
The Simpler The Better: An Indexing Approach for
Shared-Route Planning Queries

Yuxiang Zeng † Yongxin Tong ‡ Yuguang Song ‡ Lei Chen †

† The Hong Kong University of Science and Technology, Hong Kong SAR, China
‡ SKLSDE Lab, BDBC and IRI, Beihang University, China

† {yzengal, leichen}@cse.ust.hk ‡ {yxtong, songyuguang}@buaa.edu.cn

ABSTRACT
Ridesharing services have gained global popularity as a con-
venient, economic, and sustainable transportation mode in
recent years. One fundamental challenge in these services
is planning the shared-routes (i.e., sequences of origins and
destinations) among the passengers for the vehicles, such
that the platform’s total revenue is maximized. Though
many methods can solve this problem, their effectiveness is
still far from optimal on either empirical study (e.g., over
31% lower total revenue than our approach) or theoretical
study (e.g., arbitrarily bad or impractical theoretical guar-
antee). In this paper, we study the shared-route planning
queries in ridesharing services and focus on designing effi-
cient algorithms with good approximation guarantees. Par-
ticularly, our idea is to iteratively search the most prof-
itable route among the unassigned requests for each vehicle,
which is simpler than the existing methods. Unexpectedly,
we prove this simple method has an approximation ratio
of 0.5 to the optimal result. Moreover, we also design an
index called additive tree to improve the efficiency and ap-
ply randomization to improve the approximation guarantee.
Finally, experimental results on two real datasets demon-
strate that our additive-tree-based approach outperforms
the state-of-the-art algorithms by obtaining up to 31.4%-
127.4% higher total revenue.

PVLDB Reference Format:
Yuxiang Zeng, Yongxin Tong, Yuguang Song, and Lei Chen. The
Simpler The Better: An Indexing Approach for Shared-Route
Planning Queries. PVLDB, 13(13): 3517-3530, 2020.
DOI: https://doi.org/10.14778/3424573.3424574

1. INTRODUCTION
Ridesharing has gained global popularity in urban trans-

portation, such as carsharing, vanpooling, and food delivery.
By sharing the rides in unoccupied vehicles, it not only pro-
vides a convenient trip with a lower price, but also mitigates
traffic congestion, saves energy, and reduces pollution emis-
sions in our daily lives.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 13
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3424573.3424574

One fundamental problem in ridesharing platforms is plan-
ning the routes shared among the requests (e.g., passengers)
for the vehicles (e.g., drivers). Different from other trip
planning queries in spatial databases [17, 31, 11, 34, 26],
the shared-route here is a sequence of origins (e.g., pickup
locations) and destinations (e.g., delivery locations), which
also satisfies the constraints (e.g., deadline constraint) set
by the platform. Moreover, these shared-routes are usually
planned based on certain optimization objectives.

The main objectives in existing studies include maximiz-
ing the revenue of the platform [38, 6, 48, 5, 49] and mini-
mizing the travel time of vehicles [24, 13, 25, 7]. To simulta-
neously consider both objectives, our paper focuses on plan-
ning the shared-route with the shortest travel time for each
vehicle such that the platform’s total revenue is maximized.
Though many existing algorithms can be used to solve this
problem, they usually have the following limitations.

Limitation 1. Though these methods are tested and
compared with others in the real datasets, existing stud-
ies [38, 6, 48, 24, 13, 25] usually lack theoretical and empiri-
cal comparison with the optimal result. As a result, an algo-
rithm, which obtains higher total revenue than the others,
may still be worse than the optimal result. For example,
the algorithms pruneGreedyDP [38] and PBM [48] at least
have 29% and 10% lower revenue than our approach in real
datasets, respectively. In other words, the total revenue of
these methods may be notably worse than the optimal result.

Limitation 2. Others have arbitrarily bad or impractical
approximation guarantees in the effectiveness. For instance,
Zheng et al. [49] show their method has an approximation
ratio of O(1/m). The theoretical guarantee of [49] will be
arbitrarily bad, if m (i.e., the number of vehicles) is large.
Though Bei et al. [7] also propose an approximation solution
based on graph matching, their assumptions are not practi-
cal. For example, their approximation analysis [7] requires
that any vehicle’s capacity is 2 and the number of requests
is exactly twice of the number of vehicles. Other matching
based solutions [48, 30, 5] have no theoretical analysis to
prove the approximation ratios. Thus, existing algorithms
still have no constant and practical theoretical guarantees.

In this paper, we study shared-route planning queries and
design solutions with constant approximation ratios to max-
imize the platform’s total revenue. Specifically, our main
idea is to iteratively find the most profitable route among
the unassigned requests for each vehicle. Though the idea
is simple, the approximation ratio (0.5) is much better.
However, when the number of requests is large, it becomes
time-consuming to search the most profitable route among

3517

all these requests. To improve the efficiency, for each vehi-
cle, we first filter out the infeasible requests, then search
the most profitable route among the feasible ones using
an index called the additive tree. Moreover, we also prove
that a simple randomization strategy (i.e., randomly pick-
ing the vehicles) can improve the approximation ratio to
1/(2−0.5/C) > 0.5, where C denotes the vehicle’s capacity.
Finally, we conduct extensive experiments on real datasets.

Our main contributions are summarized as follows.

• We are the first to propose an approximation solution
with a constant ratio (0.5) to solve the shared-route
planning queries for maximizing the platform’s rev-
enue, based on these surveys [32, 12, 42].

• To improve the efficiency of this simple idea, we design
a novel index called additive tree and propose several
optimization strategies (e.g., randomization and prun-
ing). As a result, the approximation ratio is improved.
We can save up to 747.2× time cost and 80.2×memory
usage at the same time.

• Extensive experiments show that our solutions always
outperform the state-of-the-art algorithms [48, 38] by
having up to 31.4%-127.4% higher total revenue.

In the rest of this paper, we first present the problem def-
inition in Sec. 2. Then we introduce a general framework
in Sec. 3, which summarizes both existing baselines and our
simpler solution. Next, we propose our indexing based op-
timization techniques in Sec. 4. Finally, we conduct experi-
ments in Sec. 5, review related work in Sec. 6, and conclude
in Sec. 7.

2. PROBLEM STATEMENT
In this section, we introduce the basic concepts in Sec. 2.1

and present the problem definition and hardness in Sec. 2.2.

2.1 Preliminaries

Definition 1 (Shortest Travel Time). Given a set
V of locations, the shortest travel time between any two lo-
cations is denoted by a function dist : V × V → [0,+∞),
which satisfies the triangle inequality (i.e., for any locations
x, y, z ∈ V, dist(x, y) + dist(y, z) ≥ dist(x, z)).

The function dist can be the shortest travel time on either
graphs [13, 38] or Euclidean spaces [40, 7].

Definition 2 (Vehicle). A vehicle is denoted by w =
〈ow, cw〉, which is initially at location ow with a capacity cw.

The capacity indicates that a vehicle w can take at most
cw requests. In real applications, it represents the number of
passengers/parcels that a taxi/courier can carry. Thus, the
vehicle’s capacity is usually a small constant [48, 24, 21, 28,
33]. We use W = {w1 · · ·wm} to denote a set of m vehicles.

Definition 3 (Request). A request is denoted by r =
〈tr, or, dr, er, pr〉, which is released at time tr with the origin
or, destination dr and deadline er. The fare/payment of this
request is pr. The request is served if (1) it is first picked up
by one vehicle at the origin or; and (2) it is then delivered by
the same vehicle at the destination dr before the deadline er.
If r is served, the platform will receive a payment pr from
the requester. Otherwise, the platform rejects the request.

Table 1: The information of the requests (∀ri, tri= 0)

Request Origin Destination Deadline Payment
r1 (1,1) (4,7) 10 6
r2 (1,2) (4,6) 9 5
r3 (2,3) (2,6) 7 4
r4 (5,3) (2,4) 8 3

(a) One feasible solution (b) The optimal solution

Figure 1: An illustration of the toy example

We use R = {r1 · · · rn} to denote a set of n requests and
Rw (⊆ R) to denote the requests assigned to the vehicle w.

Definition 4 (Route). A shared-route (a.k.a route) of
a vehicle w for serving requests Rw is denoted by sw =
〈l0w, l1w, l2w, · · · , lkw〉, which is an ordered sequence of vehicle’s
initial location (i.e., l0w = ow), and the requests’ origins and
destinations (i.e., ∀i > 0, liw ∈ {or|r ∈ Rw} ∪ {dr|r ∈ Rw}).
A route is feasible if (1) all the requests Rw can be success-
fully served by this route; (2) the number of requests |Rw| is
no more than the vehicle’s capacity cw.

The travel time of a route sw is defined as
∑
i dist(l

i−1
w , liw).

2.2 Problem Definition and Hardness
In this subsection, we first present the definition of the

Shared-Route Planning Query (SRPQ) problem as follows.

Definition 5 (SRPQ Problem). Given a set R of n
requests and a set W of m vehicles, the SRPQ problem is to
find a route sw for each vehicle w ∈ W such that the total
revenue of the platform OBJ(R,W) is maximized

OBJ(R,W) =
∑
w∈W

∑
r∈Rw

pr (1)

and meets the following constraints:

• Feasibility constraint: each vehicle is scheduled with a
feasible route;

• Shortest travel time constraint: each scheduled route
takes the shortest total travel time.

For simplicity, we call the route with the shortest travel
time as the “fastest route” in the rest of this paper. We then
illustrate the SRPQ problem by the following example.

Example 1. Suppose there are 2 vehicles w1, w2 and 4
requests r1-r4 in a ridesharing platform. Fig. 1 shows their
locations (e.g., vehicles’ initial location, requests’ origins and
destinations) and the travel time between any two locations
is calculated by Euclidean distance (e.g., speed is 1). We also
assume that the capacity of w1 is 3 and the capacity of w2

3518

Request

Vehicle

𝑞𝑘(𝑒)𝑗1(𝑒)

𝑖

𝑖0(𝑒)

𝑖1(𝑒)

𝑞𝑖(𝑒)

1s

1s
1s

𝑗

𝑗0(𝑒)

𝑞𝑗(𝑒)

1s

1s
1s

𝑘

𝑘1(𝑒)

𝑘0(𝑒)

1s

1s
1s

1s 1s

Figure 2: Vehicles and requests that correspond to
any triple e = (i, j, k) of the 3DM in the reduction [7]

is 1. The other information of requests is listed in Table 1.
In the SRPQ problem, one possible solution is to assign the
requests r1, r2 to w1 and r3 to w4 (see Fig. 1a). Then we
can calculate the fastest routes for these two vehicles, i.e.,
sw1 = {ow1 , or1 , or2 , dr2 , dr1} and sw2 = {ow2 , or3 , dr3}. Ac-
cordingly, the total revenue of this routing plan is pr1 +pr2 +
pr3 = 6 + 5 + 4 = 15. However, this plan is not optimal
since 15 is not the maximum total revenue. Instead, the
maximum revenue is

∑4
i=1 pri = 6 + 5 + 4 + 3 = 18 and the

corresponding routes are illustrated in Fig. 1b, i.e., sw1 =
{ow1 , or1 , or2 , or3 , dr3 , dr2 , dr1} and sw2 = {ow2 , or4 , dr4}.

