
Return of the Lernaean Hydra: Experimental Evaluation of
Data Series Approximate Similarity Search

Karima Echihabi
IRDA, Rabat IT Center,

ENSIAS, Mohammed V Univ.
karima.echihabi@gmail.com

Kostas Zoumpatianos
Harvard University

kostas@seas.harvard.edu

Themis Palpanas
Université de Paris

themis@mi.parisdescartes.fr

Houda Benbrahim
IRDA, Rabat IT Center,

ENSIAS, Mohammed V Univ.
houda.benbrahim@um5.ac.ma

ABSTRACT

Data series are a special type of multidimensional data
present in numerous domains, where similarity search is a
key operation that has been extensively studied in the data
series literature. In parallel, the multidimensional commu-
nity has studied approximate similarity search techniques.
We propose a taxonomy of similarity search techniques that
reconciles the terminology used in these two domains, we
describe modifications to data series indexing techniques en-
abling them to answer approximate similarity queries with
quality guarantees, and we conduct a thorough experimental
evaluation to compare approximate similarity search tech-
niques under a unified framework, on synthetic and real
datasets in memory and on disk. Although data series differ
from generic multidimensional vectors (series usually exhibit
correlation between neighboring values), our results show
that data series techniques answer approximate queries with
strong guarantees and an excellent empirical performance,
on data series and vectors alike. These techniques outper-
form the state-of-the-art approximate techniques for vectors
when operating on disk, and remain competitive in memory.

PVLDB Reference Format:
Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and
Houda Benbrahim. Return of the Lernaean Hydra: Experimen-
tal Evaluation of Data Series Approximate Similarity Search.
PVLDB, 13(3): 402-419, 2019.
DOI: https://doi.org/10.14778/3368289.3368303

1. INTRODUCTION
Motivation. A data series is a sequence of ordered real val-
ues1. Data series are ubiquitous, appearing in nearly every

1The order attribute can be angle, mass, time, etc. [118].
When the order is time, the series is called a time series. We
use data series, time series and sequence interchangeably.

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 3
ISSN 21508097.
DOI: https://doi.org/10.14778/3368289.3368303

domain including science and engineering, medicine, busi-
ness, finance and economics [80, 135, 121, 141, 107, 72, 129,
19, 87, 97, 155, 68]. The increasing presence of IoT tech-
nologies is making collections of data series grow to multiple
terabytes [117]. These data series collections need to be ana-
lyzed in order to extract knowledge and produce value [119].
The process of retrieving similar data series (i.e., similarity
search), forms the backbone of most analytical tasks, includ-
ing outlier detection [35, 28], frequent pattern mining [127],
clustering [84, 130, 128, 153], and classification [39]. Thus,
to render data analysis algorithms and pipelines scalable, we
need to make similarity search more efficient.
Similarity Search. A large number of data series simi-
larity search methods has been studied, supporting exact
search [7, 137, 124, 81, 127, 110], approximate search [136,
85, 10, 46, 49], or both [32, 134, 152, 33, 163, 157, 88, 96,
95, 122, 158, 90, 123]. In parallel, the research community
has also developed exact [23, 67, 22, 26, 44, 154, 57] and ap-
proximate [73] similarity search techniques geared towards
generic multidimensional vector data2. In the past few years
though, we are witnessing a renewed interest in the devel-
opment of approximate methods [74, 156, 142, 18, 103].

This study is the first experimental comparison of the ef-
ficiency and accuracy of data series approximate similarity
search methods ever conducted. Specifically, we evaluate the
accuracy of both data series specific approximate similarity
search methods, as well as that of approximate similarity
search algorithms that operate on general multidimensional
vectors. Moreover, we propose modifications to data series
techniques in order to support approximate query answering
with theoretical guarantees, following [43].

Our experimental evaluation covers in-memory and out-
of-core experiments, the largest publicly available datasets,
extensive comparison criteria, and a new set of methods
that have never been compared before. We thus differ from
other experimental studies, which focused on the efficiency
of exact search [54], the accuracy of dimensionality reduc-
tion techniques and similarity measures for classification
tasks [83, 52, 20], or in-memory high-dimensional meth-
ods [93, 17, 112]. In this study, we focus on the problem
of approximate whole matching similarity search in collec-

2A comprehensive survey of techniques for multidimensional
vectors can be found elsewhere [132].

403

tions with a very large number of data series, i.e., similarity
search that produces approximate (not exact) results, by
calculating distances on the whole (not a sub-) sequence.
This problem represents a common use case across many
domains [62, 142, 18, 103, 47, 105, 64, 119].
Contributions. Our key contributions are as follows:

1. We present a similarity search taxonomy that classifies
methods based on the quality guarantees they provide for
the search results, and that unifies the varied nomenclature
used in the literature. Following this taxonomy, we include a
brief survey of similarity search approaches supporting ap-
proximate search, bringing together works from the data
series and multidimensional data research communities.

2. We propose a new set of approximate approaches with
theoretical guarantees on accuracy and excellent empirical
performance, based on modifications to the current data se-
ries exact methods.

3. We evaluate all methods under a unified framework
to prevent implementation bias. We used the most efficient
C/C++ implementations available for all approaches, and
developed from scratch in C the ones that were only imple-
mented in other programming languages. Our new imple-
mentations are considerably faster than the original ones.

4. We conduct the first comprehensive experimental eval-
uation of the efficiency and accuracy of data series approxi-
mate similarity search approaches, using synthetic and real
series and vector datasets from different domains, including
the two largest vector datasets publicly available. The re-
sults unveil the strengths and weaknesses of each method,
and lead to recommendations as to which approach to use.

5. Our results show that the methods derived from the
exact data series indexing approaches generally surpass the
state-of-the-art techniques for approximate search in vector
spaces. This observation had not been made in the past,
and it paves the way for exciting new developments in the
field of approximate similarity search for data series and
multidimensional data at large.

6. We share all source codes, datasets, and queries [6].

2. DEFINITIONS AND TERMINOLOGY
Similarity search represents a common problem in various

areas of computer science. In the case of data series, several
different flavors have been studied in the literature, often
times using overloaded and conflicting terms. We summarize
here these variations, and provide definitions, thus setting a
common language (for more details, see [54]).
On Sequences. A data series S(p1, p2, ..., pn) is an or-
dered sequence of points, pi, 1 ≤ i ≤ n. The number of
points, |S| = n, is the length of the series. We denote the i-
th point in S by S[i]; then S[i : j] denotes the subsequence
S(pi, pi+1, ..., pj−1, pj), where 1 ≤ i ≤ j ≤ n. We use S to
represent all the series in a collection (dataset). Each point
in the series may represent the value of a single variable, i.e.,
univariate series, or of multiple variables, i.e., multivari-
ate series. If these values encode errors, or imprecisions,
we talk about uncertain data series [16, 160, 133, 48, 49].

Note that in the context of similarity search, a data series
of length n can be represented as a single point in an n-
dimensional space. Then the values and length of S are
referred to as dimensions and dimensionality, respectively.
On Distance Measures. A data series distance is a func-
tion that measures the (dis)similarity of two data series [27,
50, 15, 41, 151, 108]. The distance between a query series,

SQ, and a candidate series, SC , is denoted by d(SQ, SC).
The Euclidean distance is the most widely used, and one
of the most effective for large series collections [52]. Some
similarity search methods also rely on the lower-bounding
distance (distances in the reduced dimensionality space are
guaranteed to be smaller than or equal to distances in the
original space) [33, 163, 134, 152, 157, 96, 44, 81] and upper-
bounding distance (distances in the reduced space are larger
than the distances in the original space) [152, 81].
On Similarity Search Queries. We assume a data series
collection, S, a query series, SQ, and a distance function
d(·, ·). A k-Nearest-Neighbor (k-NN) query identifies
the k series in the collection with the smallest distances to
the query series, while an r-range query identifies all the
series in the collection within range r from the query series.

Definition 1. [54] Given an integer k, a k-NN query
retrieves the set of series A = {{SC1

, ..., SCk
} ⊆ S|∀ SC ∈

A and ∀ SC′ /∈ A, d(SQ, SC) ≤ d(SQ, SC′)}.

Definition 2. [54] Given a distance r, an r-range query
retrieves the set of series A = {SC ∈ S|d(SQ, SC) ≤ r}.

We additionally identify whole matching (WM) queries
(similarity between an entire query series and an entire can-
didate series), and subsequence matching (SM) queries
(similarity between an entire query series and all subse-
quences of a candidate series).

Definition 3. [54] A WM query finds the candidate data
series S ∈ S that matches SQ, where |S| = |SQ|.

Definition 4. [54] A SM query finds the subsequence S[i :
j] of a candidate data series S ∈ S that matches SQ, where
|S[i : j]| = |SQ| < |S|.

In practice, we have WM queries on large collections of
short series [55, 3], SM queries on large collections of short
series [1], and SM queries on collections of long series [59].
Note that a SM query can be converted to WM [96, 95].
On Similarity Search Methods. The similarity search
algorithms (k-NN or range) that always produce correct
and complete answers are called exact. Algorithms that
do not satisfy this property are called approximate. An
ǫ-approximate algorithm guarantees that its distance re-
sults have a relative error no more than ǫ, i.e., the approx-
imate distance is at most (1 + ǫ) times the exact one. A
δ-ǫ-approximate algorithm, guarantees that its distance
results will have a relative error no more than ǫ (i.e., the
approximate distance is at most (1 + ǫ) times the exact dis-
tance), with a probability of at least δ. An ng-approximate
(no-guarantees approximate) algorithm does not provide
any guarantees (deterministic, or probabilistic) on the er-
ror bounds of its distance results.
Definition 5. [54] Given a query SQ, and ǫ ≥ 0, an ǫ-
approximate algorithm guarantees that all results, SC , are
at a distance d(SQ, SC) ≤ (1 + ǫ) d(SQ, [k-th NN of SQ]) in
the case of a k-NN query, and distance d(SQ, SC) ≤ (1+ ǫ)r
in the case of an r-range query.
Definition 6. [54] Given a query SQ, ǫ ≥ 0, and δ ∈
[0, 1], a δ-ǫ-approximate algorithm produces results, SC ,
for which Pr[d(SQ, SC) ≤ (1+ ǫ) d(SQ, [k-th NN of SQ])] ≥
δ in the case of a k-NN query, and Pr[d(SQ, SC) ≤ (1 +
ǫ)r] ≥ δ) in the case of an r-range query.
Definition 7. [54] Given a query SQ, an ng-approximate
algorithm produces results, SC , that are at a distance
d(SQ, SC) ≤ (1 + θ) d(SQ, [k-th NN of SQ]) in the case of
a k-NN query, and distance d(SQ, SC) ≤ (1 + θ)r in the
case of an r-range query, for an arbitrary value θ ∈ R>0.

404

In the data series literature, ng-approximate algorithms
have been referred to as approximate, or heuristic search [33,
163, 134, 152, 157, 96]. Unless otherwise specified, we will
refer to ng-approximate algorithms simply as approximate.
Approximate matching in the data series literature consists
of pruning the search space, by traversing one path of an
index structure representing the data, visiting at most one
leaf, to get a baseline best-so-far (bsf) match. In the mul-
tidimensional literature, ng-approximate similarity search
is also called Approximate Nearest Neighbor (ANN) [74],
ǫ-approximate 1-NN search is called c-ANN [142], and ǫ-
approximate k-NN search is called c-k-ANN [71], where c
stands for the approximation error and corresponds to 1+ǫ.

Observe that when δ = 1, a δ-ǫ-approximate method be-
comes ǫ-approximate, and when ǫ = 0, an ǫ-approximate
method becomes exact [43]. It it also possible that the
same approach implements both approximate and exact al-
gorithms [137, 152, 33, 163, 134].
Scope. In this study, we focus on univariate series with
no uncertainty, where each point is drawn from the domain
of real values, R, and we evaluate approximate methods for
whole matching in datasets containing a very large num-
ber of series, using k-NN queries and the Euclidean dis-
tance. This scenario is key to numerous analysis pipelines
in practice [153, 165, 118, 119], in fields as varied as neuro-
science [65], seismology [78], retail data [92], and energy [91].

3. SIMILARITY SEARCH PRIMER
Similarity search methods aim at answering a query effi-

ciently by limiting the number of data points accessed, while
minimizing the I/O cost of accessing raw data on disk and
the CPU cost when comparing raw data to the query (e.g.,
Euclidean distance calculations). These goals are achieved
by exploiting summarization techniques, and using efficient
data structures (e.g., an index) and search algorithms. Note
that solutions based on sequential scans are geared to ex-
act similarity search [127, 110], and cannot support efficient
approximate search, since all candidates are always read.

Answering a similarity query using an index typically in-
volves two steps: a filtering step where the pre-built index
is used to prune candidates and a refinement step where
the surviving candidates are compared to the query in the
original high dimensional space [67, 154, 57, 33, 163, 134,
152, 22, 157, 96]. Some exact [22, 134, 154, 57] and approxi-
mate methods [142, 18] first summarize the original data and
then index these summarizations, while others tie together
data reduction and indexing [33, 163, 152]. Some approxi-
mate methods return the candidates obtained in the filtering
step [18]. There also exist exact [44] and approximate [103]
methods that index high dimensional data directly.

A variety of data structures exist for similarity search in-
dexes, including trees [67, 22, 33, 163, 152, 157, 96, 142, 134],
inverted indexes [74, 75, 156, 18], filter files [154, 57, 163],
hash tables [73, 29, 51, 36, 98, 120, 109, 100, 61, 115, 71] and
graphs [14, 37, 12, 150, 102, 131, 76, 103]. There also ex-
ist multi-step approaches, e.g., Stepwise [81], that transform
and organize data according to a hierarchy of resolutions.

Next, we outline the approximate similarity search meth-
ods (refer also to Table 1) and their summarization tech-
niques. (Exact methods are detailed in [54]).

