
Cuckoo Index: A Lightweight Secondary Index Structure

Andreas Kipf1⇤, Damian Chromejko2, Alexander Hall3⇤,

Peter Boncz4, David G. Andersen5⇤

1
MIT CSAIL

2
Google

3
RelationalAI

4
CWI

5
CMU

kipf@mit.edu dchromejko@google.com alex.hall@relational.ai boncz@cwi.nl dga@cs.cmu.edu

ABSTRACT
In modern data warehousing, data skipping is essential for
high query performance. While index structures such as B-
trees or hash tables allow for precise pruning, their large
storage requirements make them impractical for indexing
secondary columns. Therefore, many systems rely on ap-
proximate indexes such as min/max sketches (ZoneMaps) or
Bloom filters for cost-e↵ective data pruning. For example,
Google PowerDrill skips more than 90% of data on average
using such indexes.

In this paper, we introduce Cuckoo Index (CI), an approx-
imate secondary index structure that represents the many-
to-many relationship between keys and data partitions in a
highly space-e�cient way. At its core, CI associates variable-
sized fingerprints in a Cuckoo filter with compressed bitmaps
indicating qualifying partitions. With our approach, we tar-
get equality predicates in a read-only (immutable) setting
and optimize for space e�ciency under the premise of prac-
tical build and lookup performance.

In contrast to per-partition (Bloom) filters, CI produces
correct results for lookups with keys that occur in the data.
CI allows to control the ratio of false positive partitions for
lookups with non-occurring keys. Our experiments with
real-world and synthetic data show that CI consumes sig-
nificantly less space than per-partition filters for the same
pruning power for low-to-medium cardinality columns. For
high cardinality columns, CI is on par with its baselines.

PVLDB Reference Format:
Andreas Kipf, Damian Chromejko, Alexander Hall, Peter Boncz,
and David G. Andersen. Cuckoo Index: A Lightweight Secondary
Index Structure. PVLDB, 13(13): 3559-3572, 2020.
DOI: https://doi.org/10.14778/3424573.3424577

1. INTRODUCTION
Many multi-level or sharded storage systems use sketches

such as Bloom filters [7] to reduce the number of accesses
needed to find data items of interest. Examples include

⇤Work done while at Google.

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy

of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For

any use beyond those covered by this license, obtain permission by emailing

info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 13, No. 13

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3424573.3424577

the LSM-tree LevelDB [1] and PowerDrill [21]. In each of
these cases, searching for a data item d may have to look at
many di↵erent “stripes” (chunks of data) where d could be
stored, and the goal is to reduce the number of stripes that
must be touched. Bloom filters and related approximate
set-membership data structures are a good match for this
problem, as they combine e�cient space use with one-sided
error appropriate for the problem at hand: The filter may
occasionally require accessing a stripe that does not contain
the data, but will always return a “true positive” result if
the data is indeed there.

While most systems maintain one Bloom filter per stripe
and may test each of them at query time, SlimDB [37] (an
LSM-tree) suggests replacing per-level Bloom filters with a
single Cuckoo filter [15] that maps each key fingerprint to the
most recent level containing that key. Using this approach,
SlimDB avoids lookups in multiple such filters. While this is
a valid strategy for LSM-trees where data items (i.e., keys)
are only associated with a single level, it does not handle the
general case where data items may occur in multiple stripes.

In this paper, we extend this idea to the case of index-
ing secondary columns by associating each key indexed in a
Cuckoo filter [15] with a bitmap indicating qualifying stripes
(i.e., stripes containing that data item). We term this new
data structure Cuckoo Index (CI). In contrast to a Cuckoo
filter that uses a fixed number of fingerprint bits per key,
CI stores variable-sized fingerprints to avoid key shadow-
ing [39]. A fingerprint stored in CI uniquely identifies its
key. With this design, CI provides correct results for lookups
with keys that occur in the data (positive lookups). As
with all schemes that do not store full keys, there can be
false positives for lookups with non-occurring keys (nega-
tive lookups). To mitigate the impact of those, CI allows to
fine-tune the expected number of false positive stripes.

We store the variable-sized fingerprints in a space-e�cient
block-based storage. Each block stores (bitpacked) finger-
prints with a fixed number of bits. Additional bitmaps in-
dicate the membership of a certain fingerprint in a block.
Further, CI maximizes primary bucket assignments at con-
struction time, which reduces space consumption.

For low-to-medium cardinality columns, CI is significantly
smaller than per-stripe filters. The rationale behind the
memory savings is simple: for secondary columns such as
“country” each data item such as “US” will only be indexed
once in CI while previously “US” would have been stored
in multiple per-stripe filters. The extra space required by
the bitmaps is insignificant compared to the space savings
by only indexing each data item once.

3559

�>>PM<>T

�K<>@

��

�<NC��<=G@

�GJJH�	DGO@MN

�JI@�<KN�����N

�J��I?@S

Figure 1: Cuckoo Index (CI) strikes a good balance
between space and pruning power.

In our work, we assume an analytical storage system such
as Mesa [20] or PowerDrill [21] that partitions columns into
stripes of up to 65K rows. Further, we assume a secondary
indexing setting in which we cannot control the data place-
ment (sort order). Data may be sorted by the primary key,
by arrival time, or not at all, and we will show the e↵ect of
di↵erent sort orders on filter sizes and pruning power. Our
focus is on improving the space e�ciency (i.e., the trade-o↵
between space and pruning power) of the filter. We assume
that the costs for retrieving a false positive stripe from stor-
age and scanning it in memory dominate performance. We
further restrict the scope of this work to the “write once-read
many” case common in both warehousing and log-structured
systems, where data is only written once into an immutable
state. Finally, we target equality predicates (e.g., country
equals “US”) which are very common in our use cases.

We evaluate CI with real-world (IMDb [30] and DMV [2])
and synthetic data and show that in many cases it con-
sumes less space for the same pruning power than existing
approaches. For example, for a medium cardinality column
(with 6.34% of values being unique) and 8K rows per stripe,
CI consumes 23.7% less space than the best baseline, per-
stripe Xor filters [19].

In summary, CI creates a new Pareto-optimal solution to
the data skipping problem, striking a good balance between
space e�ciency and pruning power (cf. Figure 1).

Contributions. Our contributions include:

• A new lightweight secondary index structure with large
space savings for low-to-medium cardinality columns
and on-par space consumption for high cardinalities
compared to per-stripe filters.

• A new heuristic-based construction of Cuckoo hash ta-
bles that maximizes the ratio of items assigned to their
primary bucket.

• A comparison of this heuristic against an optimal so-
lution that maximizes primary bucket assignments by
solving a maximum weight matching problem.

• An unaligned bitmap compression scheme that is more
space e�cient than Roaring [8] in many cases while still
allowing for partial decompression.

• An open-source implementation of our approach and a
benchmarking framework for (approximate) secondary
indexes. Both artifacts are available on GitHub1.

• An evaluation of our approach using this framework
on real-world and synthetic datasets.

2. BACKGROUND
In this section, we describe the storage layout used in this

work, provide a problem definition, and give some back-
ground on Cuckoo filters.

Storage Layout. On a high level, we assume a PAX-style
storage layout [5] in which a table is horizontally partitioned
into segments (essentially files stored in distributed stor-
age), which are organized in a columnar fashion (i.e., same
attributes are grouped together) for better cache locality
and compression. Such a data layout is typical for cloud
databases such as Snowflake [10].

In our setting, a segment typically consists of 1-5M rows.
Each column in a segment is further divided into logical
“stripes”, consisting of up to 216 (65,536) rows each. We
consider a stripe the unit of access, meaning we always scan
all values within a stripe. In other words, an index would
allow us to skip over stripes, but not further reduce scan
ranges within a stripe. Throughout this paper, our focus is
on indexing a single segment (file). We further assume that
the file API allows us to retrieve individual stripes from stor-
age without reading the entire file. Such an API is supported
by cloud storage systems such as Amazon S3.

Problem Definition. We define S as the set of stripes that
represents a column within a segment. Given a data item d
and a set of stripes S, the task is identify a subset R ✓ S
of stripes that potentially contain d (i.e., false positives are
allowed), without missing out on stripes that do contain d
(i.e., no false negatives). The goal is to make R contain as
few stripes as possible. In the best case, R = C with C ✓ S
being the stripes that actually contain d (true positives).

We measure the quality of an index using the scan rate
metric. We define the scan rate as the ratio of false positive
stripes FP ✓ R to true negative stripes TN ✓ S (|TN | > 0):

scan rate =
|FP |
|TN | (1)

In other words, the scan rate is the ratio of true negative
stripes that is misclassified as positive. The idea behind
defining scan rate like this is to align it with the false positive
rate of per-stripe filters, assuming that lookups in di↵erent
filters are independent of each other. When |TN | = 0, i.e.,
when a given value is contained all stripes, we set the scan
rate to zero.

Each false positive stripe fp 2 FP comes with a penalty,
most notably an unnecessary I/O. For queries that only se-
lect a few stripes (i.e., are very selective), an e↵ective index
can save a lot of unnecessary work, potentially leading to
large speedups in overall query performance.

