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ABSTRACT
Intra-query parallelism is a key for database software to offer
acceptable responsiveness for data-intensive queries. Many
researchers have studied how to achieve greater execution
parallelism for database queries. Partitioning is a represen-
tative approach, which divides a query into multiple sub-
tasks and executes them in parallel. However, given a new
query, optimal division is not necessarily obvious. Database
software utilizes heuristic rules or statistical information to
decide how to divide the query before execution. As yet
another approach to achieve execution parallelism, this pa-
per presents out-of-order database execution (OoODE), a
massively-parallel query execution method to offer signifi-
cant speedup for database queries consistently. OoODE dy-
namically decomposes query work by making the best use of
the exact knowledge of the potential execution parallelism
for each operation ready to be performed during query ex-
ecution. With OoODE, the database software is allowed
to automatically squeeze out the execution parallelism that
the query inherently holds. Hence, for a wide spectrum of
queries, OoODE performs significantly faster than the se-
rial (non-parallelized) execution, while it performs better
than or comparably with alternative parallelizing methods
without the need for dividing the query before execution.
This paper presents the experiments that we conducted us-
ing the prototyped database software and demonstrates that
OoODE is two to three orders of magnitude faster than
the serial execution, whereas it is substantially (up to 2.07
times) faster than the best achievable case of partitioning.
Besides, OoODE performs two to four orders of magnitude
faster than major DBMSs.
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Intra-query execution parallelism is a key for database
software to answer data-intensive queries within an accept-
able time. So far, many researchers have studied how to
achieve greater execution parallelism for database queries. A
mainstream approach is partitioning [4,7,13,18,19,25,39,49],
which divides a single query into multiple subtasks and then
executes the subtasks simultaneously, the results of which
are then merged. This solution is widely deployed in major
DBMSs [5, 20,60].

Partitioning is technically challenging. Optimal partition-
ing is nontrivial. The performance of partitioning varies
significantly depending on how to divide a query and it de-
grades if a non-optimal number of partitions is chosen. How-
ever, no known algorithm can achieve optimal partitioning.

In this paper, as yet another approach to achieve exe-
cution parallelism for database queries, we present out-of-
order database execution (OoODE), a massively-parallel ex-
ecution method for dynamically decomposing query work
by making the best use of the exact knowledge of the po-
tential execution parallelism for each operation ready to be
performed during query execution; database software is en-
abled to spawn a new fine-grained task in charge of a dis-
joint part of the query work every time it is determined to
be possible to execute the task independently of the oth-
ers. Eventually, the query is divided into a massive number
of tasks to be executed in parallel such that the database
software can automatically squeeze out the execution par-
allelism that the query inherently holds. Hence, OoODE
significantly increases the IO throughput and speeds up the
query execution by fully exploiting the potential parallelism
if the underlying infrastructure is sufficiently powerful.

The contribution of this paper is summarized as follows.

• This paper describes OoODE that can automatically
squeeze out the execution parallelism that the query
inherently holds by dynamically decomposing relational
query work with the exact knowledge of the potential
execution parallelism at runtime.

• This paper presents that, for a wide spectrum of queries,
OoODE performs significantly faster than the serial
execution, and it performs better than or compara-
bly with alternative parallelizing methods without the
need for dividing the query before submission or at
compile time.

• This paper reports the performance experiments to
demonstrate that OoODE is two to three orders of
magnitude faster than the serial execution, whereas it
is substantially (up to 2.07 times) faster even than the
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Algorithm 1 Execute a database operation f(x, y) in the
serial execution method.
1: procedure EXECUTE_SERIAL(f(x, y))
2: R ← ∅
3: if f is unary then ▷ x = ∅
4: while s ← FETCH(y) do ▷ Continue if s ̸= ∅
5: r ← Apply f to s
6: R ← R ∪ r
7: else ▷ f is binary
8: while s ← FETCH(x) do ▷ Continue if s ̸= ∅
9: r ← EXECUTE_SERIAL(fs(∅, y))

10: R ← R ∪ r
11: return R

12: procedure FETCH(α)
13: if α is a relation stored in the database then
14: if no unfetched tuple remains in α then
15: β ← ∅
16: else
17: β ← Fetch one or more tuples from α
18: else ▷ α is another operation (g(v, w))
19: β ← EXECUTE_SERIAL(g(v, w))
20: return β

best achievable case of partitioning. Besides, OoODE
performs two to four orders of magnitude faster than
major DBMSs.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the motivation and vision for OoODE, and
Section 3 introduces the OoODE algorithm for database
queries, presents the performance advantage and explains
our implementation. Section 4 reports our performance ex-
periments that clarify the performance advantage. Section
5 reviews related work and finally Section 6 concludes the
paper.

2. MOTIVATION AND VISION
The design principles employed for executing database

queries can be roughly divided into two groups, fetch-all
and fetch-necessary, in terms of IOs to be exchanged be-
tween processors and database storage.

The fetch-all principle scans the entire relation regardless
of whether each tuple in the relation is necessary or not for
a given query. A typical example is a hash join, which usu-
ally performs a linear scan for both relations to be joined.
The necessity is not taken into consideration for each tuple.
Thus, excessive IOs may be produced; however, IOs to be
requested are trivial since one can know that the whole re-
lations will be scanned once a query arrives. Existing query
parallelization techniques (e.g. parallel hash joins) have uti-
lized this nature to algorithmically divide a known linear
scan into a set of multiple scans to achieve intensive par-
allelism. This solution has been incorporated into modern
DBMSs and has formed a backbone of recent parallel pro-
gramming frameworks such as MapReduce [16].