3.1 Summarization Techniques
Random projections (used by SRS [142]) reduce the orig-
inal high dimensional data into a lower dimensional space

by multiplying it with a random matrix. The Johnson-
Lindenstrauss (JL) Lemma [77] guarantees that if the pro-
jected space has a large enough number of dimensions, there
is a high probability that the pairwise distances are pre-
served, with a distortion not exceeding (1 + ǫ).
Piecewise Aggregate Approximation (PAA) [82] and
Adaptive Piecewise Constant Approximation (APCA) [34]
are segmentation techniques that approximate a data series
S using l segments (of equal/arbitrary length, respectively).
The approximation represents each segment with the mean
value of its points. The Extended APCA (EAPCA) [152]
technique extends APCA by representing each segment with
both the mean and the standard deviation.
Quantization is a lossy compression process that maps a
set of infinite numbers to a finite set of codewords that to-
gether constitute the codebook. A scalar quantizer oper-
ates on the individual dimensions of a vector independently,
whereas a vector quantizer considers the vector as a whole
(leveraging the correlation between dimensions [66]). The
size k of a codebook increases exponentially with the num-
ber of bits allocated for each code. A product quantizer [74]
splits the original vector of dimension d into m smaller sub-
vectors, on which a lower-complexity vector quantization is
performed. The codebook then consists of the cartesian
product of the codebooks of the m subquantizers. Scalar
and vector quantization are special cases of product quanti-
zation, where m is equal to d and 1, respectively.
(i) Optimized Product Quantization (OPQ) (used by
IMI [62]) improves the accuracy of the original product
quantizer [74] by adding a preprocessing step consisting of
a linear transformation of the original vectors, which decor-
relates the dimensions and optimizes space decomposition.
A similar quantization technique, CK-Means, was proposed
in [114] but OPQ is considered the state-of-the-art [79, 106].
(ii) The Symbolic Aggregate Approximation (SAX) [94] tech-
nique starts by transforming the data series into l real values
using PAA, and then applies a scalar quantization technique
to represent the PAA values using discrete symbols forming
an alphabet of size a, called the cardinality of SAX. The l
symbols form the SAX representation. The iSAX [138] tech-
nique allows comparisons of SAX representations of different
cardinalities, which makes SAX indexable.
(iii) The Karhunen-Loève transform (KLT). The original
VA+file method [57] first converts a data series S of length
n using KLT into n real values to de-correlate the data,
then applies a scalar quantizer to encode the real values as
discrete symbols. As we will explain in the next subsec-
tion, for efficiency considerations, we altered the VA+file to
use the Discrete Fourier Transform (DFT) instead of KLT.
DFT [7, 56, 125, 126] approximates a data series using l fre-
quency coefficients, and can be efficiently implemented with
Fast Fourier Transform (FFT), which is optimal for whole
matching (alternatively, the MFT algorithm [8] is adapted
to subsequence matching since it uses sliding windows).

3.2 Approximate Similarity Search Methods
There exist several techniques for approximate similarity

search [73, 63, 31, 70, 46, 38, 9, 145, 142, 62, 103, 159] [25,
116, 161]. We focus on the 7 most prominent techniques
designed for multidimensional data, and we also describe
the approximate search algorithms designed specifically for
data series. We also propose a new set of techniques that
can answer δ-ǫ-approximate queries based on modifications
to existing exact similarity methods for data series.

405

Table 1: Similarity search methods used in this study (”•” indicates our modifications to original methods).
All methods support in-memory data, but only methods ticked in last column support disk-resident data.

Matching Accuracy Representation Implementation
exact ng-appr. ǫ-appr. δ-ǫ-appr. Raw Reduced Original New Disk-resident Data

Graphs
HNSW [103] X C++
NSG [60] X C++

Inv. Indexes IMI [18, 62] OPQ C++ X

LSH
QALSH [71] Signatures C++
SRS [142] Signatures C++

Scans VA+file [57] • • • DFT MATLAB C X

Trees

Flann [111] X C++
DSTree [152] [152] • • EAPCA Java C X

HD-index [13] Hilbert keys C++ X

iSAX2+ [33] [33] • • iSAX C# C X

3.2.1 StateoftheArt for Multidimensional Vectors

Flann [111] is an in-memory ensemble technique for ng-
approximate nearest neighbor search in high-dimensional
spaces. Given a dataset and a desired search accuracy,
Flann selects and auto-tunes the most appropriate algorithm
among randomized kd-trees [139] and a new proposed ap-
proach based on hierarchical k-means trees [111].
HD-index [13] is an ng-approximate nearest neighbor tech-
nique that partitions the original space into disjoint parti-
tions of lower dimensionality, then represents each partition
by an RBD tree (modified B+tree with leaves containing
distances of data objects to reference objects) built on the
Hilbert keys of data objects. A query Q is partitioned ac-
cording to the same scheme, searching the hilbert key of Q
in the RDB tree of each partition, then refining the candi-
dates first using approximate distances based on triangular
and Ptolemaic inequalities then using the real distances.
HNSW. HNSW [103] is an in-memory ng-approximate
method that belongs to the class of proximity graphs that
exploit two fundamental geometric structures: the Voronoi
Diagram (VD) and the Delaunay Triangulation (DT). A VD
is obtained when a given space is decomposed using a finite
number of points, called sites, into regions such that each
site is associated with a region consisting of all points that
are closer to it than to any other site. The DT is the dual of
the VD. It is constructed by connecting sites with an edge
if their regions share a side. Since constructing a DT for
a generic metric space is not always possible (except if the
DT is the complete graph) [113], proximity graphs, which
approximate the DT by conserving only certain edges, have
been proposed [14, 37, 12, 150, 102, 131, 76, 103]. A k-
NN graph is a proximity graph, where only the links to the
closest neighbors are preserved. Such graphs suffer from two
limitations: (i) the curse of dimensionality; and (ii) the poor
performance on clustered data (the graph has a high prob-
ability of being disconnected). To address these limitations,
the Navigable Small World (NSW) method [102] proposed
to heuristically augment the approximation of the DT with
long range links to satisfy the small world navigation prop-
erties [86]. The HNSW graph [103] improves the search effi-
ciency of NSW by organizing the links in hierarchical layers
according to their lengths. Search starts at the top layer,
which contains only the longest links, and proceeds down
the hierarchy. HNSW is considered the state-of-the-art [17].
NSG [60] is a recent in-memory proximity graph approach
that approximates a graph structure called MRNG [60]
which belongs to the class of Monotonic Search Networks
(MSNET). Building an MRNG graph for large datasets be-

comes impractical; that is why the state-of-the-art tech-
niques approximate it. NSG approximates the MRNG graph
by relaxing the monotonicity requirement and edge selection
strategy, and dropping the longest edges in the graph.
IMI. Among the different quantization-based inverted in-
dexes proposed in the literature [74, 75, 156, 18], IMI [62,
18] is considered the state-of-the-art [106]. This class of tech-
niques builds an inverted index storing the list of data points
that lie in the proximity of each codeword. The codebook is
the set of representative points obtained by performing clus-
tering on the original data. When a query arrives, the ng-
approximate search algorithm returns the list of all points
corresponding to the closest codeword (or list of codewords).
LSH. The LSH family [11] encompasses a class of ran-
domized algorithms that solve the δ-ǫ-approximate nearest
neighbor problem in sub-linear time, for δ < 1. The main
intuition is that two points that are nearby in a high dimen-
sional space, will remain nearby when projected to a lower
dimensional space [73]. LSH techniques partition points into
buckets using hash functions, which guarantee that only
nearby points are likely to be mapped to the same bucket.
Given a dataset S and a query SQ, L hash functions are
applied to all points in S and to the query SQ. Only points
that fall at least once in the same bucket as SQ, in each
of the L hash tables, are further processed in a linear scan
to find the δ-ǫ-approximate nearest-neighbor. There exist
many variants of LSH, either proposing different hash func-
tions to support particular similarity measures [29, 51, 36,
61], or improving the theoretical bounds on query accuracy
(i.e., δ or ǫ), query efficiency or the index size [98, 120, 109,
100, 61, 115, 142, 71] [99]. In this work, we select SRS [142]
and QALSH [71] to represent the class of LSH techniques
because they are considered the state-of-the-art in terms of
footprint and accuracy, respectively [13]. SRS answers δ-
ǫ-approximate queries using size linear to the dataset size,
while empirically outperforming other LSH methods (with
size super-linear to the dataset size [29]). QALSH is a query-
aware LSH technique that partitions points into buckets
using the query as anchor. Other LSH methods typically
partition data points before a query arrives, using a ran-
dom projection followed by a random shift. QALSH, does
not perform the second step until a query arrives, thus im-
proving the likelihood that points similar to the query are
mapped to the same bucket.

3.2.2 StateoftheArt for Data Series

While a number of data series methods support approx-
imate similarity search [136, 85, 10, 46, 32, 134, 152, 33,

406

163], we focus on those that fit the scope of this study, i.e.,
methods that support out-of-core k-NN queries with Eu-
clidean distance. In particular, we examine DSTree [152],
iSAX2+ [33], and VA+file [57], the three data series meth-
ods that perform the best in terms of exact search [54], and
also inherently support ng-approximate search.
DSTree [152] is a tree index based on the EAPCA summa-
rization technique and supports ng-approximate and exact
query answering. Its dynamic segmentation algorithm al-
lows tree nodes to split vertically and horizontally, unlike
the other data series indexes which allow either one or the
other. The DSTree supports a lower and upper bounding
distance and uses them to calculate a QoS measure that
determines the optimal way to split any given node. We
significantly improved the efficiency of the original DSTree
Java implementation by developing it from scratch in C and
optimizing its buffering and memory management, making
it 4 times faster across datasets ranging between 25-250GB.
SAX-based indexes include different flavors of tree in-
dexes based on SAX summarization. The original iSAX in-
dex [137] was enhanced with a better spliting policy and
bulk-loading support in iSAX 2.0 [32], while iSAX2+ [33]
further optimized bulk-loading. ADS+ [163] then improved
upon iSAX2+ by making it adaptive, Coconut [88, 89, 90]
by constructing a compact and contiguous data layout, and
DPiSAX [157, 158], ParIS [122] and MESSI [123] by exploit-
ing parallelization. Here, we use iSAX2+, because of its ex-
cellent performance [54] and the fact that the SIMS query
answering strategy [163] of ADS+, Coconut, and ParIS is
not immediately amenable to approximate search with guar-
antees (we plan to extend these methods in our future work).
We do not include DPiSAX and MESSI, because they are
distributed, and in-memory only, algorithms, respectively.
TARDIS [162] is a distributed indexing method that sup-
ports exact and ng-approximate kNN queries. It improves
the efficiency and accuracy of iSAX by building a more
compact, k-ary tree index, exploiting word-level (instead
of character-level) cardinality, and using a novel conversion
scheme between SAX representations. We do not include
TARDIS in the experimental evaluation since it is a dis-
tributed algorithm (built in Scala for Spark).
VA+file [57] is a skip-sequential method that improves the
accuracy and efficiency of the VA-file [154]. Both techniques
create a file that contains quantization-based summariza-
tions of the original multidimensional data. Search proceeds
by sequentially reading each summarization, calculating its
lower bounding distance to the query, and accessing the orig-
inal multidimensional vector only if the lower bounding dis-
tance is less than the current best-so-far (bsf) answer. We
greatly improved the performance of the original VA+file by
approximating KLT with DFT [57, 101] and implementing
it in C instead of Matlab. In the rest of the text, whenever
we mention the VA+file, we refer to the modified version.

3.2.3 Extensions of Data Series Methods

We now propose extensions to the data series meth-
ods described above, that will allow them to support ǫ-
approximate and δ-ǫ-approximate search (in addition to ng-
approximate that they already support). Due to space lim-
itations, we only discuss the tree-based methods (such as
iSAX2+ and DSTree); skip-sequential techniques (such as
VA+file) can be modified following the same ideas.

The exact 1-NN search algorithms of DSTree and iSAX2+
are based on an optimal exact NN algorithm first proposed

Algorithm 1 exactNN(SQ,idx)

1: bsf.dist ← ∞ ; bsf.node ← NULL;
2: for each rootNode in idx do
3: result.node ← rootNode;
4: result.dist ← calcMinDist(SQ,rootNode);
5: push result to pqueue

6: bsf ← ng-approxNN(SQ,idx);

7: add bsf to pqueue;
8: while result ← pop next node from pqueue do
9: n ← result.node;
10: if n.dist > bsf.dist then break;

11: if n is a leaf then ⊲ a leaf node
12: for each SC in n do
13: realDist ← calcRealDist(SQ,SC);
14: if realDist < bsf.dist then
15: bsf.dist ← realDist ;
16: bsf.node ← n;

17: else ⊲ an internal node
18: for each childNode in n do
19: minDist ← calcMinDist(SQ,childNode);
20: if minDist < bsf.dist then add childNode to
21: pqueue with priority minDist;

22: return bsf

for PMR-Quadtree [69], which was then generalized for any
hierarchical index structure that is constructed using a con-
servative and recursive partitioning of the data [24].

Algorithm 1 describes an index-invariant algorithm for ex-
act 1-NN search. It takes as arguments a query SQ and an
index idx. Lines 1-5 initialize the best-so-far (bsf) answer
and a priority queue with the root node(s) of the index in
increasing order of lower bounding (lb) distances (the lb dis-
tance is calculated by the function calcMinDist). In line
6, the ng-approxNN function traverses one path of the in-
dex tree visiting one leaf to return an ng-approximate bsf
answer, which is added to the queue (line 7). In line 8, the
algorithm pops nodes from the queue, terminating in line
10 if the lb distance of the current node is greater than the
current bsf distance (the lb distances of all remaining nodes
in the queue are also greater than the bsf). Otherwise, if the
node is a leaf, the bsf is updated if a better answer is found
(lines 11-16); if the node is an internal node, its children are
added to the queue provided their lb distances are greater
than the bsf distance (lines 18-21).