Hardness. For the hardness of this problem, [48] has proved
that it is NP-hard when the vehicle’s capacity is as large as
n (i.e., the number of requests). However, since capacity
is usually a constant (≥ 2), we analyze the hardness of the
problem under the practical cases in Theorem 1.

Theorem 1. The SRPQ problem is NP-hard and APX-
hard, when vehicle’s capacity is a constant (≥ 2).

Proof. We prove the hardness of the SRPQ problem by
reducing from the 3-dimensional perfect matching (3DM)
problem, which is NP-hard and APX-hard [10]. An instance
of 3DM is denoted by 〈I, J,K,E〉. Here, I, J,K are three
disjoint sets with equal sizes n. E is a set of m triples
e = (i, j, k) such that i ∈ I, j ∈ J, k ∈ K. The 3DM problem
decides if there exists a subset M ⊆ E with n triples, such
that every element in I ∪J ∪K occurs in exactly once in M .
Given such an instance, we use a similar reduction procedure
as in [7] to generate the vehicles and requests.

(1) We generate one vehicle (k) for each element in K and
three vehicles (qi(e), qj(e), qk(e)) for each triple e ∈ E. The
n+ 3m vehicles are denoted by yellow squares in Fig. 2.

(2) We generate one request (i/j) for each element in I ∪
J and six requests (i0(e), i1(e), j0(e), j1(e), k0(e), k1(e)) for
each triple e ∈ E. The 2n + 6m requests are denoted by
blue circles in Fig. 2.

(3) The travel time of any edge in Fig. 2 is 1s. The capac-
ity of each vehicle is 2. The payment of each request is 1.
Since a vehicle takes 2s to serve all the assigned requests in
the reduction of [7], we set the deadline of each request as
2s. Besides, the destination of the request is also its origin.

According to [7], a perfect matching exists in the 3DM
problem if and only if our SRPQ problem has a maximum
total revenue of 2n + 6m (see our full paper [45] for more
detailed explanation). Thus, we complete the proof.

Table 2 lists the major notations used in this paper.

3. A TWO-PHASE FRAMEWORK
In this section, we first present a general framework to

solve this problem in Sec. 3.1. Next, we introduce the exist-
ing baseline in Sec. 3.2 and our simple algorithm in Sec. 3.3,
which are based on this framework. We summarize the com-
parisons between representative baselines and our proposed
solutions in Table 3.

Table 2: Summary of major notations
Notation Description
R,W a set of n requests and m vehicles
or, dr origin and destination of the request r

tr, er, pr release time, deadline and payment of the request r
ow, cw initial location and capacity of the vehicle w
Rw, sw assigned requests and route of the vehicle w
dist(·, ·) shortest travel time between two locations

3.1 Overview
Background. Existing solutions can be classified into two
kinds, i.e., insertion-based solutions [38, 48] and grouping-
based solutions [5, 7, 48]. An insertion-based solution usu-
ally sequentially assigns (inserts) one request into the cur-
rent route of one suitable vehicle. Differently, the grouping-
based solution first determines a group of requests that can
be shared together, and then picks a suitable group for
each vehicle. Though insertion-based solutions are efficient,
they are usually heuristics without theoretical guarantees
(see [38] for details). Thus, we focus on designing a grouping-
based solution with a constant approximation guarantee.

Main Idea. A grouping-based framework usually consists
of two phases, whose main ideas are elaborated as follows.

(1) In the first phase, we determine all possible groups of
requests, where these requests can be shared together.

(2) In the second phase, we schedule each vehicle with one
group of requests and plan the fastest routes to serve them,
in order to maximize the platform’s total revenue.

Basic Concepts. According to the main idea, we introduce
a concept of subpath to define the request group (i.e., a group
of requests that can be shared together).

Definition 6 (subpath). A subpath (denoted by ps) is
a subsequence of the route excluding the vehicle’s initial loca-
tion, i.e., ps = {l1w, l2w, · · · , lkw}, where liw is either a request’s
origin or a request’s destination.

Apparently, the first location l1w of the subpath must be a
request’s origin, where the request is denoted by headReq(ps).
A subpath is feasible if a hypothetical vehicle, who is at
ow = l1w with a large enough capacity, can successfully serve
these requests by following the subpath.

Definition 7 (Request Group). A request group is
denoted by g = 〈kg, Rg, PSg, Ug〉, which represents a set Rg
of kg requests. PSg denotes a set of feasible subpaths that
contain all the origins and destinations of the requests Rg.
Ug denotes the profit of this group, i.e., the total payments
of the requests Rg (Ug =

∑
r∈Rg

pr).

Accordingly, a request group is feasible if its set of sub-
paths is non-empty, i.e., PSg 6= ∅. For instance, as shown in
the first three rows of Table 4, the request group g6 contains
two requests (i.e., kg6 = 2, Rg6 = {r1, r3}) and there exists
one feasible subpath in PSg6 , i.e., {or1 , or3 , dr3 , dr1}. The
profit of this group g6 is Ug6 = pr1 + pr3 = 6 + 4 = 10.

3.2 Existing Baselines
Existing studies [30, 5, 7, 48] on this framework mainly

focus on the bipartite matching based solutions and we sum-
marize their common idea as follows.

Basic Idea. In the first phase, they generate all the fea-
sible request groups by enumerating each combination of
requests. In the second phase, they construct a bipartite

3519

Table 3: The comparisons between existing solutions and our proposed solutions

Compared Algorithm Greedy pruneGreedyDP MWBM GAS GAS-O1 GAS-O2
Reference [48] [38] [48] this paper

Approximation Ratio heuristic heuristic no guaranteeb 0.5 0.5 1/(2− 0.5/C)

Time Complexitya O(mn) O(mn) O(nC +m2|G|) O(nC +m|G|) O(Tc +mTs) O(m(T−c + T−s))
Space Complexity O(m+ n) O(m+ n) O(m|G|) O(|G|) O(|G|) O(|G−|)

a C is the maximum vehicle’s capacity. n− is the maximum number of requests that satisfy the range filtering of a vehicle.
|G| (|G−|) is the number of request groups for n (n− < n) requests. Tc and T−c are the time complexities to construct our
index with n and n− requests. Ts and T−s are the time complexities to search our index with n and n− requests.

b The approximation ratio is not proved to be guaranteed in [48].

Table 4: The details of the generated request groups and the plans of the introduced algorithms

#(Requests) 1 2 3
Request Group gi = {ri} g5 = {r1, r2} g6 = {r1, r3} g7 = {r2, r3} g8 = {r3, r4} g9 = {r1, r2, r3}

Subpath set ori , dri

or1 , or2 , dr2 , dr1
. . .

or2 , or1 , dr2 , dr1

or1 , or3 , dr3 , dr1
or2 , or3 , dr3 , dr2
or3 , or2 , dr3 , dr2

or4 , or3 ,
dr3 , dr4

or1 , or2 , or3 , dr3 ,dr1 , dr2
. . .

or2 , or1 , or3 , dr3 , dr2 , dr1
headSlack 3.3, 4.0, 4.0, 4.8 3.0, . . . , 2.2 1.8 2.6, 1.5 1.0 0.6, . . . , 0.8

Plan
MWBM Assignment: (g9, w1), (∅, w2); Total revenue: 15
GAS Assignment: (g9, w1), (g4, w2); Total revenue: 18

Algorithm 1: Existing Baseline MWBM [48]

input : the requests R and vehicles W
output: the planned routes {sw|w ∈W}
/* Phase 1: Generation */

1 The maximum vehicle’s capacity C ← maxw cw;
2 A set of request groups G← ∅;
3 for size k ← 1 to the maximum capacity C do
4 G′ ← the set of request groups containing k

different requests in R, G← G ∪G′;
/* Phase 2: Schedule */

5 Construct a weighted bipartite graph (G,W,E),
where edge weight denotes the payments to serve
the requests g ∈ G by the vehicle w ∈W ;

6 M ← the maximum weighted bipartite matching;
7 foreach vehicle w and its assigned request group g do
8 sw ← the fastest route to serve all the unassigned

requests in g;

9 return {sw|w ∈W};

graph between request groups and vehicles. The edge weight
between a request group and a vehicle is defined as follows:
(1) if the vehicle can serve this group of requests, the weight
is the profit of the request group; (2) otherwise, the weight
is 0. Next, they calculate the maximum weighted bipartite
matching (MWBM) of this bipartite graph. Finally, they
plan the fastest routes based on the matching result.

Algorithm Details. Algo. 1 illustrates the detailed pro-
cedure of the algorithm in [48]. Specifically, the maximum
vehicles’ capacity is denoted by C and the set of possible
routes is denoted by S (lines 1-2). In the first phase, exist-
ing solutions enumerate all possible request groups by brute-
force (lines 3-4). If the selected k requests can be served by
any route, we add these routes into the set S. In the sec-
ond phase, it first constructs a bipartite graph between the
request groups and vehicles (line 5), and then obtains the
maximum weighted bipartite matching m (line 6). Finally,
in lines 7-8, they iteratively pick a vehicle w and plan the
fastest route to serve all the unassigned requests in the re-
quest group g, where g is matched to w in M .

Example 2. Back to our example. In the first phase of
Algo. 1, the generated request groups are shown in Table 4.
For instance, the requests r1, r3 of the request group g6 can
be shared together by the subpath {or1 , or3 , dr3 , dr1}. Thus,
we can construct a bipartite graph between the request groups
and vehicles. For example, the edge weight between w1 and
g6 is Ug6 = 10, since w1 can serve the requests Rg6 . The
edge weight between w2 and g6 is 0 since w2 cannot serve
Rg6 . In line 6, the maximum weighted matching of this
bipartite graph is {(g9, w1), (g3, w2)}. Then, in lines 7-8,
Algo. 1 will first plan the fastest route for vehicle w1, i.e.,
sw1 = {ow1 , or1 , or2 , or3 , dr3 , dr2 , dr1}. Since r3 has already
been assigned to w1, it cannot be allocated to w2 again and
hence sw2 = {ow2}. The total revenue of these routes (15)
is 16.7% lower than the optimal result (18).

