
Incorporating Super-Operators in Big-Data Query
Optimizers

Jyoti Leeka
Microsoft

Jyoti.Leeka@microsoft.com

Kaushik Rajan
Microsoft

krajan@microsoft.com

ABSTRACT
The cost of big-data analytics is dominated by shu�e oper-
ations that induce multiple disk reads, writes and network
transfers. This paper proposes a new class of optimization
rules that are speci�cally aimed at eliminating shu�es where
possible. The rules substitute multiple shu�e inducing oper-
ators (Join, UnionAll, Spool, GroupBy) with a single stream-
ing operator which implements an entire sub-query. We call
such operators super-operators.
A key challenge with adding new rules that substitute sub-

queries with super-operators is that there are many variants
of the same sub-query that can be implemented via minor
modi�cations to the same super-operator. Adding each as
a separate rule leads to a search space explosion. We pro-
pose several extensions to the query optimizer to address
this challenge. We propose a new abstract representation
for operator trees that captures all possible sub-queries that
a super-operator implements. We propose a new rule match-
ing algorithm that can e�ciently search for abstract opera-
tor trees. Finally we extend the physical operator interface
to introduce new parametric super-operators.
We implement our changes in SCOPE, a state-of-the-art

production big-data optimizer used extensively at Microsoft.
We demonstrate that the proposed optimizations provide
signi�cant reduction in both resource cost (average 1.7×)
and latency (average 1.5×) on several production queries,
and do so without increasing optimization time.

PVLDB Reference Format:
Jyoti Leeka and Kaushik Rajan. Incorporating Super-Operators
in Big-Data Query Optimizers. PVLDB, 13(3): 348-360, 2019.
DOI: https://doi.org/10.14778/3368289.3368299

1. INTRODUCTION
Today, many companies process several peta-bytes of data

every single day using SQL like languages. To meet their
data-analysis needs they have either built their own big-data
systems or rely on cloud providers to scale compute [26, 29,
32, 15] and storage [5, 10, 22] to data-centers with 1000s

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 3
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3368289.3368299

of machines. Processing such massive amounts of data on
large clusters presents new challenges and opportunities for
query optimizers. Like any standard database optimizer, the
big-data query optimizer relies on rewrite rules, to search
over di�erent equivalent queries and operator implementa-
tions, to produce an e�cient execution plan. In the big-
data setting the optimizer produces a distributed plan by
introducing stage breaks in the physical plan. Each stage
runs in a data-parallel manner on many machines and data
is shu�ed between stages over the network. Such shu�es
typically dominate the cost of big-data analytics [30, 21],
as each shu�e involves multiple disk writes, disk reads and
network transfers across many machines.

Optimization opportunity
The goal of our project, Blitz, is to ask if the current set
of rules and operators produce plans with as few shu�es
as possible or do they miss opportunities. In previous work
we show evidence that state-of-the-art optimizers sometimes
produce plans with more shu�es than necessary. We em-
ployed program synthesis [24] to look for such queries, and
found many instances where sub-queries that were evalu-
ated across several stages could in fact be evaluated by a
single data-parallel operator. We found this to be true for
all popular big-data query optimizers [26, 32, 4].
We show the optimization opportunity with an example.

SuperOp(a,rowIter g){
𝑓1 = ⊥; 𝑐1=0;
f2 =⊥; c2=0;

while(r=g.Next()){
if(r.s>100)𝑓1=⊤; 𝑐1++;
if(r.s<100)𝑓2=⊤; 𝑐2++;
}
if(𝑓1)output(a,𝑐1);
if(𝑓2)output(a,𝑐2);
}

(a) (b)
T:(a,b,s)

V1=SELECT, a,
COUNT(*) AS c
WHERE s>100

GROUP BY a

V2=SELECT, a,
COUNT(*) AS c
WHERE s<100

GROUP BY a

V3=SELECT * FROM V1
UNION ALL

SELECT * FROM V2

V3=REDUCE T ON
a USING superOp

T:(a,b,s)

Figure 1: (a) Query with multiple expensive opera-
tors (b) Streaming super-operator implementation.

Example 1 Consider the production query in Figure 1.
The query processes cloud store logs gathering summary
statistics per account. For each account a it captures two
statistics, the number of store operations accessing less than

348

100KB of data (s < 100) and the number of operations ac-
cessing more than 100KB. As shown, the query has a dia-
mond dependence structure, it unions the results of two dif-
ferent views derived from the same table. The views perform
grouping aggregations on subsets of the same data, �ltered
by di�erent predicates. A key property of this query is that
it is groupwise [6] in nature, that is every row in the output
is only dependent on one partition of the input (in this case
on column a). We discuss the distributed query plan in de-
tail during evaluation, but in summary it employs 9 stages
to compute the output, shu�ing 15 terabytes of data.
This query was optimized to the following map-reduce

form via program synthesis. The mapper partitions the data
on column a, and the reducer computes multiple �ltered ag-
gregates in a single pass over the data. It streams the el-
ements of a single partition through a sequence of guarded
commands, exploiting the commutative nature of aggrega-
tions to simultaneously compute all the �ltered aggregations.
The optimized query plan has half the stages, runs 1.8×
faster, uses half the resources, and shu�es 7TB less data.

The challenge
This previous work relied on program synthesis, an advanced
program reasoning technique that is hard to scale and too
slow to perform as part of query compilation. It takes in the
order of minutes to produce a result while query compila-
tion takes only seconds. Even to produce output in minutes,
several synthesis heuristics had to be used that trade-o� cor-
rectness guarantees for speed. Overall, while good at discov-
ering such optimization opportunities, our synthesis engine
is not guaranteed to produce correct optimizations. Further,
as synthesis was itself performed outside the purview of a
query optimizer it did not make use of the known equiv-
alences that a query optimizer exploits. As a result there
were many instances where synthesis missed optimization
opportunities. Despite these limitations our evaluation of
synthesized operators across 1000s of queries revealed that
when correct, the optimization did provide signi�cant ben-
e�ts. Once manually inspected to be correct and incorpo-
rated into the query as a user de�ned operator the rewrite
resulted in a 1.1 × −3× improvement in query latency as
well as a 10%− 70% reduction in query cost.
In this paper we describe how we extended a production

big-data query optimizer, with new rules and physical oper-
ators, so that the same bene�ts can be achieved with strong
correctness guarantees, and without the other drawbacks of
program synthesis. As the big-data system in consideration,
SCOPE [32], is extensively used across the entire company
(millions of queries every week, processing exabytes of data
on several clusters with 40000 nodes or more), it is critical
to ensure that such optimizations pass the rigorous correct-
ness and optimization time constraints imposed in the pro-
duction setting. Even though the synthesis based approach
rarely produced an incorrect solution (< 2% of instances),
putting it in a production system was not an option.
The SCOPE optimizer is a cascades [11] based optimizer

that extends the SQL server optimizer to the distributed
setting. It has all the standard equivalence rules and oper-
ator implementations from database literature with several
enhancements to specialize it to the big-data setting [32, 31,
23, 14, 21]. As with any cost based optimizer, rules are used
to generate alternative operator trees and the one with the
least cost is chosen for execution.

𝑆𝑝𝑜𝑜𝑙

𝛾𝑎,𝑓2∗𝛾𝑎,f1∗

⋃

superOp

reqPartition : 𝑎Transformation
rule𝜎𝜙1

𝜎𝜙2

Figure 2: Example rule

𝑆𝑝𝑜𝑜𝑙

𝛾𝑎,𝑓2∗𝛾𝑎,f1∗

𝜎𝜙1

⋃

𝑆𝑝𝑜𝑜𝑙

𝛾𝑎,f1∗

𝜎𝜙1

𝜎𝜙2

⋃

𝑆𝑝𝑜𝑜𝑙

𝛾𝑎,𝑓2∗𝛾𝑎,f1∗

𝜎𝜙2
𝛾𝛼,f2∗

⋃

Π∗,'low'→idΠ∗,'high'→id

𝜎𝜙1

Figure 3: Some variants of the pattern that can be
implemented by the same super-operator

The rewrite in Example 1 could be implemented as shown
in Figure 2 by introducing a new operator, and a correspond-
ing rule that substitutes the operator tree corresponding to
the example sub-query with the new operator. The substi-
tuted operator requires data to be partitioned on column a,
and processes each partition in a streaming manner. Note
unlike a standard operator that implements a single SQL op-
erator, the above operator implements an entire sub-query.
We therefore refer to it as a super-operator.
A key constraint in the production setting was to extend

the optimizer with as few rules as possible. This was for two
obvious reasons. First the search space explored is directly
proportional to number of rules rooted at each operator in
query. Adding many rules can lead to a search space explo-
sion and signi�cant slow down in optimization time. Second,
the production system collects telemetry and turns rules on
and o� on a per-customer basis. This is done to reduce
compilation time and avoid performance regressions (occur
commonly in cost-based optimizers due to costing inaccura-
cies). Adding many rules make such auto-tuning harder.
A natural question then arises as to how many such op-

erator tree patterns are optimizable (referred to simply as
patterns below), and how many new rules need to be added.
We employed the synthesis heuristic on a slice of the daily
production workload to collect di�erent patterns. Within a
week we discovered more than 100 such patterns for sub-
queries rooted on joins alone. The optimizer currently has
only 20 join rules! Adding all such patterns as rules would
clearly lead to state-space explosion, for both optimization
and auto-tuning. Further, adding so many rules would lead
to a large increase in the code base (each rule operator pair
would require modi�cations to about 50 di�erent �les and
300 lines of new code).

