,
respectively. The query with (f, g) returns yes if and only if
|Of ∩Og| ≥ 1; otherwise, the query returns no.

For recognition accuracy, we only evaluate it on frames on
which the reference model gave output labels. On a frame
containing l classes {Y0, Y1, ..., Yi, ..., Yl}, we ask the model
to give at most m labels {z0, z1, ..., zj ..., zm}. This gives us a
standard metric called “top-m” accuracy; we set m = 5 for
our experiments. Recognition accuracy at the frame level is
now defined as follows.

kr = 1−
1

l

X

j

min
i

1zi=Yj
, (4)

The overall recognition accuracy is then defined as follows,
wherein Q is the set of all recognition queries:

Kr =
1

|Q|

X
kr, (5)

Software and Hardware. Panorama is implemented en-
tirely in Python. All CNNs and the nearest neighbor search
are implemented using TensorFlow 1.4 and Keras 2.1.4 and
use GPU acceleration with CUDA 7.0. We used OpenCV
2.0 with FFmpeg backend and PIL 1.1.7 for image prepro-
cessing. All experiments were run on a machine with an
NVIDIA GeForce GTX 1080Ti GPU, 8 Intel Xeon E5-2630
v4 cores, and 32 GB RAM.

5.2 End-to-end Accuracy and Throughput
We start with the end-to-end performance results, both

accuracy, and throughput. Since Panorama is a first-of-its-
kind system, prior video querying systems are not quantita-
tively comparable (more details in Section 6). Thus, we com-
pare Panorama against the reference model, which works
only for in-vocabulary queries. On in-voc test, we report
Panorama’s test results relative to the reference model. We
then report Panorama’s absolute test results on out-voc

test to show how well it generalizes beyond its supervi-
sion vocabulary. We disable the query cache in Panorama
for all the experiments in this subsection to let us focus on
its main accuracy-throughput tradeoffs. Last we include
a strongly supervised video clips dataset Youtube on faces
to measure Panorama’s capability of generalization. The
dataset has a vocabulary size of 1595 and over 620k frames
in total. We use this dataset to see if Panorama can even
generalize beyond its supervision to distinct videos. We test
PanoramaNet trained with Faces on this dataset. We do
not split Youtube as it is only used for tests. We poll known
and simply treat the rest as out-voc test.

5.2.1 Verification Queries

Query Set. We randomly sample pairs of frames from in-

voc test (resp. out-voc test) for the in-vocabulary (resp.
out-of-vocabulary) verification tests. For all tests, we pro-
duce 104 pairs each with a 50:50 split for yes and no. Since
out-voc test in Birds is relatively small, we produce only
500 pairs on this but still with a 50:50 yes-no split. We
compare two settings for Panorama’s accuracy goal config-
uration parameter: ag = 0.9 and ag = 0.99. All slack pa-
rameters (�i) are set to 0. Recall that a reference model
answers in-voc verification via recognition of the objects
in both images and comparing their labels, but it does not
support out-voc verification.

In-Vocabulary Results. Figure 12 shows the accuracy
and throughput results. We see that Panorama achieves
substantially higher throughput while yielding competitive
accuracy on Faces and Cars. For instance, on Faces,

485

Figure 12: End-to-end in-voc verification results. (a) Verification accuracy. (b) Relative throughput. Baseline
represents the corresponding reference model, the absolute values for three baselines are 7.3, 18.0 and 2.7,
respectively; Panorama’s results are normalized with respect to them. (c) Fractions of queries short-circuited
at each block. “Sent to RM” means those queries were handled by the reference model.

Table 3: out-voc verification results. ⇤P: Panorama.
†RG: random guessing.

Faces Youtube Birds Cars

Thrpt. (frames/s) 130 120 96 101
P⇤ accuracy 81.6% 79.6% 50.0% 69.7%
RG† accuracy 50.0% 50.0% 50.0% 50.0%

Panorama with ag = 0.99 has 96% accuracy but is 2x faster;
with a 14% drop in accuracy, the other setting is 8x faster.
Interestingly, on Cars, we found that Panorama’s accuracy
was slightly higher than the reference model (skipped in the
figure, which is capped at 1); recall that we had trained both
approaches from scratch on the original labeled dataset in
this case. Panorama is also up to 8x faster on Cars. On
Birds, ag = 0.9 is 5x faster while giving 92% of accuracy.