Complexity Analysis. In Algo. 1, The first phase takes
O(nC) time and O(|G|) space to generate G. The second
phase takes O(m2|G|) time and O(m|G|) space to obtain the
maximum weighted bipartite matching (e.g., Kuhn-Munkres
algorithm [27]). Overall, the time complexity is O(nC +
m2|G|) and the space complexity is O(m|G|).
Discussion. Based on our experiments (see Sec. 5), Algo. 1
in this framework has bad effectiveness and low efficiency
(compared with our solutions). Since other existing solu-
tions [30, 5, 7] also have similar steps as the first phase
of Algo. 1, their time cost will also be high in large-scale
datasets. To overcome these limitations, we first propose an
effective solution in Sec. 3.3, and then design efficient opti-
mization techniques in Sec. 4. Note that we compare with
[48] instead of [30, 5, 7], because (1) Ref. [48] is the only
collaborative work with a real industry (i.e., Didi Chuxing
[1]) among these studies, (2) Ref. [48] is more recent than
[30, 5], and (3) Ref. [7] requires that any vehicle’s capacity
is 2, but a vehicle’s capacity is usually no smaller than 3 in
real platforms (e.g., Didi Chuxing [1]).

3.3 Our Effective Solution
Basic Idea. Our idea is to pick the most profitable request
group (i.e., the one with the highest profit Ug) for each
vehicle. Though the idea is simpler, we will later prove its
approximation ratio (0.5) is much better.

3520

Algorithm 2: Our Effective Solution GAS

input : the requests R and vehicles W
output: the planned routes {sw|w ∈W}

1 Execute the first phase of Algo. 1 (lines 1-4);
/* Phase 2: Schedule */

2 foreach vehicle w ∈W do
3 g∗ ← the most profitable request group in G that

w can serve its requests, sw ← the fastest route
for serving Rg∗ , G← remove the request groups
that have common requests in Rg∗ ;

4 return {sw|w ∈W};

Algorithm Details. Algo. 2 illustrates the detailed pro-
cedure. Specifically, we also first generate possible request
groups (line 1). In lines 2-3, for each vehicle w, we find
the most profitable request group g∗ such that w can serve
all the requests in g∗. Specifically, we enumerate each re-
quest group g ∈ G and check whether there exists a sub-
path ps ∈ PSg, such that w can serve all the requests Rg by
following ps. Then we maintain g∗ to be the one with the
highest profit. If g∗ exists, we then plan the fastest route for
serving its requests Rg∗ . After that, we remove any request
group g ∈ G that contains at least one request in Rg∗ .

Example 3. Back to our example. In Algo. 2, the re-
sults of the first phase are shown in Table 4, which is the
same as Algo. 1. In the second phase, we first search the
most profitable request group for vehicle w1, which is g9 =
{r1, r2, r3}. Then we can plan the fastest route for serv-
ing r1-r3 (e.g., by brute-force enumeration), i.e., sw1 =
{ow1 , or1 , or2 , or3 , dr3 , dr2 , dr1}. After that, we need to re-
move request groups g1-g3, g5-g8 from G since they con-
tain some requests in r1-r3. Similarly, in the next itera-
tion, we assign r4 to vehicle w2 and plan the route sw2 =
{ow2 , or4 , dr4} for it. Based on these routes, the platforms’
total revenue is 18, which is optimal.

Complexity Analysis. In Algo. 2, line 2 has O(m) itera-
tions and each iteration takes O(|G|) time. Thus, the time
complexity is O(nC + m|G|) and the space complexity is
O(|G|), which is more efficient than Algo. 1.

Approximation Analysis. We next analyze the approx-
imation ratio of Algo. 2 in Theorem 2. Based on the theo-
retical results, Algo. 2 should be also effective in practice.

Theorem 2. The approximation ratio of Algo. 2 is 0.5.

Proof. Let gwi denote the request group assigned to ve-
hicle wi by Algo. 2 and g∗wi

denote the request group as-
signed to vehicle wi in the optimal result. We use rev(g) to
denote the total payments of the requests Rg, i.e., rev(g) =∑
r∈Rg

pr. It is obvious that the total revenue of the optimal

result (denoted by OPT) is

OPT =
∑
wi∈W

rev(g∗wi
) (2)

To bound the total revenue of our algorithm, we need to
consider the following two cases.

(1) If rev(gwi) ≥ rev(g∗wi
), we only charge rev(g∗wi

) into
the lower bound of our revenue.

(2) If rev(gwi) < rev(g∗wi
), it indicates that some requests

in g∗wi
must have been assigned to other vehicles in the pre-

vious iterations of line 2. Otherwise, g∗wi
should be assigned

to wi in line 3. Thus, we use a request group g∗wi
to de-

note all the requests in g∗wi
that have already been assigned,

i.e., Rg∗wi
⊆ Rg∗wi

. If g∗wi
is assigned to only one vehicle,

this vehicle may have also been scheduled with some other
requests that are not in g∗wi

. As rev(g) =
∑
r∈Rg

pr, we

can infer that rev(g∗wi
) ≤ rev(g∗wi

). Besides, as the request
group gwi is picked by our algorithm, it indicates that the
gwi should be more profitable than the total payments of
serving the remaining requests in g∗wi

, i.e.,

rev(gwi) ≥ rev(g∗wi
)− rev(g∗wi

) (3)

So we charge the RHS of Eq. (3) into the lower bound.
For the proof simplification, we assume that g∗wi

= ∅ and
rev(g∗wi

) = 0 in the first case. Thus, we can use the RHS of
Eq. (3) as the lower bound of the total revenue (denoted by
ALG) by Algo. 2 as follows.

ALG =
∑
wi∈W

rev(gwi) ≥
∑
wi∈W

(
rev(g∗wi

)− rev(g∗wi
)
)

(4)

Since a request can be assigned to only one vehicle, we also
know that the requests in g∗wi

are disjoint with the requests
in g∗wj

(when i 6= j). Thus, we have⋃
wi

Rg∗wi
⊆
⋃
wi

Rgwi
=⇒

∑
wi

rev(g∗wi
) ≤

∑
wi

rev(gwi) (5)

Based on Eq. (2), Eq. (4), and Eq. (5), we have

ALG ≥
(∑
wi∈W

rev(g∗wi
)
)
−
(∑
wi∈W

rev(g∗wi
)
)
≥ OPT −ALG

Finally, we can derive that the approximation ratio is 0.5.

4. OUR INDEXING APPROACH
This section presents our indexing approach to reduce the

high complexity of our simple idea. Specifically, we first de-
fine our index in Sec. 4.1, and then introduce its construc-
tion method (Sec. 4.2) and search method (Sec. 4.3). Next,
we present the details of our indexing approach in Sec. 4.4.
Finally, we discuss extensions to practical issues in Sec. 4.5.

4.1 Definition of Additive Tree
Basic Idea. Our index is motivated by Lemma 1.

Lemma 1. If a request group g+ is feasible, then any re-
quest group g, which contains a subset of requests Rg+ , must
be also feasible.

Proof. The statement is true since any subpath of g+ is
also feasible to serve the requests Rg ⊆ Rg+ .

For instance, if there exists a feasible request group g+ =
{r1, r2, r3}, request groups like g1 = {r1, r2}, g2 = {r1, r3}
are also feasible. As a result, we can generate the request
group g+ by adding one more request in g1 or g2. Accord-
ingly, we define our index additive tree as follows.

Definition 8 (additive tree). An additive tree T is
an unweighted tree that satisfies the following properties:

(1) The height of T is C, where C = maxwi cwi .

3521

(2) At the k-th level, each node v represents a different
request group (denoted by g(v)) which has a set of k requests.
Particularly, the root represents an empty group.

(3) For each node v and any of its child node u ∈ child(v),
the request group g(u) contains one more request than g(v),
i.e., Rg(v) ⊂ Rg(u) and |Rg(u) \Rg(v)| = 1.

Example 4. An instance of the additive tree is illustrated
in Fig. 3b, where each node represents a unique request group
in our toy example. For instance, at the second level, node
u5 represents the request group g5, i.e., Rg5 = {r1, r2}. Be-
sides, at the third level, node u9 is the child node of u5

since u9 represents a request group Rg9 = {r1, r2, r3}, i.e.,
Rg9 ⊂ Rg5 and |Rg5 \Rg9 | = 1.

In the following, we propose solutions to efficiently (1)
construct the additive tree and (2) search the most prof-
itable request group for a vehicle. Here we omit the deletion
method since it is similar to other tree-based indexes.

4.2 Efficient Construction Method

4.2.1 Main Idea
Challenge. To construct the index, a straightforward solu-
tion is to hierarchically construct the node (O(|G|)� O(n))
and enumerating the additive requests for each node (O(n)).
This enumerating strategy is inefficient since its enumerated
request group is O(n|G|) � O(n2). Especially, many re-
quests cannot be shared together due to the constraints.

Another issue is that the existing solutions overlook the
time consumption of the checking strategy, i.e., checking the
feasibility of the enumerated request group. They usually
first generate all the subpaths of origins and destinations
and then check which satisfies the constraints. However, the

number of possible subpaths is a large constant (
(2kg)!

2kg
[28])

in practice, where kg is the number of requests in the request
group. For instance, when kg = 5, it is over 1.13× 105.

By comparison, our following strategies are more efficient.

Enumerating Strategy. Based on the third property of
the additive tree, each two sibling nodes (e.g., nodes u5 and
u6 in Fig. 3b) have exactly one different request from the
other since they both have one more request than their par-
ent node (e.g., node u1). As a result, to create the child
node of the sibling nodes, we can generate its request group
by joining the request set of these two sibling nodes. For in-
stance, the requests of node u9 in Fig. 3b can be generated
by joining the request sets of nodes u5 and u6. Overall, our
enumerating strategy is as follows.

(1) For the first level, each request group (node) is gener-
ated by a single request in the request set R.

(2) For the other level i, each request group (node) is
generated by joining the request sets of any two sibling nodes
at the (i− 1)-th level.