We can use Algorithm 1 for ng-approximate search, by
visiting one leaf and returning the first bsf. This ng-
approximate answer can be anywhere in the data space

We extend approximate search in Algorithm 1 by intro-
ducing two changes: (i) allow the index to visit up to nprobe
leaves (user parameter); and (ii) apply the modifications
suggested in [43] to support δ-ǫ-approximate NN search.
The first change is straightforward, so we only describe the
second change in Algorithm 2. To return the ǫ-approximate
NN of SQ, Sǫ, bsf.dist is replaced with bsf.dist/(1 + ǫ) in
lines 10 and 20. To return the δ-ǫ-approximate NN of SQ,
Sδǫ, we also modify lines 1 and 16.

The distance rδ(Q) is initialized in line 1 using FQ(·), SQ

and δ. FQ(·) represents the relative distance distribution
of SQ. Intuitively, rδ(Q) is the maximum distance from
SQ, such that the sphere with center SQ and radius rδ(Q)
is empty with probability δ. As proposed in [45], we use
F (·), the overall distance distribution, instead of FQ(·) to
estimate rδ(Q). The delta radius rδ(Q) is then used in line
16 as a stopping condition. When δ = 1, Algorithm 2 re-
turns Sδǫ, the ǫ-approximate NN of SQ, and when δ = 1
and ǫ = 0, Algorithm 2 becomes equivalent to Algorithm 1,

407

Algorithm 2 deltaEpsilonNN(SQ,idx,δ,ǫ, FQ(.))

1: bsf.dist ← ∞ ; bsf.node ← NULL;
rδ(Q) ← calcDeltaRadius(SQ,δ, FQ(.));

2: bsf ← ng-approxNN(SQ,idx);

3: add bsf to pqueue;
4: for each rootNode in idx do
5: result.node ← rootNode;
6: result.dist ← calcMinDist(SQ,rootNode);
7: push result to pqueue

8: while result ← pop next node from pqueue do
9: n ← result.node;
10: if n.dist > bsf.dist/(1 + ǫ) then break;

11: if n is a leaf then ⊲ a leaf node
12: for each SC in n do
13: realDist ← calcRealDist(SQ,SC);
14: if realDist < bsf.dist then
15: bsf.dist ← realDist ;
16: bsf.node ← n;

if bsf.dist ≤ (1 + ǫ) rδ(Q) then exit;

17: else ⊲ an internal node
18: for each childNode in n do
19: minDist ← calcMinDist(SQ,childNode);
20: if minDist < bsf.dist/(1 + ǫ) then add

21: childNode to pqueue with priority minDist;

22: return bsf

δ-ε-Approximate ng-Approximate

Probabilistic ε-Approximate

Exact

Similarity Search
Methods

δ,ε guarantees no guarantees

δ < 1, ε guarantee δ = 1, ε guarantee

δ = 1, ε = 0 guarantee

ADS+ [•] MTree[43]
DSTree [•]
iSAX2+ [•]
QALSH [71]
VA+file [•]
SRS [142]

ADS+ [163] RTree [22]
DSTree [152] SFA [143]
iSAX2+ [33] Stepwise [79]
MTree [44] UCR-Suite [127]
MASS [110] VA+file [57]
DPiSAX [157] TARDIS [162]

ADS+ [163] IMI [18]
CK-Means [114] iSAX2+ [33]
DSTree [152] NSG [60]
Flann [111] SFA [134]
HD-index [13] VA+file [•]
HNSW [103]

0 ⩽ δ ⩽ 1, ε ⩾ 0

 ADS+ [•]
 DSTree [•]
 iSAX2+ [•]
 MTree [43]
 VA+file [•]

Figure 1: Taxonomy of similarity search methods.

i.e., it returns Sx, the exact NN of SQ. Our implementa-
tions generalize Algorithm 2 to the case of k ≥ 1. These
modifications are straightforward and omitted for the sake
of brevity. A proof of correctness for Algorithm 2 can be
found in [43, 42] for k = 1 and k ≥ 1, respectively.

3.3 Taxonomy of Similarity Search Methods
Figure 1 presents a taxonomy of similarity search meth-

ods based on the type of guarantees they provide (methods
with multiple types of guarantees are included in more than
one leaf of the taxonomy). We call probabilistic the gen-
eral δ-ǫ-approximate methods. When δ = 1 we have the ǫ-
approximate methods. Setting δ = 1 and ǫ = 0, we get the
exact methods. Finally, methods that provide no guaran-
tees are categorized under ng-approximate. Here, we cover
7 state-of-the-art methods from the high-dimensional liter-
ature, Flann, HD-index, HNSW, IMI, NSG, QALSH and
SRS, as well as the 3 best methods from the data series
community [54], iSAX2+, DSTree and VA+file.

4. EXPERIMENTAL EVALUATION
We assessed all methods on the same framework. Source

code, datasets, queries, and all results are available in [6].

4.1 Experimental Setup
Environment. All methods were compiled with GCC 6.2.0
under Ubuntu Linux 16.04.2 with their default compilation
flags; optimization level was set to 2. Experiments were run
on a server with two Intel Xeon E5-2650 v4 2.2GHz CPUs,
75GB3 of RAM, and 10.8TB (6 x 1.8TB) 10K RPM SAS
hard drives in RAID0 with a throughput of 1290 MB/sec.
Algorithms. We use the most efficient C/C++ implemen-
tation available for each method: iSAX2+ [2], DSTree [2]
and VA+file [2] representing exact data series methods
with support for approximate queries; and HNSW [5], Faiss
IMI [4], SRS [149], FLANN [111], and QALSH [71] rep-
resenting strictly approximate methods for vectors. We ran
experiments with the HD-index [13] and NSG [60], but since
they could not scale for our smallest 25GB dataset, we do
not report results for them. We extended DSTree, iSAX2+
and VA+file with Algorithm 2, approximating rδ with den-
sity histograms on a 100K data series sample, following the
C++ implementation of [43]. All methods are single core im-
plementations, except for HNSW and IMI that make use of
multi-threading and SIMD vectorization. Data series points
are represented using single precision values and methods
based on fixed summarizations use 16 dimensions.
Datasets. We use synthetic and real datasets. Synthetic
datasets, called Rand, were generated as random-walks us-
ing a summing process with steps following a Gaussian dis-
tribution (0,1). Such data model financial time series [56]
and have been widely used in the literature [56, 33, 165].
Our four real datasets cover domains as varied as deep
learning, computer vision, seismology, and neuroscience.
Deep1B [140] comprises 1 billion vectors of size 96 extracted
from the last layers of a convolutional neural network.
Sift1B [75, 146] consists of 1 billion SIFT vectors of size 128
representing image feature descriptions. To the best of our
knowledge, these two vector datasets are the largest pub-
licly available real datasets. Seismic100GB [59], contains
100 million data series of size 256 representing earthquake
recordings at seismic stations worldwide. Sald100GB [148]
contains neuroscience MRI data and includes 200 million
data series of size 128. In our experiments, we vary the size
of the datasets from 25GB to 250GB. The name of each
dataset is suffixed with its size. We do not use other real
datasets that have appeared in the literature [40, 17], be-
cause they are very small, not exceeding 1GB in size.
Queries. All our query workloads consist of 100 query se-
ries run asynchronously, i.e., not in batch mode. Synthetic
queries were generated using the same random-walk gener-
ator as the Rand dataset (with a different seed, reported
in [6]). For the Deep1B and Sift1B datasets, we randomly
select 100 queries from the real workloads that come with the
datasets archives. For the other real datasets, query work-
loads were generated by adding progressively larger amounts
of noise to data series extracted from the raw data, so as to
produce queries having different levels of difficulty, following
the ideas in [164]. Our experiments cover ng-approximate
and δ-ǫ-approximate k-NN queries, where k ∈ [1, 100]. We
also include results for exact queries to serve as a yardstick.
Scenarios. Our experimental evaluation proceeds in four
main steps: (i) we tune methods to their optimal parame-

3We used GRUB to limit the amount of RAM, so that all
methods are forced to use the disk. Note that GRUB pre-
vents the operating system from using the rest of the RAM
as a file cache, which is what we wanted for our experiments.

408

ters (§4.2.1); (ii) we evaluate the indexing scalability of the
methods (§4.2.2); (iii) we compare in-memory and out-of-
core scalability and accuracy of all methods (§4.2.3-§4.2.4);
and (iv) we perform additional experiments on the best per-
forming methods for disk-resident data (§4.2.4).
Measures. We assess methods using the following criteria:
(1) Scalability and search efficiency using: wall clock time
(input, output, CPU and total time), throughput (# of
queries answered per minute), and two implementation-
independent measures: the number of random disk accesses
(# of disk seeks) and the percentage of data accessed.
(2) Search accuracy is assessed using: Avg Recall, Mean Av-
erage Precision (MAP), and Mean Relative Error (MRE).
Recall is the most commonly used accuracy metric in the
approximate similarity search literature. However, since it
does not consider rank accuracy, we also use MAP [147] that
is popular in information retrieval [104, 30] and has been
proposed recently in the high-dimensional community [13]
as an alternative accuracy measure to recall. For a workload
of queries SQi

: i ∈ [1, NQ], these are defined as follows.

• Avg Recall(workload) =
∑NQ

i=1 Recall(SQi
)/NQ

• MAP (workload) =
∑NQ

i=1 AP (SQi
)/NQ

• MRE(workload) =
∑NQ

i=1 RE(SQi
)/NQ

where:
• Recall(SQi

) = # true neighbors returned by Qi

k

• AP (SQi
) =

∑k
r=1

(P (SQi,r
)×rel(r))

k
, ∀i ∈ [1, NQ]

− P (SQi
, r) = # true neighbors among the first r elements

r
.

− rel(r) is equal 1 if the neighbor returned at position r
is one of the k exact neighbors of SQi

and 0 otherwise.

• RE(SQi
) = 1

k
×

∑k

r=1

d(SQi
,SCr

)−d(SQi
,SCi

)

d(SQi
,SCi

)
. SCi

is the

exact nearest neighbor of SQi
and SCr is the r-th NN re-

trieved4. Without loss of generality, we do not consider the
case where d(SQi

, SCi
) = 0. (i.e., range queries with radius

zero, or kNN queries where the 1-NN is the query itself5.)
(3) Size, using the main memory footprint of the algorithm.
Procedure. Experiments involve two steps: index building
and query answering. Caches are fully cleared before each
step, and stay warm between consecutive queries. For large
datasets that do not fit in memory, the effect of caching is
minimized for all methods. All experiments use workloads of
100 queries. Results reported for workloads of 10K queries
are extrapolated: we discard the 5 best and 5 worst queries
of the original 100 (in terms of total execution time), and
multiply the average of the 90 remaining queries by 10K.

4.2 Results

4.2.1 Parametrization

We start by fine tuning each method (graphs omitted for
brevity). In order to understand the speed/accuracy trade-
offs, we fix the total memory size available to 75GB. The
optimal parameters for DSTree, iSAX2+ and VA+file are
set according to [54]. For indexing, the buffer and leaf sizes
are set to 60GB and 100K, respectively, for both DSTree
and iSAX2+. iSAX2+ is set to use 16 segments. VA+file
uses a 20GB buffer and 16 DFT symbols. For SRS, we set
M (the projected space dimensionality) to 16 so that the
representations of all datasets fit in memory. The settings

4Note that in Definition 5, ǫ is an upper bound on RE(SQi
).

5In these cases, the MRE definition can be extended to use
the symmetric mean absolute percentage error [58].

were the same for all datasets. The fine tuning for HNSW
and IMI proved more tricky and involved many testing itera-
tions since the index building parameters strongly affect the
speed/accuracy of query answering and differ greatly across
datasets. For this reason, different parameters were chosen
for different datasets. For the in-memory method HNSW,
we set efConstruction (the number of neighbors considered
during index construction) to 500, and M (the number of
bi-directional edges created for every new node during in-
dexing) to 4 for the Rand25GB dataset. For Deep25GB
and Sift25GB, we set efConstruction to 500 and M to 16.
To tune the Faiss implementation of IMI, we followed the
guidelines in [4]. For the in-memory datasets, we set the in-
dex factory key to PQ32 128,IMI2x12,PQ32 and the train-
ing size to 1048576, while for disk based datasets, the in-
dex key is PQ32 128,IMI2x14,PQ32 and the training size
4194304. To tune δ-ǫ-approximate search performance and
accuracy, we vary δ and ǫ for SRS and ǫ for DSTree, iSAX2+
and VA+file (except in one experiment where we also vary
δ). For ng-approximate search, we vary the nprobe param-
eter for DSTree/iSAX2+/IMI/VA+file (nprobe represents
the number of visited leaves for DSTree/iSAX2+, the num-
ber of visited raw series for VA+file, and the number of
inverted lists for IMI), and the efs parameter for HNSW
(which represents the number of non-pruned candidates).

4.2.2 Indexing Efficiency

In this section, we evaluate the indexing scalability of each
method by varying the dataset size. We used four synthetic
datasets of sizes 25GB, 50GB, 100GB and 250GB, two of
which fit in memory (total RAM was 75GB).

Figure 2a shows that iSAX2+ is the fastest method at in-
dex building in and out of memory, followed by VA+file,
SRS, DSTree, FLANN, QALSH, IMI and HNSW. Even
though IMI and HNSW are the only parallel methods, they
are the slowest at index building. Although FLANN is slow
at indexing the 50GB dataset, we think this is more due to
memory management issues in the code, which cause swap-
ping. For HNSW, the major cost is building the graph struc-
ture, whereas IMI spends most of the time on determining
the clusters and computing the product quantizers. We also
measured the breakdown of the indexing time and found
out that all methods can be significantly improved by paral-
lelism except iSAX2+ and QALSH that are I/O bound. In
terms of footprint, the DSTree is the most memory-efficient,
followed by iSAX2+. IMI, SRS, VA+file and FLANN are
two orders of magnitude larger, while QALSH and HNSW
are a further order of magnitude bigger (Figure 2b).