Figure 12(c) explains the above results. Panorama’s
short-circuit processing worked well, with many queries
stopping at earlier blocks. In fact, with ag = 0.99, on
Faces, over half of queries were short-circuited at block 1
and 2. But on Birds, more queries were sent to the refer-
ence model, yielding a lower average speedup. Cars is in
between these two extremes. These results validate two of
our key design decisions: make PanoramaNet a multi-block
architecture that can short-circuit itself and automatically
customize it for a dataset to pick an appropriate point in
the accuracy-throughput tradeoff.

Out-of-Vocabulary Results. In reality the reference
models do not work on out-voc queries. So, we compare
Panorama against a random guessing baseline, which is 50%
for this binary task. We use ag = 0.9 and no �i for all
tests. Table 3 presents the absolute results. Panorama suc-
cessfully generalizes beyond its supervision vocabulary to
support out-of-vocabulary verification. On Faces, the lift
is a substantial 33%. Birds turns out to be more challeng-
ing, while Cars falls in between. Panorama’s throughput is
also well above real-time in all cases. It generalizes well to
Youtube, which contains distinct videos (e.g. different reso-
lutions, illumination, angles and distances to camera) from
Faces.

5.2.2 Recognition Queries

Query Set. We compare two settings for Panorama: Cas
1 and Cas 2; Cas 2 represents a stricter accuracy goal than
Cas 1, but we vary the configuration parameters across each
dataset because they exhibited different properties on the
verification tests. For Faces, Cas 1 uses (ag, �i) = (0.95, 0);
Cas 2 uses (ag, �i) = (0.99, 0.1). For Birds, Cas 1 uses

Table 4: out-voc recognition results. ⇤P: Panorama.
†RG: random guessing. ‡: Top-1 accuracy.

Faces Youtube Birds Cars

Thrpt. (frames/s) 107 105 97 63
P⇤ Accuracy 74.5% 46.4% 73.9%‡ 49.6%
RG† accuracy 38.5% 0.3% 50%‡ 5.7%

(ag, �i) = (0.9, 0); Cas 2 uses (ag, �i) = (0.99, 0). Finally, for
Cars, Cas 1 uses (ag, �1, �2, �3) = (0.9,∞, 0, 0); Cas 2 uses
(ag, �1, �2, �3) = (0.99,∞, 0, 0). Note that setting �j = ∞

means short-circuiting is not allowed at Blockj .

In-Vocabulary Results. Figure 13 shows the results. On
Faces, Cas 1 is 17x faster, while offering almost 80% relative
accuracy, Cas 2 is 2x faster while yielding 92% accuracy. On
Cars, both settings match (or slightly surpass) the reference
model’s accuracy, while being up to 20x faster. Compared to
Faces, Birds offers a slightly more modest speedups but with
higher accuracy. Figure 13(c) explains these results in terms
of the short-circuiting results. We see similar behaviors as
in the in-voc verification tests.

Out-of-Vocabulary Results. Once again, since the
reference models are not applicable here, we compare
Panorama to a random guessing baseline. We use ag = 0.9
and no slacks for all tests. Recognition is effectively multi-
class, not binary. So, the accuracy of random guessing de-
pends on the sizes of the vocabularies in known; these sizes
are 14, 2, 87, 1595 for Faces, Birds, Cars, Youtube, respec-
tively. We report top-1 accuracy for Birds (since the vocab-
ulary size is only 2) and top-5 accuracy for the rest. Ta-
ble 4 presents the absolute results. Once again, we see that
Panorama successfully generalizes beyond its supervision vo-
cabulary to support out-of-vocabulary recognition queries
too. On Cars, the lift is a substantial 44%. It general-
izes well to Youtube, offering 46% lift on accuracy with high
throughput.

5.3 Drill-down Analysis
Factor Analysis. We now drill into Panorama’s behav-
ior to show the effects of its various components on the
throughput-accuracy tradeoff. We expand in-voc recogni-
tion tests on Faces for this purpose. We use Cas 2 described
above for the cascade related configs. Figure 14 presents the
results of each component’s effect. We start by disabling
short-circuiting and taking only the output of last block of
PanoramaNet. This provides over 60 FPS but limits the
accuracy to 72%. If we enable the rest blocks and cascaded
processing, throughput boosts to over 80 FPS. This demon-

486

Figure 13: End-to-end in-voc recognition results. (a) Recognition accuracy. (b) Relative throughput.
Baseline represents the corresponding reference model, the absolute values are identical to Figure 12;
Panorama’s results are normalized with respect to them. (c) Fractions of queries short-circuited at each
block. “Sent to RM” means being handled by the reference model.