The correctness of our strategy is a corollary of Lemma 1.

Checking Strategy. To check the feasibility of an enumer-
ated request group, our checking strategy is as follows.

Lemma 2. Assume a request group g is generated by join-
ing two feasible request groups g1 and g2. The request group
g is feasible if the following conditions are satisfied:

(1) ∀r ∈ Rg, any request group with requests Rg\{r} must
be feasible, i.e., the corresponding node has been created.

Algorithm 3: Construct the index

input : the requests R and maximum capacity C
output: the index additive tree T

1 rt← the root of T which contains no requests;
2 Create each child node ui of rt, where Rg(ui) = {ri};
3 for size k ← 2 to the maximum capacity C do
4 U ← the nodes in T at the (k − 1)-th level;
5 foreach node ui ∈ U do
6 foreach node uj (j > i) of ui’s siblings do
7 Create a request group g(v), where

kg(v) ← k,Rg(v) ← Rg(ui) ∪Rg(uj);

8 if g(v) is feasible by Lemma 2 then
9 v ← create a child node of ui, which

represents the request group g(u);

(2) there exists a subpath ps ∈ PSg1 such that it is feasible
to add (insert) the request r into ps, where r ∈ Rg2 \Rg1 .

Proof. The first condition is derived from Lemma 1.
For the second condition, the request r is exactly the addi-

tive request, i.e., Rg = Rg1 ∪{r}. Based on the definition of
request group, g is feasible if there exists a subpath ps that
can serve all the requests Rg. In other words, such a subpath
can be also used to serve the requests Rg1 ⊂ Rg. Besides,
the set PSg1 contains all the subpaths that can serve the
requests Rg1 . Therefore, we can generate each subpath ps
by inserting the new request into each subpath ps1 ∈ PSg1 ,
where a new subpath is generated by putting the origin and
destination of the new request into each position of ps1.

Example 5. As shown in Fig. 3b, the node u9 (g9 =
{r1, r2, r3}) is generated by joining the request sets of nodes
u6 and u5. To test the feasibility of g9, we first check whether
request sets {r1, r2}, {r1, r3} and {r2, r3} exist (i.e., nodes
u5-u7). We then try to insert the additive request r2 into
the subpath set PSg6 . When ps1 = {or1 , or3 , dr3 , dr1} (see
Fig. 3a), the possible subpaths are {or2 ,dr2 , or1 , or3 , dr3 , dr1},
{or2 , or1 ,dr2 , or3 , dr3 , dr1}, · · · , {or1 ,or2 ,dr2 , or3 , dr3 , dr1},
{or1 ,or2 , or3 ,dr2 , dr3 , dr1}, · · · , {or1 , or3 , dr3 , dr1 ,or2 ,dr2},
where the origin and destination of r2 are marked by bold.

4.2.2 Our Construction Algorithm
Algorithm Details. Our construction method is illus-
trated in Algo. 3. Specifically, we create a root rt with
no requests in line 1. In line 2, we create n child nodes ui
of the root, where ui represents a request group of only one
request ri ∈ R. In lines 3-9, we hierarchically create the
other nodes from top to bottom. Specifically, we use U to
denote the set of nodes at the (k−1)-th level, i.e., the nodes
created in the last iteration. Then we generate the possible
request groups in lines 5-7 by our enumerating strategy. In
line 8, we test the feasibility of these request groups by our
checking strategy. If the request group g(v) is feasible, we
create a child node v for its parent node ui and update its
subpath set PSg(v) accordingly (line 9).

Example 6. Back to our example (C = 3). We construct
the additive tree in Fig. 3b to represent the request groups
among r1-r4. We first create the root u0 with no requests
and add four child nodes u1-u4, where each child node con-
tains one request in r1-r4. Then we create the nodes at the

3522

𝑜𝑟1

𝑜𝑟4
𝑜𝑟2

𝑜𝑟3

𝑑𝑟4𝑑𝑟4

𝑑𝑟3 𝑑𝑟2

𝑑𝑟1

𝑔0 = ∅𝑢0

15 0 𝑢1-𝑢4maxProfit

Profit

Child nodes

Node ID Request group ID

𝑔1 = {𝑟1}𝑢1

15 6 𝑢5, 𝑢6

𝑔2 = {𝑟2}𝑢2

9 5 𝑢7

𝑔3 = 𝑟3𝑢3

7 4 𝑢8

𝑔4 = {𝑟4}𝑢4

3 3 𝑁𝐼𝐿

𝑔5 = {𝑟1, 𝑟2}𝑢5

15 11 𝑢9

𝑔7 = {𝑟2, 𝑟3}𝑢7

9 9 𝑁𝐼𝐿

𝑔8 = {𝑟3, 𝑟4}𝑢8

7 7 𝑁𝐼𝐿

𝑔6 = {𝑟1, 𝑟3}𝑢6

15 10 𝑁𝐼𝐿

𝑔9 = {𝑟1, 𝑟2, 𝑟3}𝑢9

15 15 𝑁𝐼𝐿

𝑜𝑟1

𝑜𝑟4𝑜𝑟2

𝑜𝑟3

𝑑𝑟4𝑑𝑟4

𝑑𝑟3 𝑑𝑟2

𝑑𝑟1
𝑜𝑟1

𝑜𝑟4
𝑜𝑟2

𝑜𝑟3

𝑑𝑟4𝑑𝑟4

𝑑𝑟3 𝑑𝑟2

𝑑𝑟1

Level 2

Level 3

Level 1

Level 2

Level 3

Level 1

Level 0

𝑢5
𝑢6
𝑢7
𝑢8

𝑢1
𝑢2
𝑢3
𝑢4

𝑢9

(a) The subpath of each node

𝑜𝑟1

𝑜𝑟4
𝑜𝑟2

𝑜𝑟3

𝑑𝑟4𝑑𝑟4

𝑑𝑟3 𝑑𝑟2

𝑑𝑟1

𝑔0 = ∅𝑢0

15 0 𝑢1-𝑢4maxProfit

Profit

Child nodes

Node ID Request group ID

𝑔1 = {𝑟1}𝑢1

15 6 𝑢5, 𝑢6

𝑔2 = {𝑟2}𝑢2

9 5 𝑢7

𝑔3 = 𝑟3𝑢3

7 4 𝑢8

𝑔4 = {𝑟4}𝑢4

3 3 𝑁𝐼𝐿

𝑔5 = {𝑟1, 𝑟2}𝑢5

15 11 𝑢9

𝑔7 = {𝑟2, 𝑟3}𝑢7

9 9 𝑁𝐼𝐿

𝑔8 = {𝑟3, 𝑟4}𝑢8

7 7 𝑁𝐼𝐿

𝑔6 = {𝑟1, 𝑟3}𝑢6

15 10 𝑁𝐼𝐿

𝑔9 = {𝑟1, 𝑟2, 𝑟3}𝑢9

15 15 𝑁𝐼𝐿

𝑜𝑟1

𝑜𝑟4𝑜𝑟2

𝑜𝑟3

𝑑𝑟4𝑑𝑟4

𝑑𝑟3 𝑑𝑟2

𝑑𝑟1
𝑜𝑟1

𝑜𝑟4
𝑜𝑟2

𝑜𝑟3

𝑑𝑟4𝑑𝑟4

𝑑𝑟3 𝑑𝑟2

𝑑𝑟1

Level 2

Level 3

Level 1

Level 2

Level 3

Level 1

Level 0

𝑢5
𝑢6
𝑢7
𝑢8

𝑢1
𝑢2
𝑢3
𝑢4

𝑢9

(b) The detailed tree structure

Figure 3: An illustration of our index additive tree

levels 2-3. For example, when k = 2, U = {u1, · · · , u4}
(line 4). We then pick ui = u1 and iterate its sibling nodes
uj ∈ {u2, u3, u4} (lines 5-6). As a result, we create child
nodes u5 and u6 of u1. At level 3, there is only one possible
request group by joining the request sets of nodes u5 and u6.
Accordingly, we create the child node u9 of u5. By our enu-
merating strategy, we can directly prune the request groups
like {r1, r2, r4}, {r1, r3, r4} and {r2, r3, r4}.

Complexity Analysis. We use degi to denote the maxi-
mum degree of the nodes at the i-th level. In line 2, deg0 = n
since the root has n child nodes. Line 3 has C−1 iterations.
In each iteration, the number of nodes in U is bounded by∏k−2
i=0 degi, which is also the number of iterations in line

5. Line 6 only has degk−2 iterations since we only enumer-
ate the sibling nodes. Since lines 7-9 take constant time,
the time complexity is O

(∑C
k=2

(
degk−2 × (

∏k−2
i=0 degi)

))
,

where deg0 = n and degi < degi−1. The space complexity
is O(

∏C−1
i=0 degi). In practice, degi becomes smaller than

degi−1 with the increase of level, because more requests are
usually more difficult to be shared together.

4.3 Efficient Search Method
In our approximation solution (i.e., Algo. 2 in Sec. 3),

one fundamental operation is to search the most profitable
request group for a vehicle. As each request group is repre-
sented by a node in our index, we discuss the search method
in the following. Specifically, we introduce the basic con-
cepts in Sec. 4.3.1, elaborate the main idea in Sec. 4.3.2,
and present the detailed algorithm in Sec. 4.3.3

4.3.1 Preliminary
To check the feasibility of a vehicle for serving a request

group, we borrow the concept of slack time [38] as follows.

Definition 9 (Slack Time). Given a vehicle’s route
sw = {l0w, l1w, · · · , lkw}, the slack time slacki of each location
liw (i > 0) is defined as the maximal tolerable time for de-
touring between li−1

w and liw while satisfying the deadline con-
straints of all the requests, i.e., slacki = minj≥i{ddlj−arrj},

where arrj is the arrival time at location ljw and ddlj is the
deadline of the request at location ljw.

Slack time is widely used to check the violation of the
deadline constraint. For instance, if the travel time between
l0w (i.e., vehicle’s initial location) and l1w is no longer than
the slack time slack1, i.e., dist(l0w, l

1
w) ≤ slack1, the deadlines

of all the requests will be satisfied (i.e., ∀i > 1, dist(l0w, l
1
w) ≤

slacki). This is because slack1 ≤ slack2 · · · ≤ slackk (by Def-
inition 9). Otherwise, some request’s deadline is violated.