For practical purposes, we want the index structure to be
significantly smaller than the compressed column. Thus, the
overarching goal is to strike a good balance between space
consumption and pruning power. Lookups in this structure
should still be practical, i.e., significantly faster than a disk
I/O which we assume to be in the order of milliseconds.
1https://github.com/google/cuckoo-index/

3560

»¼»¼» ¼»¼»»

»» »¼ ¼» ¼¼

£S��T¤

=P>F@O�DI?@S�ADIB@MKMDIO

C�S �Ó�»¼��»¼»¼»� C�T �Ó�¼¼��¼»¼»»�

Figure 2: A Cuckoo filter.

Cuckoo Filter. Similar to a Bloom filter [7], a Cuckoo
filter [15] is a data structure that can answer approximate
set-membership queries: Given a lookup key, the filter de-
termines whether the key might be contained in the set or is
definitely not part of the set. Like a Cuckoo hash table [36],
a Cuckoo filter consists of m buckets. Figure 2 shows an ex-
ample of a filter with four buckets. In contrast to a Cuckoo
hash table, a Cuckoo filter does not store full keys but small
(e.g., 8-bit) fingerprints that are extracted from hashes:

fingerprint(key) = extract(hash(key)) (2)

For example, the least significant bits of the hash value can
be used as fingerprint bits.

Similar to keys in a Cuckoo hash table, each fingerprint
has two possible buckets that it can be placed in: its primary
and its secondary bucket. If a bucket is full, the insertion
algorithm “kicks” a random item to its alternate bucket and
inserts the to-be-inserted item into the freed spot. There is
a (configurable) maximum number of kicks that are allowed
to occur during an insert after which construction fails. In
such cases, a filter needs to be rebuilt from scratch with a
more conservative configuration (i.e., more buckets).

Compared to a Cuckoo hash table that uses two inde-
pendent hash functions on full keys, a Cuckoo filter uses
partial-key cuckoo hashing [15] to find an alternative bucket
i2 for fingerprints stored in bucket i1:

i2 = hash(fingerprint)� i1 (3)

However, the restriction of not being able to use two in-
dependent hash functions only applies in an online setting,
i.e., already inserted items are no longer accessible. In this
work, we are targeting the o✏ine setting where all items are
available at once, hence we are free to use independent hash
functions on the full keys.

A Cuckoo filter typically reserves space for multiple items
per bucket. This parameter is called bucket size b (or num-
ber of slots). With b = 1, the maximum load factor of the
filter (ratio of occupied slots) is 50% and increases to 84%
and 95% with b = 2 and b = 4, respectively [15].

3. CUCKOO INDEX
In this section, we first provide an overview over the design

of Cuckoo Index (CI) before describing several optimizations
to reduce space consumption and increase pruning power.
We note that all design decisions are made with practical
build and probe performance in mind.

6WULSH��

6WULSH��

6WULSH��

6WULSH��

Figure 3: A Cuckoo Index is built for each column
in a data file (segment). Each fingerprint in the
Cuckoo filter is associated with a stripe bitmap that
indicates qualifying stripes. The figure illustrates a
query for the country “US”.

3.1 Overview
On a high level, CI consists of a Cuckoo filter where each

key fingerprint is associated with a fixed-size bitmap indi-
cating qualifying stripes as shown in Figure 3. In contrast
to traditional per-stripe filters, in this design there is only a
single index per column and segment. To query CI, we first
probe its Cuckoo filter with a hash of the lookup key. The
filter lookup returns the o↵set of the matching fingerprint
stored in the filter (if such a fingerprint exists) which we then
use to locate the corresponding bitmap. Note that there is
a one-to-one mapping between fingerprints and bitmaps.

For low cardinality columns, such as “country”, having
only one such filter per column has the advantage that ev-
ery unique value will only be indexed once. For example,
assume that “US” is contained in every single stripe. With
the per-stripe filter design, “US” would occupy around 10
bits per stripe (assuming a 1% target false positive rate).
With say 20 stripes, it would require 200 bits. With CI’s
design, space consumption would be reduced to 10 bits for
storing “US” in the filter and another 20 bits for the corre-
sponding bitmap and thus save 85% in memory. For high
cardinality columns, this design may consume more memory
than the per-stripe filter design. However, this e↵ect can be
mitigated by cross-optimizing fingerprints and bitmaps as
we will show later. Besides the potentially large space sav-
ings, another advantage of this design is that lookups only
need to probe a single filter.

On the other hand, this design also introduces a few chal-
lenges. When inserting entries into a Cuckoo filter, there can
be fingerprint collisions among keys. That occurs when two
keys share the same bucket and have the same fingerprint.
In a regular Cuckoo filter, we would simply not insert the
redundant fingerprint. In CI, however, each fingerprint has
an associated value (i.e., a bitmap). Thus, we need a strat-
egy to resolve such collisions. We discuss di↵erent options
and their trade-o↵s in Section 3.2.

Another challenge is the representation of bitmaps. The
most straightforward approach would be to allocate a sepa-
rate array of uncompressed bitmaps that has the same size
(i.e., number of entries) as the array that represents the
Cuckoo filter, enabling a simple o↵set access from one into
the other (cf. Figure 3). There are many possible optimiza-
tions to this design, such as bitmap compression or adding
a level of indirection and only maintaining distinct bitmaps.
We discuss our bitmap encoding scheme in Section 3.6.

3561

Figure 4: Storing 64-bit hashes of colliding keys in
a secondary table to ensure a collision-free primary
table that only stores short key fingerprints.

One of our key techniques is to cross-optimize (i.e., holis-
tically optimize) fingerprints and bitmaps to satisfy a given
scan rate (cf. Section 2). The idea is to store fewer fin-
gerprint bits (for false positive reduction) for fingerprints
associated with sparse bitmaps, and likewise use more bits
for fingerprints associated with dense bitmaps. The ratio-
nale behind that is that for sparse bitmaps we need to scan
few stripes anyways, thus a false positive that matches with
a sparse bitmap is less expensive than a false positive that
matches with a dense bitmap.

We choose a Cuckoo over a Bloom filter for the following
reasons: (i) a Cuckoo filter has a lower space consumption
than a Bloom filter for false positive rates under 3% [15],
and (ii) in a Cuckoo filter, it is straightforward to associate
values (bitmaps) with keys (fingerprints). We note that the
recently proposed Xor filter [19] was not yet available at the
design phase of this work. However, we expect it to have
similar drawbacks as Invertible Bloom Lookup Table [18]
(cf. Section 5) when associating it with bitmaps, including
the possibility of unsuccessful lookups.

3.2 Collision Handling
We consider three di↵erent strategies to resolve fingerprint

collisions. While Union Bitmaps introduces false positives,
Secondary Table and Variable-Sized Fingerprints guar-
antee correct results for positive lookups. That is, for a
lookup key that exists in the data, the latter two strategies
always return the correct set of stripes, while Union Bitmaps
may return false positives.

Union Bitmaps. This approach solves fingerprint colli-
sions solely on the bitmap side. When we find that a key
fingerprint already exists in the filter, we union the bitmaps
of the new and the existing fingerprint. Such a conflict res-
olution would not be possible if we would associate each
fingerprint with a regular value such as an SSTable ID in an
LSM-tree [37] (i.e., one cannot union IDs without requiring
extra space). While this strategy does not require any ex-
tra space, it introduces additional false positive stripes: In
the event that a lookup maps to a bitmap that has been
unioned with another bitmap, we may introduce false pos-
itive stripes. In the worst case, we may access S � 1 false
positive stripes with S being the total number of stripes
(which is the case when a bitmap with one set bit is com-
bined with a bitmap with S set bits). Since we aim for
maximum pruning power, we now study strategies that do
not introduce false positive stripes.

<��»»
=��¼»

>��»¼

<��»»
=��¼»

>��»¼

�
P
>
F
@
O
�
»

�@T���<NC���MDH<MT���@>JI?<MT
������������P>F@O����P>F@O
<����»»����»��������¼
=����¼»����»��������¼
>����»¼����»��������¼

�
P
>
F
@
O
�
¼

Figure 5: Three keys indexed in a CI with two slots
per bucket (bitmaps omitted from figure). All keys
have Bucket 0 as their primary bucket. Only c is
placed in its secondary bucket, a and b are stored in
their primary bucket. While the blue bit would be
su�cient to di↵erentiate between a and b, we need to
store an extra bit (marked in green). Without this
bit, a lookup for c would falsely get matched with
a (a lookup always first checks the primary bucket).
Hence, to determine the minimum number of fin-
gerprint bits for Bucket 0, we need to consider all
keys that have this bucket as primary bucket.