Figure 14: Factor analysis. Accuracy is normalized
against the reference model.

Table 5: Impact of �k on block-wise verification acc.

�k Acc. Block1 Acc. Block2 Acc. Block3

1:1:1 79.9% 87.8% 89.1%
8:2:1 83.2% 84.3 87.2%
100:10:1 61.4% 58.4% 65.5%

strates the effeteness of our cascade. Next if we concatenate
the reference model into the cascade, the accuracy further
improves to 84% with the speedups drop to 30 FPS. The
last element needed are the slacks to yield 92% accuracy,
with a 2x speed-up compared to baseline still.

Impact of �k. We now investigate the impact brought by
different settings of �k. We vary these weights and train
three different models and report the raw verification per-
formance of each block of the models on our Faces val split.
Table 5 summarizes the results. Compared to no weights
(1:1:1), setting a higher weights on the first block (8:2:1)
does improve the individual performance of block1, however,
the subsequent blocks loses some accuracy. These weights
provide a trade-off between early and later block discrimina-
tion power. On the other hand, too large weights (100:10:1)
interferes with the training process and fails to converge.

5.4 Query Cache and Scalability Test
We now stress test Panorama’s throughput by raising the

size of the known objects for recognition queries. Some real-
world video monitoring applications could indeed have to
deal with millions of objects, e.g., identifying faces in mall
security surveillance, and the database for faces can be ex-
cessively large. We pick the same setting on the in-voc recog-
nition test of Faces and use cascade setting 1.

Impact of query cache on accuracy. We now enable the
cache and investigate the impact brought by the query cache
with varying cache size. Table 6 summarizes the results.
As the size of the cache goes up, the cache hit rate rises,
while the accuracy remains relatively constant, meaning this

Table 6: Impact of query cache on recognition acc.

Cache size Relative accuracy Cache hit rate

0(No cache) 80% 0%
1 80% 43%
10 80% 80%
100 80% 89%

Table 7: Results of the scalability test. W/O means
Panorama without cache, Cache X means Panorama
with cache size X. All values in the right four
columns are throughputs reported in frames/sec.

|known| Baseline W/O cache Cache 1 Cache 100

105 7.2 24.0 33.0 45.9
5× 105 6.1 9.0 11.4 20.7
106 4.6 5.1 6.7 14.7

cache does not influence accuracy much. Although the video
is after downsampling, the cache hit rate can still be as
high as 89%. This demonstrates the temporal redundancy
characteristics of video.

Scalability test. To simulate the case where the known

set is at scale, we enlarge the existing known set with du-
plicates. For this experiment, we run Panorama in three
modes: without the query cache, with size-1 cache and size-
100 cache. We compare the results to the Faces reference
model, which also yields embeddings and uses k-nn for recog-
nition. Table 7 shows the results for throughput when known

is at scale. In this scenario the k-nn search becomes a big-
ger bottleneck compared to CNN inference. Without the
cache, the throughput of Panorama will eventually join base-
line as the known object set expands. However, Panorama
with size-100 cache still offers 3x∼6x speedups depending
on |known|. Cache-100 also outperforms Cache-1, as the for-
mer has much higher cache hit rate and skips more searches.
This validates the benefits of the query cache for large-scale
recognition queries.

5.5 Limitations and Discussion
Panorama generalizes beyond a given finite vocabulary to

unseen objects of the same type in a given domain. This is
a form of subclassing, i.e., Panorama does not generalize to
new types of objects or new domains. We now offer some
insights on when Panorama may or may not be applicable.
It applies to fine-grained visual tasks, and the granularity
is determined by the supervision provided. The viability

487

of a task depends on the availability of large-scale datasets
and/or high-quality reference models and the degree of dif-
ficulty of the task itself. Faces are most viable because of
their relatively well-understood properties: mostly 2-D and
simple geometric layout. There are also many large datasets
for faces. For cars, the datasets are decent; so, the accuracy
is good. As for other domains, as long as there exists large-
enough fine-grained datasets and/or good reference models,
we believe Panorama is applicable.