For a request group g, we use headSlack(g, r) to denote the
maximum slack time of the origin or among the subpaths
PSg whose first locations are also the origin or, i.e.,

headSlack(g, r) = max{slack1|ps ∈ PSg , headReq(ps) = r}, (6)

where headReq(ps) denotes the firstly picked request in ps.

4.3.2 Main Idea
To search the index, we need a checking strategy to test the

feasibility of a vehicle for serving a request group. Besides,
we also need a pruning strategy to accelerate the process by
efficiently filtering impossible request groups.

Checking Strategy. Based on the concept of slack time,
our checking strategy is summarized in Lemma 3.

Lemma 3. A vehicle w can serve the requests Rg in the
request group g if (1) kg ≤ cw and (2) there exists a request
r ∈ Rg such that dist(ow, or) ≤ headSlack(g, r).

Proof. The first condition is due to the capacity con-
straint. For the other condition, the vehicle w needs to
serve the requests before their deadlines. Based on the def-
inition of slack time, the travel time dist(ow, or) must be
shorter than the slack time of the firstly picked request r.
Though PSg stores all the subpaths (i.e., the routes exclud-
ing the vehicle’s initial location), we only need to check the
maximum slack time of the origin or among these subpaths,
whose first locations are all or, i.e., headSlack(g, r).

Pruning Strategy. In the worst case, the searching process
(without pruning) has to traverse the subpaths of all the

3523

Algorithm 4: Search the index Search

input : vehicle w, current node u, the currently
most profitable node u∗

1 if u.maxProfit < u∗.Profit then return;
2 if vehicle w can serve g(u) by Lemma 3 then
3 if u.Profit > u∗.Profit then u∗ ← u;
4 foreach child node v of the node u do
5 Search(w, v, u∗);

nodes in the index. Thus, we also prune some impossible
request groups to improve the efficiency by Lemma 4.

Lemma 4. Let LB[r] to denote the travel time between
the origin of request r and its nearest vehicle, i.e., LB[r] =
minwi dist(owi , or). For each node u, we can remove every
subpath ps ∈ PSg(u) such that slack1 < LB[headReq(ps)],
where slack1 denotes the slack time of the first location in
ps. If PSg(u) becomes empty, we can remove the node.

Proof. Assume to the contrary. A vehicle w can serve
the request group g(u) by the subpath ps, even if slack1 <
LB[r], where r = headReq(ps). Thus, we have dist(ow, or) ≤
slack1 by the definition of slack time. Thus, dist(ow, or) <
LB[r], which contradicts the definition of LB[r].

4.3.3 Our Search Algorithm
Algorithm Details. Algo. 4 illustrates our algorithm to
search the most profitable request group for a vehicle. We
use u.Profit to denote the profit of node u (i.e., the profit
of the corresponding request group) and u.maxProfit to de-
note the maximum profit among all the nodes in the subtree
rooted at u. We use u∗ to denote the currently most prof-
itable node during the search process. In line 1, we will stop
searching the subtree of u if all the nodes in the subtree have
less profit than u∗. In line 2, we check whether vehicle w
can serve the current request group g(u). If w cannot serve
g(u), it cannot serve any descendant node of u either. This
is because the requests Rg(u) are also contained in any de-
scendant node of u. Otherwise, we may replace u∗ with u
(line 3) and recursively search its child nodes (lines 4-5).

Example 7. As shown in Fig. 3b, we want to search the
most profitable request group for the vehicle w1. Specifically,
we first set u∗ as the root (i.e., u∗ = u0) and search the
subtree rooted at u1. Since w1 can serve the request group g1,
we further change u∗ into u1 and search the subtree rooted
at u5. Similarly, u∗ will be changed into u5 and then u9.
After that, we will search the subtree rooted at u6. Since
u6.maxProfit = 10 is smaller than the current bound (i.e.,
u9.Profit = 15), we will skip the subtree. In the end, the
search algorithm will return u9 (i.e., g9) as the final result.

Complexity Analysis. Both time complexity and space
complexity equal to the number of nodes in the index.

4.4 Indexing-based Approximation Solution
To improve the efficiency of our simple idea, one can di-

rectly apply the construction and search methods of our in-
dex in Algo. 2 (this method is named as GAS-O1). However,
we find that it becomes inefficient when there are a large
number of requests in our experiments. Thus, we propose a
slightly different algorithm (GAS-O2) to solve this issue.

Algorithm 5: Indexing based Solution GAS-O2

input : the requests R and vehicles W
output: the planned routes {sw|w ∈W}

1 foreach randomly picked vehicle w ∈W do
2 R′ ← filter the unassigned requests in R that

cannot be served by w;
3 T ′ ← construct the additive tree of R′ by Algo. 3;
4 u∗ ← search the most profitable node for vehicle

w in T ′ by Algo. 4;
5 if such node u∗ exists then
6 sw ← the fastest route to serve requests in u∗;

7 return {sw|w ∈W};

Basic Idea. We still iteratively pick the most profitable
request group for each vehicle, but we do not have to con-
struct an index of all the requests. Instead, for each vehicle,
we first filter a subset of requests that can be served by it,
then construct the index of the filtered requests, and finally
search the most profitable request group. Besides, we also
use randomization to improve the approximation guarantee.

Algorithm Details. Algo. 5 illustrates the algorithm GAS-
O2. In line 1, we first randomly pick a vehicle w to determine
its route. Specifically, we first filter a subset R′ from the cur-
rently unassigned requests (e.g., by range filtering), where
each request in R′ can be served by the vehicle w (line 2).
In line 3, we construct the additive tree T ′ of these requests
R′ by Algo. 3. We next search the most profitable node u∗

in the index by Algo. 4 (line 4). If such u∗ exists, we can
plan the fastest route for this vehicle w (lines 5-6).

Example 8. Back to our example and we assume the ve-
hicles are iterated by this order: w1, w2. For the vehicle w1,
we first filter the requests R′ = {r1, r2, r3} since w1 cannot
serve r4. We then construct the index for r1-r3, which is
the tree in Fig. 3b excluding the nodes u4, u8. Thus, we will
obtain u9 as the most profitable node in line 4 and plan the
fastest route sw1 = {ow1 , or1 , or2 , or3 , dr3 , dr2 , dr1} in line 6.
Similarly, we will obtain u4 as the most profitable node for
vehicle w2 and plan the fastest route sw2 = {ow2 , or4 , dr4}.

Complexity Analysis of GAS-O2. In Algo. 5, line 1 has
O(m) iterations and we denote the maximum size of R′ is

n− � n. Line 3 takes O
(∑C

k=2

(
deg−k−2 × (

∏k−2
i=0 deg

−
i)
))

time, where deg−i is the maximum degree of the nodes at
the i-th level. Line 4 takes O(|T−|) time, where |T−| =

O(
∏C−1
i=0 deg−i). Lines 5-6 take constant time. Overall,

the time complexity is O
(
m
∑C
k=2

(
deg−k−2 × (

∏k−2
i=0 deg

−
i)
))

and its space complexity is O(|T−|).
Approximation Analysis. Based on Theorem 2, Algo. 5
also has an approximation ratio of 0.5 in the worst case.
However, as Algo. 5 is a randomized algorithm (i.e., line 1
randomly picks a vehicle). we prove it has an (expected)
approximation ratio of 1/(2− 0.5/C) in Theorem 3. When
C = 2, 3 and 4, the ratio is 0.57, 0.54 and 0.53. In other
words, its approximation ratio is strictly better than 0.5.

Theorem 3. The expected approximation ratio of Algo. 5
is 1/(2− 0.5/C).

Proof. We use the same notations in the proof of The-
orem 2. For each vehicle w, we can still bound the total
revenue of Algo. 5 based on the two cases in Theorem 2.

3524

(1) It gets at least the same revenue as the optimal solu-
tion, i.e., rev(gwi) ≥ rev(g∗wi

). Thus, we have ALG ≥ OPT .
(2) It gets less revenue than the optimal solution, i.e.,

rev(gwi) < rev(g∗wi
). Based on the proof of Theorem 2, we

have ALG ≥ OPT −ALG in this case.
In Algo. 5, since the vehicle is randomly picked, both cases

will occur with some probabilities. We use Xi to denote the
probability of the case (i). Accordingly, the (expected) total
revenue of our algorithm can be bounded by Eq. (7).

E[ALG] ≥ X1 ·OPT +X2 · (OPT −ALG) (7)

To bound the probability X1 (X2 = 1 −X1), we assume
that the vehicles are picked by a permutation π. The revenue
of a vehicle w, which is at the i-th place in π, belongs to the
case (2). It indicates that at least one vehicle before w is
scheduled with some requests in g∗w. We use bi to denote
the minimum rank of such vehicles in π. We can create a
new permutation π(i), where the vehicle w is removed at the
position of i and all the other vehicles in π remain in their
original positions. In this permutation π(i), we know that:

(a) When i ≤ bi, the vehicle w in π(i) will satisfy the first
case since no request in g∗w has been assigned.

(b) When i > bi, the vehicle w will satisfy the second case.
In other words, an event of the second case in the per-

mutation π corresponds to bi events of the first case in the
other permutations π(i). In the worst case, bi equals to 1.
If we treat the bi of each vehicle wi is all 1, we can only get
the approximation ratio of 0.5 (i.e., X1 = X2).

Therefore, we use the following fact: for each integer j =
1, · · · ,m/C, there are at most C vehicles whose bi equals to
j. The statement is true since the vehicle at the position
bi can be scheduled with at most C requests, while each
request belongs to one distinct vehicle of the second case.
Thus, we can infer the probability X1 as follows.

X1 =
1

m︸︷︷︸
#(π(i))

×

#(vehicles)︷︸︸︷
1

m
×(

m/C∑
j=1

(C × j)) =
C +m

2Cm
(8)

By substituting Eq. (8) into Eq. (7) (X2 = 1−X1), we can
infer the (expected) approximation ratio as follows.

E[ALG]

OPT
=

1

2−X1
=

1

2− C+m
2Cm

= O(
1

2− 0.5/C
).

4.5 Extension
We also extend our methods to the following settings.
(1) The capacity of a request (e.g., the number of passen-

gers) may be larger than 1. To consider this practical issue,
we use cr to be the capacity of a request r. Thus, when
checking the feasibility of a route, a subpath or a request
group, the capacity of the vehicle should be no smaller than
the total capacity of the requests, i.e., cw ≥

∑
r∈Rw

cr (in

Definition 3) and C ≥
∑
r∈Rg

cr (in Lemma 2 and Lemma 3).