The other group is fetch-necessary, which fetches only tu-
ples being necessary for a query. A typical example is a
nested-loop join, which picks up only necessary tuples from
relations to be joined. The necessity decision is made by
the combination of query logic (e.g. a join condition pred-
icate) and a data structure (e.g. a B+tree index) for each
tuple. Accordingly, the total IO amount is automatically

Algorithm 2 Execute a database operation f(x, y) in the
OoODE (out-of-order database execution) method.
1: procedure EXECUTE_OoODE(f(x, y))
2: R ← ∅
3: if f is unary then ▷ x = ∅
4: if y is a relation stored in the database then
5: while ŷ ← Assign from y do ▷ If ŷ ̸= ∅
6: t ← Generate a new task
7: TASK(ŷ, f , ∅; R) on t
8: else
9: TASK(y, f , ∅; R) on the self task

10: else ▷ f is binary
11: if y is a relation stored in the database then
12: while x̂ ← Assign from x do ▷ If x̂ ̸= ∅
13: t ← Generate a new task
14: TASK(x̂, f , y; R) on t
15: else
16: TASK(x, f , y; R) on the self task
17: Wait until all the children tasks complete
18: return R

19: procedure TASK(χ, ϕ, υ; ρ)
20: if ϕ is unary then
21: while s ← FETCH(χ) do ▷ If s ̸= ∅
22: r ← Apply ϕ to s.
23: ρ ← ρ ∪ r ▷ ρ is shared between tasks
24: else ▷ ϕ is binary
25: while s ← FETCH(χ) do ▷ If s ̸= ∅
26: r ← EXECUTE_OoODE(ϕs(∅, υ))
27: ρ ← ρ ∪ r ▷ ρ is shared between tasks
FETCH() is the same as in Algorithm 1 except it calls EX-
ECUTE_OoODE() instead of EXECUTE_SERIAL() (line
19.)

minimized. However, due to the complexity of the decision
process, IOs are unknown in advance of the query execu-
tion. No known algorithms provide the best query division
to achieve the potential parallelism for a given query. In
practice, query parallelization techniques (e.g. query par-
titioning) involve deliberate case-specific tuning work that
requires the expert knowledge of query logic and data struc-
tures. Despite the efforts, the tuning may not be successful
to achieve the best performance.

OoODE (out-of-order database execution) is a simplified
and unified execution formula to offer the best-in-practice IO
parallelism for a wide spectrum of database queries consis-
tently, where “best-in-practice” means better than or com-
parable with existing query execution techniques in the same
physical environments and for the same data sets. A primi-
tive step of OoODE is to divide a query task every time the
task is dividable [35]. Its recursive iteration eventually con-
verts a given query into the execution code that exploits the
execution parallelism that the query inherently holds. The
execution order of the divided tasks is non-deterministic. We
have come to use the term out-of-order execution after the
processor technology of the same name [34]. Existing paral-
lelization techniques have involved intensive specific efforts
such as algorithmic refinements and expert tuning. OoODE
removes this complication and offers a universal solution
for both fetch-all and fetch-necessary to achieve the best-in-
practice parallelism and to fully exploit the IO bandwidth.

We are witnessing that an increasing amount of data is
being accommodated into database, and business and sci-
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ence applications are making the intensive use of the data.
In our experience, analysts often start a knowledge discov-
ery job by initiating a linear-scan query to grasp a broad
overview of the available data, and then they deep-dive into
the data by iteratively and interactively invoking an ad-
hoc focused query until reaching a conclusion. As decision-
making speed matters, parallelization throughout the entire
process is a prime concern. Despite the demand, modern
DBMSs and parallel programming frameworks are wholly
devoted to fetch-all.

OoODE is introduced to offer the best-in-practice par-
allelism for database queries. In comparison with exist-
ing parallelization techniques, OoODE potentially performs
comparably fast for fetch-all, while it achieves significant
performance improvement for fetch-necessary, for which the
IO complexity has hindered intensive query parallelization.
Later sections explain OoODE with a focus on the fetch-
necessary query execution even though OoODE works for
fetch-all.

3. OUTOFORDER EXECUTION OF
DATABASE QUERIES

3.1 Outoforder database execution (OoODE)
This section introduces an algorithm of OoODE, which

dynamically decomposes a relational query during execution
by spawning a task for a database operation every time it is
possible to execute the task independently of the others.

Let f(x, y) be a database operation, where f is a relational
database operator such as σ (selection) and 1 (join) and x
and y are inputs to the operator. x and y may be relations
(sets of tuples) stored in the database or outputs of other
database operations. We presume that, if f is unary, x is
invalid (∅) and only y is valid; otherwise, both are valid.
For example, σ(∅, x) is a single-relation selection query and
1 (1 (x, y), z) is a three-way join query.

As a preparation prior to the introduction of the OoODE
algorithm, we firstly present a conventional algorithm, in Al-
gorithm 1, for executing a database operation f(x, y) based
on the serial execution method [21, 61], which is basic and
straightforward, but still popular for many database soft-
ware. For simplicity, we only consider additive database
operators1 and omit some implementation techniques such
as predicate pushdown [31, 55]. For a unary database op-
erator f , the database software iteratively fetches one or
more tuples from y and applies f until evaluating all the
tuples of y (lines 4–6). In fetching tuples, if y is a relation
stored in the database, the database software issues an IO
command to a storage system storing the database to fetch
tuples (lines 13–17). In contrast, if y is an output of an-
other database operation, the database software recursively
calls the operation and fetches its result in the same man-
ner (lines 18–19). For a binary operator f , the database
software performs the same steps in a nested-loop fashion
(lines 8–10); it iteratively fetches tuples from x (in an outer
loop) and, for each of the tuples fetched from x, further
iteratively fetches tuples from y and apply f (in an inner
loop). Note that the notation fs(∅, y) represents a curried
function of f(s, y) (line 9); when the outer loop recursively
calls fs(∅, y), the inner loop recognizes fs to be unary (line
1The algorithms can be easily extended for a query contain-
ing a non-additive database operator such as aggregation.