6. RELATED WORK
Vision and Label-efficient ML. We already explained
how Panorama relates to prior works in vision, including
task definitions (Section 2.1), CNN-based vision (Section
2.2), how PanoramaNet is based on lessons of recent CNNs
(Section 4.1), deep supervision (Section 4.2), and which
CNNs act as reference models (Section 5). Thus, we now
only discuss a key aspect of Panorama’s goal that is re-
lated to several lines of work in ML. Deep CNNs typically
need large labeled datasets, but many applications may not
have so much labeled data. To meet this challenge, the
ML community has long worked on label-efficient learning
schemes, including zero-shot [39, 38, 4, 22, 46], one-shot [37,
19, 20, 6, 21, 39], and open-set [54, 55, 23, 8] learning. Zero-
shot learning asks models to recognize new unseen classes
by transferring semantic knowledge learned from training
classes, often via auxiliary metadata for retraining. One-
shot learning relaxes this assumption by asking for one or
a few labeled examples per new class. Open-set learning
also aims to remove the closed-world vocabulary assump-
tion, but it does so by retraining models to recognize both
old and new classes. Such alternative learning schemes are
sometimes collectively called life-long learning [15, 48, 60].

All these previous efforts in ML inspire our formulation
of the unbounded vocabulary problem, but our goal is not
proposing new learning schemes, vision tasks, or more ac-
curate CNNs. Our focus in Panorama has a crucial system
functionality difference aimed at benefiting users of video
monitoring applications.

Cascaded Classification. Cascaded models have long
been used in multimedia systems to improve accuracy and
efficiency. Introduced in the Viola-Jones object detection
framework [61], recent works have extended this idea to deep
CNNs [10, 25, 42, 58, 62, 11, 28]. These works inspired
our design decision of making PanoramaNet cascaded, but
our approach extends this idea along two lines: we fuse it
with multi-task learning for unified processing instead of dis-
parate bespoke models and we use deeply supervised train-
ing (originally designed to improve accuracy [41]) to make
this fusion possible. Our short-circuiting configuration also
supports a more tunable accuracy-throughput tradeoff.

Multimedia Databases. The multimedia database com-
munity has long studied content-based image retrieval
(CBIR), whose goal is to retrieve images or videos from
a database that have the same “content” as a query im-
age [3, 32, 63, 69, 31, 49, 30, 57]. The notion of content is
application-specific. Early CBIR works used hand-crafted
vision features (e.g., SIFT) but recent ones showed that
CNN features improve accuracy. Panorama’s focus is not
on CBIR but rather video monitoring applications. That
said, our design decision of using embedding extraction to
tackle unbounded vocabularies is inspired by work on CBIR.

To the best of our knowledge, ours is the first work to ex-
ploit this connection between multimedia DB techniques and
video monitoring.

Video Querying Systems. Video monitoring systems
have seen a resurgence of interest in the DB and systems lit-
erature. NoScope [34] creates a model cascade with simple
filters and a specialized cheaper CNN to improve querying
efficiency compared to a larger reference CNN. Focus [27]
splits video monitoring into ingesting and query stages to
enable more accuracy-efficiency tradeoffs, including index-
ing objects offline and using them to speed up queries.
BlazeIt [33] proposes an SQL-like language for selection
and aggregation queries over frames and uses approxima-
tion techniques to improve efficiency. All these systems sup-
port only binary or finite multi-class vocabularies, which
make them complementary to Panorama. Nevertheless, our
work on Panorama was inspired by these systems, and we
fundamentally expand video monitoring functionality to un-
bounded vocabularies while ensuring system efficiency.
Among video analytics systems, CaTDet [45] reduces in-

ference costs by computing regions of interests based on
historic detections. FilterForward [13] uses constrained
edge nodes better. VideoStorm [66] and Optasia [44]
are large-scale video analytics systems that aim to reduce
latency. RAM33S[7], KDEDisStrOut[70], and other re-
search[59] aim at real-time video analytics from massive
multimedia streams. All these systems are orthogonal
to Panorama, since they focus on better resource manage-
ment and parallelism for analytics queries, not enabling un-
bounded vocabularies for monitoring queries. We believe
Panorama can be integrated with such systems in the fu-
ture.