(a) Indexing time (b) Size in memory

Figure 2: Comparison of indexing scalability

409

4.2.3 Query Answering Efficiency and Accuracy:
in-Memory Datasets

We now compare query answering efficiency and accuracy,
in addition to the indexing time, thus, measuring how well
each method amortizes index construction time over a large
number of queries, and the level of accuracy achieved.
Summary. For our in-memory experiments, we used four
datasets of 25GB each: two synthetic (with series of length
256 and 16384, respectively), and two real: Deep25GB and
Sift25GB. We ran 1NN, 10NN and 100NN queries on the
four datasets and we observed that, while the running times
increase with k, the relative performance of the methods
stays the same. Due to lack of space, Figure 3 shows the
100NN query results only (full results are in [6]), which we
discuss below. Note that HNSW, QALSH and FLANN store
all raw data in-memory, while all other approaches use the
memory to store their data structures, but read the raw data
from disk; IMI does not access the raw data at all (it only
uses the in-memory summaries).
Short Series. For ng-approximate queries of length 256 on
the Rand25GB dataset, HNSW has the largest throughput
for any given accuracy, followed by FLANN, IMI, DSTree
and iSAX2+ (Figure 3a). However, HNSW does not reach
a MAP of 1, which is only obtained by the data series
indexes (DSTree, iSAX2+, VA+file). The skip-sequential
method VA+file performs poorly on approximate search
since it prunes per series and not per cluster like the tree-
based methods do. When indexing time is also considered,
iSAX2+ wins for the workload consisting of 100 queries (Fig-
ure 3c), and DSTree for the 10K queries (Figure 3e).

Regarding δ-ǫ-approximate search, DSTree offers the best
throughput/accuracy tradeoff, followed by iSAX2+, SRS,
VA+file and finally QALSH. SRS does not achieve a MAP
higher than 0.5, while DSTree and iSAX2+ are at least 3
times faster than SRS for a similar accuracy (Figure 3b).
When we consider the combined indexing and querying
times, iSAX2+ wins over all methods for 100 queries (Fig-
ure 3d), and DSTree wins for 10K queries (Figure 3f).
Long Series. In this experiment, we use dataset sizes
of 25GB, and query length of 16384. For ng-approximate
search, we report the results only for iSAX2+, DSTree and
VA+file. We ran several experiments with IMI and HNSW
building the indexes using different parameters, but ob-
tained a MAP of 0 for IMI for all index configurations we
tried, and ran into a segmentation fault during query an-
swering with HNSW. DSTree outperforms both iSAX2+ and
VA+file in terms of throughput and combined total cost for
the larger workload (Figures 3g and 3k), whereas iSAX2+
wins for the smaller workload when the combined total cost
is considered (Figure 3i). We note also that the performance
of FLANN deteriorates with the increased dimensionality.

For δ-ǫ-approximate queries, Figure 3h shows that DSTree
and VA+file outperform all other methods for large MAP
values, while DSTree and iSAX2+ have higher throughput
for small MAP values. Note that the SRS accuracy decreases
when compared to series of length 256, with the best MAP
value now being 0.25. This is due to the increased informa-
tion loss, as for both series lengths the number of dimensions
in the projected space is 16. When index building time is
considered, VA+file wins for the small workload (Figure 3j),
and iSAX2+ and DSTree win for the large one (Figure 3l).
We do not report numbers for QALSH because the algorithm
ran into a segmentation fault for series of length 16384.

Real Data. We ran the same set of experiments with real
datasets. For ng-approximate queries, HNSW outperforms
the query performance of other methods by a large margin
(Figures 3m and 3s). When indexing time is considered,
HNSW loses its edge due to its high indexing cost to iSAX2+
when the query workload consists of 100 queries (Figures 3o
and 3u) and to DSTree for the 10K workload (Figures 3q and
3w). HNSW does not achieve a MAP of 1, while DSTree and
ISAX2+ both do, yet at a high cost.

DSTree clearly wins on Sift25GB and Deep25GB among
δ-ǫ-approximate methods (Figures 3n, 3t, 3r, and 3x), ex-
cept for the scenario of indexing plus answering 100 queries,
where iSAX2+ has the least combined cost (Figures 3p
and 3v). This is because DSTree’s query answering is very
fast, but its indexing cost is high, so it is amortized only with
a large query workload (Figures 3r and 3x). We observe a
similar trend for both Sift25GB and Deep25GB, except the
degradation of the performance of SRS, which achieves a
very low accuracy of 0.01 on Deep25GB, despite using the
most restrictive parameters (δ = 0.99 and ǫ = 0).
Comparison of Accuracy Measures. In the approxi-
mate similarity search literature, the most commonly used
accuracy measures are approximation error and recall. The
approximation error evaluates how far the approximate
neighbors are from the true neighbors, whereas recall as-
sesses how many true neighbors are returned. In our study,
we refer to the recall and approximation error of a work-
load as Avg Recall and MRE respectively. In addition, we
use a third measure called MAP because it takes into ac-
count the order of the returned candidates and thus is more
sensitive than recall. Figures 5a and 5b compare all three
measures for the popular real dataset Sift25GB (we use the
25GB subset to include in-memory methods as well). We ob-
serve that for any given workload, the Avg Recall is equal
to MAP for all methods, except for IMI. This is because IMI
returns the short-listed candidates based on distance calcu-
lations on the compressed vectors, while the other methods
further refine the candidates by sorting them based on the
Euclidean distance of the query to the raw data. Figure 5b
illustrates the relationship between MAP and MRE. Note
that the value of the approximation error is not always in-
dicative of the actual accuracy. For instance, an MRE of
about 0.5 for iSAX2 sounds acceptable (some popular LSH
methods only work with ǫ >= 3 [144, 61]), yet it corre-
sponds to a very low accuracy of 0.03 as measured by MAP
(Figures 5b). Note that MAP can be more useful in prac-
tice, since it takes into account the actual ranks of the true
neighbors returned, whereas MRE is evaluated only on the
distances between the query and its neighbors.

4.2.4 Query Answering Efficiency and Accuracy:
on-Disk Datasets

We now report results (Figure 4) for on-disk experiments,
excluding the in-memory only HNSW, QALSH and FLANN.
Synthetic Data. DSTree and iSAX2+ outperform by far
the rest of the techniques on both ng-approximate and δ-
ǫ-approximate queries. iSAX2+ is particularly competitive
when the total cost is considered with the smaller workload
(Figures 4c and 4d). The querying performance of SRS de-
graded on-disk due to severe swapping issues (Figure 4b),
therefore we do not include this method in further disk-
based experiments. Although IMI is much faster than both
iSAX2+ and DSTree on ng-approximate search, its accuracy

410

●●
●●

10

1000

100000

0.
03

0.
10

0.
30

1.
00

MAP

Q
rs

 p
e
r

m
in

(a) Rand25GB
256 (ng)

1

10

100

0.
3

0.
5

1.
0

MAP

Q
rs

 p
e
r

m
in

(b) Rand25GB
256 (δǫ)

● ●●●

3

10
30

100
300

0.
03

0.
10

0.
30

1.
00

MAP

Id
x
 +

 1
0
0
 Q

rs
 (

m
in

)

(c) Rand25GB
256 (ng)

3

10

30

100

0.
3

0.
5

1.
0

MAP

Id
x
 +

 1
0
0
 Q

rs
 (

m
in

)

(d) Rand25GB
256 (δǫ)

● ●●●

30

100

300

1000

3000

0.
03

0.
10

0.
30

1.
00

MAP

Id
x
 +

 1
0
K

 Q
rs

 (
m

in
)

(e) Rand25GB
256 (ng)

100

1000

10000

0.
3

0.
5

1.
0

MAP

Id
x
 +

 1
0
K

 Q
rs

 (
m

in
)

(f) Rand25GB
256 (δǫ)

10

100

1000

10000

0.
1

0.
3

1.
0

MAP

Q
rs

 p
e
r

m
in

(g) Rand25GB
16384 (ng)

10

100

1000

0.
1

0.
3

1.
0

MAP

Q
rs

 p
e
r

m
in

(h) Rand25GB
16384 (δǫ)

5

10

20

0.
1

0.
3

1.
0

MAP
Id

x
 +

 1
0
0
 Q

rs
 (

m
in

)

(i) Rand25GB
16384 (ng)

1

3

10

0.
1

0.
3

1.
0

MAP

Id
x
 +

 1
0
0
 Q

rs
 (

m
in

)

(j) Rand25GB
16384 (δǫ)

30

100

300

1000

0.
1

0.
3

1.
0

MAP

Id
x
 +

 1
0
K

 Q
rs

 (
m

in
)

(k) Rand25GB
16384 (ng)

10

100

1000

0.
1

0.
3

1.
0

MAP

Id
x
 +

 1
0
K

 Q
rs

 (
m

in
)

(l) Rand25GB
16384(δǫ)

●●

●●

10

100

1000

10000

0.
03

0.
10

0.
30

1.
00

MAP

Q
rs

 p
e
r

m
in

(m) Sift25GB(ng)

0.1

1.0

10.0

100.0

1000.0

0.
03

0.
10

0.
30

1.
00

MAP

Q
rs

 p
e
r

m
in

(n) Sift25GB(δǫ)

●●●●

3

10

30

100

300

0.
03

0.
10

0.
30

1.
00

MAP

Id
x
 +

 1
0
0
 Q

rs
 (

m
in

)

(o) Sift25GB(ng)

10

100

1000

0.
03

0.
10

0.
30

1.
00

MAP
Id

x
 +

 1
0
0
 Q

rs
 (

m
in

)

(p) Sift25GB(δǫ)

●●●●

10

100

1000

0.
03

0.
10

0.
30

1.
00

MAP

Id
x
 +

 1
0
K

 Q
rs

 (
m

in
)

(q) Sift25GB(ng)

10

100

1000

10000

100000

0.
03

0.
10

0.
30

1.
00

MAP

Id
x
 +

 1
0
K

 Q
rs

 (
m

in
)

(r) Sift25GB(δǫ)

●
●
●

1

10

100

1000

10000

0.
01

0.
10

1.
00

MAP

Q
rs

 p
e
r

m
in

(s) Deep25GB(ng)

0.01

0.10

1.00

10.00

100.00

0.
01

0.
10

1.
00

MAP

Q
rs

 p
e
r

m
in

(t) Deep25GB(δǫ)

●●●

10

100

1000

0.
01

0.
10

1.
00

MAP

Id
x
 +

 1
0
0
 Q

rs
 (

m
in

)

(u) Deep25GB(ng)

10

100

1000

0.
01

0.
10

1.
00

MAP

Id
x
 +

 1
0
0
 Q

rs
 (

m
in

)

(v) Deep25GB(δǫ)

●●●

100

1000

10000

0.
01

0.
10

1.
00

MAP

Id
x
 +

 1
0
K

 Q
rs

 (
m

in
)

(w) Deep25GB(ng)

100

1000

10000

100000

0.
01

0.
10

1.
00

MAP

Id
x
 +

 1
0
K

 Q
rs

 (
m

in
)

(x) Deep25GB(δǫ)

Figure 3: Efficiency vs. accuracy in memory (100NN queries)

is extremely low. In fact, the best MAP accuracy achieved
by IMI plummets to 0.05, whereas DSTree and iSAX2+ have
much higher MAP values (Figure 4a).
Real Data. DSTree outperforms all methods on both
Sift250GB and Deep250GB. The only exception is iSAX2+
having an edge when the combined indexing and search costs
are considered for the smaller workload (Figures 4i, 4j, 4o
and 4p) and being equally competitive on ng-approximate
query answering (Figures 4g, 4h).
Best Performing Methods. The earlier results show
that VA+file is outperformed by DSTree and iSAX2+, and
that SRS and IMI have very low accuracy on the large
datasets. We thus conduct further experiments consider-
ing only iSAX2+ and DSTree (recall that HNSW is an in-
memory approach only): see Figures 6, 7 and 8.In terms
of query efficiency/accuracy tradeoff, DSTree outperforms
iSAX2+ on all datasets, except for Sald100GB (Figure 6d),
and for low MAP values on Seismic100GB (Figure 6e).
Amount of data accessed. As expected, both DSTree
and iSAX2+ need to access more data as the accuracy in-
creases. Nevertheless, we observe that to achieve accuracies
of almost 1, both methods access close to 100% of the data
for Sift250GB (Figure 6g), Deep250GB (Figure 6h) and Seis-
mic100GB (Figure 6j), compared to 10% of data accessed on
Sald100GB (Figure 6i) and Rand250GB. (Figure 6f). The
percentage of accessed data also varies among real datasets,

Deep250GB and Sift250GB requiring the most. Note that
for some datasets, a MAP of 1 is achievable with minimal
data access. For instance DSTree needs to access about 1%
of the data to get a MAP of 1 on Sald100GB (Figure 6i).
Number of Random I/Os. To understand the nature of
the data accesses discussed above, we report the number of
random I/Os in Figure 6 (bottom row). Overall, iSAX2+ in-
curs a higher number of random I/Os for all datasets. This
is because iSAX2+ has a larger number of leaves, with a
smaller fill factor than DSTree [54]. For instance, the large
number of random I/Os incurred by iSAX2+ (Figure 6o)
is what explains the faster runtime of DSTree on the Seis-
mic100GB dataset (Figure 6e), even if DSTree accesses more
data than iSAX2+ for higher MAP values (Figure 6j). The
Sald100GB dataset is an exception to this trend as iSAX2+
outperforms DSTree on all accuracies except for MAP is 1
(Figure 6d), because it accesses less data incuring almost
the same random I/O (Figures 6i and 6n).
Effect of k. Figure 7 summarizes experiments varying k on
different datasets in-memory and on-disk. We measure the
total time required to complete a workload of 100 queries for
each value of k. We observe that finding the first neighbor
is the most costly operation, while finding the additional
neighbors is much cheaper.
Effect of δ and ǫ. In Figure 8, we describe in more de-
tail how varying δ and ǫ affects the performance of DSTree