Colliding Entries in Secondary Table. The multi-level
Cuckoo filter in SlimDB [37] addresses the problem of col-
liding fingerprints by introducing a secondary table (a hash
table storing full keys) to store conflicting entries. Lookups
first search the secondary table and only consult the pri-
mary table (the Cuckoo filter) if the key was not found in
the secondary table. This approach not only a↵ects lookup
performance, but also may require a significant amount of
extra space for the secondary table. For example, assuming
a key length of 128 bits and a collision probability of 1%,
the secondary table adds an overhead of 1.28 bits per key.
This storage overhead of course increases with longer keys
such as strings.

To bound the required space overhead, we could only store
64-bit hashes of keys in the secondary table (cf. Figure 4).
Since our filter is intended as an immutable (“write once-
read many”) data structure, we know all keys at build time
and can therefore ensure that their hashes are unique (i.e.,
there are no 64-bit hash collisions). In the unlikely event
of a hash collision, we use a di↵erent hash function. This
optimization allows us to e↵ectively use this technique with
string keys. The increased lookup cost, however, remains.

Variable-Sized Fingerprints. This design avoids the over-
head of a secondary table by storing collision-free, variable-
sized fingerprints in the primary table. We compute the
minimum number of hash bits required to ensure unique
fingerprints on a per-bucket basis. We make all fingerprints
in a bucket share the same length (number of bits) for space
e�ciency reasons.

To correctly match a lookup key with its stored finger-
print, we need to carefully determine the minimum number
of fingerprint bits per bucket as shown in Figure 5. In par-
ticular, we need to consider all items that have a certain
bucket as primary bucket instead of only considering those
that are actually stored in that bucket. Otherwise, a lookup
for an item that is stored in its secondary bucket might
get falsely matched with an item in its primary bucket. To
mitigate the size impact of this e↵ect, it is important to
maximize the ratio of items that are stored in their primary

3562

buckets since those do not influence the fingerprint lengths
of other buckets (as opposed to items stored in their sec-
ondary buckets). In Section 3.4 we will introduce two key-
to-bucket-assignment algorithms that yield the optimal and
an almost optimal primary ratio, respectively.

3.3 Scan Rate Optimization
As mentioned earlier, we use the scan rate metric (cf. Sec-

tion 2) to measure the quality of our index, which is the ratio
of false positive to true negative stripes. While our variable-
length fingerprint design yields correct results for positive
lookups (a guaranteed scan rate of 0%), it may return false
positive stripes for lookups with non-existing keys.

CI therefore takes the target scan rate (for the entire in-
dex) as a parameter. Since optimizing the scan rate across
all buckets can be expensive, we optimize the scan rate on a
per-bucket basis. In particular, we may increase the finger-
print length of a bucket such that the expected scan rate of
that bucket stays below a certain threshold.

Considering a single fingerprint/bitmap pair stored in a
certain bucket, there are two components that determine
the scan rate of this particular entry. First, every additional
fingerprint bit halves the probability that a random lookup
fingerprint matches with the stored fingerprint. Second, as-
suming the fingerprints match, the associated bitmap can
cause a further scan rate reduction. In the best case, the
bitmap has only one bit set, limiting the number of false
positive stripes to one. Hence, the formula for the expected
scan rate of a fingerprint/bitmap pair is:

local scan rate =
1

2fingerprint bits
⇤ bitmap density (4)

with bitmap density being defined as the ratio of set bits.
For high cardinality columns, we observe sparse bitmaps

(depending on the data distribution among stripes) and thus
we tend to require fewer fingerprint bits in these cases.

Algorithm 1 shows the complete process of determining
the number of fingerprint bits for a certain bucket such that
we avoid fingerprint collisions and satisfy a given target scan
rate (for the entire index). We first compute the bucket
density of the table (i.e., the ratio of non-empty buckets):

table density =
num non-empty buckets

num buckets
(5)

Then we determine the minimum number of hash bits to
avoid fingerprint collisions (cf. Section 3.2). Essentially, we
increase the number of fingerprint bits until the fingerprints
are unique. We now increase the number of hash bits un-
til we satisfy the given target scan rate (cf. Lines 3 to 14).
To check for that condition, we compute the actual scan
rate of the bucket by averaging the local scan rates of the
individual fingerprint/bitmap pairs (cf. Lines 5 to 9). We
also account for the table density: If a lookup “ends up” in
an empty bucket, there is no probability of a false match
at all and it will correctly be identified as a negative. Fur-
thermore, we account for the fact that a lookup “checks”
up to two buckets: The primary and the secondary bucket
of the lookup key. By multiplying by two in this step, we
treat both lookups (primary and secondary) as independent
random experiments. Thereby, we slightly overestimate the
probability of a false match since these lookups are actually
not independent. That is, if a lookup matches with a fin-
gerprint in the primary bucket, it cannot also match with a
fingerprint in the secondary bucket.

Algorithm 1: Returns the minimum number of
fingerprint bits required to avoid fingerprint
collisions and to satisfy a given scan rate.

Input: keys, table, bucket, target scan rate
Output: num bits
// Get bucket density of table (ratio of

non-empty buckets).
1 table density GetBucketDensity(table)

// Get minimum number of hash bits to avoid
fingerprint collisions of keys that have
bucket as primary bucket.

2 num bits GetCollFreeHashLength(keys, bucket)

3 while true do
4 false match probability 1/2num bits

// Compute scan rate of bucket by averaging
local scan rates.

5 sum scan rate 0.0
6 for entry in bucket do
7 bitmap density

GetBitmapDensity(entry.bitmap)
8 sum scan rate +=

false match probability ⇤ bitmap density

9 actual scan rate
sum scan rate/bucket.num entries()

// Account for table density (reduces
actual scan rate based on the fact that
lookups may end up in an empty bucket).

10 actual scan rate *= table density

// Double actual scan rate to account for
the secondary lookup.

11 actual scan rate *= 2

12 if actual scan rate <= target scan rate then
13 break

14 ++num bits

15 return num bits

3.4 Assigning Keys to Buckets
We follow two goals when assigning keys to buckets. First,

and most importantly, we want to find a placement where
all keys have a bucket. To ensure that this is possible, we
need to size the Cuckoo table accordingly. That is, we need
to allocate a su�cient number of buckets to accommodate
the key set considering maximum load factors (that depend
on the number of slots per bucket, cf. Section 2). Second,
we aim to maximize the primary ratio:

primary ratio =
num keys in primary buckets

num keys
(6)

We refer to items that reside in their primary or secondary
buckets as primary or secondary items, respectively. With
a high primary ratio, we mitigate the impact of secondary
items influencing the fingerprint length of their primary buck-
ets (cf. Section 3.2).

We have experimented with three di↵erent algorithms.
First, we use the well-known kicking procedure that is also
used by the Cuckoo filter. The only di↵erence is that we
do not use partial-key Cuckoo hashing and instead use two
independent hash functions, assuming we have access to all

3563

Table 1: Performance of di↵erent algorithms for
key-to-bucket assignment.

Algorithm AVG primary % AVG matching time

Kicking 64% 192 ns
Matching 77% 101 µs
Biased Kicking 76% 1.2 µs

keys at build time. Second, we use a matching algorithm
that finds the optimal placement of keys that maximizes the
primary ratio (cf. Section 3.4.1). This approach is similar to
prior work on using matching in a Cuckoo hashing context
by Dietzfelbinger et al. [11] that aims to speed up lookups
rather than decreasing footprint size. Lastly, in Section 3.4.2
we introduce a biased kicking algorithm that achieves almost
optimal primary ratios in short time. We now describe the
matching and the biased kicking algorithms.

3.4.1 Matching Algorithm
The kicking algorithm might produce a key-to-bucket as-

signment that assigns many keys to their secondary bucket
or even fail to find an assignment altogether. To mitigate
that, we model the problem as a minimum-cost unbalanced
linear assignment problem. In order to maximize the ratio of
primary items, we assign a cost of 1 to a matching between
a key and its primary bucket and a cost of 2 to a matching
with its secondary bucket. The problem can be solved us-
ing an algorithm proposed by Goldberg and Kennedy ([16],
with an optimization from [17]) in O(n

p
n log(n)), where n

is the total number of keys and buckets.

3.4.2 Biased Kicking Algorithm
To avoid the high runtime of the matching-based approach,

we modify the Cuckoo kicking algorithm to optimize the pri-
mary ratio. In particular, we consider both the primary and
the secondary bucket of the current in-flight item to find a
secondary item. We leave a small chance (an experimen-
tally obtained likelihood) to kick primary items to resolve
cycles. We set the maximum number of allowed kicks to a
su�ciently high value (50K kicks) to mitigate the impact of
build failures in practice. Using this algorithm, we achieve
primary ratios that are within 1% of the optimum found by
the matching algorithm.

Table 1 and Figure 6 show the impact of using di↵erent
assignment algorithms. We ran the experiments with 1M
unique values and 1, 2, 4, and 8 slots per bucket, using a
single thread on a machine equipped with an Intel Xeon
Skylake CPU (3.70GHz).

3.5 Storing Variable-Sized Fingerprints
To store variable-sized fingerprints in a compact manner,

we have devised a custom storage layout. Fingerprints can
have from 0 (including2) up to 64 bits, even though we rarely
see cases with more than 20 bits for real-world columns (as-
suming a 1% target scan rate). Figure 7 shows an example
with six fingerprints and three di↵erent bit widths.