7. CONCLUSION AND FUTURE WORK
The success of deep CNNs presents new opportunities for

querying video data. However, most off-the-shelf models
and video querying systems assume the prediction vocabu-
lary is bounded, impeding many emerging video monitoring
applications. In response, we present a new data system ar-
chitecture, Panorama, for unbounded vocabulary querying
of video. Panorama saves users the hassle of retraining mod-
els post deployment as the vocabulary grows. It is based on
a multi-task and unified architecture, and its deployment
is end-to-end automated and domain-agnostic. Relative to
bespoke domain-specific models, Panorama’s unified system
offers competitive accuracy but with higher throughput. As
for future work, we plan to support more kinds of video
analytics tasks beyond verification and recognition.

8. REFERENCES

[1] NPR: Facial Recognition In China Is Big Business As
Local Governments Boost Surveillance. https:
//www.npr.org/sections/parallels/2018/04/03/

598012923/facial-recognition-in-china-is-big-

business-as-local-governments-boost-surveilla,
2018. [Online; accessed May 2019].

[2] The Economic Times: Computer Vision for Crowd
Control at India’s Kumbh Mela.
https://economictimes.indiatimes.com/news/

politics-and-nation/higher-budget-and-bigger-

ground-this-years-kumbh-mela-is-set-to-begin-

488

with-a-bang/articleshow/67397579.cms, 2019.
[Online; accessed May 2019].

[3] D. A. Adjeroh and K. C. Nwosu. Multimedia database
management requirements and issues. In IEEE
MultiMedia, volume 4, pages 24–33, 1997.

[4] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid.
Label embedding for attribute-based classification. In
CVPR, 2013.

[5] H. N. Anh. keras-yolo2.
https://github.com/experiencor/keras-yolo2,
2018. [Online; accessed 20-March-2018].

[6] E. Bart and S. Ullman. Cross-generalization: learning
novel classes from a single example by feature
replacement. In CVPR, 2005.

[7] I. Bartolini and M. Patella. A general framework for
real-time analysis of massive multimedia streams.
Multimedia Systems, 24(4):391–406, Jul 2018.

[8] A. Bendale and T. Boult. Towards open world
recognition. In CVPR, 2015.

[9] B. Brouwer. YouTube Now Gets Over 400 Hours Of
Content Uploaded Every Minute.
https://www.tubefilter.com/2015/07/26/youtube-

400-hours-content-every-minute/, 2015. [Online;
accessed 19-Jan-2019].

[10] Z. Cai, M. J. Saberian, and N. Vasconcelos. Learning
complexity-aware cascades for deep pedestrian
detection. In ICCV, pages 3361–3369, 2015.

[11] Z. Cai and N. Vasconcelos. Cascade r-cnn: Delving
into high quality object detection. In CVPR, 2018.

[12] R. J. G. B. Campello, D. Moulavi, and J. Sander.
Density-based clustering based on hierarchical density
estimates. In J. Pei, V. S. Tseng, L. Cao, H. Motoda,
and G. Xu, editors, Advances in Knowledge Discovery
and Data Mining, pages 160–172, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[13] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G.
Andersen, M. Kaminsky, and S. R. Dulloor. Scaling
video analytics on constrained edge nodes. In SysML,
2019.

[14] CBS. CBS News Live.
https://www.cbsnews.com/live/, 2019. [Online;
accessed 08-October-2019].

[15] X. Chen, A. Shrivastava, and A. Gupta. Neil:
Extracting visual knowledge from web data. In ICCV,
pages 1409–1416, 2013.

[16] Y. Cui, Y. Song, C. Sun, A. Howard, and S. J.
Belongie. Large scale fine-grained categorization and
domain-specific transfer learning. CVPR, pages
4109–4118, 2018.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. FeiFei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009.

[18] M. Everingham, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman. The pascal visual object
classes (voc) challenge. International Journal of
Computer Vision, 88(2):303–338, June 2010.

[19] L. Fei-Fei, R. Fergus, and P. Perona. A bayesian
approach to unsupervised one-shot learning of object
categories. In ICCV, 2003.

[20] L. Fei-Fei, R. Fergus, and P. Perona. One-shot
learning of object categories. In IEEE TPAMI, 2006.

[21] F. Fleuret and G. Blanchard. Pattern recognition from
one example by chopping. In NIPS, 2005.

[22] A. Frome, G. S. Corrado, J. Shlens, S. Bengio,
J. Dean, M. Ranzato, and T. Mikolov. Devise: A deep
visual-semantic embedding model. In NIPS, 2013.