411

10

1000

100000

0.
01

0.
10

1.
00

MAP

Q
rs

 p
e
r

m
in

(a)
Rand250GB(ng)

0.1

1.0

10.0

100.0

0.
3

0.
5

1.
0

MAP

Q
rs

 p
e
r

m
in

(b)
Rand250GB(δǫ)

100

300

1000

0.
01

0.
10

1.
00

MAP

Id
x
 +

 1
0
0
 Q

rs
 (

m
in

)

(c)
Rand250GB(ng)

100

300

1000

0.
3

0.
5

1.
0

MAP

Id
x
 +

 1
0
0
 Q

rs
 (

m
in

)

(d)
Rand250GB(δǫ)

100

1000

10000

0.
01

0.
10

1.
00

MAP

Id
x
 +

 1
0
K

 Q
rs

 (
m

in
)

(e)
Rand250GB(ng)

100

1000

10000

100000

0.
3

0.
5

1.
0

MAP

Id
x
 +

 1
0
K

 Q
rs

 (
m

in
)

(f)
Rand250GB(δǫ)

1

100

10000

0.
01

0.
10

1.
00

MAP

Q
rs

 p
e
r

m
in

(g) Sift250GB(ng)

0.1

1.0

10.0

100.0

1000.0

0.
1

0.
3

1.
0

MAP

Q
rs

 p
e
r

m
in

(h) Sift250GB(δǫ)

100

300

1000

3000

0.
01

0.
10

1.
00

MAP
Id

x
 +

 1
0
0
 Q

rs
 (

m
in

)

(i) Sift250GB(ng)

100

300

1000

3000

0.
1

0.
3

1.
0

MAP

Id
x
 +

 1
0
0
 Q

rs
 (

m
in

)

(j) Sift250GB(δǫ)

100

1000

10000

100000

0.
01

0.
10

1.
00

MAP

Id
x
 +

 1
0
K

 Q
rs

 (
m

in
)

(k) Sift250GB(ng)

100

1000

10000

100000

0.
1

0.
3

1.
0

MAP

Id
x
 +

 1
0
K

 Q
rs

 (
m

in
)

(l) Sift250GB(δǫ)

0.1
1.0

10.0
100.0

1000.0

0.
01

0.
10

1.
00

MAP

Q
rs

 p
e
r

m
in

(m)
Deep250GB(ng)

0.1

1.0

10.0

100.0

0.
3

0.
5

1.
0

MAP

Q
rs

 p
e
r

m
in

(n)
Deep250GB(δǫ)

100

300

1000

3000

0.
01

0.
10

1.
00

MAP

Id
x
 +

 1
0
0
 Q

rs
 (

m
in

)

(o)
Deep250GB(ng)

100

300

1000

3000

0.
3

0.
5

1.
0

MAP
Id

x
 +

 1
0
0
 Q

rs
 (

m
in

)

(p)
Deep250GB(δǫ)

100

1000

10000

100000

0.
01

0.
10

1.
00

MAP

Id
x
 +

 1
0
K

 Q
rs

 (
m

in
)

(q)
Deep250GB(ng)

1000

10000

100000

0.
3

0.
5

1.
0

MAP

Id
x
 +

 1
0
K

 Q
rs

 (
m

in
)

(r)
Deep250GB(δǫ)

Figure 4: Efficiency vs. accuracy on disk (100NN queries)

and iSAX2+. Figure 8a shows that the throughput of both
methods increases dramatically with increasing ǫ. For ex-
ample, a small value of ǫ = 5 increases the throughput of
iSAX2+ by two orders of magnitude, when compared to
exact search (ǫ = 0). Moreover, note that both methods
return the actual exact answers for small ǫ values, and ac-
curacy drops only as ǫ goes beyond 2 (Figure 8b). In addi-
tion, Figure 8c shows that the actual approximation error
MRE is well below the user-tolerated threshold (represented
by ǫ), even for ǫ values well above 2. The above observa-
tions mean that these methods can be used in approximate
mode, achieving very high throughput, while still returning
answers that are exact (or very close to the exact).

As the probability δ increases, throughput stays constant
and only plummets when search becomes exact (δ = 1 in
Figure 8d). Similarly, accuracy also stays constant, then
slightly increases (for a very high δ of 0.99), reaching 1 for
exact search (Figure 8e). Accuracy plateaus as δ increases,
because the first ng-approximate answer found by both algo-
rithms is very close to the exact answer (Figures 8b and 8c)
and better than the approximation of rδ, thus the stopping
condition is never triggered. When a high value of δ is used,
the stopping condition takes effect for some queries, but the
runtime is very close to that of the exact algorithm.

5. DISCUSSION
In the approximate NN search literature, experimental

evaluations ignore the answering capabilities of data series
methods. This is the first study that aims to fill this gap.
Unexpected Results. Some of the results are surprising:
(1) Effectiveness of δ. LSH techniques (like SRS and
QALSH) exploit both δ and ǫ to tune the efficiency/accuracy

tradeoff. We consider that they still fall short of expecta-
tions, because for a low ǫ, high values of δ still produce low
MAP and low values of δ still result in slow execution (Fig-
ure 3). In the case of our extended methods, using ǫ yielded
excellent empirical results, but introducing the probabilis-
tic stop condition based on δ was ineffective (Figures 8-d,8-
e). We believe that this is due to the inaccuracy of the
(histogram-based) approximation of rδ. Therefore, improv-
ing the approximation of rδ, or devising novel approaches
are interesting open research directions that will further im-
prove the efficiency of these methods.

(2) Approximate Query Answering with Data Series In-
dexes Performed Better than LSH. Approximate query an-
swering with DSTree and iSAX2+ outperfom SRS and
QALSH (state-of-the-art LSH-based methods) both in space
and time, while supporting better theoretical guarantees.
This surprising result opens up exciting research opportu-
nities, that is, devising efficient disk-based techniques that
support both ng-approximate and δ-ǫ-approximate search
with top performance [53]. Note that data series indexes
developed for distributed platforms [157, 162] also have the
potential of outperforming LSH techniques [21, 143] if ex-
tended following the ideas discussed in Section 2.

(3) Our results vs. the literature. Our results for the in-
memory experiments are in-line with those reported in the
literature, confirming that HNSW achieves the best accu-
racy/efficiency tradeoff when only query answering is con-
sidered [17] (Figures 3a, 3m, 3s). However, when index-
ing time is taken into account, HNSW loses its edge to
iSAX2+/DSTree for both small (Figures 3c, 3o, 3u) and
large (Figures 3e, 3q, 3w) query workloads.

Our results for IMI show a dramatic decrease in accu-
racy, in terms of MAP and Avg Recall for the Sift250GB

412

● ●●●

0.6

0.7

0.8

0.9

1.0

0.
03

0.
10

0.
30

1.
00

MAP

M
A

P
/A

v
g
_
R

e
c
a
ll

(a) Recall vs. MAP

●

●

●

●

0.0001

0.0010

0.0100

0.1000

0.
03

0.
10

0.
30

1.
00

MAP

M
R

E

(b) MRE vs. MAP

Figure 5: Comparison
of measures (Sift25GB)

1

10

100

0.
3

0.
5

1.
0

MAP

Q
rs

 p
e

r
m

in

(a) Rand250GB

0.1

1.0

10.0

100.0

1000.0

0.
03

0.
10

0.
30

1.
00

MAP

Q
u

e
ri

e
s
 p

e
r

m
in

(b) Sift250GB

1

10

100

0.
3

0.
5

1.
0

MAP

Q
u

e
ri

e
s
 p

e
r

m
in

(c) Deep250GB

3

10

30

100

300

0.
6

0.
7

0.
8

MAP

Q
u

e
ri

e
s
 p

e
r

m
in

(d) Sald100GB

0.1

1.0

10.0

100.0

0.
3

0.
5

1.
0

MAP

Q
u

e
ri

e
s
 p

e
r

m
in

(e)
Seismic100GB

0.1

1.0

10.0

0.
3

0.
5

1.
0

MAP

%
 d

a
ta

 a
c
c
e

s
s
e

d

(f) Rand250GB

0.1

1.0

10.0

100.0

0.
03

0.
10

0.
30

1.
00

MAP

%
 d

a
ta

 a
c
c
e
s
s
e
d

(g) Sift250GB

0.1

1.0

10.0

100.0

0.
3

0.
5

1.
0

MAP

%
 d

a
ta

 a
c
c
e
s
s
e
d

(h) Deep250GB

0.1

1.0

10.0

0.
6

0.
7

0.
8

MAP

%
 d

a
ta

 a
c
c
e

s
s
e

d

(i) Sald100GB

1

10

100

0.
3

0.
5

1.
0

MAP

%
 d

a
ta

 a
c
c
e
s
s
e
d

(j)
Seismic100GB

1

10

100

1000

10000

0.
3

0.
5

1.
0

MAP

#
 R

a
n

d
o

m
 I

/O

(k) Rand250GB

10

1000

100000

0.
03

0.
10

0.
30

1.
00

MAP

#
 R

a
n

d
o

m
 I

/O

(l) Sift250GB

10

100

1000

0.
3

0.
5

1.
0

MAP

#
 R

a
n
d
o
m

 I
/O

(m)
Deep250GB

10

100

1000

10000

0.
6

0.
7

0.
8

MAP

#
 R

a
n

d
o

m
 I

/O

(n) Sald100GB

10

100

1000

10000

0.
3

0.
5

1.
0

MAP

#
 R

a
n
d
o
m

 I
/O

(o)
Seismic100GB

Figure 6: Efficiency vs. accuracy for the best methods (ǫ-approximate)

6
7

10

1 10 10
0

k

T
o
ta

l
T

im
e
 (

m
in

)

(a) Rand25GB

20

30

1 10 10
0

k

T
o
ta

l
T

im
e
 (

m
in

)

(b) Sift25GB

31

32

33

34

1 10 10
0

k

T
o
ta

l
T

im
e
 (

m
in

)

(c) Deep25GB

2

3

5

1 10 10
0

k

T
o
ta

l
T

im
e
 (

h
r)

(d) Rand250GB

10
20
30
40
50

1 10 10
0

k

T
o
ta

l
T

im
e
 (

h
r)

(e) Sift250GB

10

30

50

1 10 10
0

k

T
o
ta

l
T

im
e
 (

h
r)

(f) Deep250GB

Figure 7: Efficiency vs. k (ǫ-approximate)

and Deep250GB datasets, while high Avg Recall values
have been reported in the literature for the full Sift1B and
Deep1B datasets [159, 4]. We thoroughly investigated the
reason behind such a discrepancy and ruled out the following
factors: the Z-normalization of the Sift1B/Deep1B datasets,
the size of the queries, and the number of NN. We believe
that our results are different for the following reasons: (a)
our queries return only the number of NN requested, while
the smallest candidate list considered in [159] is 10,000 for
a 1-NN query; and (b) the results in [4] were obtained us-
ing training on a GPU with un-reported training sizes and
times (we believe both were very large), while our focus was
to evaluate methods on a CPU and account for training
time. The difference in the accuracy results is most prob-

0.3

1.0

3.0

10.0

30.0

0 2 4 6
ε

Q
u

e
ri

e
s
 p

e
r

m
in

(a) Time vs. ǫ

(δ = 1)
(b) MAP vs. ǫ

(δ = 1)

0.000

0.005

0.010

0.015

0 2 4 6
ε

M
R

E

(c) MRE vs. ǫ

(δ = 1)

0

50

100

150

200

0.
2

0.
4

0.
6

0.
8

1.
0

δ

Q
u

e
ri

e
s
 p

e
r

m
in

(d) Time vs. δ

(ǫ = 0)
(e) MAP vs. δ

(ǫ = 0)

Figure 8: Accuracy and efficiency vs. δ and ǫ

ably due to the fact that the training samples used in [4]
were larger than the recommended numbers we used (1 mil-
lion/4 million for the 25GB/250GB datasets, respectively).
We tried to support this claim by running experiments with
different training sizes: (i) we observed that increasing the
training sizes for the smaller datasets improves the accuracy
(the best results are reported in this study); (ii) we could
not run experiments on the CPU with large training sizes
for the 250GB datasets, because training was very slow: we
stopped the execution after 48 hours; (iii) we tried a GPU-
enabled server for training, but ran into a documented bug6.
Practicality of QALSH, IMI and HNSW. Although
QALSH provides better accuracy than SRS, it does so at a

6https://github.com/facebookresearch/faiss/issues/67

413

high cost: it needs to build a different index for each de-
sired query accuracy. This is a serious drawback, while our
extended methods offer a neat alternative since the index is
built once and the desired accuracy is determined at query
time. Although LSH methods (such as SRS) provide guar-
antees on the accuracy of search results, they are expensive
both in time and space. The ng-approximate methods over-
come these limitations. IMI and HNSW are considered the
state-of-the-art in this category, and while they deliver bet-
ter speed-accuracy tradeoffs than QALSH and SRS, they
suffer from two major limitations: (a) having no guaran-
tees can lead them to return incomplete result sets, for in-
stance retrieving only a subset of the neighbors for a k-NN
query and returning null values for the others; (b) they are
very difficult to tune, which hinders their practicality. In
fact, the speed-accuracy tradeoff is not determined only at
query time, but also during index building, which means
that an index may need to be built many times using dif-
ferent parameters before finding the right speed-accuracy
tradeoff. This means that the optimal settings may dif-
fer across datasets, and even for different dataset sizes of
the same dataset. Moreover, if the analyst builds an in-
dex with a particular accuracy target, and then their needs
change, they will have to rebuild the index from scratch
and go through the same process of determining the right
parameter values.