Fixed-Bit-Width Blocks. For each bit width, we allocate
one block that stores fingerprints of a fixed bit width (in the
example, Block 0 stores all 1-bit fingerprints). Each block
2That is the case when there is only a single key that has a
bucket as primary bucket.

60
67
70
71
73
78
79
85
86

1 2 4 8
Number of slots per bucket

%
 in

 p
rim

ar
y

bu
ck

et

Kicking
Biased Kicking
Matching

Figure 6: Performance of di↵erent algorithms for
key-to-bucket assignment, broken down by the num-
ber of slots per bucket. Note the zoomed in y-axis.

¼

	DIB@MKMDION��	�N � ¼��¼»¼��»¼��»��»»¼��¼
�AAN@ON� »��¼����½���¾��¿����À

¾

¾

½

½ ¼

¼»¼

¼»¼»»¼

»¼

¼»»¼»¼

»¼»»¼»

»»¼»»»

�PH��DON �PH�	�N �DOK<>F@?�	�N�GJ>F��DOH<K

�¼»�¼�

¼»»¼»¼

��¼���

�JHK<>O@?�
�GJ>F��DOH<K

Figure 7: Dense storage of six variable-sized fin-
gerprints in three di↵erent blocks. Each block
stores fixed-bit-width fingerprints in bitpacked for-
mat. Block bitmaps indicate membership of a fin-
gerprint in a block. We compact block bitmaps by
“leaving out” set bits in subsequent bitmaps. By
ordering blocks based on decreasing cardinality we
increase the e↵ect of this optimization.

stores the bit width and the number of fingerprints (both
32-bit integers), followed by the bitpacked fingerprints.

Block Bitmaps. To identify the block of a given slot in
the Cuckoo table, we maintain one bitmap per block. Each
such block bitmap indicates which slots are stored in the
corresponding block. In addition, we maintain a bitmap
that indicates empty slots. When encoding the bitmaps,
we do not di↵erentiate between this bitmap and the actual
block bitmaps. The only di↵erence is that this bitmap does
not have a corresponding block.

To retrieve a fingerprint at a certain slot index, we check
the corresponding bit of all block bitmaps until we encounter
a set bit. We then extract the fingerprint from the corre-
sponding block. In particular, to compute the o↵set of the
fingerprint in the bitpacked storage, we perform a rank op-
eration on its block bitmap and multiply that count with the
bit width of the block. To accelerate rank calls, we maintain
a rank lookup table that stores precomputed ranks (repre-
sented as uint32 t) for 512-bit blocks, which causes a space
overhead of 6.25% [44].

Compacting Block Bitmaps. Based on the insight that
block bitmaps are pairwise disjoint, we “leave out” set bits
in subsequent bitmaps to save space (as shown in the middle
of Figure 7). Using rank calls we can still reconstruct the
bit o↵set of a slot at lookup time.

The complete fingerprint lookup algorithm (with com-
pacted block bitmaps) is shown in Algorithm 2.

3564

Algorithm 2: Returns the fingerprint stored in
the slot with the given ID.

Input: blocks, block bitmaps, num blocks, slot idx
Output: fingerprint

1 for block idx in 1 to num blocks do
2 block blocks[block idx]
3 block bitmap block bitmaps[block idx]

4 if GetBit(block bitmap, slot idx) then
5 if IsInactive(block) then
6 return NULL

7 idx in block
Rank(block bitmap, compacted slot idx)

8 return GetF ingerprint(block, idx in block)

// As we advance to the next block, offset
slot ID by the number of slots present in
the current block.

9 slot idx slot idx�Rank(block bitmap, slot idx)

3.6 Bitmap Encoding
In this section, we describe our approach to representing

bitmaps in CI. We store one bitmap per slot in the Cuckoo
table allowing for an o↵set access between the two.

Bitmap compression is essential to reduce the footprint of
CI on disk and in memory. We use a custom bitwise (un-
aligned) run-length encoding (dense) scheme that can save
significant space over word- or byte-aligned approaches such
as WAH [41] or Roaring [8]. Our dense scheme consists of
two vectors. The first stores 8-bit “run lengths” that consist
of one bit to di↵erentiate between a run and a literal, fol-
lowed by 7 bits to denote the run length or the literal length.
The second vector stores the compressed bit sequences. For
sparse bitmaps that exceed an empirically obtained density
threshold, we use bitpacked position lists (sparse scheme).
That is, we encode the positions of the set bits with as few
bits as possible.

We compress all bitmaps of a single CI at once: That is, we
encode all bitmaps (back-to-back) in a single bitmap, which
we call global bitmap, to achieve better compression. How-
ever, to access individual bitmaps, we require fast random
access, without decompressing the entire global bitmap.

To allow for partial decompression, we maintain another
vector that stores

p
#runs many skip o↵sets. One such

o↵set entry contains the number of bits covered by the pre-
vious

p
#runs run lengths and the corresponding number

of bits in the compressed bit sequence (recall that we store
the run lengths and the compressed bits in two separate vec-
tors). Thus, this structure e↵ectively allows us to skip over
chunks of run length entries. This approach is similar to
fence pointers proposed by UpBit [6] with two di↵erences:
First, skip o↵sets contain relative bit counts whereas fence
pointers contain absolute counts. Second, the size of our
structure is relative to the size of the compressed bitmap
while the size of fence pointers is relative to the size of the
uncompressed bitmap. Hence, fence pointers favor lookup
performance (O(1) vs. O(

p
#runs)) whereas our structure

favors space consumption.
For on-disk storage, we additionally apply Zstandard com-

pression (zstd) [4] which further reduces the size and allows
for e�cient encoding and decoding.

Table 2: Cardinalities of selected columns.

Dataset Column #rows Cardinality

IMDb country code 3,538,744 218
IMDb company name 3,538,744 224,385
IMDb title 3,538,744 1,483,626

DMV color 11,429,681 224
DMV city 11,429,681 31,349

4. EVALUATION
We evaluate our approach with IMDb, DMV, and syn-

thetic data and compare against ZoneMaps and per-stripe
filters. In the following, we first describe the experimental
setup, before we study the space consumption of the individ-
ual indexes. We also show the impact of di↵erent workloads
(varying ratios of positive/negative lookups) and sort orders.
We further experiment with synthetic data and report build
and lookup times. Finally, we integrate CI into PostgreSQL
and show its impact on query performance. We run all ex-
periments on a machine with an Intel Xeon Gold 6230 CPU
and 256GiB of RAM.

Baselines. We compare our approach to ZoneMaps and to
per-stripe approximate set-membership data structures. For
the latter, we choose a space-optimized Bloom filter as well
as the recently announced Xor filter [19] as representatives.

A ZoneMap maintains the minimum and the maximum
value of each stripe. Its space consumption is constant
and independent from the concrete data distribution. A
ZoneMap is most e↵ective when data is unique and sorted.
A per-stripe filter is a collection of filters, and as the name
suggests, one per stripe. By default, we construct each per-
stripe filter with 10 bits per element, which yields a false
positive probability of around 1% and 0.3% for Bloom and
Xor, respectively. Thus, for a negative lookup, we expect
1% or 0.3% of stripes being misclassified as positive (as-
suming independence). As a Bloom filter implementation,
we use LevelDB’s built-in Bloom filter, which is a classi-
cal space-optimized Bloom filter. In the following, we refer
to this approach as Bloom. For the Xor filter, we use its
open-source implementation [3] and refer to it as Xor.

Datasets. We have denormalized the IMDb dataset [30]
for our experiments. The resulting denormalized table has
3.5M rows and 14 columns. DMV [2] contains vehicle, snow-
mobile, and boat registrations in New York State and con-
sists of 11.9M rows and 19 columns (we have excluded ex-
cluded the unique vin column, which is a primary index can-
didate). To simplify the experimental setup, we dictionary-
encode strings as dense integers in an order-preserving way.

We focus our evaluation on the following representative
columns: For IMDb, we choose country code, company name,
and title, and for DMV, we choose color and city. Ta-
ble 2 shows their cardinalities. The IMDb column title
has the highest ratio of unique values (41.9%). We use the
datasets in their original tuple order unless noted other-
wise. In addition to this original order, we will study the
cases when data is randomly shu✏ed or sorted.

Stripe Sizes. We load these datasets with four di↵erent
stripe sizes, ranging from 213 (8,192) to 216 (65,536) rows
per stripe (cf. Table 3 for the number of stripes).

3565

Table 3: Number of stripes.

Rows per stripe 213 214 215 216

IMDb 431 215 107 53
DMV 1,395 697 348 174

This parameter a↵ects both the space consumption and
the pruning power of the di↵erent indexes. For example,
CI’s per-fingerprint bitmaps have as many bits as there are
stripes. Thus, with fewer rows per stripe (and thus more
stripes), the number of bits increases and CI may require
more space. Similarly, and in particular for low cardinal-
ity columns, per-stripe filters may consume more space with
fewer rows per stripe. Frequent values that occur in all
stripes, are redundantly stored in every single per-stripe fil-
ter. On the other hand, a lower number of rows per stripe
also means higher precision and has the advantage of less
overhead in case of a false positive.