[23] Y. Fu and L. Sigal. Semi-supervised
vocabulary-informed learning. In CVPR, 2016.

[24] I. Goodfellow et al. Deep learning, volume 1. MIT
press Cambridge, 2016.

[25] S. Han, H. Shen, M. Philipose, S. Agarwal,
A. Wolman, and A. Krishnamurthy. Mcdnn: An
approximation-based execution framework for deep
stream processing under resource constraints. In
MobiSys, pages 123–136, 2016.

[26] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask
r-cnn. In 2017 IEEE International Conference on
Computer Vision (ICCV), pages 2980–2988, Oct 2017.

[27] K. Hsieh, G. Ananthanarayanan, P. Bod́ık,
S. Venkataraman, P. Bahl, M. Philipose, P. B.
Gibbons, and O. Mutlu. Focus: Querying large video
datasets with low latency and low cost. In 13th
USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2018, Carlsbad, CA, USA,
October 8-10, 2018., pages 269–286, 2018.

[28] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten,
and K. Weinberger. Multi-scale dense networks for
resource efficient image classification. In International
Conference on Learning Representations, 2018.

[29] G. B. Huang, M. Ramesh, T. Berg, and
E. Learned-Miller. Labeled faces in the wild: A
database for studying face recognition in
unconstrained environments. Technical Report 07-49,
University of Massachusetts, Amherst, October 2007.

[30] H. Jegou, M. Douze, and C. Schmid. Hamming
embedding and weak geometric consistency for large
scale image search. In Proceedings of the 10th
European Conference on Computer Vision: Part I,
ECCV ’08, pages 304–317, Berlin, Heidelberg, 2008.
Springer-Verlag.

[31] Y. Jing, D. Liu, D. Kislyuk, A. Zhai, J. Xu,
J. Donahue, and S. Tavel. Visual search at pinterest.
In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’15, pages 1889–1898, New York,
NY, USA, 2015. ACM.

[32] O. Kalipsiz. Multimedia databases. In IEEE
Conference on Information Visualization. An
International Conference on Computer Visualization
and Graphics, 2000.

[33] D. Kang, P. Bailis, and M. A. Zaharia. Blazeit: Fast
exploratory video queries using neural networks.
CoRR, abs/1805.01046, 2018.

[34] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and
M. Zaharia. Noscope: optimizing neural network
queries over video at scale. In VLDB, volume 10,
pages 1586–1597, 2017.

[35] A. Karpathy. Software 2.0.
https://medium.com/@karpathy/software-2-0-

a64152b37c35/, 2017. [Online; accessed
13-March-2019].

[36] C. Lab. Cornell Lab FeederWatch Cam at Sapsucker
Woods. http://cams.allaboutbirds.org/channel/

489

40/Cornell_Lab_FeederWatch_Cam/, 2019. [Online;
accessed 08-October-2019].

[37] B. M. Lake and R. Salakhutdinov. One-shot learning
by inverting a compositional causal process. In NIPS,
2013.

[38] C. H. Lampert, H. Nickisch, and S. Harmeling.
Learning to detect unseen object classes by
between-class attribute transfer. In CVPR, 2009.

[39] C. H. Lampert, H. Nickisch, and S. Harmeling.
Attribute-based classification for zero-shot visual
object categorization. In IEEE TPAMI, pages
453–465, 2013.

[40] Y. LeCun et al. Deep learning. nature, 521(7553):436,
2015.

[41] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu.
Deeply supervised nets. In AISTATS, 2015.

[42] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A
convolutional neural network cascade for face
detection. In CVPR, pages 5325–5334, 2015.

[43] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft
coco: Common objects in context. In D. Fleet,
T. Pajdla, B. Schiele, and T. Tuytelaars, editors,
ECCV 2014, pages 740–755, 2014.

[44] Y. Lu, A. Chowdhery, and S. Kandula. Optasia: A
relational platform for efficient large-scale video
analytics. In SoCC, 2016.

[45] H. Mao, T. Kong, and W. J. Dally. Catdet: Cascaded
tracked detector for efficient object detection from
video. CoRR, abs/1810.00434, 2018.

[46] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer,
J. Shlens, A. Frome, G. S. Corrado, and J. Dean.
Zero-shot learning by convex combination of semantic
embeddings. In ICLR, 2014.

[47] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep
face recognition. In Proceedings of the British Machine
Vision, volume 1, pages 41.1–41.12, 2015.