349

Proposed solution
A careful investigation of the patterns revealed the following
key observation. Many of the patterns that were optimized
were logically similar, and could be implemented with mi-
nor modi�cations to the same super-operator. Consider for
example the operator trees in Figure 3. The one on the left
has one operator less and can be implemented by a super-
operator with fewer conditional statements (we show the
super-operators in section 3). The one in the middle �lters
data after the second GroupBy, and can be implemented
with a di�erent set of guards. The one on the right adds an
additional column to di�erentiate the left and right rows in
the unioned output. This can again be implemented with a
minor change to the super-operator. It is easy to see that
there are several more alternatives of the same pattern.
Based on this observation we propose four generic exten-

sions to the existing query optimizer (1) a new abstract rep-
resentation for operator trees matched by rules, that suc-
cinctly captures all patterns a single super-operator imple-
ments. (2) a new rule matching algorithm that e�ciently
searches for abstract operator trees, and checks if they can
be implemented in a streaming manner (3) extensions to the
post rule match pass to capture super-operator parameters
from abstract edges (e.g. where were the select and project
operators) (4) careful extensions to the physical operator in-
terface to add parameterized super-operators, so that they
implement all valid variants of the abstract operator tree.
With these extensions, 11 new substitution rules are suf-

�cient to cover all the patterns discovered over a week (320
patterns used in 4000 queries). Each such substitution
is guaranteed to eliminate several stage-breaking operators
like Join, Spool and UnionAll, replacing them with an e�-
cient streaming super-operator. We evaluated the optimiza-
tion on several production queries and found the new rules
provide signi�cant improvements. On average across 20 pro-
duction queries they simultaneously, speedup the query exe-
cution time by 1.5×, and reduce the cost of running queries
(measured in terms of the cumulative task time across all
stages) by one-third. The optimizations were achieved with-
out impacting query optimization time. In fact, we found
that whenever the rules �red they actually reduced overall
query compilation time, as having fewer stages reduced the
code-generation time. Finally we also found many more op-
timization opportunities than the synthesis-based system, as
the integration into the query optimizer allowed it to exploit
other rewrite rules that exist within the system.
The rest of the paper is organized as follows. In Section 2

we give an overview of the production query compilation
pipeline and explain how a typical big-data optimizer de-
cides to introduce stage breaks. In Section 3 we show several
examples of super-operators and motivate the need for opti-
mizer changes. In Section 4 we describe the core algorithmic
extensions to the query optimizer. Section 5 discusses imple-
mentation details and challenges. Section 6 discusses related
work and contrasts our techniques against them. Section 7
presents evaluation results and we conclude in Section 8.
Below we summarize the key Contributions of this paper.

• We propose a powerful optimization that eliminates multi-
ple stage-break inducing operators (Join, GroupBy, Spool,
UnionAll), replacing them with a single streaming opera-
tor. We refer to such operators as super-operators.
• We introduce a new class of rules to enable such optimiza-
tions. They directly substitute abstract operator trees,

containing optional operators, with parameterized super-
operators. This way we add as few rules as possible.
• We add new algorithms to the big-data query optimizer
to e�ciently match such rules and enable optimization
opportunities without a�ecting optimization time.
• We implement our optimizations in a production system
with few well abstracted changes. Our parameterized
super-operators are implemented in a modular and tem-
platized way.
• We demonstrate that the super-operators signi�cantly im-
prove query performance.

2. PRELIMINARIES
This section provides an overview of the big-data query

compilation process (see Figure 4).

Semantic Analysis Optimization Stage Creation Codegen

Figure 4: Optimizer Phases

Semantic analysis
The query script is �rst analyzed for errors and translated
into a logical operator tree. The operator tree consists of
nodes representing relational operators, and edges repre-
senting dependencies. Non-unary operators in the query
(Unions and Joins) are decomposed into a sequence of bi-
nary operators. A special operator called spool is used
to represent single producer multiple consumer sub-queries.
Table 1 describes important operators and their attributes.
Dependencies in the operator tree �ow from bottom to top
(children produce data consumed by parents). The logical
tree for our running example is shown in Figure 5.

Query optimization
The logical operator tree is then optimized to generate a
physical plan. This paper considers transformation based
query optimizers as described in [11, 12]. Such optimizers
have been used to build both industry standard query op-
timizers [3, 13] and academic prototypes [28]. The SCOPE
optimizer also belongs to this family. Starting from the in-
put tree, transformation rules are used to generate alter-
native query trees. There are two kinds of transformation
rules. Exploration or logical transformation rules transform
logical trees to produce new logical trees. Implementation or
physical transformation rules transform logical trees into hy-
brid logical/physical trees. Implementation rules may intro-
duce sorting and exchange operators where necessary. For
example merge joins require the data to be partitioned and
sorted on the key and the merge join implementation rule
will add an exchange and a sort operator in the physical
operator tree (Figure 5 shows the physical tree for our run-
ning example). All valid trees are maintained in a standard
lookup table called a MEMO [27]. Each rule consists of
a root operator, a source operator tree, and a target tree.
The optimizer traverses the MEMO, and for each operator
invokes all rules that are rooted on it. Many di�erent al-
gorithms for tree traversal and for cost based pruning have
been discussed in literature but these are orthogonal to the
key contributions of the paper, we refer to relevant aspects
where needed (Section 5). We will take a more detailed look
at the rule matching algorithm in Section 4.

350

Table 1: Operators and their attributes

Operator Attribute description

Select (σφ(T)) Applies a �lter predicate φ to each
row of an input table T and outputs
only rows that satisfy φ.

Project
(πA,p(cols(T))→B(T))

Retains a subset A of existing
columns per row of T and creates
some new columns B by applying
functions p to columns of T

GroupBy
(γA,f∗(cols(T)→A)(T))

A is a set of grouping columns.
The operator applies commutative
and associative aggregation functions
(f∗(cols(T))) to rows in a group to
produce an aggregated output.

(Equi)-Join
(./jtψ(T1, T2))

An equi-join matches rows from T1
with rows from T2 on a conjunction
of equality predicates. jt is a join
type and can be any of inner (i), left-
Outer (lo), rightOuter (ro), leftSemi
(ls), rightSemi (rs).

UnionAll
(
⋃
A(T1, T2))

Unions the rows from T1 with the
rows from T2. After unioning it gives
the columns new names A.

RestrRemap
(ρcols(T)→A(T))

Renames the columns in T with new
names A.

Spool (Sn(T)) A single producer multiple consumer
operator that duplicates the rows of
T along n consumer edges.

Stage creation
Big data query optimizers [32, 4, 26] translate the chosen
physical plan into a DAG of stages so that each stage runs in
a data-parallel manner on many machines. The output data
of a stage is materialized, and transferred between stages
over the network via a shu�e. SCOPE breaks the physical
plan into di�erent stages at the following operators [32].
• Exchange: Exchanges re-partition and re-sort the data
so that it satis�es the required properties of the parent
operator. The operators that expect partitioned or sorted
inputs are GroupBy, OrderBy, Join, WindowedAggrega-
tion, Output and Reduce. Such a re-ordering of data
necessitates a stage break.
• Join and Union: Joins and Unions combine data from
multiple sources. When data is produced by di�erent
stages, they introduce a separate stage.
• Spool: Spools produce data for multiple consumers. The
output of a Spool operator is bu�ered until all consumers
read data. As the consumers may consume data at di�er-
ent rates spools have unknown memory requirements. In
the big-data setting, executors only have a limited amount
of memory (a few GB) and would fail if this limit is ex-
ceeded. The optimizer therefore conservatively introduces
a stage-break at a Spool.

Other big-data systems like HIVE and Spark also introduce
stage-breaks in a similar manner and we discuss this in re-
lated work.
Figure 5 show the physical tree and stages generated for

our running example. The physical plan has a Spool, two
GroupBy's and a UnionAll. This is split into 4 stages as
shown in the stage plan. A stage-break in the plan implies
that data needs to be shu�ed between two stages. The
resource cost and latency of a shu�e depends on size of the
data and number of machines involved. In SCOPE, like

Extract

Spool

GroupByGroupBy

Union

Output

Extract

Spool

SortSort

PartitionPartition

Stream
GroupBy

Stream
GroupBy

Union

Output

Stage1

Stage2Stage3

Stage4
LOGICAL PLAN PHYSICAL PLAN & STAGES

Select Select

Select Select

Figure 5: Logical and physical plan along with stages

in other massive deployments (Spark at Facebook for e.g.
[30]), a shu�e sometimes dynamically introduces additional
aggregation stages [21]. This is done to limit the number of
machines that a single vertex reads from (fan-in) or writes to
(fan-out) and limit the impact of failures on query execution.
As we shall see later (�gure 16) a query with this structure
actually runs with 9 stages.