4.1 Space Consumption
We evaluate the sizes of the individual filters on our rep-

resentative columns for di↵erent stripe configurations. We
instantiate both Bloom and Xor with 10 bits per element
which yields false positive stripe ratios (scan rates) of around
1% and 0.3%, respectively. We use CI in its most space-
e�cient configuration with one slot per bucket and a load
factor of 49%. Recall that empty slots in CI are encoded us-
ing a single bit. We further use the biased kicking approach
to maximize the primary ratio of items, which minimizes in-
dex size (cf. Section 3.4.2). To control the impact of lookups
with non-occurring keys, we instantiate CI with two di↵er-
ent scan rates: 0.1% (CI/0.1) and 1% (CI/1). We leave out
ZoneMap from this experiment since its space consumption
solely depends on the number of stripes.

In addition to the in-memory sizes, we report the sizes
of the filters when compressed with Zstandard (zstd) [4].
Compressed filter sizes are interesting for data warehousing
use cases where filters are stored alongside the actual (com-
pressed) data on blob storage such as Google Cloud Storage.
Compression may also reduce filter load times (I/O). We use
zstd in its fastest mode (zstd=1) which still allows for decent
compression ratios in our experience.

Figure 8a shows the filter sizes for the country code IMDb
column. The dashed line in the plot indicates 2% of the zstd-
compressed column size. This column contains 218 unique
values, representing 0.01% of the entire column. With more
rows per stripe, the space consumption decreases for all ap-
proaches. Notably, CI consumes less space than Bloom and
Xor for all stripe sizes. With zstd compression, the sizes
of Xor and CI are further reduced. For example, with 213

rows per stripe, Xor and CI/1 are 1.25⇥ and 1.13⇥ smaller
when zstd-compressed, respectively. The reason that Xor
compresses so well is its sparse table layout. Likewise, CI’s
bitmaps have additional compression potential. Bloom, on
the other hand, does not benefit from compression. This
is expected due to its already high entropy. When zstd-
compressed, CI/1 consumes 8.90⇥ (213 rows per stripe) and
6.64⇥ (216) less space than Xor, which achieves a compa-
rable scan rate. The filter sizes for the medium cardinality
column company name are shown in Figure 8b. With zstd-
compression, CI/1 is again smaller than Xor in all cases.

Table 4: Total size in MiB of compressed filters for
IMDb (14 columns) and DMV (19 columns).

Dataset CI/0.1 CI/1 Bloom Xor

IMDb (213) 5.39 5.12 6.63 6.45
IMDb (216) 3.90 3.26 4.10 3.99

DMV (213) 1.66 1.63 6.11 7.45
DMV (216) 0.64 0.60 1.70 1.85

For example, for 213 rows per stripe, CI/1 and Xor consume
1,121KiB and 1,470KiB, respectively. For the high cardi-
nality column title the results look di↵erent (cf. Figure 8c).
Here, CI/1 consumes more space than Xor. However, we ar-
gue that CI is still favorable over Xor in such cases, since it
does not produce any false positives for lookups with occur-
ring keys. A similar picture presents itself for the low and
high cardinality columns in the DMV dataset (cf. Figure 9).

Table 4 shows the overall space consumption of the zstd-
compressed filters over all IMDb/DMV columns. For both
datasets, CI/1 consumes significantly less space than its
competitors. Since DMV has lower cardinalities than IMDb
(0.05% vs. 3.74% unique values across all columns), CI’s
advantage is higher on DMV.

In summary, CI is competitive with Bloom and Xor in
terms of size for high cardinality columns, and is more space-
e�cient for low-to-medium cardinality columns. Also, we
observe that CI’s scan rate configuration does not have a
large impact on its size.

4.2 Mixed Workloads
We have shown that CI can be much smaller than per-

stripe filters for a fixed scan rate (assuming only negative
lookups). However, its real benefit only becomes clear when
considering workloads that contain a mix of positive and
negative lookups.

We therefore now we vary the hit rate of lookups. For
example, a hit rate of 10% means that 10% of the lookups
are with keys that occur in at least one stripe. We draw these
keys uniformly from the set of column values and generate
non-existing keys for negative lookups. We again exclude
ZoneMap here, since it yields almost no pruning for unsorted
data (cf. Section 4.3).

Figure 10 shows the results for the representative IMDb
columns and 213 rows per stripe. We omit DMV from this
experiment since the results look similar to IMDb. Bloom
and Xor are largely una↵ected by the increase in positive
lookups and achieve scan rates close to their configured false
positive probabilities of around 1% and 0.3%, respectively.
Notably, Xor uses approximately the same amount of mem-
ory than Bloom, and is thus to be preferred over Bloom in
this setting. CI strongly benefits from an increasing hit rate
since it guarantees exact results for positive lookups. Hence,
depending on the workload characteristics, CI can also be
beneficial for high cardinality columns such as title, de-
spite its possibly larger size.

This experiment also shows that our defensive (per-bucket)
scan rate estimation (cf. Section 3.3) underestimates the
scan rate. For example, with a target scan rate of 1%, CI
actually achieves a scan rate of less than 0.7% in all cases.
We leave improvements to this estimation for future work.

3566

uncompressed zstd

13 14 15 16 13 14 15 16
0

20

40

60

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

Rows per stripe (2^x)

K
iB

CI/0.1 CI/1 Bloom Xor

(a) country code (0.01% unique)

uncompressed zstd

13 14 15 16 13 14 15 16
0

500

1000

1500

0.0%

3.0%

6.0%

9.0%

Rows per stripe (2^x)

K
iB

CI/0.1 CI/1 Bloom Xor

(b) company name (6.34% unique)

uncompressed zstd

13 14 15 16 13 14 15 16
0

1000

2000

3000

0.0%

5.0%

10.0%

15.0%

20.0%

Rows per stripe (2^x)

K
iB

CI/0.1 CI/1 Bloom Xor

(c) title (41.9% unique)

Figure 8: Uncompressed and zstd compressed filter sizes for IMDb columns. The right y-axis shows the size
relative to the compressed column size. The dashed line is at 2% of the compressed column size.

0

50

100

150

0.00%

0.50%

1.00%

1.50%

2.00%

13 14 15 16
Rows per stripe (2^x)

K
iB

CI/0.1 CI/1 Bloom Xor

(a) color (<0.00% unique)

0

500

1000

1500

2000

0.0%

2.0%

4.0%

6.0%

13 14 15 16
Rows per stripe (2^x)

K
iB

CI/0.1 CI/1 Bloom Xor

(b) city (0.27% unique)

Figure 9: Uncompressed filter sizes for DMV.

country_code company_name title

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
0.0

0.3

0.6

0.9

Hit rate (%)

Sc
an

 ra
te

 (%
)

CI/0.1 CI/1 Bloom Xor

Figure 10: Scan rate with an increasing hit rate (ra-
tio of positive lookups) and 213 rows per stripe.

4.3 Different Sort Orders
Now we study the impact of sort orders on index size

and precision. We use the medium-cardinality column city
(DMV dataset) and 213 rows per stripe for this experiment.
We note that the e↵ect of di↵erent sort orders is similar
for other columns. Table 5 shows the results. The size
of the di↵erent (zstd-compressed) indexes stays about the
same when shu✏ing the data. This is expected since cities
are not particularly clustered in the original data. ZoneMap
clearly consumes the least amount of space. When sorting
the data, the space consumption of CI/1, Bloom, and Xor
decreases. ZoneMap’s size increases since there is now a
higher number of di↵erent min/max values to encode. The
reason that Bloom/Xor benefit from sorting is simple: with
sorted data, there is less redundancy of unique values across
stripes. That is, a single unique value is indexed in fewer
Bloom/Xor filters. CI, on the other hand, indexes every
unique value only once in any case (independent of the sort
order). However, it is well known that sorting can have a
large impact on bitmap compression [31], as we have con-
firmed with this experiment. While the scan rates (only
positive lookups) of CI/1 and Xor are rather una↵ected by

Table 5: DMV city column with di↵erent sort or-
ders and 213 rows per stripe.

CI/1 Bloom Xor ZoneMap

Size (KiB, zstd)
Original 552 2,093 1,986 1.66
Shu✏ed 556 2,360 2,239 1.42
Sorted 80 41 61 1.85

Scan rate (%)
Original 0.00 0.89 0.39 99.9
Shu✏ed 0.00 0.87 0.38 99.9
Sorted 0.00 0.60 0.41 0.00

2^13 rows per stripe 2^16 rows per stripe

0.01 0.1 1 10 100 0.01 0.1 1 10 100
0

500

1000

1500

Unique ratio (%)

Si
ze

 (K
iB

)

CI/0.1 CI/1 Bloom Xor

Figure 11: Compressed filter sizes for uniform data
with 1M rows and increasing cardinality.

the sort order, Bloom becomes more e↵ective with clustered
data. ZoneMap even achieves near-optimal accuracy.