CID NAME CITY

101 AAA NEW YORK

102 BBB TOKYO

103 CCC LONDON

104 DDD TOKYO

105 EEE BEIJIN

106 FFF NEW ORK

107 GGG TOKYO

108 HHH PARIS

OID

1

4

8

9

17

CID

104

102

107

104

104

102

24 104

--- ---

--- ---

--- ---

--- ---

--- ---

OID

1

O#

1

IID

1007

1 2 1005

4 1 1003

8 1 1002

9 1 1002

9 2 1003

9 3 1001

13 1 1001

17 1 1006

17 2 1002

24 1 1007

13

--- --- ---

--- --- ---

--- --- ---

--- --- ---

--- --- ---

IID PRICE

1001 $31.22

1002 $18.15

1003 $1.25

1004 $102.98

1005 $5.96

1006 $6.71

1007 $9.90

CUSTOMER ORDER ORDERITEM

ITEM

DATE

2017-12-01

2017-12-14

2017-12-18

2017-12-18

2017-12-19

2017-12-21

2018-01-03

---

---

---

---

---

--- --- ---

Figure 1: Example database.

CUSTOMER ORDER

ORDERITEM

ITEM

SELECT
 C.CID, I.NAME, I.PRICE
FROM CUSTOMER C
 JOIN ORDER O ON C.CID=O.CID
 JOIN ORDERITEM OI ON O.OID=OI.OID
 JOIN ITEM I ON OI.IID=I.IID
WHERE C.CITY=’TOKYO’

NL join

NL join

NL join

(a) Query (b) Execution plan

Figure 2: Example query and execution plan.

3). According to the serial execution method, every time the
database software needs to fetch tuples from the database,
it requests the tuple fetch, waits until the fetch completes
and then applies the operator. It is difficult to fully exploit
the potential parallelism of a given query.

Next, we introduce the OoODE algorithm in Algorithm 2.
The point of difference is that OoODE enables database soft-
ware to dynamically decompose query execution into many
tasks at runtime and execute them in parallel [34,35]. Every
time the database software needs to fetch new tuples from
a relation stored in the database, it invokes a new task for
each part (one or more tuples) of the relation and delegates
its concerned work to the task; the new task fetches tuples
from the assigned part and then executes the database op-
eration (lines 5–7, 12–14). The decision steps (lines 5,12)
internally check the necessity of tuple fetch; only if the deci-
sion is affirmative, OoODE invokes a new task and assigns a
part of the unfetched (not yet fetched) tuples. This decision
is helped by the runtime data structure information. The
detail is described in Section 3.4. In contrast to the serial
execution, OoODE is not blocked by tuple fetch. Instead,
by making the best use of the exact knowledge regarding the
necessity of tuple fetch for each database operator, OoODE
dynamically invokes a new task, in which another tuple fetch
is executed in parallel. Eventually, OoODE decomposes the
query work into a massive number of parallel tasks so that
OoODE can achieve the potential IO parallelism that the
query inherently holds.

3.2 Examples of query execution
Before entering into details on OoODE, this section presents

example query execution to demonstrate performance supe-
riority of OoODE over the serial execution and the next
(Section 3.3) extends the analysis to comparison with an
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|8|1|1002|
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8
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|106|FFF|NEW YORK|

105
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24, 1
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103

9, 3

A rectangle denotes a fetch-and-application
step, and an arrow denotes an execution
order dependency between steps;
the destination-side step can start only
after the origin-side step completes.

(a) Serial execution

101 102 103 104 105 106 107 108

4 17 1 9 13 24 8

4, 1 17, 1 17, 2 1, 1 9, 1 13, 1 24, 1 8, 19, 2 9, 3

1003 1006 1002 1007 1002 1001 10071003 1001 1002

Time

1, 1

1007

(b) OoODE (out-of-order database execution)

101 104

1

9

13

24

8 1, 1

9, 1

13, 1

8, 1

9, 2

9, 3

1003 1007

1002

10011003

1001

1002

Time

1, 2

1005

105

102

4

4, 1

17

17, 1

1006

17, 2

1002

106

103

107

108

24, 1

1007

CID mod 4 = 1 CID mod 4 = 2 CID mod 4 = 3 CID mod 4 = 0

(c) Partitioning (four subtasks)

Figure 3: Execution sequences of fetch-and-application steps.

alternative parallelizing technique.
Assume a dataset, as illustrated in Figure 1, which mimics

sales record database, where four relations (CUSTOMER, ITEM,
ORDER and ORDERITEM) respectively store customer profiles,
product items, orders and order details. Let us suppose that
database software executes a query, illustrated in Figure 2,
for listing customers who lived in Tokyo and names and
prices of the items which they purchased in accordance with
the nested-loop join plan.

Figure 3(a) illustrates a logical execution sequence for a
case where the query is executed in Algorithm 1 (the serial
execution method.) Database software iterates tuple fetch
and operator application by traveling from the outer-most
relation (CUSTOMER) into the inner-most relation (ITEM) in
the depth-first manner according to the execution plan. The
tuple fetch and the operator application are performed step
by step. The query execution is a sequence of 38 fetch-and-
application steps, which are serially executed; only after a
step completes, its next starts. The total execution time is
the accumulation of response time of all the steps.

By contrast, Figure 3(b) illustrates an execution sequence
that Algorithm 2 (OoODE) provides for the same query.
Note that the query work decomposition is assumed to be
done at a single tuple level. The query execution is com-
posed of the same 38 fetch-and-application steps. However,
OoODE allows logically independent steps to be executed
in parallel. Figure 3(b) indicates that, out of the 38 fetch-

and-application steps, many steps can be executed in paral-
lel. Assuming that the underlying infrastructure is powerful
enough to support this execution parallelism, the execution
time can be significantly shortened because latencies of the
steps to be executed in parallel are not serially accumulated.

The recent hardware is accommodating more processor
cores and storage devices. In view of the entry to mid-range
data-intensive market, recent Linux servers normally have
tens of processing cores, each core being capable of running
tens to hundreds of kernel-managed threads [8,36], whereas
many recent storage systems such as disk arrays and flash
arrays have tens to hundreds of storage devices, each device
being capable of servicing more than tens of concurrent IO
commands. In this way, today’s hardware technology holds
a great potential capability to support high execution par-
allelism. With the assistance of such hardware technology,
OoODE appears to speed up the query execution signifi-
cantly and automatically up to the limitation determined
by the query execution parallelism that the query inher-
ently holds and the hardware execution parallelism that the
underlying infrastructure supports.