Code generation and run-time execution
Finally executable binaries are generated for each of the
stages. The physical operators are implemented in a tem-
platized form. These templates are then instantiated dur-
ing code generation (SCOPE uses Microsoft's T4 template
transformation toolkit [1] for this) to produce low level code.
And this code is compiled down to stage binaries.
E�cient code-generation for SQL queries has been a sub-

ject of several papers [20, 17, 16, 8, 19, 25]. These compilers
perform many low level optimizations, like eliminating un-
necessary virtual function calls and redundant computations
of expressions. However, high-level semantic optimizations
are left to the query optimizer. See section 6 for a detailed
discussion. The execution of the query is orchestrated by
the big-data runtime engine, using standard resource man-
agement frameworks like YARN [7]. Vertices that execute a
stage run within containers with a �xed amount of memory
and CPU. The vertex fails if the memory limit is exceeded.
The materialized output from each stage is managed by the
runtime, and a shu�e service takes care of data transfers.

3. SUPER-OPERATORS AND ABSTRACT
OPERATOR TREES

In this section we look at three example super-operators
and the operator trees they implement. These are the super-
operators that occur most frequently in practice, and to-
gether cover 40% of the patterns we have seen.

3.1 Abstract operator trees
As discussed in the previous section, the optimizer trans-

forms operator trees through rewrite rules. We introduce
the notion of abstract operator trees to compactly represent
all operator trees that a single super-operator implements.
An abstract operator tree uses abstract edges to represent a

351

𝑆𝑝𝑜𝑜𝑙

𝛾𝑎,𝑓2∗𝛾𝑎,f1∗

⋃

(a)Diamond Union

𝑆𝑝𝑜𝑜𝑙

𝛾𝑎,𝑓2∗𝛾𝑎,f1∗

⋈𝑎=𝑎∧𝜓

(b)Diamond Join

𝑆𝑝𝑜𝑜𝑙

𝛾𝑎,min 𝑏

(c)Min & Join

𝑒 3
(𝜎
,𝜋
,𝜌
)

⋈𝑎=𝑎∧𝜓

Figure 6: Abstract operator trees.

chain of zero or more optional operators between a pair of
core operators. Each abstract edge is annotated with a set of
unary operators, each of which can occur zero or more num-
ber of times and in any order between the child core operator
and the parent core operator. We refer to the operators that
form the nodes of an abstract tree as core operators and the
operators on the edges as optional operators.

3.2 Super-operator examples
Figure 6 shows abstract operator trees that are imple-

mented by our three example super-operators. We will ex-
amine some of the interesting (concrete) variants below and
revisit the super-operators towards the end of each example.

Diamond UnionAll
Consider the simplest variant of Figure 6(a), one with no op-
tional operators (concrete instantiation shown in Figure 7).

1: SuperOp_DUa(a, rowIter grp)
2: {
3: 𝑓1

∗. 𝑖𝑛𝑖𝑡();
4: f2

∗. init();
5: while(row=grp.Next()){
6: 𝑓1

∗. 𝑢𝑝𝑑𝑎𝑡𝑒(𝑟𝑜𝑤);
7: f2

∗. update(row);
8: }
9: output(a, 𝑓1

∗)
10: output(a, 𝑓2

∗)
11:}

⋃

𝛾𝑎,f2∗𝛾𝑎,f1∗

𝑆𝑝𝑜𝑜𝑙

Figure 7: Diamond UnionAll Core

This query simply Unions the results of two di�erent set
of aggregates grouped by column a from the same input.
We use the shorthand fi

∗ to represent one or more aggrega-
tions being applied to columns input to the GroupBy. For
simplicity we also refer to the column names output by the
aggregations as fi

∗. It is easy to see that the query is group-
wise [6], i.e. its input can be partitioned on the group-by key
a and each partition can be computed upon independently.
Figure 7 also shows a super-operator that implements this
query in a streaming manner. The super-operator takes as
input a grouping key and an iterator over the rows belonging
to the group. It initializes all aggregations on lines 3 and 4
(from both inputs to the UnionAll), and invokes the update
function of the aggregations on every row (lines 6 and 7).

This logic is similar to PhyOp_StreamGbAgg, a standard
physical operator that implements group by with aggrega-
tion. As the aggregations are commutative, the operator
does not require the rows within a group to be sorted in any
particular way. At the end (unlike PhyOp_StreamGbAgg)
the super-operator outputs two rows to simulate a Union-
All, one containing the aggregations from the left (line 9),
and one containing aggregations from the right (line 10). It
follows that the super-operator implements the query. This
query produces a two stage plan once the super-operator op-
timization is enabled. Without the super-operator the query
plan has four stages as we saw in Figure 5. As described in
the previous section Spool introduces a stage break as its de-
fault implementation requires materialization of its output
so that multiple consumers can process it, the twoGroupBy's
separately consume the spool output in separate stages, and
�nally the UnionAll introduces a separate stage to combine
the output of two di�erent stages. Such a 4 stage plan is
produced not only by SCOPE but by other state-of-the-art
big-data query engines as well [4, 26]. Determining that the
computation can be performed in 2 stages requires the op-
timizer to look at many operators together, as we propose.
Next lets consider a variant with Select operators along

some of the abstract edges. Consider the concrete tree shown
in Figure 8 which has a �lter before the aggregation on the
left, and a �lter after the aggregation on the right.

1: SuperOp_DUb(a, rowIter grp)
2: {
3: 𝑓1

∗. 𝑖𝑛𝑖𝑡();𝑜𝑢𝑡1=⊥;
4: f2

∗. init();
5: while(r=grp.Next()){
6: 𝑖𝑓(𝜙1(𝑟)){ 𝑓1

∗.update(r);𝑜𝑢𝑡1=⊤; }
7: f2

∗.update(r);
8: }
9: if(𝑜𝑢𝑡1) output(a, 𝑓1

∗);
10: if(𝜙2(𝑎, 𝑓2

∗))output(a, 𝑓2
∗);

11:}

⋃

𝛾𝑎,f2∗

𝑆𝑝𝑜𝑜𝑙

𝜎𝜙1

𝛾𝑎,f1∗

𝜎𝜙2

Figure 8: Diamond UnionAll with Select

This query can be implemented by a super-operator that
has a similar structure but some of the statements are now
guarded by conditions. First, the updates to the aggregates
on the left (line 6) are guarded by the predicate φ1 on the
input row. Further an additional �ag, out1, is used to track
if any row satis�es this predicate. And this �ag guards the
left output of the UnionAll (line 9). This guard is neces-
sary to correctly implement the case where no element in
the group satis�es predicate φ1, and the left aggregation
does not produce any output for that group. In summary
lines 3,5,6,8 and 9 implement the left sub-query. The aggre-
gations along the right path are computed as before. The
�nal output (line 10) is now guarded by predicate φ2. Its
easy to see that lines 4, 5, 7, 8 and 10 implement the right
sub-query. And hence the lines put together implement the
entire query.
Now lets consider a variant with Project. Projections

can either drop existing columns, introduce new constant
columns or produce new columns by applying a function to
existing columns. Consider the query shown in Figure 9.

352

1: SuperOp_DUc(a, rowIter grp)
2: {
3: 𝑓1

∗. 𝑖𝑛𝑖𝑡();f2
∗. init();

4: while(r=grp.Next()){
5: d=r.b+r.c;
6: 𝑓1

∗.update(a,d);
7: f2

∗.update(r);
8: }
9: output(𝑓1

∗, 0);
10: output(𝑓2

∗,1);
11:}

⋃

𝛾𝑎,f2∗𝛾𝑎,f1∗

𝑆𝑝𝑜𝑜𝑙

𝜋𝑓2∗,1→𝑒

𝜋𝑎,𝑏+𝑐→𝑑

𝜋𝑓1∗,0→𝑒

Figure 9: Diamond UnionAll with Project

The super-operator that implements this query now has
additional expressions to compute the new column and per-
form aggregation on it (lines 5,6). It also modi�es the out-
put statements (lines 9,10), to drop projected columns, and
introduce new constant columns as necessary.