For example, we built the IMI index for the Deep250GB
dataset 8 times. During each run that required over 42
hours, we varied the PQ encoding sizes, the number of cen-
troids, and training sizes but still could not achieve the
desired accuracy. Regarding HNSW, we tried three differ-
ent combinations of parameters (M/efConstruction = 4/500,
16/500, 48/200) for each dataset before choosing the optimal
one; each run took over 40 hours on the small Deep25GB.
Overall, we observe that using IMI and HNSW in practice is
cumbersome and time consuming. Developing auto-tuning
methods for these techniques is both an interesting problem
and a necessity.
Importance of guarantees. In the approximate search
literature, accuracy has been evaluated using recall, and ap-
proximation error. LSH techniques are considered the state-
of-the-art in approximate search with theoretically proven
sublinear time performance and probabilistic guarantees on
accuracy (approximation error). Our results indicate that
using the approximate search functionality of data series
techniques provides tighter bounds than LSH (since δ can
be equal to 1), and a much better performance in practice,
with experimental accuracy levels well above the theoretical
accuracy guarantees (Figure 8c). Note that LSH techniques
can only provide probabilistic answers (δ < 1), whereas our
extended methods can also answer exact and ǫ-approximate
queries (δ = 1). A promising research direction is to im-
prove the existing guarantees on these new methods, or es-
tablish additional ones: (1) by adding guarantees on query
time performance; or (2) by developing probabilistic or de-
terministic guarantees on the recall or MAP value of a result
set, instead of the commonly used distance approximation
error. Remember that recall and MAP are better indicators
of accuracy, because even small approximation errors may
still result in low recall/MAP values (Figure 5b).
Improvement of ng-approximate methods. Our re-
sults indicate that ng-approximate query answering with ex-
act methods offers a viable alternative to existing methods,

In−Memory with guaranteesIn−Memory with guaranteesIn−Memory with guaranteesIn−Memory with guaranteesIn−Memory with guarantees On−disk with guaranteesOn−disk with guaranteesOn−disk with guaranteesOn−disk with guaranteesOn−disk with guarantees

In−Memory without guaranteesIn−Memory without guaranteesIn−Memory without guaranteesIn−Memory without guaranteesIn−Memory without guarantees On−disk without guaranteesOn−disk without guaranteesOn−disk without guaranteesOn−disk without guaranteesOn−disk without guarantees

decision depends on desired accuracydecision depends on desired accuracydecision depends on desired accuracydecision depends on desired accuracydecision depends on desired accuracyHNSW

DSTree DSTree

DSTree

iSAX2+

DATASET SIZE

G
U

A
R

A
N

T
E

E
S

Figure 9: Recommendations (query answering).

particularly because index building is much faster and query
efficiency/accuracy tradeoffs can be determined at query
time. Besides, the performance of DSTree and iSAX2+ sup-
porting ng-approximate and δ-ǫ-approximate search can be
greatly improved by exploiting modern hardware (including
SIMD vectorization, multi-cores, multi-sockets, and GPUs).
Incremental approximate k-NN. We established that,
on some datasets, a kNN query incurs a much higher time
cost as k increases. Therefore, a future research direction is
to build δ-ǫ-approximate methods that support incremental
search, i.e., returning the neighbors one by one as they are
found. The current approaches return the k nearest neigh-
bors all at once which impedes their interactivity.
Progressive Query Answering. The excellent empirical
results with approximate search using exact methods paves
the way for another very promising research direction: pro-
gressive query answering [64]. New approaches can be de-
vised to return intermediate results with increasing accuracy
until the exact answers are found.
Recommendations. Choosing the best approach to an-
swer an approximate similarity search query depends on a
variety of factors including the accuracy desired, the dataset
characteristics, the size of the query workload, the presence
of an existing index and the hardware. Figure 9 illustrates
a decision matrix that recommends the best technique to
use for answering a query workload using an existing index.
Overall, DSTree is the best performer, with the exceptions of
ng-approximate queries, where iSAX2+ also exhibits excel-
lent performance, and of in-memory datasets, where HNSW
is the overall winner. Accounting for index construction
time as well, DSTree becomes the method of choice across
the board, except for small workloads, where iSAX2+ wins.

6. CONCLUSIONS
We presented a taxonomy for data series similarity search

techniques, proposed extensions of exact data series meth-
ods that can answer δ-ǫ-approximate queries, and conducted
a thorough experimental evaluation of the state-of-the-art
techniques from both the data series and vector indexing
communities. The results reveal the pros and cons of the
various methods, demonstrate the benefits and potential of
approximate data series methods, and point to unexplored
research directions in the approximate similarity search field.

Acknowledgments. Work partially supported by pro-
gram Investir l’Avenir and Univ. of Paris IDEX Emergence
en Recherche ANR-18-IDEX-0001, EU project NESTOR
(MSCA #748945), and FMJH Program PGMO in conjunc-
tion with EDF-THALES.

414

References

[1] ADHD-200. http://fcon_1000.projects.nitrc.

org/indi/adhd200/, 2018.

[2] Lernaean Hydra Archive. http://www.mi.

parisdescartes.fr/~themisp/dsseval/, 2018.

[3] Sloan Digital Sky Survey. https://www.sdss3.org/

dr10/data_access/volume.php, 2018.

[4] Faiss. https://github.com/facebookresearch/

faiss/, 2019.

[5] Hnswlib - fast approximate nearest neighbor search.
https://github.com/nmslib/hnswlib, 2019.

[6] Lernaean Hydra Archive II. http://www.mi.

parisdescartes.fr/~themisp/dsseval2/, 2019.

[7] R. Agrawal, C. Faloutsos, and A. Swami. Efficient
similarity search in sequence databases. pages 69–84,
1993.

[8] S. Albrecht, I. Cumming, and J. Dudas. The mo-
mentary Fourier transformation derived from recur-
sive matrix transformations. In Proceedings of 13th
International Conference on Digital Signal Processing,
volume 1, pages 337–340 vol.1, Jul 1997.

[9] G. Amato and P. Savino. Approximate Similarity
Search in Metric Spaces Using Inverted Files. In Pro-
ceedings of the 3rd International Conference on Scal-
able Information Systems, InfoScale ’08, pages 28:1–
28:10, 2008.

[10] and X. Sean Wang. Supporting content-based searches
on time series via approximation. In Proceedings. 12th
International Conference on Scientific and Statistica
Database Management, pages 69–81, July 2000.

[11] A. Andoni, P. Indyk, and I. P. Razenshteyn. Approx-
imate Nearest Neighbor Search in High Dimensions.
CoRR, abs/1806.09823, 2018.

[12] K. Aoyama, K. Saito, H. Sawada, and N. Ueda.
Fast Approximate Similarity Search Based on Degree-
reduced Neighborhood Graphs. In Proceedings of
the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’11,
pages 1055–1063, New York, NY, USA, 2011. ACM.

[13] A. Arora, S. Sinha, P. Kumar, and A. Bhattacharya.
HD-index: Pushing the Scalability-accuracy Bound-
ary for Approximate kNN Search in High-dimensional
Spaces. PVLDB, 11(8):906–919, 2018.

[14] S. Arya and D. M. Mount. Approximate Nearest
Neighbor Queries in Fixed Dimensions. In Proceedings
of the Fourth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’93, pages 271–280, Philadel-
phia, PA, USA, 1993. Society for Industrial and Ap-
plied Mathematics.

[15] J. Aßfalg, H. Kriegel, P. Kröger, P. Kunath,
A. Pryakhin, and M. Renz. Similarity Search on
Time Series Based on Threshold Queries. In Advances
in Database Technology - EDBT 2006, 10th Interna-
tional Conference on Extending Database Technology,
Munich, Germany, March 26-31, 2006, Proceedings,
pages 276–294, 2006.

[16] J. Aßfalg, H. Kriegel, P. Kröger, and M. Renz. Proba-
bilistic Similarity Search for Uncertain Time Series.
In Scientific and Statistical Database Management,
21st International Conference, SSDBM 2009, New Or-

leans, LA, USA, June 2-4, 2009, Proceedings, pages
435–443, 2009.

[17] M. Aumüller, E. Bernhardsson, and A. Faithfull.
ANN-Benchmarks: A Benchmarking Tool for Approx-
imate Nearest Neighbor Algorithms. In Similarity
Search and Applications - 10th International Confer-
ence, SISAP 2017, Munich, Germany, October 4-6,
2017, Proceedings, pages 34–49, 2017.

[18] A. Babenko and V. Lempitsky. The Inverted Multi-
Index. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 37(6):1247–1260, June 2015.

[19] M. Bach-Andersen, B. Romer-Odgaard, and
O. Winther. Flexible Non-Linear Predictive Models
for Large-Scale Wind Turbine Diagnostics. Wind
Energy, 20(5):753–764, 2017.

[20] A. J. Bagnall, J. Lines, A. Bostrom, J. Large, and E. J.
Keogh. The great time series classification bake off: a
review and experimental evaluation of recent algorith-
mic advances. Data Min. Knowl. Discov., 31(3):606–
660, 2017.

[21] B. Bahmani, A. Goel, and R. Shinde. Efficient Dis-
tributed Locality Sensitive Hashing. In Proceedings of
the 21st ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’12, pages
2174–2178, New York, NY, USA, 2012. ACM.

[22] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: an efficient and robust ac-
cess method for points and rectangles. In INTERNA-
TIONAL CONFERENCE ON MANAGEMENT OF
DATA, pages 322–331. ACM, 1990.

[23] J. L. Bentley. Multidimensional Binary Search Trees
Used for Associative Searching. Commun. ACM,
18(9):509–517, Sept. 1975.

[24] S. Berchtold, C. Böhm, D. A. Keim, and H.-P. Kriegel.
A Cost Model for Nearest Neighbor Search in High-
dimensional Data Space. In Proceedings of the Six-
teenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, PODS ’97, pages
78–86, New York, NY, USA, 1997. ACM.

[25] S. Berchtold, C. Böhm, and H.-P. Kriegal. The
Pyramid-technique: Towards Breaking the Curse of
Dimensionality. In Proceedings of the 1998 ACM SIG-
MOD International Conference on Management of
Data, SIGMOD ’98, pages 142–153, New York, NY,
USA, 1998. ACM.

[26] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-
tree: An Index Structure for High-Dimensional Data.
In Proceedings of the 22th International Conference on
Very Large Data Bases, VLDB ’96, pages 28–39, San
Francisco, CA, USA, 1996. Morgan Kaufmann Pub-
lishers Inc.

[27] D. J. Berndt and J. Clifford. Using Dynamic
Time Warping to Find Patterns in Time Series. In
AAAIWS, pages 359–370, 1994.

[28] P. Boniol, M. Linardi, F. Roncallo, and T. Palpanas.
Automated Anomaly Detection in Large Sequences.
ICDE, 2020.

[29] A. Broder. On the Resemblance and Containment
of Documents. In Proceedings of the Compression
and Complexity of Sequences 1997, SEQUENCES ’97,
pages 21–, Washington, DC, USA, 1997. IEEE Com-
puter Society.

415

[30] C. Buckley and E. M. Voorhees. Evaluating evaluation
measure stability. In SIGIR, pages 33–40. ACM, 2000.

[31] B. Bustos and G. Navarro. Probabilistic Proximity
Searching Algorithms Based on Compact Partitions.
J. of Discrete Algorithms, 2(1):115–134, Mar. 2004.

[32] A. Camerra, T. Palpanas, J. Shieh, and E. J. Keogh.
iSAX 2.0: Indexing and Mining One Billion Time Se-
ries. In G. I. Webb, B. Liu, C. Zhang, D. Gunopulos,
and X. Wu, editors, ICDM, pages 58–67. IEEE Com-
puter Society, 2010.

[33] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon,
and E. J. Keogh. Beyond one billion time series: in-
dexing and mining very large time series collections
with iSAX2+. Knowl. Inf. Syst., 39(1):123–151, 2014.

[34] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Paz-
zani. Locally Adaptive Dimensionality Reduction for
Indexing Large Time Series Databases. ACM Trans.
Database Syst., 27(2):188–228, June 2002.

[35] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Computing Surveys
(CSUR), 41(3):15, 2009.

[36] M. S. Charikar. Similarity Estimation Techniques
from Rounding Algorithms. In Proceedings of the
Thiry-fourth Annual ACM Symposium on Theory of
Computing, STOC ’02, pages 380–388, New York, NY,
USA, 2002. ACM.

[37] E. Chávez and E. Sadit Tellez. Navigating K-Nearest
Neighbor Graphs to Solve Nearest Neighbor Searches.
In J. F. Mart́ınez-Trinidad, J. A. Carrasco-Ochoa, and
J. Kittler, editors, Advances in Pattern Recognition,
pages 270–280, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[38] E. Chavez Gonzalez, K. Figueroa, and G. Navarro. Ef-
fective Proximity Retrieval by Ordering Permutations.
IEEE Trans. Pattern Anal. Mach. Intell., 30(9):1647–
1658, Sept. 2008.

[39] Y. Chen, E. K. Garcia, M. R. Gupta, A. Rahimi, and
L. Cazzanti. Similarity-based classification: Concepts
and algorithms. J. Mach. Learn. Res., 10:747–776,
June 2009.

[40] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall,
A. Mueen, and G. Batista. The UCR Time Series
Classification Archive, July 2015. www.cs.ucr.edu/

~eamonn/time_series_data/.

[41] Y. Chen, M. A. Nascimento, B. C. Ooi, and A. K. H.
Tung. SpADe: On Shape-based Pattern Detection in
Streaming Time Series. In Proceedings of the 23rd
International Conference on Data Engineering, ICDE
2007, The Marmara Hotel, Istanbul, Turkey, April 15-
20, 2007, pages 786–795, 2007.

[42] P. Ciaccia and M. Patella. the power of distance dis-
tributions: Cost models and scheduling policies for
quality-controlled similarity queries.

[43] P. Ciaccia and M. Patella. PAC Nearest Neighbor
Queries: Approximate and Controlled Search in High-
Dimensional and Metric Spaces. In ICDE, pages 244–
255, 2000.