3.3 Comparison of OoODE and partitioning
Partitioning is a representative technique for paralleliz-

ing query execution [4, 7, 13, 18, 19, 25, 39, 49]. It divides a
given query into multiple subtasks at compile time and then
executes them in parallel; the results of the subtasks are fi-
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Query A on the moderately skewed dataset in the small flash
machine is plotted.

nally merged. Each subtask is often assigned to a part of the
database that has a certain disjoint property. Many DBMSs
have employed this approach [5, 20,60].

When applying partitioning to a query, one needs to de-
cide how to divide the query. However, optimal query divi-
sion is nontrivial. The potential execution parallelism of
a database operator depends on the input to the opera-
tor. The input is unknown when the query execution starts.
Without any knowledge of the input, one cannot know the
potential execution parallelism of the query. Actually, parti-
tioning achieves some execution parallelism by using heuris-
tic rules or statistical information, but it is difficult to guar-
antee to leverage the potential parallelism at full.

Let us see the example query again. A popular parti-
tioning practice is to virtually append a selection predicate
(or an equivalent operator) on an outer relation at compile
time. For example, an additional predicate, C_CID mod 4
= i (i = 0, ..., 3), divides the example query into four
subtasks. As illustrated in Figure 3(c), this partitioning is
too moderate. Each subtask still contains several logically
independent fetch-and-application steps, each of which can
be potentially executed in parallel. Worse, the workloads
are not well balanced among subtasks. Executing these sub-
tasks in parallel seems to take shorter time than executing
the original query, but takes longer than OoODE. Suppose
another case where the query is divided into too many par-
titions (not illustrated); processing overheads seem to be
rather significant. Figure 4 presents our experimental result,
which demonstrates that the query execution time widely
varies with different partitioning numbers2. It is difficult to
figure out the optimal partitioning number before actually
executing a query.

By contrast, OoODE is capable of dynamically decompos-
ing query work into independent tasks every time a new in-
dependent task can be generated. Hence, OoODE can fully
leverage the parallelization opportunity that the query in-
herently holds, performing better than or comparably with
partitioning. Actually, as Figures 6 to 10 later present, our
experiment confirmed that OoODE performed two to three
orders of magnitude faster than the serial execution and sub-

2We will report a further study on the partitioning technique
in a separate paper.

>0 >103 >120

>0 >102 >103 >105 >108

Root page

Dictionary

"CUSTOMER"

??

?

101 102 103 104 105

Known part
(already fetched)

Unknown part
(to be fetched)

Potential
parallelism

Figure 5: Data structure offers exact knowledge of
potential parallelism. Red references (known but unfol-
lowed) can be followed in parallel.

stantially faster even than the best achievable case of parti-
tioning without the need for dividing the query beforehand.

3.4 Exploiting data structure knowledge
As we have presented in Section 3.1, OoODE decides the

task invocation based on the knowledge regarding the neces-
sity of tuple fetch before actually performing the tuple fetch.
This section enters into details on how OoODE makes the
decision.

Suppose scanning a single relation CUSTOMER (in Figure 1)
by iteratively calling a tuple fetch routine. Now you have
just finished fetching the first five tuples (|101| to |105|).
Obviously, one cannot know whether this relation holds any
more unfetched tuples (|106| and more) before actually try-
ing another tuple fetch. The necessity of tuple fetch is un-
known. Fortunately, a relation is usually organized in a cer-
tain data structure. The database storage typically contains
a dictionary that maps a relation name (e.g., CUSTOMER) and
a reference to a data structure (e.g., a tree form illustrated in
Figure 5), where tuples of the relation are packed into pages
and the pages contain inter-page references. When trying to
fetch a tuple from the database, the database software first
checks the dictionary to identify a reference to a data struc-
ture, and then reads pages by following the reference. In
this process, the database software incrementally acquires
the knowledge of how tuples are stored in the data struc-
ture. For example, Figure 5 illustrates the knowledge that
the database software holds just after fetching the |105| tu-
ple. Red references (originating |>105|, |>108| and |>120|)
indicate that the relation stores more tuples that have not
been fetched yet. Trying to fetch tuples by following these
references simultaneously is beneficial to achieve execution
parallelism. Every time discovering new references stored in
the known part of the data structure, OoODE unfolds the
references during execution so that an individual task can
be invoked for each reference.

Interestingly, inter-page references are often chained and
nested in a tree form in many data structures. The idea of
OoODE can be applied to unfold such references. Algorithm
2 only describes tuple-level parallelism for simplicity, but,
by generalizing a tuple to any entry contained in a data
structure (e.g., a leaf entry and an internal-node entry in a
B+tree), OoODE is allowed to invoke a respective task for
each of chained and nested references. Hence, OoODE fully
exploits the potential IO parallelism that is inherent to the
data structure.
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Besides, a data structure in the database may have a ref-
erence to another data structure. Typically, a secondary
index entry contains a reference (e.g. a primary key or a
physical record identifier) to a relation tuple. OoODE works
to unfold such inter-structure references at runtime. Thus,
OoODE exploits the potential IO parallelism among differ-
ent data structures.

In this way, OoODE dynamically unfolds unfollowed ref-
erences identified in the known part of the data structure to
invoke a respective task for each reference during query ex-
ecution. Therefore, OoODE squeezes out the IO parallelism
inherent to data structures to speed up the query execution.

3.5 Prototype implementation
We have implemented OoODE in our database software

prototype to investigate the performance characteristics ex-
perimentally. The prototype can be roughly divided into
two components, a query processor and a storage engine.