1: List<edgeparams> p
2: SuperOp_DU(a,rowIter g){
3: 𝑓1=𝑖𝑛𝑖𝑡; 𝑜𝑢𝑡1=⊥;
4: f2 =init; 𝑜𝑢𝑡2=⊥;
5: while(r=g.Next()){
6: if(<p[1].𝜙>(r)) { 𝑓1

∗. 𝑢𝑝𝑑𝑎𝑡𝑒(<p[1]. 𝜋>(r)); 𝑜𝑢𝑡1=⊤; }
7: if(<p[2].𝜙>(r)) { 𝑓2

∗. 𝑢𝑝𝑑𝑎𝑡𝑒(<p[2]. 𝜋>(r)); 𝑜𝑢𝑡2=⊤; }
8: }
9: if(𝑜𝑢𝑡1 ∧<p[3].𝜙>(r)) OUT(<p[3]. 𝜋>(a,𝑓1

∗));
10: if(𝑜𝑢𝑡2 ∧<p[4].𝜙>(r)) OUT(<p[4]. 𝜋>(a,𝑓2

∗));
11:}

12: List<edgeparams> p, joinType jt
13: SuperOp_DJ(a,rowIter g){
14-19:repeat of 3-8 as DJ computes same aggregates
20: if(𝑜𝑢𝑡1 ∧<p[3].𝜙>(a,𝑓1

∗) ∧ out2 ∧<p[4].ϕ>(a,f2
∗))

21: if(𝜓) OUT(<p[3]. 𝜋>(a,𝑓1
∗), <p[4]. π>(a,f2

∗));
22: if(jt=lo ∧ (𝑜𝑢𝑡1 ∧ <p[3].𝜙>(a,𝑓1

∗))∧ ¬(out2 ∧ <p[4].ϕ>(a,f2
∗))

23: if(𝜓) OUT(<p[3]. 𝜋>(a,𝑓1
∗),null);

24: if(jt=ro ∧ ¬(𝑜𝑢𝑡1 ∧ <p[3].𝜙>(a,𝑓1
∗))∧ (out2 ∧ <p[4].ϕ>(a,f2

∗))
25: if(𝜓) OUT(null,<p[4]. π>(a,f2

∗));
26:}

27: List<edgeparams> p, joinType jt
28: SuperOp_MJ(a,sortedRowIter g, sortCol b){
29: first=⊤; lsOut=⊥;
30: while(r=g.Next()){
31: if(first){min=b; first=⊥; }
32: if(<𝑝[3].ϕ>(r)) lsOut = ⊤;
33: if(<𝑝[2].ϕ>(a,min)∧<𝑝 3 . ϕ> 𝑟 ∧ ¬(𝑗𝑡=𝑙𝑠))
34: if(𝜓) output(<𝑝[2].𝜋> a,min ,<p[3]. 𝜋>(𝑟));
35: if(jt=ro ∧ ¬(<p[2]. 𝜙> 𝑟 ∧ 𝜓) OUT(null,<p 3 . 𝜋>(𝑟));
36: if(jt=lo ∧ ¬(<p[3]. 𝜙>(𝑟)) OUT(<p 2 . 𝜋> 𝑎,𝑚𝑖𝑛 , null);
37: }
38: if(lsOut∧<𝑝[2].ϕ>(a,min)) OUT(<𝑝[2].𝜋> a,min);
39:}

Figure 10: Parameterized Super-Operators

The above examples show how the same super-operator
can be extended to support di�erent operator types along
the abstract edges. We describe an algorithm to check
whether a query tree is an instance of an abstract tree in
Section 4. Figure 10 shows a parametric super-operator
(SuperOp_DU) that implements all instantiations of the
abstract tree shown in Figure 6(a). The super-operator is
parameterized by a list of edge parameters, one per abstract
edge. Each edge parameter (p[i] for edge ei) consists of (1)

a summary predicate φ that summarizes all �ltering that
happens along the abstract edge and (2) a summary projec-
tion list π that, summarize all transformations that happen
along an abstract edge, and directly relates the columns in-
put to the parent operator with the output of the child. An
algorithm to construct such edge parameters is described
in Section 4.4. The parameters are used to introduce ap-
propriate guards and expressions in the super-operator as
motivated by the examples above.
Performance wise we expect this super-operator to be

much more e�cient than the original query, as it substi-
tutes a Spool, a UnionAll and two GroupBy's, each of which
typically induces a stage-break, with a single operator.

Example : Diamond Join
The abstract tree in Figure 6(b) is similar to Figure 6(a) ex-
cept that it performs a Join instead of a UnionAll. As shown
in method SuperOp_DJ of Figure 10 the super-operator for
this is also similar except in the conditions for output. To
support di�erent types of joins, the super-operator is ad-
ditionally parameterized by joinType. Note that both left
and right sub-queries are grouped on a, and the join has an
equality predicate on a (this is necessary for a tree to be
a concrete instantiation of Figure 6(b)). This implies that
each row from the left can join with at most one row from
the right and vice versa. Therefore semi joins and inner joins
behave the same way. They produce an output only if some
input rows were aggregated on each side, and the results
were not �ltered out (lines 20-21). Note the results could be
�ltered out either by �lters before the join (e3.φ or e4.φ) or
by ψ the additional conjunctive predicates of the equi-join.
Outer joins produce an output row with nulls even if one of
the sub-queries does not produce an output (lines 22-25).
Performance wise we expect this super-operator to be

much more e�cient than the original query as it substitutes
multiple stage-break inducing operators (a Spool, a Join and
two GroupBy) with a single streaming super-operator.

Example : Min and Join
Figure 11 shows a concrete variant of the third super-
operator, one with no optional operators. The query, groups
the elements of the input on column a, and computes the
minimum value for column b. It then joins back with the
input on column a, in e�ect adding a new column to every
row of a group that contains the minimum value for column
b. The super-operator that implements this query is shown
in Figure 11. It requires data to be partitioned on a, and
makes use of a sorted iterator that streams the elements
within the group sorted on column b. The implementation
exploits the fact that after sorting on b the �rst row has
the minimum b value. Therefore, at line 6 of Figure 11 it
assigns the �rst b value to min. It then appends min and
outputs (line 7) all elements of the group in a single pass.
We highlight that the sorting that the operator requires is
only for elements within a partition, and can be done at a
low performance cost. In the big-data setting, partitioning
and sorting within a partition, is e�ciently supported by the
shu�e implementation.
Next lets consider a variant with �lters along the edges

that are input to the inner join, as shown in Figure 12. The
super-operator that implements this has to only slightly be
modi�ed so that the output statement is guarded by a con-
junction of the two predicates (line 7, Figure 12). More

353

1: SuperOp_MJa(a,sortCol b,
sortedRowIter g){

2: {
3: 𝑓𝑖𝑟𝑠𝑡=⊤;
4: while(r=g.Next()){
6: 𝑖𝑓 𝑓𝑖𝑟𝑠𝑡 {𝑚𝑖𝑛=𝑏;𝑓𝑖𝑟𝑠𝑡=⊥; }
7: output(a,𝑚𝑖𝑛);
8: }
9:}

𝑆𝑝𝑜𝑜𝑙

𝛾𝑎,min(𝑏)

⋈𝑎=𝑎

Figure 11: Min & Join Core

1: SuperOp_MJb(a,sortCol b,
2: sortedRowIter g){
3: {
4: 𝑓𝑖𝑟𝑠𝑡=⊤;
5: while(r=g.Next()){
6: 𝑖𝑓 𝑓𝑖𝑟𝑠𝑡 {𝑚𝑖𝑛=𝑏;𝑓𝑖𝑟𝑠𝑡=⊥; }
7: 𝑖𝑓(𝜙1 ∧ 𝜙2)
8: output(a,𝑚𝑖𝑛);
9: }
10:}

𝑆𝑝𝑜𝑜𝑙

𝛾𝑎,min(𝑏)

⋈𝑎=𝑎

𝜎𝜙1
𝜎𝜙2

Figure 12: Min & Join with Select

1: SuperOp_MJc(a,sortCol b,
2: sortedRowIter g){
3: {
4: 𝑓𝑖𝑟𝑠𝑡=⊤;
5: while(r=g.Next()){
6: 𝑖𝑓 𝑓𝑖𝑟𝑠𝑡 ∧ 𝜙1 {
7: 𝑚𝑖𝑛=𝑏;𝑓𝑖𝑟𝑠𝑡=⊥; }
8: output(a,𝑚𝑖𝑛);
9: }
10:}

𝑆𝑝𝑜𝑜𝑙

𝛾𝑎,min(𝑏)

⋈𝑎=𝑎

𝜎𝜙1

Figure 13: Non-streaming

interestingly turns out that the streaming super-operator
cannot be extended to support a Select along the input edge
to the aggregation, as shown in Figure 13. Sorting on b is
not enough anymore, as the �rst row may be part of the
output but may no longer be the min value satisfying the
�lter predicate φ1. In the incorrect implementation shown
in the �gure the min value would be unassigned. A correct
implementation would need to bu�er inputs till a row that
satis�es φ1 is seen. As the bu�er has a non-constant memory
requirement it would violate the streamability property. We
therefore constrain the abstract tree that this operator im-
plements as shown in Figure 6(c) to not contain select along
the abstract edge from input to the min aggregate. Replac-
ing an operator tree with a single non-streaming operator
introduces non-trivial trade-o�s. In this paper we only fo-
cus on streaming super-operators, and defer discussion and
evaluation of such operators to future work.
The complete super-operator (method SuperOp_MJ

Figure 10) implements the abstract operator tree in Fig-
ure 6(c). It generalizes the examples above to deal with
other types of joins. As the join is many to one, semi-joins
induce additional complications. We skip a detailed discus-
sion in the interest of space. This super-operator eliminates
a Join and a Spool. Note that some simple variants of this
pattern could also be written with windowed aggregations.
Our optimizer uses known rewrite rules [33, 9] to decom-
pose windowed aggregates to GroupBy and Join (as in the
abstract tree) to explore additional implementation choices.
Hence the same abstract tree would match even if the query
were written di�erently. In terms of performance, the super-
operator provides a specialized implementation of min and
max windowed aggregations.