[44] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Ef-
ficient Access Method for Similarity Search in Metric
Spaces. In M. Jarke, M. Carey, K. R. Dittrich, F. Lo-

chovsky, P. Loucopoulos, and M. A. Jeusfeld, editors,
Proceedings of the 23rd International Conference on
Very Large Data Bases (VLDB’97), pages 426–435,
Athens, Greece, Aug. 1997. Morgan Kaufmann Pub-
lishers, Inc.

[45] P. Ciaccia, M. Patella, and P. Zezula. A Cost Model
for Similarity Queries in Metric Spaces. In Proceedings
of the Seventeenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, PODS
’98, pages 59–68, New York, NY, USA, 1998. ACM.

[46] R. Cole, D. E. Shasha, and X. Zhao. Fast window
correlations over uncooperative time series. In Pro-
ceedings of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, Chicago, Illinois, USA, August 21-24, 2005, pages
743–749, 2005.

[47] R. Cole, D. E. Shasha, and X. Zhao. Fast window
correlations over uncooperative time series. In Pro-
ceedings of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, Chicago, Illinois, USA, August 21-24, 2005, pages
743–749, 2005.

[48] M. Dallachiesa, B. Nushi, K. Mirylenka, and T. Pal-
panas. Uncertain Time-Series Similarity: Return to
the Basics. PVLDB, 5(11):1662–1673, 2012.

[49] M. Dallachiesa, T. Palpanas, and I. F. Ilyas. Top-
k Nearest Neighbor Search in Uncertain Data Series.
PVLDB, 8(1):13–24, 2014.

[50] G. Das, D. Gunopulos, and H. Mannila. Finding simi-
lar time series. Principles of Data Mining and Knowl-
edge Discovery, pages 88–100, 1997.

[51] M. Datar, N. Immorlica, P. Indyk, and V. S. Mir-
rokni. Locality-sensitive Hashing Scheme Based on
P-stable Distributions. In Proceedings of the Twenti-
eth Annual Symposium on Computational Geometry,
SCG ’04, pages 253–262, New York, NY, USA, 2004.
ACM.

[52] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang,
and E. Keogh. Querying and mining of time series
data: experimental comparison of representations and
distance measures. PVLDB, 1(2):1542–1552, 2008.

[53] K. Echihabi. Truly scalable data series similarity
search. In Proceedings of the VLDB 2019 PhD Work-
shop, co-located with the 45th International Confer-
ence on Very Large Databases (VLDB 2019), Los An-
geles, California, USA, August 26-30, 2019., 2019.

[54] K. Echihabi, K. Zoumpatianos, T. Palpanas, and
H. Benbrahim. The Lernaean Hydra of Data Series
Similarity Search: An Experimental Evaluation of the
State of the Art. PVLDB, 12(2):112–127, 2018.

[55] ESA. SENTINEL-2 Mission, 2018.

[56] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast subsequence matching in time-series databases.
In SIGMOD, pages 419–429, New York, NY, USA,
1994. ACM.

[57] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and
A. El Abbadi. Vector Approximation Based Index-
ing for Non-uniform High Dimensional Data Sets. In
Proceedings of the Ninth International Conference on
Information and Knowledge Management, CIKM ’00,
pages 202–209, New York, NY, USA, 2000. ACM.

416

[58] B. E. Flores. A pragmatic view of accuracy measure-
ment in forecasting. Omega, 14(2):93 – 98, 1986.

[59] I. R. I. for Seismology with Artificial Intelligence.
Seismic Data Access. http://ds.iris.edu/data/

access/, 2018.

[60] C. Fu, C. Xiang, C. Wang, and D. Cai. Fast Approx-
imate Nearest Neighbor Search with the Navigating
Spreading-out Graph. PVLDB, 12(5):461–474, 2019.

[61] J. Gan, J. Feng, Q. Fang, and W. Ng. Locality-
sensitive Hashing Scheme Based on Dynamic Colli-
sion Counting. In Proceedings of the 2012 ACM SIG-
MOD International Conference on Management of
Data, SIGMOD ’12, pages 541–552, New York, NY,
USA, 2012. ACM.

[62] T. Ge, K. He, Q. Ke, and J. Sun. Optimized Prod-
uct Quantization. IEEE Trans. Pattern Anal. Mach.
Intell., 36(4):744–755, Apr. 2014.

[63] A. Gionis, P. Indyk, and R. Motwani. Similarity
Search in High Dimensions via Hashing. In Proceedings
of the 25th International Conference on Very Large
Data Bases, VLDB ’99, pages 518–529, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[64] A. Gogolou, T. Tsandilas, T. Palpanas, and A. Bez-
erianos. Progressive Similarity Search on Time Se-
ries Data. In Proceedings of the Workshops of the
EDBT/ICDT 2019 Joint Conference, EDBT/ICDT
2019, Lisbon, Portugal, March 26, 2019., 2019.

[65] X. Golay, S. Kollias, G. Stoll, D. Meier, A. Valavanis,
and P. Boesiger. A new correlation-based fuzzy logic
clustering algorithm for FMRI. Magnetic Resonance
in Medicine, 40(2):249–260, 1998.

[66] R. M. Gray and D. L. Neuhoff. Quantization. IEEE
Trans. Inf. Theor., 44(6):2325–2383, Sept. 2006.

[67] A. Guttman. R-Trees: A Dynamic Index Structure
for Spatial Searching. In SIGMOD’84, Proceedings of
Annual Meeting, Boston, Massachusetts, June 18-21,
1984, pages 47–57, 1984.

[68] G. Hébrail. Practical data mining in a large utility
company, pages 87–95. Physica-Verlag HD, Heidel-
berg, 2000.

[69] G. R. Hjaltason and H. Samet. Ranking in Spatial
Databases. In Proceedings of the 4th International
Symposium on Advances in Spatial Databases, SSD
’95, pages 83–95, Berlin, Heidelberg, 1995. Springer-
Verlag.

[70] M. E. Houle and Jun Sakuma. Fast approximate sim-
ilarity search in extremely high-dimensional data sets.
In 21st International Conference on Data Engineering
(ICDE’05), pages 619–630, April 2005.

[71] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng.
Query-aware Locality-sensitive Hashing for Approxi-
mate Nearest Neighbor Search. PVLDB, 9(1):1–12,
2015.

[72] P. Huijse, P. A. Estévez, P. Protopapas, J. C. Principe,
and P. Zegers. Computational Intelligence Challenges
and Applications on Large-Scale Astronomical Time
Series Databases. IEEE Comp. Int. Mag., 9(3):27–39,
2014.

[73] P. Indyk and R. Motwani. Approximate Nearest
Neighbors: Towards Removing the Curse of Dimen-
sionality. In Proceedings of the Thirtieth Annual ACM

Symposium on Theory of Computing, STOC ’98, pages
604–613, New York, NY, USA, 1998. ACM.

[74] H. Jegou, M. Douze, and C. Schmid. Product Quan-
tization for Nearest Neighbor Search. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
33(1):117–128, Jan 2011.

[75] H. Jegou, R. Tavenard, M. Douze, and L. Amsaleg.
Searching in one billion vectors: Re-rank with source
coding. In 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 861–864, May 2011.

[76] Z. Jiang, L. Xie, X. Deng, W. Xu, and J. Wang.
Fast Nearest Neighbor Search in the Hamming Space.
In Proceedings, Part I, of the 22Nd International
Conference on MultiMedia Modeling - Volume 9516,
MMM 2016, pages 325–336, Berlin, Heidelberg, 2016.
Springer-Verlag.

[77] W. Johnson and J. Lindenstrauss. Extensions of Lip-
schitz mappings into a Hilbert space. In Confer-
ence in modern analysis and probability (New Haven,
Conn., 1982), volume 26 of Contemporary Mathemat-
ics, pages 189–206. American Mathematical Society,
1984.

[78] Y. Kakizawa, R. H. Shumway, and M. Taniguchi. Dis-
crimination and clustering for multivariate time se-
ries. Journal of the American Statistical Association,
93(441):328–340, 1998.

[79] Y. Kalantidis and Y. Avrithis. Locally Opti-
mized Product Quantization for Approximate Nearest
Neighbor Search. In 2014 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2329–
2336, June 2014.

[80] K. Kashino, G. Smith, and H. Murase. Time-series
active search for quick retrieval of audio and video. In
ICASSP, 1999.

[81] S. Kashyap and P. Karras. Scalable kNN search on
vertically stored time series. In C. Apt, J. Ghosh,
and P. Smyth, editors, KDD, pages 1334–1342. ACM,
2011.

[82] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehro-
tra. Dimensionality Reduction for Fast Similarity
Search in Large Time Series Databases. Knowledge
and Information Systems, 3(3):263–286, 2001.

[83] E. Keogh and S. Kasetty. On the Need for Time Series
Data Mining Benchmarks: A Survey and Empirical
Demonstration. Data Min. Knowl. Discov., 7(4):349–
371, Oct. 2003.

[84] E. Keogh and M. Pazzani. An enhanced represen-
tation of time series which allows fast and accurate
classification, clustering and relevance feedback. In
R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro, ed-
itors, Fourth International Conference on Knowledge
Discovery and Data Mining (KDD’98), pages 239–241,
New York City, NY, 1998. ACM Press.

[85] E. Keogh and P. Smyth. A Probabilistic Approach
to Fast Pattern Matching in Time Series Databases.
In Proceedings of the Third International Conference
on Knowledge Discovery and Data Mining, KDD’97,
pages 24–30. AAAI Press, 1997.

[86] J. Kleinberg. The Small-world Phenomenon: An Al-
gorithmic Perspective. In Proceedings of the Thirty-

417

second Annual ACM Symposium on Theory of Com-
puting, STOC ’00, pages 163–170, New York, NY,
USA, 2000. ACM.

[87] S. Knieling, J. Niediek, E. Kutter, J. Bostroem, C. El-
ger, and F. Mormann. An online adaptive screening
procedure for selective neuronal responses. Journal
of Neuroscience Methods, 291(Supplement C):36 – 42,
2017.

[88] H. Kondylakis, N. Dayan, K. Zoumpatianos, and
T. Palpanas. Coconut: A Scalable Bottom-Up Ap-
proach for Building Data Series Indexes. PVLDB,
11(6):677–690, 2018.

[89] H. Kondylakis, N. Dayan, K. Zoumpatianos, and
T. Palpanas. Coconut palm: Static and streaming
data series exploration now in your palm. In SIG-
MOD, pages 1941–1944, 2019.

[90] H. Kondylakis, N. Dayan, K. Zoumpatianos, and
T. Palpanas. Coconut: Sortable summarizations for
scalable indexes over static and streaming data series.
VLDBJ, accepted for publication, 2019.

[91] K. Košmelj and V. Batagelj. Cross-sectional approach
for clustering time varying data. Journal of Classifi-
cation, 7(1):99–109, 1990.

[92] M. Kumar, N. R. Patel, and J. Woo. Clustering sea-
sonality patterns in the presence of errors. In Pro-
ceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, July 23-26, 2002, Edmonton, Alberta, Canada,
pages 557–563, 2002.

[93] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang,
and X. Lin. Approximate Nearest Neighbor Search on
High Dimensional Data - Experiments, Analyses, and
Improvement. IEEE Transactions on Knowledge and
Data Engineering, pages 1–1, 2019.

[94] J. Lin, E. J. Keogh, S. Lonardi, and B. Y. Chiu. A
symbolic representation of time series, with implica-
tions for streaming algorithms. In Proceedings of the
8th ACM SIGMOD workshop on Research issues in
data mining and knowledge discovery, DMKD 2003,
San Diego, California, USA, June 13, 2003, pages 2–
11, 2003.

[95] M. Linardi and T. Palpanas. Scalable, variable-length
similarity search in data series: The ulisse approach.
PVLDB, 11(13):2236–2248, 2018.

[96] M. Linardi and T. Palpanas. ULISSE: ULtra compact
Index for Variable-Length Similarity SEarch in Data
Series. In ICDE, 2018.

[97] M. Linardi, Y. Zhu, T. Palpanas, and E. J. Keogh.
Matrix Profile X: VALMOD - Scalable Discovery of
Variable-Length Motifs in Data Series. 2018.

[98] T. Liu, A. W. Moore, A. Gray, and K. Yang. An In-
vestigation of Practical Approximate Nearest Neigh-
bor Algorithms. In Proceedings of the 17th Interna-
tional Conference on Neural Information Processing
Systems, NIPS’04, pages 825–832, Cambridge, MA,
USA, 2004. MIT Press.

[99] Y. Liu, J. Cui, Z. Huang, H. Li, and H. T. Shen. SK-
LSH: An Efficient Index Structure for Approximate
Nearest Neighbor Search. PVLDB, 7:745–756, 2014.

[100] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and
K. Li. Multi-probe LSH: Efficient Indexing for High-

dimensional Similarity Search. In Proceedings of the
33rd International Conference on Very Large Data
Bases, VLDB ’07, pages 950–961. VLDB Endowment,
2007.

[101] C. Maccone. Advantages of KarhunenLove transform
over fast Fourier transform for planetary radar and
space debris detection. Acta Astronautica, 60(8):775
– 779, 2007.

[102] Y. Malkov, A. Ponomarenko, A. Logvinov, and
V. Krylov. Approximate nearest neighbor algorithm
based on navigable small world graphs. Information
Systems, 45:61 – 68, 2014.

[103] Y. A. Malkov and D. A. Yashunin. Efficient and ro-
bust approximate nearest neighbor search using Hi-
erarchical Navigable Small World graphs. CoRR,
abs/1603.09320, 2016.

[104] C. D. Manning, P. Raghavan, and H. Schütze. Intro-
duction to Information Retrieval. Cambridge Univer-
sity Press, New York, NY, USA, 2008.