The query processor executes a given query in the OoODE
method. OoODE invokes a massive number of parallel tasks;
the query processor needs to manage an execution state of
each task. There are a variety of implementation options,
but after an intensive exploration, we have finally come to
utilize two threading mechanisms together; a single kernel
thread (e.g., pthread in Linux) is assigned to each processor
core3 and a number of user threads are assigned to each ker-
nel thread [38,54]. The execution state of an individual task
is managed in a user thread associated to the task. In issu-
ing a fetch command, the query processor tags an identifier
of the concerned user thread. When the fetch completion
is signaled, the query processor checks the identifier and re-
sumes the user thread to perform the associated database
operation with the fetched data. The combination of the
two threading mechanism works effectively in today’s mul-
ticore architecture. First, kernel threads are mandatory for
spreading codes among multiple processor cores, but inter-
thread context switching is costly because every switch im-
poses the kernel interaction. Binding only a single kernel
thread to each processor core and placing many user threads
in each kernel thread is beneficial to utilize all the avail-
able cores while reducing the context switching overhead.
3Assigning multiple kernel threads to each core may be ef-
fective when hardware multithreading [43,57] is enabled.

Second, recent processors employ the NUMA architecture,
where remote memory access is costly [41]. The combination
strategy allows the database software to explicitly store an
execution state in local memory of each processor core, help-
ing minimize remote memory accesses. In our experience,
this implementation successfully runs tens of thousands of
concurrent tasks.

We have discussed the tuple/entry-level query decomposi-
tion so far. Our prototype has basically employed this strat-
egy to fully utilize the parallelization opportunity. However,
a certain database operator (e.g., a linear scan operator)
tries to fetch multiple tuples stored in an identical page in a
bulky manner. For such operations, it doesn’t look a good
solution to invoke an independent task for each of the tuples.
We have tuned the prototype to be able to fetch multiple
tuples stored in the same page at once for such operators to
avoid unnecessary overheads.

The storage engine manages IOs from/to a storage system
storing the database. In order to operate many concurrent
IOs efficiently, we have chosen to utilize asynchronous IO
mechanism (e.g., libaio in Linux); the storage engine issues
an asynchronous IO request and, upon the completion, no-
tifies back to the query processor to resume the concerned
task with the fetched data. The storage format has been
made compatible with InnoDB storage engine [46] such that
the prototype can mount an InnoDB volume generated by
MySQL [46]. This allows us to directly compare the proto-
type with MySQL (presented in Section 4.3) while helping
us to focus on the query execution part.

Note that, for the purpose of experimental comparison
presented in Section 3, we have additionally implemented
alternative execution methods, the serial execution method
(Algorithm 1) and the partitioning technique (dividing query
work before execution.)

4. EXPERIMENTAL STUDY
This section presents an introductory part of the experi-

ments that we intensively and extensively conducted to clar-
ify performance benefits of OoODE (out-of-order database
execution) in comparison with alternative execution meth-
ods by using our prototype database software and other
DBMSs. Throughout the study, we utilized revised datasets
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Figure 7: (a) For the small disk machine, OoODE achieves two orders of magnitude speedup over Serial
and Partitioning (naive) for Queries A, B, C and D, (b) OoODE is 25% to 93% faster even than the best
achievable case of Partitioning, (c) and (d) OoODE achieves similar speedup for the small flash machine.
Execution time of Queries A, B, C and D on the moderately skewed dataset in the small disk and small flash machines is
plotted. Table 1 summarizes the speedup ratios.

and simplified queries of TPC-H [56], the de facto standard
decision-support database benchmark.

4.1 Query speedup in small machines
First of all, we present a comparative performance study

of multiple execution methods. We tested a decision-support
query searching a single relation (Query A) on the proto-
type database software in a small disk-based server having
twenty-four internal disk drives (hereinafter called “small
disk machine.”) The database was organized with the reg-
ular TPC-H schema in a raw storage volume made of the
twenty-four disk drives. A test dataset was generated at a
scale factor of 400. Note that the original dataset generation
in TPC-H assumes uniform distribution, but in reality, data
distribution is mostly skewed. In order to follow this prop-
erty, we revised the regular dataset generator dbgen to be
able to generate a dataset having moderate skewness (mod-
erately skewed); specifically, 80% of the orders were made
associated to 20% of the customers and vice versa, and the
similar skewed association was applied between the order
items and the sales parts. Indices were built for attributes
appearing in condition predicates of the test query. Ap-
pendix summarizes the supplementary information on the
machine configuration and the query definition.

As a metric of execution performance, query execution
time was measured for each of the following execution meth-
ods. First, Serial executes a query based on the serial ex-
ecution (non-parallelized) method. Second, Partitioning
executes a query based on the serial execution method with
the partitioning technique as described in Section 3.3 (di-
viding the query into subtasks and then executing them in
parallel.) We tested twelve partitioning options; dividing
the query into two to 4,096 partitions. The execution time
varied according to the partitioning options as is presented
in Figure 4. The paper reports a naive case, (naive) di-
viding the query into merely two partitions, and the best
case, (best) yielding the shortest execution time. Third,
OoODE executes a query in the OoODE method. In all
the execution methods, the query was executed according
to the same execution plan (e.g. an index-based search for
Query A.) We performed every measurement strictly in a

Table 1: Speedup by OoODE. Summary of Figures 6–7.
Query A B C D

Small disk machine
over Serial 74.5 81.7 71.6 50.2

over Partitioning (best) 1.55 1.93 1.45 1.25
Small flash machine

over Serial 28.7 33.9 27.4 25.6
over Partitioning (best) 1.73 1.94 1.62 1.48

cold state in order to eliminate caching effects. The paper
will report an average value of five trials.