4.4 Uniform Data
Next, we experiment with uniform data and vary the car-

dinality and the number of rows. We first fix the number of
rows to 1M and increase the cardinality. Figure 11 shows
the e↵ect of increasing cardinality on the compressed filter
sizes. Up to 10% unique values CI consumes significantly
less space than Bloom and Xor. The space savings are more
pronounced for fewer rows per stripe. While CI consumes
more space than Bloom and Xor with 100% unique values
(i.e., a unique column), it may still be preferable in that
setting due to its higher accuracy under positive and mixed
workloads (cf. Section 4.2). We now fix the cardinality to
10K and increase the number of rows (and implicitly the
number of stripes). As can be seen in Figure 12, filter sizes
increase with more rows (stripes).

3567

2^13 rows per stripe 2^16 rows per stripe

1 10 100 1 10 100
0

20000

40000

60000

80000

Number of rows (M)

Si
ze

 (K
iB

)
CI/0.1 CI/1 Bloom Xor

Figure 12: Compressed filter sizes for uniform data
with 10K unique values and an increasing number
of rows.

Table 6: Build times in milliseconds with 1M rows
and 10K unique values.

Rows per stripe CI/1 Bloom Xor

213 76.3 89.6 41.8
216 45.0 54.9 13.9

The size increase for both Bloom/Xor and CI can be ex-
plained by the increased redundancy of unique values among
stripes. Put di↵erently, a unique value will be present in
more stripes. Since Bloom and Xor maintain one filter per
stripe, each unique value is indexed in more filters. In con-
trast, CI indexes each unique value only once, independent
of the number of stripes. However, the number of stripes af-
fects CI’s bitmaps, which maintain one bit per stripe. The
reason that CI is less a↵ected by the row count is that the
added bitmap bits cause less space overhead than the re-
dundant indexing in Bloom/Xor. CI’s bitmap compression
also mitigates the e↵ect of additional bits to some degree.
Likewise, both CI and Bloom/Xor are a↵ected by the num-
ber of rows per stripe, with Bloom/Xor being more a↵ected
than CI. The reason is again the redundancy of unique val-
ues among stripes. Fewer rows per stripe mean more stripes
and thus there is more redundancy, which is less of an issue
for CI than for Bloom/Xor.

4.5 Build and Lookup Performance
We now study the build and lookup performance of CI

compared to Bloom and Xor. We omit CI/0.1 here since it
has very similar build and lookup times as CI/1. While the
lookup code is partially optimized (with a rank lookup table
for each block bitmap), the build code is unoptimized.

Build Performance. Table 6 shows the build times of
the di↵erent filters with 1M rows and 10K unique values.
All filters are a↵ected by the number of rows per stripe.
For Bloom and Xor the reason is that they need to create
more (albeit possibly smaller) filters with more stripes. For
CI, in contrast, the reason is the larger bitmaps that need
to be compressed. In a breakdown analysis of CI’s build
time with 213 rows per stripe we found that most time is
spent on scanning the data and collecting unique values with
their corresponding bitmaps (23.6%), finding the minimum
required fingerprint length per slot to ensure no collisions
and to satisfy the given scan rate (32.5%), and compressing

Table 7: Lookup latency in nanoseconds with 1M
rows and 10K unique values.

Lookups Rows per stripe CI/1 Bloom Xor

Positive 213 13,458 7,815 1,715
Positive 216 5,564 964 108

Negative 213 769 6,942 814
Negative 216 610 836 96.3

Table 8: Size and lookup latency of our compression
scheme compared to Roaring (R).

Column Ours-KiB R-KiB Ours-ns R-ns

country code 5.77 16.0 3,810 3,396
company name 1,425 2,495 2,589 3,704
title 3,157 2,966 4,879 3,464

the global bitmap (34.7%). Against our own intuition, we
did not find distributing values among buckets (kicking) to
be expensive. We now vary the cardinality. With 213 rows
per stripe, the build times in milliseconds of CI (Bloom) with
1K (0.1%) and 1M (100%) unique values are 16.6 (47.6) and
5,448 (104), respectively.

Lookup Performance. Table 7 shows the lookup latency
of CI/1 compared to Bloom and Xor. For positive lookups,
CI has a significant lookup overhead over Bloom/Xor. Un-
der negative lookups, CI shows much better numbers. Only
in the event of a false positive match in the Cuckoo table, it
has to extract a bitmap from the compressed global bitmap
(cf. Section 3.6). With our current bitmap encoding scheme,
the cost of this operation is linear in the size of the com-
pressed bitmap. With more read-optimized schemes such
as Roaring, one could trade size for lookup latency (cf. Sec-
tion 4.6). Note that we use a rank lookup table to speed up
lookups in the block bitmaps that indicate the membership
of a fingerprint in a block (cf. Section 3.5). Without this op-
timization, negative lookups would be significantly slower.
Bloom and Xor, on the other hand, are less a↵ected by the
lookup type. As expected, both per-stripe filters show a lin-
ear increase in lookup latency with fewer rows per stripe.
CI, on the other hand, is rather una↵ected by the number
of stripes. With 213 rows per stripe and positive lookups,
93.0% of CI’s lookup time is spent on extracting the bitmap
that indicates qualifying stripes. Under negative lookups,
the most expensive operation is querying the Cuckoo table
with 73.5%. Now we again vary the cardinality. With 213

rows per stripe, the latencies in ms for positive lookups of
CI (Bloom) with 1K (0.1%) and 1M (100%) unique values
are 5,673 (7,608) and 3,006 (7,442), respectively.

4.6 Bitmap Compression
We now compare the size and decompression speed of our

bitmap encoding scheme (cf. Section 3.6) with Roaring. We
use the IMDb columns country code, company name, and
title with 213 rows per stripe for this experiment. The spe-
cific task is to encode the global bitmap and to extract sub-
bitmaps. Recall that each sub-bitmap indicates the qualify-
ing stripes of a given key fingerprint stored in the Cuckoo
table. We construct a CI/1 index, query with random keys

3568

Table 9: Index sizes in MiB for TPC-H columns (CI
is zstd-compressed).

Index o custkey l orderkey l partkey l suppkey

btree 322 1,286 1,287 1,287
hash 476 1,973 1,897 2,379
CI (213) 15.6 49.5 68.5 35.2
CI (216) 10.2 31.4 46.7 11.0

from the set of keys, and measure the time taken to extract
the sub-bitmap associated with the fingerprint. For Roar-
ing, we intersect the global bitmap with a query bitmap with
the relevant bits set. Note that storing individual Roaring
bitmaps (as opposed to encoding them back-to-back) would
increase its total size by up to 4⇥ (presumably due to the
header that is stored with every bitmap). Hence, encoding
individual bitmaps as Roaring is not an option. Table 8
shows the results. For country code and company name,
our compression scheme consumes the least space whereas
Roaring is more space-e�cient for the sparse title bitmaps.
In terms of extracting sub-bitmaps, our encoding scheme is
competitive with Roaring.

4.7 Impact on Query Performance
Finally, we integrate CI/1 and Bloom into PostgreSQL

(PG) version 12.3. Specifically, we partition lineitem and
orders by orderdate with 213 and 216 rows per stripe (par-
tition). We build the indexes on all columns that are subject
to (join) predicates. At query time, we probe the respective
index and pass the returned partition IDs to PostgreSQL’s
partition pruner.

We set the size of Bloom to be similar to the size of CI
(when zstd-compressed). Xor’s implementation does not al-
low to set the number of bits per element, hence we exclude
Xor from this experiment. Since PG does not parallelize
queries with partitioning pruning, we disable parallelism to
ensure a fair comparison against several baselines, including
a full scan and PG’s built-in btree and hash indexes. We
run three di↵erent queries on TPC-H with SF10:

Q1 select sum(l extendedprice*(1-l discount))
revenue from lineitem, orders
where l orderkey=o orderkey
and o custkey=36901 and l returnflag=’R’;

Q2 select sum(l extendedprice*(1-l discount))
revenue from lineitem where l partkey=155190;

Q3 select sum(l extendedprice*(1-l discount))
revenue from lineitem where l suppkey=7706;

Table 9 shows the index sizes in MiB and Table 10 shows the
query latencies in milliseconds. CI is significantly smaller
than PG’s built-in indexes, which index individual tuples
rather than stripes. As expected, CI’s size decreases with
more rows per stripe.

In terms of query latency, PG’s hash index achieves the
best performance, followed by btree. CI and Bloom cover
the middle ground between the full-fledged indexes and a
full scan. Compared to Bloom and with 213 rows per stripe,
CI returns on average 2.10⇥ fewer partitions and achieves a
2.45⇥ speedup in query performance.

Table 10: Query latencies in milliseconds.