3.3 Characteristics of abstract operator trees
The goal of the proposed optimizations is to eliminate

shu�es by substituting multiple shu�e inducing operators,
with a single streaming super-operator. An operator is
streaming if, given partitioned and sorted data, it can pro-
cess all input rows while maintaining only a constant amount
of state. Streaming operators are preferred in the scale-out
big-data setting [32] as, they require bounded memory, and
can be pipelined with other operators. Checking for stream-
ability typically requires checks to be performed on grouping
and join keys and on aggregation functions used.
The abstract operator trees for all the streaming super-

operators that we have encountered so far (3 examples from
this section and 8 others) share three common character-
istics. First, they represent single-input single-output sub-
queries. That is, they have a single leaf operator and no out
edges other than from the root operator. Second, shu�e
inducing operators always appear as core operators. At-

tributes of such operators determine if the operator tree can
be implemented by a streaming, single-input single-output,
super-operator. Checking attributes of core operators (Sec-
tion 4.3) therefore su�ces to enable a substitution. In our
experience we �nd abstract trees with 3-7 core operators
composed of combinations of (Join, UnionAll, GroupBy,
OrderBy, Spool and Output). The only shu�e inducing op-
erators that are not covered by any of our super-operators
are windowed Aggregation and (custom) reducer . Windowed
aggregations, as discussed before, are often rewritten with
GroupBy and Join using standard equivalences [33, 9], our
optimizations therefore cover queries that perform windowed
aggregation. Custom reducers use non-SQL code and opti-
mizing such code in conjunction with other SQL operators
is beyond the scope of this work.
Third, they contain other unary operators (that run in the

same stage as their children) as annotations on the abstract
edges. Attributes of these operators do not in�uence the va-
lidity of the substitution, but determine the control �ow and
the expressions computed within a super-operator. In our
experience we �nd Select, Project, RestrRemap appear quite
commonly in optimizable queries. Our implementation only
supports them for now. Process (custom mappers) and Top
are the only other operators we �nd in optimizable queries.
Process like Reduce is hard to optimize, extending our algo-
rithms to support Top is straight-forward.
We build on these observations to extend the query opti-
mizer to support super-operators and their rules.

4. EXTENDING THE QUERY OPTIMIZER
The query optimizer traverses operators in the MEMO

and applies rules until no new entries are added (Section 2).
This section describes the existing rule matching algorithm
and extensions needed for super-operators.

4.1 Current Rule matching algorithm
Each rule consists of a root operator, a source operator

tree and a target tree. As shown in Figure 14 the rule
matching algorithm has two steps, a light-weight pattern
match on the operator names called AdvanceNext() and
a detailed check which ensures that the operators in tree
have the right attributes, calledCheckAttributes() . Ad-
vanceNext() matches the existing sub-tree in the MEMO
with the source tree of the rule. AdvanceNext() tra-
verses down the tree matching operators at every level until
it matches all nodes in the source tree. In order to keep
the check light-weight only operator names are matched.
Once all operators are matched, AdvanceNext() succeeds
and CheckAttributes() is executed. The exact checks in
CheckAttributes() vary from rule to rule. For example,
a rule that tries to push a Select below a Join would check

354

Failed
No No

Yes Yes
AdvanceNext
-Abstract Pattern

Matching

CheckAttributes
-Streamability
-SingleInputSingleOutput

Capture
Params

Figure 14: Current rule matching algorithm and ex-
tensions need for super-operator rules (blue)

if all the columns that are used in the selection predicate
come from a single source of the join. If so it is safe to push
the Select before the Join.

4.2 Rule matching with abstract trees
As described in Section 3, the source trees for super-

operator rules can be compactly represented by an abstract
operator tree. We extend the rule matching algorithm to
match abstract operator trees as below. We modify Ad-
vanceNext() to only check that the core operators occur
in the right order. The checks start with child abstract edges
of the root operator. Recall that an abstract edge is anno-
tated with a set S of optional operators that can occur any
number of times. As AdvanceNext() traverses an abstract
edge it checks if the operator encountered belongs to S. If
so it proceeds to its child. This process is repeated until
an operator that is not in S is encountered1. If this is not
the core operator at the source of a abstract edge then Ad-
vanceNext() fails. Else it continues traversing the next
abstract edge in a similar manner. The process is repeated
until all core operators are matched and then the rule match-
ing advances to CheckAttributes().
During CheckAttributes() we perform two checks that

are common to all super-operator rules. First we check that
the matched operator tree is single-input single-output. As
our super-operators are single-input single-output we need
to perform this check to ensure that the substitution is
valid. Checking this property requires additional checks
for multi-input (Join, UnionAll) and multi-output (Spool)
operators. We ensure that for non-root multi-output op-
erators all their parents are part of the matched sub-tree
and for non-leaf multi-input operators all their children are
part of the matched sub-tree. Further we check that the
matched query has a single leaf operator (AdvanceNext()
only checks if the operator names match those in the source
tree but not if they are the same instance). Second we check
that the operator tree can be implemented in a streaming
fashion using a Streamability Check. The exact check varies
from rule to rule. Below we describe the checks for our 3
examples.

4.3 Streamability Checks
We describe the streamability checks for our three super-

operators from Section 3. The goal is to establish checks that
are su�cient to ensure that the super-operators implement
the operator tree in a streaming manner.
The streamability check for the �rst two operators (Al-

gorithms 1 and 2) build on the observation that a single

1The algorithm assumes that the child operator of an ab-
stract edge is not in S. This is a natural assumption for
super-operator optimizations (Section 3.3). Extending the
algorithm to handle overlapping operators is not very hard.

Algorithm 1 Diamond-UnionAll Op. Streamability Check

1: procedure CheckStreamability(Γ1, e1, Γ2, e2)
2: set1 = TraverseDown(Γ1.keys, e1)
3: set2 = TraverseDown(Γ2.keys,e2)
4: if set1 6= ∅ ∧ set1 == set2 then
5: return true
6: else
7: return false

Algorithm 2 Diamond-Join Op. Streamability Check

1: procedure CheckStreamability(spool, Γ1, Γ2, ./,
e1, e2, e3, e4)

2: set1 = TraverseDown(Γ1.keys, e1)
3: set2 = TraverseDown(Γ2.keys, e2)
4: if ¬(set1 6= ∅ ∧ set1 == set2) then
5: return false
6: set3 = TraverseUp(Γ1.keys, e3)
7: set4 = TraverseUp(Γ2.keys, e4)
8: if ¬(set3 6= ∅∧ set3.size = set4.size) then
9: return false
10: pred = >
11: for i ∈ (1...set3.size) do
12: pred = pred∧ (set3[i] == set4[i])

13: if ./ .eqPred =⇒ pred then
14: return true . ./ keys are superset of Γ keys
15: else
16: return false

GroupBy with aggregations can be implemented in a stream-
ing fashion if the input is partitioned on the grouping keys.
As a natural extension two GroupBy's on two di�erent paths
can be simultaneously computed in a streaming fashion if the
grouping keys on both sides are direct or renamed versions
of the same input columns. Diamond UnionAll simply
unions the results of two paths so we check this condition in
line 4 of Algorithm 1. Optional renaming operators along
the edges from the input to the aggregations can rename the
grouping keys. To check if the keys are indeed the same such
renamings need to be undone before performing the check.
Helper routine TraverseDown (Algorithm 4) is used to
undo such mappings. Given a set of columns and an edge
e, it reverses the renamings done by the map functions in
RestrRemap operators. Lines 2-3 of algorithm 1 use this
function to remap grouping keys along the left and right
path to the input before applying the check at line 4.
Diamond Join, needs an additional check to ensure that

the join keys are a super set of the grouping keys. This check
is somewhat involved. To check this, �rst the grouping keys
are mapped to the join (lines 6,7 of Algorithm 2) using a
TraverseUp routine (not shown as it is basically the in-
verse of TraverseDown). Then we construct a predicate
that is a conjunction of equalities between one key from the
left and one from the right (lines 10-12). Finally we check
if the equi-joins conjunctive predicate implies this equality
predicate (line 13). This would mean that the equi-join
checks for equality between all pairs of grouping keys. If this
is true then the join can be simulated in a streaming man-
ner (as in Section 3) by concatenating the aggregated values
from the two sides and outputting them under a guard.
Min and Join does not contain a GroupBy on the right

side. For such abstract trees the output is linear in the input

355

Algorithm 3 Min & Join Op. Streamability Check

1: procedure CheckStreamability(spool, Γ, ./, e1, e2,
e3)