Figure 6 shows that OoODE performed 74.5 times faster
than Serial and 55% faster even than the best achievable
case of Partitioning. The left-hand graph (a) summarizes
the query execution time; the four bars indicate Serial,
Partitioning (naive), Partitioning (best) and OoODE
respectively. For reference, a number embraced in square
brackets denotes the number of partitions that we chose for
Partitioning. Serial took approximately 1,500 seconds for
executing the query, and Partitioning (naive) reduced the
execution time to 835 seconds, which is slightly longer than
half of the execution time of Serial. In contrast, Partition-
ing (best) and OoODE reduced it by two orders of mag-
nitude; these two bars are too short to visually distinguish.
Thus, we present the right-hand graph (b), which focuses on
Partitioning (best) and OoODE with 20-fold magnifica-
tion along the vertical axis. Partitioning (best) shortened
the execution time to 31.3 seconds, whereas OoODE fur-
ther reduced it down to 20.2 seconds (74.5 times faster than
Serial and 55% faster than Partitioning (best).)

Next, we stretched the study to other decision-support
queries, Queries B (joining two relations), C (joining three)
and D (joining six), at the same test configuration. Fig-
ure 7 presents that OoODE consistently achieved signifi-
cant speedup for all the queries. The two graphs (a) and
(b) on the left summarize the execution time of the four
queries, presenting an overall chart and its 20-fold magni-
fied chart similarly to the previous figure. For convenience,
we also present Table 1 to summarize the speedup ratios.
OoODE performed two orders of magnitude (50.2 to 81.7
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Figure 8: (a) OoODE is up to three orders of magnitude faster than Serial for Query C for the large disk
machine, (b) OoODE achieves up to 107% speedup even over the best achievable case of Partitioning and (c)
OoODE achieves linear increase in IO throughput. Execution time and IO throughput of Query C on the moderately
skewed dataset at different scale configurations in the large disk machine are plotted. Table 2 summarizes the speedup ratios.

times) faster than Serial and substantially (25% to 93%)
faster even than Partitioning (best).

Furthermore, we performed the same test in another ma-
chine, a small flash-based server having eight internal flash
drives (“small flash machine.”) The two graphs (c) and (d)
on the right at Figure 7 summarize the execution time and
Table 1 again summarizes the speedup ratios. Even in the
flash machine, the performance trend was similar to the ob-
servation that we obtained in the disk machine. OoODE
speeded up the queries by two orders of magnitude (25.6 to
33.9 times) over Serial and substantially (48% to 94%) even
over Partitioning (best).

These experimental results verify that OoODE achieves
significant speedup over the other execution methods and it
consistently works for all the test queries both in the disk
and flash machines.

4.2 Performance scalability in large machines
We then present a performance scalability study that we

conducted by extending the previous experiment to a large
disk-based system having 160 disk drives (“large disk ma-
chine”) at different configurations of storage scales and
dataset scales. Specifically, we tested five different scale con-
figurations by changing the storage scales (the numbers of
disks to be utilized) from 16 disks to 192 disks and simul-
taneously the dataset scales (the scale factors) from 100 to
1,600 proportionally. Note that a dataset scale per a single
storage device was kept constant. At each of the scale con-
figurations, the execution performance was measured for the
different execution methods in the similar way. In this sec-
tion, we show results of Query C due to the space limitation.
Other queries presented similar performance properties.

Figure 8 shows that OoODE achieved greater speedup at
the higher scales. The graph (a) summarizes the query ex-
ecution time at different scale configurations and the graph
(b) presents its 20-fold magnified chart focusing on Par-
titioning (best) and OoODE. Note that we omit Par-
titioning (naive) hereafter because it consistently took
roughly half time of Serial. Table 2 summarizes the speedup
ratios. The observation was two-fold. Firstly, at each of
the scale configurations, we witnessed a similar performance
trend to the observation on the small machines (presented

Table 2: Speedup by OoODE. Summary of Figure 8.
Scale (number of disks) 12 24 48 96 192

over Serial 23.4 42.2 87.9 192 419
over Partitioning (best) 1.04 1.05 1.18 1.29 2.07

in Section 4.1.) OoODE consistently performed more than
two orders of magnitude faster than Serial and even faster
than Partitioning (best). Secondly, we in particular ob-
served that larger scale configurations allowed OoODE to
provide greater speedup. At the largest configuration (192
disks), the speedup reached a factor of 419 over Serial and
a factor of 2.07 even over Partitioning (best).

In order to further investigate this phenomenon, we mea-
sured average aggregate IO throughput during query exe-
cution. Figure 8 (c) presents that OoODE gained a linear
increase in the IO throughput thoroughly up to 192 disks.
Serial could hardly increase the IO throughput (remaining
at 194 to 250 IO/s), even if more storage devices became
available. Because Serial had no capability of parallelizing
the query execution, it failed to leverage the IO bandwidth
provided by many disks. Meanwhile, Partitioning (best)
gained much better execution parallelism. The IO through-
put increased in a near-linear fashion from 5,610 IO/s (12
disks) to 32,100 (96 disks.) But, it became almost satu-
rated at the scale configuration exceeding 96 disks, and fi-
nally limited at 39,400 IO/s (192 disks.) This implies that
Partitioning (best) failed to gain sufficient parallelism to
fully utilize the IO bandwidth of more than 96 disks. On
the contrary, OoODE succeeded to linearly increase the
IO throughput, reaching 81,500 IO/s for 192 disks. Re-
sultingly, OoODE achieved further better speedup at the
largest scale.

We also performed the same test in a large flash-based
machine composed of a two-socket server and an external
all-flash array having sixteen flash modules (“large flash ma-
chine.”) The storage scales (the numbers of modules) were
changed from one to sixteen modules, while the dataset size
per module was kept constant similarly to the previous test.