(2) Some work [13] also considers the constraint of detour-
ratio for each request. For example, in a feasible route, the
distance from a request’s origin to its destination should
be shorter than a given threshold. Our methods can also
support this constraint by directly considering it in the fea-
sibility test of a route or a subpath.

Moreover, our approximation ratios still hold in these set-
tings, because the analysis in Theorem 2 and Theorem 3 will
not change when considering the aforementioned issues.

Table 5: Statistics of the real datasets

Dataset #(Requests) #(Vertices) #(Edges)
Chengdu from 11.01 to 11.30 214, 440 466, 330
Haikou from 09.01 to 09.30 42, 542 89, 206

Table 6: Parameter settings

Parameters Settings
Number of requests n 700, 900, 1100, 1300, 1500
Number of vehicles m 100, 200, 300, 400, 500
Deadline er (second) 600, 750, 900, 1050, 1200
Vehicle’s capacity cw 2, 3, 4, 5, 6

Scalability n 1k, 2k, 4k, 6k, · · · , 20k

5. EXPERIMENTAL STUDY
In the following, we introduce our experimental setup in

Sec. 5.1 and the experimental results in Sec. 5.2.

5.1 Experimental Setup
Datasets. We evaluate the proposed algorithms on two
real datasets [2]. They are published by Didi Chuxing [1],
the largest ridesharing company in China. The first one
was collected in Chengdu in November 2016 and the other
one was collected in Haikou in September 2017. Table 5
summarizes the road networks of these two cities, which are
extracted from OpenStreetMap [4]. Both datasets contain
30 days of taxi requests in Didi Chuxing. Thus, we use these
real-word origins and destinations, and generate the other
parameters as shown in Table 6, where default settings are
marked in bold. Specifically, we sample a certain number
of requests (n) from the real datasets. Since these datasets
do not have the information of the deadline, we set any re-
quest’s deadline by adding the value in Table 6 with the
shortest travel time between its origin and destination (e.g.,
er = tr+dist(or, dr)+600 by default). The payment of each
request is calculated by the pricing strategy in Didi Chux-
ing [48]. For the vehicles, we randomly generate their initial
locations from the vertices of the road network and vary
their capacities. Our parameter settings are also used in ex-
isting work (e.g., [48, 38, 40, 13, 37, 44, 47, 36]). Finally, we
test the scalability by varying n from 1k to 20k. Since there
are around 80k requests per day in Haikou dataset, the size
of scalability test is up to six hours of requests, which is
133×, 432× and 1080× larger than the largest test used in
[7] (n = 150), [5] (50s of requests) and [7] (20s of requests).

Compared Algorithms. We compare the following state-
of-the-art algorithms in the experiments.

(1) GAS (this paper). It is the basic implementation of
our approximation solution (i.e., Algo. 2).

(2) GAS-O1 (this paper). It is the implementation of GAS
by only using our index additive tree.

(3) GAS-O2 (this paper). It is the indexing approach (i.e.,
Algo. 5), which applies the index and randomization.

(4) GAS-O3 (this paper). We apply a data-driven strat-
egy to improve the time cost of GAS-O2 in scalability tests.
Specifically, in line 2 of Algo. 5, we sample 4% of the re-
quests in R′ to execute the lines 3-6. We first select the
top 2% of the requests that are sorted by their payments in
a descending order, where the parameter 2% is fine-tuned.
For each of the top 2% requests, we pick another request in
R′, which can be shared and has the highest payment.

(5) pruneGreedyDP [38] (GDP for short). It sequentially
assigns each request to the vehicle, which has the minimum
increased travel time to insert this request.

3525

n

70
0

90
0

11
00

13
00

15
00

T
ot

al
re

ve
n
u
e

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000
GAS GAS-O1 GAS-O2 GDP Greedy MWBM

n

70
0

90
0

11
00

13
00

15
00

T
ot

al
re

ve
n
u
e

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

(a) Revenue (Chengdu)
n

70
0

90
0

11
00

13
00

15
00

T
ot

al
re

ve
n
u
e

4000

5000

6000

7000

8000

9000

10000

11000

12000

(b) Revenue (Haikou)

n

70
0

90
0

11
00

13
00

15
00

T
ot

al
ti
m

e
(S

ec
s)

100

101

102

103

104

105

(c) Time (Chengdu)
n

70
0

90
0

11
00

13
00

15
00

T
ot

al
ti
m

e
(S

ec
s)

100

101

102

103

104

105

(d) Time (Haikou)

n

70
0

90
0

11
00

13
00

15
00

M
em

or
y

u
sa

ge
(M

B
)

400

600

800

1000

1200

1400

1600

1800

(e) Memory (Chengdu)
n

70
0

90
0

11
00

13
00

15
00

M
em

or
y

u
sa

ge
(M

B
)

500

1000

1500

2000

2500

3000

(f) Memory (Haikou)
Figure 4: Performance of varying n

(6) Greedy [48]. It iteratively inserts the currently most
profitable request to one feasible vehicle.

(7) MWBM [48]. It is the implementation of Algo. 1, which
is the same as algorithm PBM in [48]. We compare with [48]
instead of [30, 5, 7], since Ref. [48] is a more recent work
than [30, 5] and Ref. [7] requires that any vehicle’s capacity
is 2. Moreover, Ref. [48] is the only collaborative work with
a real industry (i.e., Didi Chuxing [1]) among [48, 30, 5, 7].

Implementation and Metrics. The experiments are con-
ducted on a server with 40 Intel(R) E5 2.30GHz processors
with 128GB memory. In each experiment, these algorithms
use the same method SHP [20] to query the shortest travel
time on road networks. We implement an LRU cache to
maintain the results of the recent distance queries as in [13].
We also apply the grid index (1km × 1km) to conduct the
range filtering in these methods. For all compared algo-
rithms, the results on different grid lengths within a practi-
cal range (e.g., from 1km to 5km [40, 38, 13]) are relatively
stable (see [45] for more details due to space limitations). All
the algorithms are implemented in C++ and are evaluated
in terms of total revenue (“revenue” for short), total run-
ning time (“time” for short) and memory usage (“memory”
for short). Each experimental setting is repeated 30 times
and the average results are reported. In some cases (e.g.,
scalability tests), the algorithms MWBM, GAS and GAS-O1
are too inefficient in time (>10 hours) and space (>80GB)
to be terminated, and hence we cannot show these results.

5.2 Experimental Result
Impact of the number of requests. Fig. 4 presents
the results of varying the number of requests. Specifically,
Fig. 4a and Fig. 4b illustrate the total revenue of the com-
pared algorithms. In both datasets, our proposed algorithms
GAS, GAS-O1, GAS-O2 are more effective than the existing
methods. For instance, they obtain up to 89.7%, 66.9% and
23.1% higher revenue than MWBM, GDP and Greedy in the

n

70
0

90
0

11
00

13
00

15
00

T
ot

al
re

ve
n
u
e

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000
GAS GAS-O1 GAS-O2 GDP Greedy MWBM

m

10
0

20
0

30
0

40
0

50
0

T
ot

al
re

ve
n
u
e

1000

2000

3000

4000

5000

6000

7000

8000

9000

(a) Revenue (Chengdu)
m

10
0

20
0

30
0

40
0

50
0

T
ot

al
re

ve
n
u
e

2000

4000

6000

8000

10000

12000

14000

(b) Revenue (Haikou)

m

10
0

20
0

30
0

40
0

50
0

T
ot

al
ti
m

e
(S

ec
s)

10-1

100

101

102

103

104

105

(c) Time (Chengdu)
m

10
0

20
0

30
0

40
0

50
0

T
ot

al
ti
m

e
(S

ec
s)

10-1

100

101

102

103

104

105

(d) Time (Haikou)

m

10
0

20
0

30
0

40
0

50
0

M
em

or
y

u
sa

ge
(M

B
)

0

200

400

600

800

1000

1200

(e) Memory (Chengdu)
m

10
0

20
0

30
0

40
0

50
0

M
em

or
y

u
sa

ge
(M

B
)

200

400

600

800

1000

1200

1400

1600

(f) Memory (Haikou)
Figure 5: Performance of varying m

Haikou dataset, respectively. Greedy is more effective than
other existing solutions, while MWBM is sometimes the least
effective. In terms of total running time, Greedy is the most
efficient, GDP is the first runner-up, and GAS-O2 is the sec-
ond runner-up. Compared with the results of GAS-O1 and
GAS, our index improves the running time by up to 175.4
times. MWBM is the least efficient, which is 54.2×-332.7×
slower than GAS-O1 and GAS-O2. In terms of memory us-
age, Greedy and GDP are the most efficient, while MWBM
and GAS are the least efficient.

Impact of the number of vehicles. Fig. 5 shows the
results of varying the number of vehicles. In both Chengdu
and Haikou datasets, our algorithms still obtain the highest
total revenue, which is at least 16.6% higher than the ex-
isting methods. MWBM is still notably less effective than
the others. Though both GDP and Greedy use the same
insertion operator [38], Greedy is better since it inserts the
more profitable request with higher priority, while GDP se-
quentially inserts the requests without considering their pay-
ments. As for total running time, Greedy is always the most
efficient and GDP is the runner-up. GAS-O1 is up to 302.6×
faster than GAS by the index. GAS-O2 is up to 4.4× faster
than GAS-O1, since GAS-O2 constructs a small index for
each vehicle instead of constructing a large index for all the
vehicles. MWBM is still inefficient, e.g., by up to 4645×,
294.6×, 727.5× slower than GDP, GAS-O1, and GAS-O2, re-
spectively. As for memory usage, all the algorithms take no
more than 1.5GB space.