2: set1 = TraverseDown(Γ.Keys, e1)
3: set2 = TraverseUp(Γ.Keys, e2)
4: set3 = TraverseUp(set1, e3)
5: if ¬(set2 6= ∅∧ set2.size = set3.size) then
6: return false
7: pred = >
8: for i ∈ (1...set2.size) do
9: pred = pred∧ (set2[i] == set3[i])

10: if ¬(./ .eqPred =⇒ pred) then
11: return false
12: if Γ.aggregationList.Count() ==1 then
13: agg = aggregationList[0]
14: if (agg is min(b))∨ (agg is max(b)) then
15: set4 = undoMapping(b,undoMap1)
16: if set4 6= ∅ ∧ ‖set4‖ == 1 then
17: return true
18: return false

Algorithm 4 TraverseDown Procedure

1: procedure TraverseDown(cols, e)
2: sources = cols
3: parentToChildOpList = e.ops.Reverse()
4: for curr ∈ parentToChildOpList do
5: if curr is RestrRemap then
6: for (a→ b) ∈ curr.maps do
7: if b ∈ sources then
8: sources.Remove(b)
9: sources.Add(a)

10: return sources

only if the grouping key on the left is also used to perform
a self-join. Once again this check is performed in a manner
similar to Diamond Join (lines 2-11 Algorithm 3). For the
query to be streaming it further needs to be able to perform
the aggregation without going over all rows of the group (if
aggregation requires one loop, then adding the aggregation
to each row in the group would need a second pass over the
rows making it non-streaming). This is only possible for
Min andMax which can be computed if the input is sorted
on the aggregation column. Lines 12-17 in the algorithm
check that there is exactly one aggregation applied and that
it performs a Min or a Max on a single input column.

4.4 Capture Parameters
In addition to AdvanceNext() and CheckAt-

tributes() we add an additional step, CaptureParam-
eters() , that is speci�c to the new rules. As we alluded
to in Section 3 each super operator is parameterized with a
list of edge parameters and a list of core operator param-
eters. This step captures such parameters. Algorithm 5
describes an algorithm that captures edge parameters for
an abstract edge annotated with Select, Project and/or
RestrRemap. We are in the process of adding support for
Top the only other relevant optional operator (Section 3.3).
Each edge parameter needs to contain enough information
to relate the input columns of a core operator with the
output columns of its child core operator. The algorithm
maintains an expression table with one entry per output

Algorithm 5 CaptureParameters

1: procedure CaptureParams(coreOp1, coreOp2,e)
2: ∀col∈coreOp2.cols projectionMap.Add((col→ col))
3: pred = >
4: curr = coreOp2.Child
5: while curr != coreOp1 do
6: if curr is RestrRemap then
7: for (a→ b) ∈ curr.maps do
8: for (col→ Expr) ∈ projectionMap do
9: if Expr.Contains(b) then
10: Expr.Substitute(b,a)

11: if pred.Contains(b) then
12: pred.Substitute(b,a)

13: if curr is Project then
14: for (srcExpr → b) ∈ curr.newCols do
15: for (col→ Expr) ∈ projectionMap do
16: if Expr.Contains(b) then
17: Expr.Substitute(b,srcExpr)

18: if pred.Contains(b) then
19: pred.Substitute(b,srcExpr)

20: if curr is Select then
21: pred = pred ∧ Select.predicate

22: curr = curr.Child
23: return (projectionMap,pred)

column (initialized to identity) and a summary predicate
(initialized to true) to collect this information.
It walks down the abstract edge (from parent to child)

and updates these entries as shown in Algorithm 5. Re-
call that each edge can have optional operators occuring
any number of times in any order. On coming across Re-
strRemap (lines 6-12) every renaming is undone. That is,
every occurrence of the new name is replaced with the old
name in the summary predicate (lines 8-10) and in all ex-
pressions in the projection list (11-12). The algorithm makes
use of an expression library to match variables (Contains)
and perform alpha conversion (Subst) [2]. On a project,
only newly added columns (newCols) need to be processed.
Columns that were removed could not have been used in
parent expressions or predicates. The newly added columns
are processed similar to renames (lines 15-19), except that
now the new column is replaced by an expression, growing
the expression trees and the summary predicate. Finally on
a select the summary predicate is updated by conjoining it
with the select predicate (line 21). This process is repeated
for every abstract edge. For example, for an edge with the
sequence of operators σa+d>100.πa,b+c→d the edge parame-
ters would be ([a→ a, d→ b+ c],a+ b+ c > 100).
In addition to this CaptureParameters() also analyzes

the core operators to capture the type of the join and the
column on which aggregations are performed (the column
on which min is performed and the input column that it is
renamed from) to construct a node parameter list. This is
fairly trivial and we skip details here.

4.5 Costing super-operators
As the new super-operators introduced are streaming in

nature they do not have any associated I/O cost (the plan
may have sort and exchange operators before the super-
operator and the plans cost will account for them). The
CPU cost of the super-operator can be derived by relating

356

them to the cost of similar streaming operators. For exam-
ple, by summing the CPU cost of the underlying grouping
aggregations forDiamond UnionAll andDiamond Join.
Note that the cost of the individual grouping aggregations
would account for selectivities of intermediate �lters.

5. IMPLEMENTATION
We cover some salient aspects of our implementation.

5.1 Physical operator and code generation
As SQL is a very rich language supporting many di�er-

ent types and type speci�c semantics (e.g. dealing with null
during aggregation), re-implementing the core logic for our
super-operators is bound to be error prone. We therefore
implement them in a modular and templatized way.
• We reuse core methods used in existing operators to han-
dle types and apply functions (built-in functions, aggrega-
tions, type conversion) on types. For example, the super-
operator for our �rst two examples is similar to a stream-
ing group-by implementation. This operator already has
methods to determine when to trigger aggregation, how
to perform any standard aggregation on any supported
type and when to produce outputs.
• Super-operators need to evaluate predicates and expres-
sions before invoking core methods. Big-data languages
like SCOPE support non-SQL predicates and expres-
sions, often as part of row-wise operations like select and
project. The existing implementation of such operators
already uses templatized code that has holes in code �lled
in during code generation. Our physical operator imple-
mentations make use of the same strategy. They leave
holes which are �lled based on super-operator parameters
during code generation. A low level compiler that sup-
ports the language of the expressions and predicates is
used to compile down the �nal binaries.
• Lastly our operators do require some super-operator spe-
ci�c code, for example for outputting rows by combining
results from di�erent core-operators. The code we added
constitutes a very small fraction of the operator code and
is carefully reviewed/tested.
• Super-operators sometimes share some common function-
ality. For example Diamond UnionAll and Diamond
Join only di�er in the output statements. The per-row
computation they perform are the same. We therefore
even implement our physical operators in a modular fash-
ion, abstracting away common functionality into separate
functions, and reusing them across super-operators.

5.2 Implementation summary and status
A major constraint while adding super-operators to pro-

duction big data optimizer was to make few well abstracted
changes to the code. In order to keep code changes to the
minimum and to provide the right auto-tuning knobs we had
to keep the number of new rules we add to a small number.
To adhere to these constraints we developed a new core con-
cept of abstract pattern matching described earlier.
So far we have added 3000 lines of new code, this includes

2000 lines to implement the core algorithms from the pre-
vious section and the rest for implementing super-operator
speci�c logic (streamability checks and physical operators).