[105] M. Mannino and A. Abouzied. Qetch: Time Series
Querying with Expressive Sketches. In Proceedings of
the 2018 International Conference on Management of
Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018, pages 1741–1744, 2018.

[106] Y. Matsui, Y. Uchida, H. Jégou, and S. Satoh. A
Survey of Product Quantization. ITE Transactions on
Media Technology and Applications, 6(1):2–10, 2018.

[107] K. Mirylenka, V. Christophides, T. Palpanas, I. Pe-
fkianakis, and M. May. Characterizing Home Device
Usage From Wireless Traffic Time Series. In EDBT,
pages 551–562, 2016.

[108] K. Mirylenka, M. Dallachiesa, and T. Palpanas. Data
Series Similarity Using Correlation-Aware Measures.
In Proceedings of the 29th International Conference
on Scientific and Statistical Database Management,
Chicago, IL, USA, June 27-29, 2017, pages 11:1–
11:12, 2017.

[109] R. Motwani, A. Naor, and R. Panigrahy. Lower
Bounds on Locality Sensitive Hashing. SIAM J. Dis-
crete Math., 21(4):930–935, 2007.

[110] A. Mueen, Y. Zhu, M. Yeh, K. Kamgar,
K. Viswanathan, C. Gupta, and E. Keogh. The
Fastest Similarity Search Algorithm for Time
Series Subsequences under Euclidean Distance,
August 2017. http://www.cs.unm.edu/~mueen/

FastestSimilaritySearch.html.

[111] M. Muja and D. G. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. In
VISAPP International Conference on Computer Vi-
sion Theory and Applications, pages 331–340, 2009.

[112] B. Naidan, L. Boytsov, and E. Nyberg. Permutation
Search Methods Are Efficient, Yet Faster Search is
Possible. PVLDB, 8(12):1618–1629, 2015.

[113] G. Navarro. Searching in Metric Spaces by Spatial Ap-
proximation. The VLDB Journal, 11(1):28–46, Aug.
2002.

[114] M. Norouzi and D. J. Fleet. Cartesian K-Means. In
Proceedings of the 2013 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR ’13,
pages 3017–3024, 2013.

[115] R. O’Donnell, Y. Wu, and Y. Zhou. Optimal Lower

418

Bounds for Locality-Sensitive Hashing (Except When
Q is Tiny). ACM Trans. Comput. Theory, 6(1):5:1–
5:13, Mar. 2014.

[116] B. C. Ooi, K.-L. Tan, K.-L. Tan, C. Yu, and
S. Bressan. Indexing the Edges&Mdash;a Simple
and Yet Efficient Approach to High-dimensional In-
dexing. In Proceedings of the Nineteenth ACM
SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, PODS ’00, pages 166–174,
New York, NY, USA, 2000. ACM.

[117] T. Palpanas. Data Series Management: The Road to
Big Sequence Analytics. SIGMOD Record, 44(2):47–
52, 2015.

[118] T. Palpanas. Big Sequence Management: A glimpse
of the Past, the Present, and the Future. In R. M.
Freivalds, G. Engels, and B. Catania, editors, SOF-
SEM, volume 9587 of Lecture Notes in Computer Sci-
ence, pages 63–80. Springer, 2016.

[119] T. Palpanas and V. Beckmann. Report on the first
and second interdisciplinary time series analysis work-
shop (itisa). SIGMOD Rec., ”Accepted for publica-
tion, 2019.

[120] R. Panigrahy. Entropy Based Nearest Neighbor Search
in High Dimensions. In Proceedings of the Seven-
teenth Annual ACM-SIAM Symposium on Discrete Al-
gorithm, SODA ’06, pages 1186–1195, Philadelphia,
PA, USA, 2006. Society for Industrial and Applied
Mathematics.

[121] P. Paraskevopoulos, T.-C. Dinh, Z. Dashdorj, T. Pal-
panas, and L. Serafini. Identification and Charac-
terization of Human Behavior Patterns from Mobile
Phone Data. InD4D Challenge session, NetMob, 2013.

[122] B. Peng, P. Fatourou, and T. Palpanas. ParIS: The
Next Destination for Fast Data Series Indexing and
Query Answering. IEEE BigData, 2018.

[123] B. Peng, P. Fatourou, and T. Palpanas. MESSI: In-
Memory Data Series Indexing. ICDE, 2020.

[124] D. Rafiei. On Similarity-Based Queries for Time Series
Data. In Proceedings of the 15th International Confer-
ence on Data Engineering, Sydney, Austrialia, March
23-26, 1999, pages 410–417, 1999.

[125] D. Rafiei and A. Mendelzon. Similarity-based Queries
for Time Series Data. SIGMOD Rec., 26(2):13–25,
June 1997.

[126] D. Rafiei and A. O. Mendelzon. Efficient Retrieval
of Similar Time Sequences Using DFT. CoRR,
cs.DB/9809033, 1998.

[127] T. Rakthanmanon, B. J. L. Campana, A. Mueen,
G. E. A. P. A. Batista, M. B. Westover, Q. Zhu, J. Za-
karia, and E. J. Keogh. Searching and mining trillions
of time series subsequences under dynamic time warp-
ing. In Q. Yang, D. Agarwal, and J. Pei, editors, KDD,
pages 262–270. ACM, 2012.

[128] T. Rakthanmanon, E. J. Keogh, S. Lonardi, and
S. Evans. Time series epenthesis: Clustering time
series streams requires ignoring some data. In Data
Mining (ICDM), 2011 IEEE 11th International Con-
ference on, pages 547–556. IEEE, 2011.

[129] U. Raza, A. Camerra, A. L. Murphy, T. Palpanas, and
G. P. Picco. Practical Data Prediction for Real-World
Wireless Sensor Networks. IEEE Trans. Knowl. Data
Eng., 27(8), 2015.

[130] P. P. Rodrigues, J. Gama, and J. P. Pedroso. ODAC:
Hierarchical Clustering of Time Series Data Streams.
In J. Ghosh, D. Lambert, D. B. Skillicorn, and J. Sri-
vastava, editors, SDM, pages 499–503. SIAM, 2006.

[131] G. Ruiz, E. Chávez, M. Graff, and E. S. Téllez. Find-
ing Near Neighbors Through Local Search. In Proceed-
ings of the 8th International Conference on Similarity
Search and Applications - Volume 9371, SISAP 2015,
pages 103–109, Berlin, Heidelberg, 2015. Springer-
Verlag.

[132] H. Samet. Foundations of Multidimensional and Met-
ric Data Structures (The Morgan Kaufmann Series in
Computer Graphics and Geometric Modeling). Mor-
gan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2005.

[133] S. R. Sarangi and K. Murthy. DUST: a generalized
notion of similarity between uncertain time series. In
Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, July 25-28, 2010, pages 383–
392, 2010.

[134] P. Schäfer and M. Högqvist. SFA: A Symbolic Fourier
Approximation and Index for Similarity Search in
High Dimensional Datasets. In Proceedings of the
15th International Conference on Extending Database
Technology, EDBT ’12, pages 516–527, New York, NY,
USA, 2012. ACM.

[135] D. Shasha. Tuning Time Series Queries in Finance:
Case Studies and Recommendations. IEEE Data Eng.
Bull., 22(2):40–46, 1999.

[136] H. Shatkay and S. B. Zdonik. Approximate queries
and representations for large data sequences. In Pro-
ceedings of the Twelfth International Conference on
Data Engineering, pages 536–545, Feb 1996.

[137] J. Shieh and E. Keogh. iSAX: Indexing and Mining
Terabyte Sized Time Series. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’08, pages 623–
631, New York, NY, USA, 2008. ACM.

[138] J. Shieh and E. Keogh. iSAX: Indexing and Mining
Terabyte Sized Time Series. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’08, pages 623–
631, New York, NY, USA, 2008. ACM.

[139] C. Silpa-Anan and R. Hartley. Optimised KD-trees for
fast image descriptor matching. In 2008 IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 1–8, June 2008.

[140] Skoltech Computer Vision. Deep billion-scale index-
ing. http://sites.skoltech.ru/compvision/noimi,
2018.

[141] S. Soldi, V. Beckmann, W. Baumgartner, G. Ponti,
C. R. Shrader, P. Lubiński, H. Krimm, F. Mattana,
and J. Tueller. Long-term variability of AGN at hard
X-rays. Astronomy & Astrophysics, 563:A57, 2014.

[142] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin. SRS:
Solving c-approximate Nearest Neighbor Queries in
High Dimensional Euclidean Space with a Tiny Index.
PVLDB, 8(1):1–12, 2014.

[143] N. Sundaram, A. Turmukhametova, N. Satish,

419

T. Mostak, P. Indyk, S. Madden, and P. Dubey.
Streaming similarity search over one billion tweets
using parallel locality-sensitive hashing. PVLDB,
6(14):1930–1941, 2013.

[144] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Efficient and
Accurate Nearest Neighbor and Closest Pair Search in
High-dimensional Space. ACM Trans. Database Syst.,
35(3):20:1–20:46, July 2010.

[145] E. S. Tellez, E. Chávez, and G. Navarro. Succinct
Nearest Neighbor Search. In Proceedings of the Fourth
International Conference on SImilarity Search and
APplications, SISAP ’11, pages 33–40, New York, NY,
USA, 2011. ACM.

[146] TEXMEX Research Team. Datasets for approximate
nearest neighbor search. http://corpus-texmex.

irisa.fr/, 2018.

[147] A. Turpin and F. Scholer. User Performance Versus
Precision Measures for Simple Search Tasks. In Pro-
ceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’06, pages 11–18, New York, NY,
USA, 2006. ACM.

[148] S. University. Southwest University Adult Lifespan
Dataset (SALD). http://fcon_1000.projects.

nitrc.org/indi/retro/sald.html?utm_source=

newsletter&utm_medium=email&utm_content=See%

20Data&utm_campaign=indi-1, 2018.

[149] D. W. G. UNSW. SRS - Fast Approximate Near-
est Neighbor Search in High Dimensional Euclidean
Space With a Tiny Index. https://github.com/

DBWangGroupUNSW/SRS, 2019.

[150] J. Wang, J. Wang, G. Zeng, R. Gan, S. Li, and B. Guo.
Fast Neighborhood Graph Search Using Cartesian
Concatenation. In 2013 IEEE International Confer-
ence on Computer Vision, pages 2128–2135, Dec 2013.

[151] X. Wang, A. Mueen, H. Ding, G. Trajcevski,
P. Scheuermann, and E. Keogh. Experimental Com-
parison of Representation Methods and Distance Mea-
sures for Time Series Data. Data Min. Knowl. Discov.,
26(2):275–309, Mar. 2013.

[152] Y. Wang, P. Wang, J. Pei, W. Wang, and S. Huang.
A Data-adaptive and Dynamic Segmentation Index for
Whole Matching on Time Series. PVLDB, 6(10):793–
804, 2013.

[153] T. Warren Liao. Clustering of time series dataa survey.
Pattern Recognition, 38(11):1857–1874, 2005.

[154] R. Weber, H.-J. Schek, and S. Blott. A Quantitative
Analysis and Performance Study for Similarity-Search
Methods in High-Dimensional Spaces. In Proceedings

of the 24rd International Conference on Very Large
Data Bases, VLDB ’98, pages 194–205, San Francisco,
CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[155] B. M. Williams and L. A. Hoel. Modeling and fore-
casting vehicular traffic flow as a seasonal arima pro-
cess: Theoretical basis and empirical results. Journal
of Transportation Engineering, 129(6):664–672, 2003.

[156] Y. Xia, K. He, F. Wen, and J. Sun. Joint Inverted In-
dexing. 2013 IEEE International Conference on Com-
puter Vision, pages 3416–3423, 2013.

[157] D. E. Yagoubi, R. Akbarinia, F. Masseglia, and T. Pal-
panas. DPiSAX: Massively Distributed Partitioned
iSAX. In 2017 IEEE International Conference on
Data Mining (ICDM), pages 1135–1140, 2017.

[158] D.-E. Yagoubi, R. Akbarinia, F. Masseglia, and
T. Palpanas. Massively distributed time series index-
ing and querying. TKDE (to appear), 2019.

[159] A. B. Yandex and V. Lempitsky. Efficient Indexing of
Billion-Scale Datasets of Deep Descriptors. In 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2055–2063, June 2016.

[160] M. Yeh, K. Wu, P. S. Yu, and M. Chen. PROUD: a
probabilistic approach to processing similarity queries
over uncertain data streams. In EDBT 2009, 12th In-
ternational Conference on Extending Database Tech-
nology, Saint Petersburg, Russia, March 24-26, 2009,
Proceedings, pages 684–695, 2009.

[161] C. Yu, B. C. Ooi, K.-L. Tan, and H. V. Jagadish. In-
dexing the Distance: An Efficient Method to KNN
Processing. In Proceedings of the 27th International
Conference on Very Large Data Bases, VLDB ’01,
pages 421–430, San Francisco, CA, USA, 2001. Mor-
gan Kaufmann Publishers Inc.

[162] L. Zhang, N. Alghamdi, M. Y. Eltabakh, and
E. A. Rundensteiner. TARDIS: Distributed Indexing
Framework for Big Time Series Data. In 2019 IEEE
35th International Conference on Data Engineering
(ICDE), pages 1202–1213, April 2019.

[163] K. Zoumpatianos, S. Idreos, and T. Palpanas. ADS:
the adaptive data series index. The VLDB Journal,
25(6):843–866, 2016.

[164] K. Zoumpatianos, Y. Lou, I. Ileana, T. Palpanas, and
J. Gehrke. Generating data series query workloads.
The VLDB Journal, 27(6):823–846, Dec. 2018.

[165] K. Zoumpatianos, Y. Lou, T. Palpanas, and J. Gehrke.
Query Workloads for Data Series Indexes. In Proceed-
ings of the 21th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, Syd-
ney, NSW, Australia, August 10-13, 2015, pages 1603–
1612, 2015.

420