Impact of the length of deadlines. Fig. 6 presents the
results of varying the length of requests’ deadlines. As shown
in Fig. 6a and Fig. 6b, the total revenue of all the algo-
rithms usually increases when increasing the length of dead-
lines. However, MWBM gets less revenue with the increase
of the deadline in Haikou dataset. Overall, MWBM is the
least effective, and our algorithms GAS, GAS-O1 and GAS-

3526

n

70
0

90
0

11
00

13
00

15
00

T
ot

al
re

ve
n
u
e

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000
GAS GAS-O1 GAS-O2 GDP Greedy MWBM

er

60
0

75
0

90
0

10
50

12
00

T
ot

al
re

ve
n
u
e

3000

4000

5000

6000

7000

8000

9000

10000

(a) Revenue (Chengdu)
er

60
0

75
0

90
0

10
50

12
00

T
ot

al
re

ve
n
u
e

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

(b) Revenue (Haikou)

er

60
0

75
0

90
0

10
50

12
00

T
ot

al
ti
m

e
(S

ec
s)

100

101

102

103

104

105

(c) Time (Chengdu)
er

60
0

75
0

90
0

10
50

12
00

T
ot

al
ti
m

e
(S

ec
s)

100

101

102

103

104

105

(d) Time (Haikou)

er

60
0

75
0

90
0

10
50

12
00

M
em

or
y

u
sa

ge
(M

B
)

102

103

104

(e) Memory (Chengdu)
er

60
0

75
0

90
0

10
50

12
00

M
em

or
y

u
sa

ge
(M

B
)

102

103

104

105

(f) Memory (Haikou)
Figure 6: Performance of varying deadline

O2 are notably better than the others. For instance, our
solutions obtain up to 116.4% higher total revenue than the
existing algorithms in both datasets. Greedy is still more
effective than GDP and MWBM. In terms of total running
time, Greedy is still the most efficient, GDP is the runner-
up, and MWBM is the least efficient. Besides, GAS-O1 is
up to 175.4× faster than GAS and 36.7× slower than GAS-
O2. As for memory cost, we observe that GAS-O1 consumes
less space (by up to 1.6GB) than MWBM and GAS due to
our index. Moreover, GAS-O2 has 65.2× lower memory cost
than GAS-O1.

Impact of the size of capacities. Fig. 7 illustrates the re-
sults of varying the vehicles’ capacities. We can observe that
the total revenue increases with the increase of capacities.
Our algorithms are notably more effective than the existing
solutions by having up to 81.2% higher total revenue. As for
time cost, both GAS and MWBM become inefficient when
the vehicle’s capacity becomes large. For example, MWBM
and GAS are 21.1× slower than GDP in the default setting.
The results are consistent with the time complexities O(nC)
of their first phases, where C is the vehicle’s capacity. How-
ever, by our index, they can potentially improve the time
cost by up to 175.4× since GAS-O1 can be 175.4× faster
than GAS. We also observe GAS-O2 is slower than GAS-O1
when cw = 2. When cw = 2, the time complexity of GAS-O2
is O(2mn−(1 + deg1)) and the time complexity of GAS-O1
is O(mn−(1 + deg1) + n(1 + deg1)), where the meanings of
these notations are shown in Table 3. Since mn− > n, GAS-
O2 is slightly slower than GAS-O1. As for memory usage,
we observe similar patterns with the previous results.

Scalability tests. Fig. 8 shows the results of scalability
tests. In terms of total revenue, GAS-O2, GAS-O1 and GAS
have up to 31.4%, 102.8% and 127.4% higher total revenue
than Greedy, MWBM and GDP, respectively. The total rev-
enue of GAS-O3 is also notably better than existing meth-

n

70
0

90
0

11
00

13
00

15
00

T
ot

al
re

ve
n
u
e

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000
GAS GAS-O1 GAS-O2 GDP Greedy MWBM

cw

2 3 4 5 6

T
ot

al
re

ve
n
u
e

3000

3500

4000

4500

5000

5500

6000

(a) Revenue (Chengdu)
cw

2 3 4 5 6

T
ot

al
re

ve
n
u
e

5000

6000

7000

8000

9000

10000

11000

(b) Revenue (Haikou)

cw

2 3 4 5 6

T
ot

al
ti
m

e
(S

ec
s)

100

101

102

103

104

105

(c) Time (Chengdu)
cw

2 3 4 5 6

T
ot

al
ti
m

e
(S

ec
s)

100

101

102

103

104

105

(d) Time (Haikou)

cw

2 3 4 5 6

M
em

or
y

u
sa

ge
(M

B
)

400

600

800

1000

1200

1400

1600

(e) Memory (Chengdu)
cw

2 3 4 5 6

M
em

or
y

u
sa

ge
(M

B
)

103

104

(f) Memory (Haikou)
Figure 7: Performance of varying capacity

ods, which is slightly lower than GAS-O2. As for total run-
ning time, GAS and MWBM are the least efficient methods.
Greedy is still the most efficient, GDP is the first runner-up,
and GAS-O3 is the second runner-up. Overall, GAS-O3 is
comparatively efficient. For instance, GAS-O3 is less than
8.6× slower than GDP. As for memory cost, MWBM, GAS
and GAS-O1 need extremely large spaces to store all the re-
quest groups, when there are a large number of requests.
Greedy, GDP and GAS-O3 are more efficient than others.
GAS-O2 consumes 80.2× less space than GAS-O1, which is
efficient enough for a modern server (e.g., <5GB space).

Summary of results. We summarize the major experi-
mental results in the following.

(1) In terms of the platform’s total revenue, our algo-
rithms GAS, GAS-O1 and GAS-O2 always have higher rev-
enue than the state-of-the-art algorithms. For instance, they
have 17%-31%, 55%-127% and 31%-116% higher total rev-
enue than Greedy, GDP and MWBM respectively. In other
words, the platform may lose a huge amount of money by
the existing methods.

(2) Greedy and GDP are more efficient than our methods,
while MWBM takes the highest time cost and space cost.

(3) Our optimizations strategies are effective in improving
the efficiency. For instance, GAS-O1 is up to 302.6× faster
than GAS, and it also saves up to 3.2× space than GAS. GAS-
O2 is up to 60.6× faster than GAS-O1, and it also saves up
to 80.2× space than GAS-O1.

(4) Overall, we trade efficiency for total revenue, because
a higher total revenue is always one of the most important
concerns in real platforms (e.g., Didi Chuxing [29, 19]), and
it often indicates a higher total income of the drivers [35].
Besides, data-driven tricks can be also used in GAS-O2 to
accelerate the running time. For example, GAS-O3 not only
has similar total revenue as GAS-O2, but also processes six
hours of requests within 6.5 minutes, which meets the real-

3527

GAS GAS-O1 GAS-O2 GDP Greedy MWBM GAS-O3

n(#103)

1 2 4 6 8 10 12 14 16 18 20

T
ot

al
re

ve
n
u
e

#104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a) Revenue (Chengdu)
n(#103)

1 2 4 6 8 10 12 14 16 18 20

T
ot

al
re

ve
n
u
e

#104

0

0.5

1

1.5

2

2.5

3

(b) Revenue (Haikou)

n(#103)

1 2 4 6 8 10 12 14 16 18 20

T
ot

al
ti
m

e
(S

ec
s)

100

101

102

103

104

105

(c) Time (Chengdu)
n(#103)

1 2 4 6 8 10 12 14 16 18 20

T
ot

al
ti
m

e
(S

ec
s)

100

101

102

103

104

105

(d) Time (Haikou)

n(#103)

1 2 4 6 8 10 12 14 16 18 20

M
em

or
y

u
sa

ge
(M

B
)

102

103

104

105

(e) Memory (Chengdu)
n(#103)

1 2 4 6 8 10 12 14 16 18 20

M
em

or
y

u
sa

ge
(M

B
)

102

103

104

105

(f) Memory (Haikou)
Figure 8: Performance of scalability tests

world requirement [12]. Parallelization can also accelerate
GAS-O2, e.g., implementing Algo. 3 by OpenMP [3].

6. RELATED WORK
Our paper is related to trip planning queries in spatial

databases and route planning in ridesharing services.

Trip planning queries in spatial databases. The trip
planning query is an important research direction in spatial
databases. It usually aims to find a trip starting from a
given point through multiple Point-of-Interests (PoIs), such
that the users’ requirement is satisfied, e.g., optimal se-
quenced route queries [17, 31, 22, 8, 18], group trip planning
queries [11, 34, 26], and route skyline queries [15, 41].

Among these problems, our paper is closely related to
group trip planning queries [11, 34, 26] and optimal route
queries with arbitrary order constraints [18]. The major dif-
ferences are summarized as follows.

(1) They do not support the deadline constraint, which is
widely applied in ridesharing service to ensure the passen-
gers’ user experience (see surveys [32, 12, 42, 39]).

(2) Most of them [11, 34, 26] focus on planning the trips
consisting of multiple PoIs, where these PoIs can be in ar-
bitrary orders. However, in ridesharing services, the origin
of a request must exist before its destination.

(3) Though [18] considers such order constraints, its stud-
ied problem can only find one optimal route for one vehicle
instead of multiple routes for multiple vehicles. Besides, it
does not support the deadline constraint either.

Thus, these methods cannot be applied to our problem.

Route planning in ridesharing services. In recent years,
ridesharing services have been studied in many communities
(e.g., database, data mining and AI). One of the fundamen-
tal problems in these studies is route planning, i.e., planning
a shared-route for each vehicle to optimize certain objec-
tives. For instance, [24, 13, 25] focus on maximizing the

total number of served requests, which is a special case of
our objective (i.e., each request has a payment of 1). [38,
6, 48, 49] focus on maximizing the platform’s total revenue,
and [46, 7] aim to minimize the travel cost. Our SRPQ prob-
lem considers both the total revenue (i.e., the objective) and
the travel cost (i.e., the shortest travel time constraint).

Moreover, their solutions can be classified into two kinds:
insertion-based [24, 13, 25, 38] and grouping-based [46, 6, 7,
48, 49]. The insertion operation was first proposed in [14],
which finds a new route by adding (inserting) a new request
into the current route of a vehicle. Though insertion-based
algorithms are mostly heuristics, they have been tested to
be effective and efficient in real datasets [38, 40]. Grouping-
based solutions usually first generate a set of request group
and then assign each group to a suitable vehicle, i.e., the
two-phase framework in Sec. 3.1. Compared with insertion-
based algorithms (e.g., Greedy and GDP in our experiments),
the grouping-based solutions (e.g., MWBM in our experi-
ments) are less efficient but likely to have theoretical guar-
antees. Overall, none of these methods have constant ap-
proximation ratios for our SRPQ problem.

There are some other important objectives, including max-
imizing the social utility [9], maximizing the shared-route
percentage [33], minimizing the requester’s waiting time [43],
maximizing the satisfaction rate of requesters while minimiz-
ing the distance of vehicles [23], and balancing the efficiency
and fairness [16].