Index Q1 Q2 Q3

No index 6,628 4,116 4,236
btree 0.48 0.25 0.79
hash 0.37 0.17 0.68
CI (213) 50.4 34.8 894
Bloom (213) 95.6 110 2,045
CI (216) 456 306 5,284
Bloom (216) 602 887 7,405

5. RELATED WORK
There have been many proposals to secondary indexing

striking di↵erent balances between space and pruning power.

Small Materialized Aggregates. A popular approach
is to maintain Small Materialized Aggregates (SMAs) [33]
(e.g., min and max values) per stripe. SMAs (or ZoneMaps)
consume little space and are most e↵ective when data is
(partially) sorted. Besides sorting, outliers can impact the
precision of ZoneMaps. Positional SMAs (PSMAs) [28] ex-
tend SMAs with a compact lookup table that maps bytes of
values to scan ranges. In contrast to both SMA variants, CI
is not impacted by outliers and does not require the data to
be (partially) sorted to be e↵ective. Although, data cluster-
ing can decrease its size as we have shown.

Approximate Set Membership Structures. Another
well-known approach is to maintain one set-membership fil-
ter (e.g., a Bloom filter [7, 29]) per stripe. With about 10 bits
per unique value, Bloom filters produce around 1% false pos-
itives. While per-stripe filters are a good strategy for high
cardinality columns, their size consumption is far from opti-
mal for low cardinality columns. In addition, to identify all
qualifying stripes for a given lookup key, we need to probe all
per-stripe filters, which becomes increasingly expensive with
higher resolutions (more stripes). Other set membership fil-
ters such as the Cuckoo filter [15] or the recently proposed
Xor filter [19, 12] improve space e�ciency but the problem
remains: with many redundant values across stripes, their
space consumption is sub-optimal. Also, and most notably,
per-stripe filters may return false positive stripes under posi-
tive lookups. This is in contrast to CI, which is 100% correct
under positive lookups.

Approximate Lookup Tables. Approximate lookup ta-
bles allow for associating keys with values with a low prob-
ability of false mappings. The most popular example is the
Bloomier filter [9] and its follow-up Invertible Bloom Lookup
Table (IBLT) [18]. In contrast to our work, Bloomier aims to
improve lookup performance. It consists of multiple Bloom
filters and requires all filters to use the same number of bits,
which leads to sub-optimal space utilization under skew.
IBLT allows to list its contents with some probability. A key
issue with IBLT is that a lookup may return “not found” for
a key. Since we cannot tolerate false negatives, IBLT is not
applicable to our use case.

Closely related to our work, Ren et al. [37] propose to
maintain a single higher-level Cuckoo filter instead of many
“per-LSM-tree-node” filters in an LSM-tree. Each key in the
filter maps to the ID of the most recent LSM-tree node con-
taining that key. In contrast, we are interested in all of the

3569

data partitions (stripes) that contain a given key. To resolve
fingerprint collisions in the filter, Ren et al. store colliding
entries in an external table. Our variable-sized fingerprints
o↵er additional size benefits over that approach.

Cuckoo Hashing Extensions. Our idea of maximizing
primary bucket assignments by solving a maximum weight
matching problem (cf. Section 3.4) is not entirely new. In
fact, it is well known that matching algorithms on bipar-
tite graphs (e.g., the Hopcroft-Karp algorithm [23]) can be
used to assign values to buckets in the setting of Cuckoo
hashing. The thesis work by Michael Rink [38] provides a
good overview in that respect. Furthermore, Dietzfelbinger
et al. [11] show that matching algorithms can be used to
maximize the ratio of items that end up in their primary
location (in the context of Cuckoo hash tables that are di-
vided into pages). In contrast to this work, we are interested
in reducing the average fingerprint length rather than mini-
mizing page accesses. Reducing the likelihood that we need
to access an item’s secondary bucket on lookup is rather a
positive side e↵ect for us. The same work [11] also shows
that a biased insertion procedure that prefers primary loca-
tions in case of full buckets achieves almost the same result
in short time. Similar to this work, we have developed a bi-
ased kicking algorithm that prefers kicking items that reside
in their secondary locations to maximize primary bucket as-
signments. To the best of our knowledge, our work is the
first to apply such an algorithm in the context of Cuckoo
filters (cf. Section 3.4.2).

Minimal Perfect Hashing. Minimal perfect hashing is
applicable to the problem studied in this work. The idea
is to compute a minimal perfect hash function that maps n
keys to the dense integers [0, n � 1]. In our context, these
integers would be o↵sets into an array of bitmaps indicating
qualifying stripes. Esposito et al. [14] have shown that such
a hash function only requires storing 1.56 bits per key in
practice. While this sounds attractive, constructing such a
function remains computationally expensive. Nevertheless,
using a minimal perfect hash function such as RecSplit [14]
is an attractive alternative to the “Cuckoo part” of our index
(which can be seen as a variant of perfect hashing) to fur-
ther reduce its footprint. The challenge of e�ciently storing
variable-sized fingerprints and bitmaps, however, remains.

Data Skipping Techniques. In general, there is plenty of
research on (secondary) indexing and data skipping. Most
related is bitmap indexing which maintains a bitmap for
each unique column value indicating qualifying tuples [8,
35, 43]. There are two straightforward extensions to classi-
cal bitmap indexing. One is to make bitmaps more coarse
grained which is similar to our setting. Another is to com-
bine the bitmaps of multiple values, typically values within
a certain range (binning). Both extensions trade precision
for reduced footprint.
Column Imprints [40] and Column Sketches [22] both al-

low to accelerate in-memory scans by maintaining lossy in-
dex structures in the form of bit vectors or fixed-width codes.
As opposed to our work, both techniques aim to reduce the
cost of in-memory scans and not the number of disk accesses.
Specifically, Column Imprints exploit the idea that real data
naturally exhibits very localized correlations. Taking them
to a much larger granularity than cache lines would make
them similar to ZoneMaps.

Recently, machine learning (ML) found its way into in-
dexing. While learned indexes [26, 24, 32, 25] may consume
significantly less space than traditional indexes such as B-
trees, that observation mostly applies to primary indexing
where the base data is already sorted. In a secondary index-
ing setting such as ours, additional permutation vectors have
to be maintained which will likely account for most of the
space consumption of the learned index. Follow-up work on
learned multi-dimensional indexes [34, 13] features a small
footprint and allows for filtering on secondary columns but—
in contrast to our approach—requires full control over the
sort order of the data. Furthermore, learned indexes have
not been adapted to the approximate indexing use case as
studied in this work. Other ML-based work by Wu et al. [42]
allows to construct succinct secondary indexes by exploiting
column correlations. However, in contrast to our work, it
requires access to a primary index.

6. CONCLUSIONS
We have introduced Cuckoo Index, a lightweight second-

ary index structure that is targeted at “write once-read
many” environments. We have extended Cuckoo filters with
variable-sized fingerprints to avoid key shadowing. With
this design, our approach allows for correct results for posi-
tive lookups and further allows for tuning the scan rate for
negative lookups. Our novel cross-optimization of finger-
prints and bitmaps elegantly makes use of the fact that for
sparse bitmaps one needs to store fewer fingerprint bits to
achieve a desired scan rate. We have described a heuris-
tic that achieves an almost optimal key-to-bucket assign-
ment which minimizes index size. Using real-world and syn-
thetic data, we have demonstrated that our approach con-
sumes less space than per-stripe filters for low-to-medium
cardinality columns that represent the majority of secondary
columns in our experience. While we have focused on space
e�ciency, lookup performance can matter, particularly when
the cost for a false positive is relatively low. The cost of a
lookup in CI is dominated by rank calls on block bitmaps
and decompressing stripe bitmaps. We have accelerated
rank calls using a rank lookup table. Further, we have shown
that our bitwise bitmap encoding compresses better than
Roaring [8] while also allowing for partial decompression.

While we have designed CI for immutable environments,
using an update-friendly bitmap encoding such as Roaring
or Tree-Encoded Bitmaps [27] CI could support updates and
deletions since both operations only require updating the
bitmap part of the index. To support inserts, we would
also need to update the Cuckoo table. One strategy is to
overprovision the Cuckoo table, i.e., allocate more slots than
required. Another is to allocate an additional k bits per
fingerprint, which would allow for doubling the size of the
Cuckoo table k times.

Currently, our index is limited to equality predicates. To
support range predicates, one may consider replacing the
Cuckoo table with a range filter such as SuRF [44]. Variable-
sized key su�xes in SuRF would allow for correct results
under positive lookups. However, since key su�xes follow a
real rather than a uniform (hash) distribution, the conflict
probability of two keys may be higher.

In future work, we plan to extend our approach to in-
dexing multiple columns at once which opens up interesting
opportunities such as exploiting column correlations.

3570

7. REFERENCES
[1] LevelDB. https://github.com/google/leveldb/.
[2] Vehicle, snowmobile, and boat registrations.

https://catalog.data.gov/dataset/
vehicle-snowmobile-and-boat-registrations.

[3] Xor Filter. https:
//github.com/FastFilter/xor_singleheader/.

[4] Zstandard Compression.
https://facebook.github.io/zstd/.