6. DISCUSSION & RELATED WORK

The optimizations proposed in this paper merge compu-
tations performed across multiple stages of a big-data query
into a single stage, and produce e�cient code (constant
memory, single tight loop) for that stage. In this section
we discuss two speci�c lines of work that address parts of
this problem, but do not achieve the dual bene�ts above.
The �rst line of work tries to reduce the number of stages

needed to execute a query. The production optimizer we
use, already explores rules that eliminate exchange and sort
operators [31] from a linear chain of operators. A related
optimization that is part of the HIVE query optimizer [26,
18], tries to put multiple key based operators (Join and
GroupBy) in the same stage. They look for correlations
among operators and their children, and combine them into
a single stage. Such an optimization only moves around
stage boundaries, but does not eliminate non-streaming Join
and Spool operators, nor does it produce a single tight loop
implementation of multiple operators. Also their conditions
are quite restrictive and di�erent from ours (they do not look
for streamability). They do not cover the patterns we opti-
mize. We observe that the query optimizer used by Spark
classi�es transformations as wide or narrow, and introduces
stage breaks at every wide operator. While they use a dif-
ferent terminology they end up introducing stage breaks as
described in Section 2.
This paper proposes optimizations that go beyond basic

exchange elimination or re-arranging of stage boundaries.
They eliminate expensive Join, Spool and UnionAll opera-
tors altogether. Further, as the optimizations are integrated
as rewrite rules, they compose with other existing rules.
A second line of work relates to advancements in code

generation [20, 17, 16, 8, 19, 25]. These frameworks tar-
get low level ine�ciencies common to data-analytics run-
times, including virtual call overheads incurred during query
evaluation and computation of redundant expressions across
multiple operators. This style of compilation happens after
query optimization, and only looks for low level peep-hole
style optimizations. In the big-data setting, Spark uses a
code-generator derived from HyPer [20]. However it only
looks for optimizations within a single stage [4, 8], and can-
not perform cross stage optimizations as proposed here. The
SCOPE query optimizer performs simple cross-stage peep-
hole optimizations. It pushes down projections and �lters
[14] from scripts that also use non-SQL user code, and ex-
tends early aggregation [23] to user de�ned aggregates. The
proposed optimizations are more powerful, they eliminate
stages altogether by merging computation across stages, and
produce e�cient code.
In summary, by introducing non-SQL logical operators we
enable powerful optimizations that current big-data query
compilers (where optimizer deals with SQL operators and
code generator produces per stage code) do not consider.
Note that while we focus on big-data settings in this pa-

per, super-operator optimizations apply to other query en-
gines as well. Even on a single machine, the optimizations
would reduce the number of operators, reduce contention
and eliminate unnecessary bu�ering. They would produce
e�cient code-fragments that, to the best of our knowledge,
none of the existing code-generators do today.
Future Directions We would like to conclude with a dis-
cussion on potential ways to generalize the ideas presented
here to a broader class of queries. It would be interesting to
study if such optimizations can be applied to multi-output

357

queries, as targetted by recent code generators [25], or more
broadly for multi-query optimization. A related problem
is one of composing super-operators together via additional
super-operator rewrite rules. From our experience we have
seen instances where certain super-operators compose with
other super-operators (e.g. two Diamond UnionAll). We
plan to work on these problems in future.

7. EVALUATION
Big data systems like SCOPE, Hive and Spark are de-

signed to run on large clusters containing hundreds to thou-
sands of machines. SCOPE is used extensively within Mi-
crosoft for running business critical analytical queries often
processing tens to hundreds of terabytes of data.

7.1 Experimental Setup
We evaluate our enhancements on a production cluster

of more than 50,000 commodity machines. Machines come
from di�erent generations of the intel family but typically
have 16-24 cores, 128 GB of RAM, 4 HDDs and 4 SSDs. We
were constrained to use at-most 1000 cores at a time.
We pick important production queries for evaluation. We

classify a query as important if it runs multiple times a week
(on di�erent data) and is run by important customers (iden-
ti�ed based on the group name, prod vs. test for example).
To isolate the bene�ts from our optimization we pick 20
queries where more than 70% of the cost of running the
query is spent on sub-queries that we optimize.
We begin with a detailed look at a production query and

how it bene�ts from our optimizations. We then report re-
sults on all evaluated queries.

7.2 Super-operators in action
Figure 15 shows a query that analyses mailbox storage

logs (2.8TB) to identify watermark events. It assigns the
timestamp of the last event (of any type) as a high water-
mark and the latest of one of few events as a low watermark.
This is done through a diamond union pattern. The rest of
the query (not shown) does further time series analysis on
the result of this sub-query.
Figure 16 compares query plans with and without super-

operators. We begin by explaining default plan (Fig-
ure 16(a)).
• The input �le is �rst read and partitioned on
MailboxGuid in stage 1. Stage 2 performs a partial ag-
gregation at the pod level. Note that this stage is dynam-
ically introduced at runtime to scale shu�e [32, 21]. Its
output is spooled to two consumers (1.5 TB to Stage 3
and 2.8 TB to Stage 4).
• Stages 3,5,7 and 4,6,8 perform similar computation. Stage
3(4) applies a �lter, sorts and partitions the data for stage
7(8). Once again the runtime dynamically introduces an
intermediate aggregation stages (5 and 6) to scale shu�e.
Stage 7(8) merges the corresponding partitions from stage
3(4) and 5(6) and performs �nal aggregations.
• Stage 9 unions 73.6 GB of data from Stages 7 and 8.
Overall the baseline plan shu�es 15TB of data. It runs
in 32 minutes and its cost in terms of total compute time
(cumulative across all vertices of all stages) is 88 hours. The
optimized query (Figure 16(b)) has only 4 stages.
• The �rst two stages are similar to the baseline. They par-
tition the input on the grouping column. In this case the

partitioning is introduced to satisfy the required proper-
ties of our super-operator.
• Note that the optimized plan has eliminated the spool
altogether. It directly performs a single intermediate ag-
gregate in Stage 3 (as opposed to 2 in baseline).
• Stage 4 merges corresponding partitions and invokes our
super-operator. The super-operator computes all neces-
sary aggregates and directly produces the unioned output.

The optimized plan runs in 18 minutes (1.8x speedup) and
its cost is only 43 hours (50% cost saving).
A surprising observation (not shown in �gure) is that the

optimization resulted in an overall reduction of 10% in com-
pilation time. Turns out that due to the elimination of sev-
eral stages the optimized query took lesser time for code
generation. We observed similar reductions for other queries
too. For queries where our optimizations did not apply there
was no signi�cant di�erence in compilation time.

Table 2: Benchmark queries. The table shows op-
erator trees for the optimized sub-query. Operators
are su�xed with number of columns used, core oper-
ators separated by |, and execution statistics before
and after optimization.

op
reduction in serialized sub-query tree

stages shu�eTB (post-order traveral)
1 DU 9→ 4 26→ 15 (σ2π4|γ2|σ1, σ6|γ2|π1ρ1)∪
2 DJ 9→ 4 20→ 11 (ρ2π1|γ4|σ2, ρ1|γ4|πσ1) ./1
3 DU 11→ 5 18→ 10 (π1|γ5|σ3, π1|γ5|σ1)∪
4 DU 10→ 5 15→ 8 (ρ1σ1π1|γ4|, ρ1|γ4|)∪
5 DJ 10→ 5 14→ 8 (σ2π2|γ4|σ1, |γ5|π2) ./4
6 DU 9→ 4 6.5→ 4 (ρ1|γ5|σ1, σ1|γ5|)∪
7 DJ 8→ 4 7→ 4.5 (π1|γ2|, |γ5|π1σ3) ./4
8 DJ 11→ 6 5→ 3 (σ1|γ3|ρ1, σ2|γ2|) ./1
9 DU 8→ 4 5.5→ 3 (ρ2|γ7|σ5, ρ1|γ7|)∪
10 MJ 9→ 5 5→ 3 (ρ1π1|γ2|, σ1ρ1) ./1
11 DJ 12→ 6 3→ 1.5 (ρ1|γ4|σ1, |γ4|π2)∪
12 DJ 8→ 4 6→ 4.5 (σ1|γ2|ρ1, σ2|γ2|) ./2
13 DJ 6→ 3 3→ 2.5 (π2σ1|γ4|π2, σ3|γ3|ρ2) ./3
14 DU 6→ 3 3.1→ 2 (ρ1σ1ρ2|γ5|, σ3|γ5|)∪
15 DU 7→ 3 2.7→ 2 (π1σ1|γ6|, σ1|γ5|π2)∪
16 MJ 7→ 4 2.5→ 2 (σ5|γ6|σ1, σ2π1) ./5
17 DJ 8→ 4 2→ 1 (|γ4|, σ1|γ4|π1σπ2) ./4
18 DU 8→ 4 2→ 1.5 (ρ1π1σ1|γ4|ρ1, σ5|γ4|)∪
19 MJ 6→ 3 2→ 1.7 (π1|γ2|σ1, σ4) ./1
20 DU 6→ 4 1.4→ 1 (σ6|γ6|ρ1π1σ4π2, σ1|γ7|π1)∪

7.3 Operator trees and execution plans
Table 2 reports the operators trees for the benchmark

queries. Post order traversals of the trees are shown with
core operators separated by `|'. The table shows evidence
that the same abstract tree indeed gets instantiated in many
di�erent ways, validating the need for our optimizer exten-
sions (the new tree representation, the new rule match-
ing algorithms and the addition of parameterized super-
operators). The abstract edges contain various operator
combinations with up to 4 operators on an abstract edge
and with the same operator sometimes appearing multiple
times (queries 14,17,20). The table also summarizes execu-
tion plans, it shows that the optimization usually eliminates
half the stages and shu�es 10-50% less data.