7. CONCLUSION
In this paper, we study the shared-route planning queries

(SRPQ) problem in ridesharing services. Though existing
methods can solve this problem, they are not effective enough
in either theoretical study or empirical study. Thus, we fo-
cus on designing efficient solutions with constant approxi-
mation guarantees. Specifically, our main idea is to iter-
atively search the most profitable route among the unas-
signed requests for each vehicle, which is much simpler than
the existing ones. Unexpectedly, we prove that it has an
approximation ratio of 0.5. Furthermore, we also design an
index called additive tree to improve the efficiency and apply
the randomization technique to further improve the approx-
imation ratio. Finally, experimental results on real datasets
demonstrate that our indexing approach always outperforms
the state-of-the-art algorithms in terms of effectiveness (i.e.,
the platform’s total revenue) by a large margin.

8. ACKNOWLEDGMENTS
We are grateful to anonymous reviewers for their con-

structive comments. This work is partially supported by
the National Key Research and Development Program of
China under Grant No. 2018AAA0101100. Yuxiang Zeng
and Lei Chen’s works are partially supported by the Hong
Kong RGC GRF Project 16209519, CRF Project C6030-
18G, C1031-18G, C5026-18G, AOE Project AoE/E-603/18,
China NSFC No. 61729201, Guangdong Basic and Applied
Basic Research Foundation 2019B151530001, Hong Kong
ITC ITF grants ITS/044/18FX and ITS/470/18FX, Mi-
crosoft Research Asia Collaborative Research Grant, Didi-
HKUST joint research lab project, and Wechat and Webank
Research Grants. Yongxin Tong and Yuguang Song’s works
are partially supported by the National Science Foundation
of China (NSFC) under Grant No. 61822201 and U1811463.
Yongxin Tong and Lei Chen are the corresponding authors
in this paper.

3528

9. REFERENCES
[1] Didi Chuxing. http://www.didichuxing.com/, 2020.

[2] GAIA. https:
//outreach.didichuxing.com/research/opendata/,
2020.

[3] OpenMP. https://www.openmp.org/, 2020.

[4] OpenStreetMap. http://www.openstreetmap.com/,
2020.

[5] J. Alonso-Mora, S. Samaranayake, A. Wallar,
E. Frazzoli, and D. Rus. On-demand high-capacity
ride-sharing via dynamic trip-vehicle assignment.
Proceedings of the National Academy of Sciences,
114(3):462–467, 2017.

[6] M. Asghari, D. Deng, C. Shahabi, U. Demiryurek, and
Y. Li. Price-aware real-time ride-sharing at scale: an
auction-based approach. In SIGSPATIAL, page 3,
2016.

[7] X. Bei and S. Zhang. Algorithms for trip-vehicle
assignment in ride-sharing. In AAAI, pages 3–9, 2018.

[8] X. Cao, L. Chen, G. Cong, and X. Xiao.
Keyword-aware optimal route search. PVLDB,
5(11):1136–1147, 2012.

[9] X. Fu, C. Zhang, H. Lu, and J. Xu. Efficient matching
of offers and requests in social-aware ridesharing.
GeoInformatica, 23(4):559–589, 2019.

[10] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[11] T. Hashem, T. Hashem, M. E. Ali, and L. Kulik.
Group trip planning queries in spatial databases. In
SSTD, pages 259–276, 2013.

[12] S. C. Ho, W. Y. Szeto, Y. H. Kuo, J. M. Y. Leung,
M. Petering, and T. W. H. Tou. A survey of
dial-a-ride problems: Literature review and recent
developments. Transportation Research Part B
Methodological, 111, 2018.

[13] Y. Huang, F. Bastani, R. Jin, and X. S. Wang. Large
scale real-time ridesharing with service guarantee on
road networks. PVLDB, 7(14):2017–2028, 2014.

[14] J.-J. Jaw, A. R. Odoni, H. N. Psaraftis, and N. H.
Wilson. A heuristic algorithm for the multi-vehicle
advance request dial-a-ride problem with time
windows. Transportation Research Part B:
Methodological, 20(3):243–257, 1986.

[15] H. Kriegel, M. Renz, and M. Schubert. Route skyline
queries: A multi-preference path planning approach.
In ICDE, pages 261–272, 2010.

[16] N. S. Lesmana, X. Zhang, and X. Bei. Balancing
efficiency and fairness in on-demand ridesourcing. In
NeurIPS, pages 5310–5320, 2019.

[17] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and
S. Teng. On trip planning queries in spatial databases.
In SSTD, pages 273–290, 2005.

[18] J. Li, Y. D. Yang, and N. Mamoulis. Optimal route
queries with arbitrary order constraints. IEEE
Transactions on Knowledge and Data Engineering,
25(5):1097–1110, 2013.

[19] M. Li, Z. Qin, Y. Jiao, Y. Yang, J. Wang, C. Wang,
G. Wu, and J. Ye. Efficient ridesharing order
dispatching with mean field multi-agent reinforcement
learning. In WWW, pages 983–994, 2019.

[20] Y. Li, L. H. U, M. L. Yiu, and N. M. Kou. An
experimental study on hub labeling based shortest
path algorithms. PVLDB, 11(4):445–457, 2017.

[21] Y. Li, J. Wan, R. Chen, J. Xu, X. Fu, H. Gu, P. Lv,
and M. Xu. Top-k vehicle matching in social
ridesharing: A price-aware approach. IEEE
Transactions on Knowledge and Data Engineering,
2019.

[22] H. Liu, C. Jin, B. Yang, and A. Zhou. Finding top-k
optimal sequenced routes. In ICDE, pages 569–580,
2018.

[23] H. Luo, Z. Bao, F. Choudhury, and S. Culpepper.
Dynamic ridesharing in peak travel periods. IEEE
Transactions on Knowledge and Data Engineering,
2019.

[24] S. Ma, Y. Zheng, and O. Wolfson. T-share: A
large-scale dynamic taxi ridesharing service. In ICDE,
pages 410–421, 2013.

[25] S. Ma, Y. Zheng, and O. Wolfson. Real-time city-scale
taxi ridesharing. IEEE Transactions on Knowledge
and Data Engineering, 27(7):1782–1795, 2015.

[26] M. T. Mahin and T. Hashem. Activity-aware
ridesharing group trip planning queries for flexible
pois. ACM Transactions on Spatial Algorithms and
Systems, 5(3):1–41, 2019.

[27] J. Munkres. Algorithms for the assignment and
transportation problems. Journal of the society for
industrial and applied mathematics, 5(1):32–38, 1957.

[28] J. Pan, G. Li, and J. Hu. Ridesharing: Simulator,
benchmark, and evaluation. PVLDB,
12(10):1085–1098, 2019.

[29] Z. T. Qin, J. Tang, and J. Ye. Deep reinforcement
learning with applications in transportation. In KDD,
pages 3201–3202, 2019.

[30] P. Santi, G. Resta, M. Szell, S. Sobolevsky, S. H.
Strogatz, and C. Ratti. Quantifying the benefits of
vehicle pooling with shareability networks. Proceedings
of the National Academy of Sciences,
111(37):13290–13294, 2014.

[31] M. Sharifzadeh, M. R. Kolahdouzan, and C. Shahabi.
The optimal sequenced route query. The VLDB
Journal, 17(4):765–787, 2008.

[32] B. Shen, Y. Huang, and Y. Zhao. Dynamic
ridesharing. Sigspatial Special, 7(3):3–10, 2016.

[33] N. Ta, G. Li, T. Zhao, J. Feng, H. Ma, and Z. Gong.
An efficient ride-sharing framework for maximizing
shared route. IEEE Transactions on Knowledge and
Data Engineering, 30(2):219–233, 2018.

[34] A. Tabassum, S. Barua, T. Hashem, and
T. Chowdhury. Dynamic group trip planning queries
in spatial databases. In SSDBM, pages 38:1–38:6,
2017.

[35] X. Tang, Z. T. Qin, F. Zhang, Z. Wang, Z. Xu, Y. Ma,
H. Zhu, and J. Ye. A deep value-network based
approach for multi-driver order dispatching. In KDD,
pages 1780–1790, 2019.

[36] Q. Tao, Y. Zeng, Z. Zhou, Y. Tong, L. Chen, and
K. Xu. Multi-worker-aware task planning in real-time
spatial crowdsourcing. In DASFAA, pages 301–317,
2018.

[37] Y. Tong, Y. Zeng, B. Ding, L. Wang, and L. Chen.
Two-sided online micro-task assignment in spatial

3529

crowdsourcing. IEEE Transactions on Knowledge and
Data Engineering, 2019.

[38] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and
K. Xu. A unified approach to route planning for
shared mobility. PVLDB, 11(11):1633–1646, 2018.

[39] Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi.
Spatial crowdsourcing: a survey. The VLDB Journal,
29(1):217–250, 2020.

[40] Y. Xu, Y. Tong, Y. Shi, Q. Tao, K. Xu, and W. Li.
An efficient insertion operator in dynamic ridesharing
services. In ICDE, pages 1022–1033, 2019.

[41] B. Yang, C. Guo, C. S. Jensen, M. Kaul, and S. Shang.
Stochastic skyline route planning under time-varying
uncertainty. In ICDE, pages 136–147, 2014.

[42] X. Yi, T. Yongxin, and L. Wei. Recent progress in
large-scale ridesharing algorithms. Journal of
Computer Research and Development, 57(1):32–52,
2020.

[43] Y. Zeng, Y. Tong, and L. Chen. Last-mile delivery
made practical: An efficient route planning framework
with theoretical guarantees. PVLDB, 13(3):320–333,
2019.

[44] Y. Zeng, Y. Tong, L. Chen, and Z. Zhou.
Latency-oriented task completion via spatial
crowdsourcing. In ICDE, pages 317–328, 2018.

[45] Y. Zeng, Y. Tong, Y. Song, and L. Chen. The simpler
the better: An indexing approach for shared-route
planning queries in ridesharing (full paper).
http://home.cse.ust.hk/%7Eyzengal/simple.pdf,
2020.

[46] L. Zhang, Z. Ye, K. Xiao, and B. Jin. A parallel
simulated annealing enhancement of the
optimal-matching heuristic for ridesharing. In ICDM,
pages 906–915, 2019.

[47] B. Zhao, P. Xu, Y. Shi, Y. Tong, Z. Zhou, and
Y. Zeng. Preference-aware task assignment in
on-demand taxi dispatching: An online stable
matching approach. In AAAI, pages 2245–2252, 2019.

[48] L. Zheng, L. Chen, and J. Ye. Order dispatch in
price-aware ridesharing. PVLDB, 11(8):853–865, 2018.

[49] L. Zheng, P. Cheng, and L. Chen. Auction-based
order dispatch and pricing in ridesharing. In ICDE,
pages 1034–1045, 2019.

3530