[5] A. Ailamaki, D. J. DeWitt, M. D. Hill, and
M. Skounakis. Weaving relations for cache
performance. In VLDB 2001, Proceedings of 27th
International Conference on Very Large Data Bases,
September 11-14, 2001, Roma, Italy, pages 169–180,
2001.

[6] M. Athanassoulis, Z. Yan, and S. Idreos. UpBit:
Scalable in-memory updatable bitmap indexing. In
Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, pages
1319–1332, 2016.

[7] B. H. Bloom. Space/time trade-o↵s in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
1970.

[8] S. Chambi, D. Lemire, O. Kaser, and R. Godin.
Better bitmap performance with Roaring bitmaps.
Softw., Pract. Exper., 46(5):709–719, 2016.

[9] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The
Bloomier Filter: An e�cient data structure for static
support lookup tables. In SODA, pages 30–39, 2004.

[10] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov,
A. Avanes, J. Bock, J. Claybaugh, D. Engovatov,
M. Hentschel, J. Huang, A. W. Lee, A. Motivala,
A. Q. Munir, S. Pelley, P. Povinec, G. Rahn,
S. Triantafyllis, and P. Unterbrunner. The Snowflake
elastic data warehouse. In Proceedings of the 2016
International Conference on Management of Data,
SIGMOD Conference 2016, San Francisco, CA, USA,
June 26 - July 01, 2016, pages 215–226, 2016.

[11] M. Dietzfelbinger, M. Mitzenmacher, and M. Rink.
Cuckoo hashing with pages. In Algorithms - ESA 2011
- 19th Annual European Symposium, Saarbrücken,
Germany, September 5-9, 2011. Proceedings, pages
615–627, 2011.

[12] M. Dietzfelbinger and R. Pagh. Succinct data
structures for retrieval and approximate membership
(extended abstract). In Automata, Languages and
Programming, 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings,
Part I: Tack A: Algorithms, Automata, Complexity,
and Games, pages 385–396, 2008.

[13] J. Ding, V. Nathan, M. Alizadeh, and T. Kraska.
Tsunami: A learned multi-dimensional index for
correlated data and skewed workloads. CoRR,
abs/2006.13282, 2020.

[14] E. Esposito, T. M. Graf, and S. Vigna. RecSplit:
Minimal perfect hashing via recursive splitting. In
Proceedings of the Symposium on Algorithm
Engineering and Experiments, ALENEX 2020, Salt
Lake City, UT, USA, January 5-6, 2020, pages
175–185, 2020.

[15] B. Fan, D. G. Andersen, M. Kaminsky, and

M. Mitzenmacher. Cuckoo Filter: Practically better
than Bloom. In CoNEXT, pages 75–88, 2014.

[16] A. V. Goldberg and R. Kennedy. An e�cient cost
scaling algorithm for the assignment problem. Math.
Program., 71:153–177, 1995.

[17] A. V. Goldberg and R. Kennedy. Global price updates
help. SIAM J. Discrete Math., 10(4):551–572, 1997.

[18] M. T. Goodrich and M. Mitzenmacher. Invertible
Bloom Lookup Tables. CoRR, abs/1101.2245, 2011.

[19] T. M. Graf and D. Lemire. Xor Filters: Faster and
smaller than Bloom and Cuckoo Filters. CoRR,
abs/1912.08258, 2019.

[20] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan,
K. Lai, S. Wu, S. G. Dhoot, A. R. Kumar, A. Agiwal,
S. Bhansali, M. Hong, J. Cameron, M. Siddiqi,
D. Jones, J. Shute, A. Gubarev, S. Venkataraman, and
D. Agrawal. Mesa: Geo-replicated, near real-time,
scalable data warehousing. PVLDB, 7(12):1259–1270,
2014.

[21] A. Hall, O. Bachmann, R. Büssow, S. Ganceanu, and
M. Nunkesser. Processing a trillion cells per mouse
click. PVLDB, 5(11):1436–1446, 2012.

[22] B. Hentschel, M. S. Kester, and S. Idreos. Column
Sketches: A scan accelerator for rapid and robust
predicate evaluation. In Proceedings of the 2018
International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June
10-15, 2018, pages 857–872, 2018.

[23] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm
for maximum matchings in bipartite graphs. SIAM J.
Comput., 2(4):225–231, 1973.

[24] A. Kipf, R. Marcus, A. van Renen, M. Stoian,
A. Kemper, T. Kraska, and T. Neumann. SOSD: A
benchmark for learned indexes. NeurIPS Workshop on
Machine Learning for Systems, 2019.

[25] A. Kipf, R. Marcus, A. van Renen, M. Stoian,
A. Kemper, T. Kraska, and T. Neumann.
RadixSpline: a single-pass learned index. In
Proceedings of the Third International Workshop on
Exploiting Artificial Intelligence Techniques for Data
Management, aiDM@SIGMOD 2020, Portland,
Oregon, USA, June 19, 2020, pages 5:1–5:5, 2020.

[26] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and
N. Polyzotis. The case for learned index structures. In
SIGMOD, pages 489–504, 2018.

[27] H. Lang, A. Beischl, V. Leis, P. A. Boncz,
T. Neumann, and A. Kemper. Tree-Encoded Bitmaps.
In Proceedings of the 2020 International Conference
on Management of Data, SIGMOD Conference 2020,
online conference [Portland, OR, USA], June 14-19,
2020, pages 937–967, 2020.

[28] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz,
T. Neumann, and A. Kemper. Data Blocks: Hybrid
OLTP and OLAP on compressed storage using both
vectorization and compilation. In Proceedings of the
2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, pages 311–326, 2016.

[29] H. Lang, T. Neumann, A. Kemper, and P. A. Boncz.
Performance-optimal filtering: Bloom overtakes
Cuckoo at high-throughput. PVLDB, 12(5):502–515,
2019.

3571

[30] V. Leis, A. Gubichev, A. Mirchev, P. Boncz,
A. Kemper, and T. Neumann. How good are query
optimizers, really? PVLDB, 9(3), 2015.

[31] D. Lemire, O. Kaser, and K. Aouiche. Sorting
improves word-aligned bitmap indexes. Data Knowl.
Eng., 69(1):3–28, 2010.

[32] R. Marcus, A. Kipf, A. van Renen, M. Stoian,
S. Misra, A. Kemper, T. Neumann, and T. Kraska.
Benchmarking learned indexes. CoRR,
abs/2006.12804, 2020.

[33] G. Moerkotte. Small Materialized Aggregates: A light
weight index structure for data warehousing. In
VLDB, pages 476–487, 1998.

[34] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska.
Learning multi-dimensional indexes. In Proceedings of
the 2020 International Conference on Management of
Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, pages
985–1000, 2020.

[35] P. E. O’Neil and D. Quass. Improved query
performance with variant indexes. In SIGMOD 1997,
Proceedings ACM SIGMOD International Conference
on Management of Data, May 13-15, 1997, Tucson,
Arizona, USA, pages 38–49, 1997.

[36] R. Pagh and F. F. Rodler. Cuckoo hashing. J.
Algorithms, 51(2):122–144, 2004.

[37] K. Ren, Q. Zheng, J. Arulraj, and G. Gibson.
SlimDB: A space-e�cient key-value storage engine for
semi-sorted data. PVLDB, 10(13):2037–2048, 2017.

[38] M. Rink. Thresholds for Matchings in Random
Bipartite Graphs with Applications to Hashing-Based
Data Structures. PhD thesis, Technische Universität
Ilmenau, Germany, 2015.

[39] S. Shi, C. Qian, and M. Wang. Re-designing
compact-structure based forwarding for programmable
networks. In 27th IEEE International Conference on
Network Protocols, ICNP 2019, Chicago, IL, USA,
October 8-10, 2019, pages 1–11, 2019.

[40] L. Sidirourgos and M. L. Kersten. Column Imprints: a
secondary index structure. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, SIGMOD 2013, New York, NY, USA, June
22-27, 2013, pages 893–904, 2013.

[41] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing
bitmap indices with e�cient compression. ACM
Trans. Database Syst., 31(1):1–38, 2006.

[42] Y. Wu, J. Yu, Y. Tian, R. Sidle, and R. Barber.
Designing succinct secondary indexing mechanism by
exploiting column correlations. In Proceedings of the
2019 International Conference on Management of
Data, SIGMOD Conference 2019, Amsterdam, The
Netherlands, June 30 - July 5, 2019, pages 1223–1240,
2019.

[43] E. T. Zacharatou, F. Tauheed, T. Heinis, and
A. Ailamaki. RUBIK: e�cient threshold queries on
massive time series. In Proceedings of the 27th
International Conference on Scientific and Statistical
Database Management, SSDBM ’15, La Jolla, CA,
USA, June 29 - July 1, 2015, pages 18:1–18:12, 2015.

[44] H. Zhang, H. Lim, V. Leis, D. G. Andersen,
M. Kaminsky, K. Keeton, and A. Pavlo. SuRF:
Practical range query filtering with fast succinct tries.
In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018, pages 323–336,
2018.

3572