[48] A. Pentina and C. H. Lampert. A pac-bayesian bound
for life-long learning. In ICML, pages II–991–II–999,
2014.

[49] J. Philbin, O. Chum, M. Isard, J. Sivic, and
A. Zisserman. Object retrieval with large vocabularies
and fast spatial matching. In IEEE Conference on
Computer Vision and Pattern Recognition, 2007.

[50] A. J. Ratner, B. Hancock, and C. Ré. The role of
massively multi-task and weak supervision in software
2.0. In CIDR, 2019.

[51] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi.
You only look once: Unified, real-time object
detection. pages 779–788, 06 2016.

[52] J. Redmon and A. Farhadi. Yolo9000: Better, faster,
stronger. In CVPR, pages 6517–6525, 2017.

[53] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei.
Imagenet: A large-scale hierarchical image database.
In IJCV, pages 211–252, 2015.

[54] W. J. Scheirer, L. P. Jain, and T. E. Boult.
Probability models for open set recognition. In IEEE
TPAMI, 2014.

[55] W. J. Scheirer, A. Rocha, A. Sapkota, and T. E.
Boult. Towards open set recognition. In IEEE
TPAMI, 2013.

[56] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet:
A unified embedding for face recognition and
clustering. In CVPR, pages 815–823, 2015.

[57] Sivic and Zisserman. Video google: a text retrieval
approach to object matching in videos. In Proceedings
Ninth IEEE International Conference on Computer
Vision, pages 1470–1477 vol.2, Oct 2003.

[58] Y. Sun, X. Wang, and X. Tang. Deep convolutional
network cascade for facial point detection. In CVPR,
pages 3476–3483, 2013.

[59] M. Tang, S. Pongpaichet, and R. Jain. Research
challenges in developing multimedia systems for
managing emergency situations. In ACM Multimedia,
2016.

[60] S. Thrun and T. M. Mitchell. Lifelong robot learning.
In Robotics and Autonomous Systems, volume 15,
pages 25 – 46, 1995.

[61] P. A. Viola and M. J. Jones. Rapid object detection
using a boosted cascade of simple features. In CVPR,
volume 1, pages I–I, 2001.

[62] X. Wan, Y. Luo, D. Crankshaw, A. Tumanov, and
J. E. Gonzalez. Idk cascades: Fast deep learning by
learning not to overthink. In UAI, 2018.

[63] F. Yang, A. Kale, Y. Bubnov, L. Stein, Q. Wang,
H. Kiapour, and R. Piramuthu. Visual search at ebay.
In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’17, pages 2101–2110, New York,
NY, USA, 2017. ACM.

[64] L. Yang, P. Luo, C. C. Loy, and X. Tang. A large-scale
car dataset for fine-grained categorization and
verification. In CVPR, pages 3973–3981, 2015.

[65] L. Yang, P. Luo, C. C. Loy, and X. Tang. A large-scale
car dataset for fine-grained categorization and
verification(tech report). Technical Report
CNS-TR-2011-001, The Chinese University of Hong
Kong, 2015.

[66] H. Zhang, G. Ananthanarayanan, P. Bodik,
M. Philipose, P. Bahl, and M. J. Freedman. Live video
analytics at scale with approximation and
delay-tolerance. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
17), pages 377–392, Boston, MA, 2017. USENIX
Association.

[67] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint Face
Detection and Alignment Using Multitask Cascaded
Convolutional Networks. IEEE Signal Processing
Letters, 23:1499–1503, Oct. 2016.

[68] Y. Zhang and A. Kumar. Panorama: A Data System
for Unbounded Vocabulary Querying over Video.
https://adalabucsd.github.io/panorama.html,
2019. [Tech report].

[69] Y. Zhang, P. Pan, Y. Zheng, K. Zhao, Y. Zhang,
X. Ren, and R. Jin. Visual search at alibaba. In
Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data
Mining, KDD ’18, pages 993–1001, New York, NY,
USA, 2018. ACM.

490

[70] Z. Zheng, H.-Y. Jeong, T. Huang, and J. Shu. Kde
based outlier detection on distributed data streams in
multimedia network. Multimedia Tools and
Applications, 76:18027–18045, 2016.

[71] Z.-H. Zhou. A brief introduction to weakly supervised
learning. National Science Review, 5(1):44–53, 08
2017.

491