Figure 9 shows that OoODE achieved greater speedup
at the higher scales even in the flash machine. Again, we
observed a similar performance trend. OoODE always per-
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Figure 9: (a) OoODE is up to 85.7 times faster than Serial for Query C on the large flash machine and,
(b) OoODE achieves up to 84% speedup even over the best achievable case of Partitioning, and (c) OoODE
achieves linear increase in IO throughput by OoODE up to 8 flash modules. Execution time and IO throughput
of Query C on the moderately skewed dataset at different scale configurations in the large flash machine are plotted. Table 3
summarizes the speedup ratios.

formed faster than the other. As Table 3 denotes, the speedup
increased as the scales grew and finally reached a factor
of 115 over Serial and a factor of 1.84 over Partitioning
(best) at the largest configuration. Figure 9 (c) presents a
noteworthy observation that the IO throughput of OoODE
consistently increased in a linear fashion up to eight flash
modules allowing 280,000 IO/s, but it became almost satu-
rated at larger scales and finally became limited to 345,000
IO/s at the scale configuration of sixteen modules. Be-
cause the potential IO bandwidth was an order of magni-
tude higher in the large flash machine than in the disk-based
machine, all the server processors became fully busy4. Al-
though OoODE might have provided further greater execu-
tion parallelism potentially, the hardware capacity of our ex-
perimental environment limited the throughput, interfering
the further performance improvement. Regardless of such
limitation, OoODE successfully gained significant speedup.

In summary, even in the large flash machine, OoODE
consistently achieved better performance than the other.
Besides, as the configuration scale became larger, OoODE
offered greater speedup until it reached the potential paral-
lelism that the query inherently held or the scale limitation
that the hardware configuration imposed.

4.3 Comparison of OoODE and other DBMSs
Finally, we present a comparative performance study of

OoODE and other DBMSs. We tested the following major
DBMSs that were popular in the market and often reported
in literature: MySQL (a representative open-source DBMS
[46], Version 5.7), MariaDB (a fork of MySQL, allowing
non-blocking index-based search/join operations [42], Ver-
sion 10.2), and PostgreSQL (another representative open-
source DBMS [50], Version 9.6.) In each case, we honestly
tuned performance with known state-of-the-art skills.

Figure 10 demonstrates that OoODE reduced query ex-
ecution time by two to four orders of magnitude from the
other DBMSs for all the tested queries. The graphs (a) and
(b) on the left summarize the execution time that OoODE
and the alternatives took for executing the four test queries
4In the other cases presented so far, the query execution was
basically IO bound.

Table 3: Speedup by OoODE. Summary of Figure 9.
Scale (number of modules) 1 2 4 8 16

over Serial 12.7 23.5 47.6 85.7 115
over Partitioning (best) 1.14 1.21 1.28 1.70 1.84

in the largest scale configurations in the large disk ma-
chine, whereas the graphs (c) and (d) on the right present
that in the large flash machine. We again witnessed that
OoODE consistently achieved significantly better perfor-
mance in comparison with the alternatives. As Table 4 in-
dicates, the speedup ranged two to four orders of magni-
tude for the large disk machine and for the large flash ma-
chine. The DBMSs that we tested for comparison have dif-
ferent query execution magics5. MySQL basically executes
a query in a way similar to Serial. Meanwhile, MariaDB
and PostgreSQL have alternative parallelizing techniques.
The result implies that these techniques worked in part to
speed up the query execution in specific cases. In contrast,
OoODE consistently performed two to four orders of mag-
nitude faster than these DBMSs. This significant speedup
demonstrates the benefit of the unique parallelization capa-
bility of OoODE.

5. RELATED WORK
A key of OoODE (out-of-order database execution) is that,

by exploiting the exact knowledge of the potential execution
parallelism for each operation ready to be performed during
query execution, it dynamically invokes tasks and executes
them in parallel, such that it can automatically squeeze out
the execution parallelism inherent to the query at maximum.
Accordingly, OoODE significantly speeds up the query exe-
cution by making the best use of the IO bandwidth.

Static query parallelization. Partitioning [13, 19, 39]
and pipelining [6, 11, 40, 45, 48] are popular techniques to
divide a given query into multiple subtasks to exploit par-
titioned parallelism and pipilined parallelism respectively.
Both may be utilized together [4,7,12,18,25,49]. These tech-
niques have been deployed into commercial DBMSs [5,20,60]
5Our separate paper will report the detailed investigation.

3497



0

500

1,000

1,500

2,000

A B C D

2,645

E
xe

cu
tio

n 
tim

e 
[s

ec
]

MySQL
MariaDB

PostgreSQL
OoODE

0

20

40

60

80

100

A B C D
0

100

200

300

400

500

600

A B C D

1,950

E
xe

cu
tio

n 
tim

e 
[s

ec
]

MySQL
MariaDB

PostgreSQL
OoODE

0

5

10

15

20

25

30

A B C D
(a) Large disk machine

(overall)
(b) Large disk machine

(20-fold magnified)
(c) Large flash machine

(overall)
(d) Large flash machine

(20-fold magnified)

Figure 10: (a), (b) OoODE is two to four orders of magnitude faster than other DBMSs for Queries A, B, C
and D on the large disk machine, (c) and (d) achieves similar speedup on the large flash machine. Execution
time of Queries A, B, C and D on the moderately skewed dataset in the large disk and flash machines at the largest scale
configuration is plotted. Table 4 summarizes the speedup ratios.

and they have also formed the basis of the recent parallel
data processing systems such as MapReduce [9,16,30,44,62].
Partitioning and pipelining statically determine the way to
split query work at compile time, whereas OoODE dynami-
cally determines the query decomposition during execution.

Query optimization. How to tune the static paral-
lelization has been explored in query optimization studies
[1, 10, 23, 33, 51, 53, 63]. They utilize heuristic rules and/or
statistical information to optimize the parallelism at query
compile time. Researchers have extended query optimiza-
tion to runtime tuning [2,14,26,29,32,52]. They gather sta-
tistical execution information during query execution and
optimize the execution plan again. By contrast, OoODE
utilizes the exact knowledge of the potential execution par-
allelism for each operation during query execution with the
assistance of runtime data structure information.

Dynamic query parallelization. Recent work has in-
troduced techniques to parallelize given query work during
execution. Leis et al. has proposed morsel-driven query pro-
cessing [37], which divides input data into small fragments
(morsels) to achieve better load balancing among all the pro-
cessor cores. Elastic iterator model, proposed by Wang et
al. for in-memory database clusters [59], has introduced a
dynamic scheduler in order to improve the processor utiliza-
tion efficiency. A very recent study [12] plans to integrate
such techniques to control parallelism dynamically. In con-
trast to these work, OoODE makes the best use of the IO
bandwidth by dynamically parallelizing a query with the
exact knowledge of its potential parallelism.

Ousterhout et al. has proposed an execution framework,
named Monotasks, for Spark [47]. Their focus is on allowing
good performance clarity among different resources, whereas
OoODE focuses on optimizing IO parallelism at runtime.

Dataflow machines. Dataflow machines [3,15,17,22,24,
27,58] exploit instruction parallelism inherent to a given pro-
gram, while OoODE exploits IO parallelism for a relational
query.

6. CONCLUSION
This paper has presented OoODE (out-of-order database

execution), which is a simplified and unified execution for-
mula to offer significant speedup for database queries consis-

Table 4: Speedup by OoODE. Summary of Figure 10.
Query A B C D

Large disk machine
over MySQL 432 274 205 249

over MariaDB 440 276 206 251
over PostgreSQL 1018 17.0 670 581

Large flash machine
over MySQL 94.9 103 49.1 35.3

over MariaDB 74.7 58.4 17.1 16.4
over PostgreSQL 2355 67.6 1282 356

tently. OoODE dynamically decomposes query execution at
runtime by using the exact knowledge of the potential paral-
lelism of each database operator with the assistance of run-
time data structure information. Owing to this capability,
OoODE achieves better or comparable performance with re-
spect to conventional parallelizing methods, while reducing
the underlying complexity. The introductory experiments
have verified that OoODE performs (1) two to three orders
of magnitude faster than serial execution; (2) substantially
(up to 2.07 times) faster than the best achievable case of
partitioning; and (3) two to four orders of magnitude faster
than major DBMSs. OoODE has been in part employed in
commercial DBMS [28].

We have just opened the gate for a new horizon enabled by
OoODE. Several open topics can be raised for further explo-
ration. As an early study, this paper has focused on selective
decision support queries which are mainly composed of addi-
tive operators; however, potentially OoODE can be applied
or extended to other types of database queries and manip-
ulations. We have been working on more comprehensive
design and extensive performance experiments. In addition,
extending OoODE to other database models also remains to
be solved. This paper has started the discussion with the
relational database model. The standard query language,
SQL, is declarative, thereby providing database software
with an opportunity to maneuver an execution procedure.
Recently, procedural languages such as Java or Python are
often utilized for analytics work. We plan to investigate
a new compilation technology for automatically embedding
OoODE into procedural programs.
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Table 5: Test machines.
Small disk machine Large disk machine Small flash machine Large flash machine

Subsystem(s) Dell PowerEdge 740xd IBM SystemX x3750M4 Lenovo x3850 X6 Hitachi HA8000
IBM Storwize V7000 Hitachi Unified Storage

Processors 2x Xeon 2.60GHz 4x Xeon 2.70 GHz 4x Xeon 2.10GHz 2x Xeon 3.0GHz
/ Memory (28 cores) / 96 GB (24 cores) / 192 GB (64 cores) / 2,048 GB (20 cores) / 64 GB

Storage 24x 900GB 10Krpm NL-
SAS HDDs

192x 900GB 10Krpm
NL-SAS HDDs

8x 1.2TB flash SSDs 16x 1.6TB flash modules

RAID6 (22D+2P) 16x RAID6 (10D+2P) RAID6 (6D+2P) 2x RAID5 (7D+1P)
OS CentOS Linux 7.4 RedHat Ent. Linux 6.9 CentOS Linux 7.5 CentOS Linux 6.9

Database Page size: 16KB, Database buffer: 16GB
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8. APPENDIX
Test machines. Table 5 summarizes four machine con-

figurations that we utilized in the experiments presented in
Section 4. Storage resources for operating system and ex-
periment data management are omitted for simplicity. If
a storage controller (RAID-5/6) exposed multiple storage
volumes, they were merged into a single database volume
by the Linux logical volume manager (striping). The vol-
ume was utilized as a raw device except for PostgreSQL,
for which a Linux standard filesystem ext4fs was utilized
since PostgreSQL did not allow the direct use of raw de-
vices. Hyper-threading was disabled.

Test queries. The test query set was composed of a
single-relation search query (Query A), a two-way join query
(Query B), a three-way join query (Query C) and a six-way
join query (Query D). SQLs of the test queries are listed
below.

-- Query A
SELECT SUM(L_QUANTITY),
SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX))

FROM LINEITEM WHERE L_PARTKEY BETWEEN 1 AND 8000;
-- Query B
SELECT P_BRAND, SUM(L_QUANTITY),
SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX))

FROM PART JOIN LINEITEM
ON PART.P_PARTKEY = LINEITEM.L_PARTKEY

WHERE P_NAME LIKE ’goldenrod lavender spring%’
GROUP BY P_BRAND;
-- Query C
SELECT O_ORDERPRIORITY, SUM(L_QUANTITY),
SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX))

FROM CUSTOMER
JOIN ORDERS ON CUSTOMER.C_CUSTKEY = ORDERS.O_CUSTKEY
JOIN LINEITEM ON O_ORDERKEY = L_ORDERKEY

WHERE C_NAME LIKE ’Customer#00001%’

GROUP BY O_ORDERPRIORITY;
-- Query D
SELECT N_NAME, SUM(PS_SUPPLYCOST), SUM(L_QUANTITY),
SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX))

FROM CUSTOMER
JOIN ORDERS ON CUSTOMER.C_CUSTKEY = ORDERS.O_CUSTKEY
JOIN LINEITEM ON O_ORDERKEY = L_ORDERKEY JOIN PARTSUPP
ON L_PARTKEY = PS_PARTKEY AND L_SUPPKEY = PS_SUPPKEY
JOIN SUPPLIER ON S_SUPPKEY = PS_SUPPKEY
JOIN NATION ON S_NATIONKEY = N_NATIONKEY

WHERE C_NAME LIKE ’Customer#000001%’ GROUP BY N_NAME;
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