7.4 Cost and latency improvements
Figure 17 reports the fraction of cost needed to run super-

operator optimized queries. The queries are sorted in de-

358

(SELECT ARGMAX(TS, EventId) AS EventId ,
ARGMAX(TS, Ac t i v i t y Id) AS Act iv i ty Id ,
ARGMAX(TS, S imp l i f i e d (EventId)) AS SEvent ,
ARGMAX(TS, MachineName) AS MachineName ,
MailboxGuid AS MailboxGuidString ,
COUNT(∗) AS cnt

FROM l og
WHERE EventName IN (" [EventName1] " ,

" [EventName2] " , " [EventName3] ")
GROUPBY MailboxGuidString)
UNION ALL
(SELECT ARGMAX(TS, EventId) AS EventId ,
ARGMAX(TS, Ac t i v i t y Id) AS Act iv i ty Id ,
FIRST("High") AS SEvent ,
ARGMAX(TS, MachineName) AS MachineName ,
MailboxGuid AS MailboxGuidString ,
COUNT(∗) AS cnt

FROM l og
GROUPBY MailboxGuidString) ;

Figure 15: Sample Query

Extract

Spool
PodAggregate

Aggregate
Intermediate

Aggregate
Intermediate

GroupBy
Merge

GroupBy
Merge

Output
UnionAll

2.8TB

1

2

3 4

5 6

87

9

2.8TB1.5TB

2.7TB1.5TB

2.7TB1.5TB

67GB6.7GB

41GB

Extract

Partition
PodAggregate

Aggregate
Intermediate

Output
Super-operator

Merge

1

2

3

4

Partition
Sort

Filter

Partition
Sort

2.8TB

2.7TB

2.7TB
121GB

73.7GB 73.7GB(a) (b)

119GB

Figure 16: Query execution for sample query (a)
before and (b) after super-operator optimization

Figure 17: Cost savings. The plot shows the relative
cost of optimized query as compared to the baseline.
Each bar also shows the absolute cost in compute
hours for the baseline query.

Figure 18: Latency speedup over the baseline.

creasing order of total cost of running the baseline query
(cost in compute hours reported as a label on top of each
bar). Each bar reports the % cost to run the query with a
super-operator, relative to baseline. For the example query
discussed earlier (Q4) the bar is at 50% and is labeled 88.
As expected, the reduction in cost is directly correlated

to the amount of shu�e eliminated. A deeper look reveals
that the reason for the di�erences in bene�t do not so much
dependent on the exact pattern eliminated but on how early

data was �ltered out. In particular if the data is �ltered out
before the aggregation, the lesser is the cost of the aggre-
gation and the subsequent join/union operators, and hence
the lower is the saving. Queries 2-3,7,9,11 do not have any
�lters before the aggregation. While queries 4-6,17 �lter
out data before the aggregation only along one path. All
these queries save at-least 45% cost. A correlated e�ect is
that queries with high costs have higher savings. The input
data to most of our queries is in the range 1-4TB (except
Q1 which has a 10TB input) and hence their relative cost
depends on how much data is shu�ed. As a consequence
queries with low cost are also the ones with the least sav-
ings but we save signi�cantly on costly queries.
Figure 18 reports the speedup measured as the ratio of

the latency of the query before and after the optimization.
The latency trends more or less follow the cost trends. The
latency bene�ts are sometimes (Queries 3,8,18) lower than
the cost bene�ts as the baseline exploits more machines to
run some stages in parallel. On the other hand the latency
bene�ts are higher in queries 6,11,15 as they have a few
straggling tasks that delay the overall execution. In general
as the baseline uses more tasks it is more likely to su�er
from straggler e�ects. Overall the average speedup is 1.5×.
In summary we illustrate that by extending the optimizer

to incorporate super-operators we produce more compact
plans that simultaneously bene�t both cost and latency. As
a consequence the optimized plans use fewer tasks and can
make more e�cient use of the available parallelism.

8. CONCLUSIONS
In this paper we propose extensions required to transfor-

mation based optimizer like SCOPE to incorporate stream-
ing super-operators. We answer the question of how to add
minimum number of rules to the query optimizer for doing
these transformations � required for code maintainability
and e�ciency � using novel concepts viz. abstract pattern
matching and parameterized super-operators.

Acknowledgements
We would like to thank Marc Friedman, Max Reinsel, Sunny
Gakhar, Shi Qiao and Clemens Szyperski from the SCOPE

359

team for reviewing our code and providing design feedback.

9. REFERENCES
[1] Code Generation and T4 Text Templates.

https://docs.microsoft.com/en-us/visualstudio/
modeling/
code-generation-and-t4-text-templates, 2019.

[2] Expression evaluation and lambdaCalculus.
https://en.wikipedia.org/wiki/Lambda_calculus,
2019.

[3] SQL Server. https://www.microsoft.com/en-us/
sql-server/sql-server-2019, 2019.

[4] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin
Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng,
Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. Spark sql: Relational data processing
in spark. In SIGMOD, pages 1383�1394, 2015.

[5] Dhruba Borthakur et al. Hdfs architecture guide.
Hadoop Apache Project, 2008.

[6] Damianos Chatziantoniou and Kenneth A. Ross.
Groupwise processing of relational queries. In VLDB,
pages 476�485, 1997.

[7] Carlo Curino, Subru Krishnan, Konstantinos
Karanasos, Sriram Rao, Giovanni M. Fumarola,
Botong Huang, Kishore Chaliparambil, Arun Suresh,
Young Chen, Solom Heddaya, Roni Burd, Sarvesh
Sakalanaga, Chris Douglas, Bill Ramsey, and Raghu
Ramakrishnan. Hydra: a federated resource manager
for data-center scale analytics. In NSDI, pages
177�192, 2019.

[8] Gregory Essertel, Ruby Tahboub, James Decker,
Kevin Brown, Kunle Olukotun, and Tiark Rompf.
Flare: Optimizing apache spark with native
compilation for scale-up architectures and
medium-size data. In OSDI, pages 799�815, 2018.

[9] César Galindo-Legaria and Milind Joshi. Orthogonal
optimization of subqueries and aggregation. In
SIGMOD, pages 571�581, 2001.

[10] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak
Leung. The google �le system. In SOSP, pages 29�43,
2003.

[11] Goetz Graefe. The cascades framework for query
optimization. Data Engineering Bulletin, 18, 1995.

[12] Goetz Graefe and William J. McKenna. The volcano
optimizer generator: Extensibility and e�cient search.
In ICDE, pages 209�218, 1993.

[13] Tandem Database Group. Nonstop sql: A distributed,
high-performance, high-availability implementation of
sql. In High Performance Transaction Systems, 1989.

[14] Zhenyu Guo, Xuepeng Fan, Rishan Chen, Jiaxing
Zhang, Hucheng Zhou, Sean McDirmid, Chang Liu,
Wei Lin, Jingren Zhou, and Lidong Zhou. Spotting
code optimizations in data-parallel pipelines through
periscope. In OSDI, pages 121�133, 2012.

[15] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub
Kulesza, Rahul Pathak, Stefano Stefani, and Vidhya
Srinivasan. Amazon redshift and the case for simpler
data warehouses. In SIGMOD, pages 1917�1923, 2015.

[16] Yannis Klonatos, Christoph Koch, Tiark Rompf, and
Hassan Cha�. Building e�cient query engines in a
high-level language. PVLDB, 7(10), 2014.

[17] K. Krikellas, S. D. Viglas, and M. Cintra. Generating
code for holistic query evaluation. In ICDE 2010,
pages 613�624, 2010.

[18] R. Lee, T. Luo, Y. Huai, F. Wang, Y. He, and
X. Zhang. Ysmart: Yet another sql-to-mapreduce
translator. In ICDCS, pages 25�36, 2011.

[19] Derek Gordon Murray, Michael Isard, and Yuan Yu.
Steno: Automatic optimization of declarative queries.
In PLDI, pages 121�131, 2011.

[20] Thomas Neumann. E�ciently compiling e�cient
query plans for modern hardware. PVLDB, 4(9), 2011.

[21] Shi Qiao, Adrian Nicoara, Jin Sun, Marc Friedman,
Hiren Patel, and Jaliya Ekanayake. Hyper dimension
shu�e: E�cient data repartition at petabyte scale in
scope. PVLDB, 12(10):1113�1125, 2019.

[22] Raghu Ramakrishnan, Baskar Sridharan, John R.
Douceur, Pavan Kasturi, Balaji
Krishnamachari-Sampath, Karthick Krishnamoorthy,
Peng Li, Mitica Manu, Spiro Michaylov, Rogério
Ramos, Neil Sharman, Zee Xu, Youssef Barakat, Chris
Douglas, Richard Draves, Shrikant S. Naidu, Shankar
Shastry, Atul Sikaria, Simon Sun, and Ramarathnam
Venkatesan. Azure data lake store: A hyperscale
distributed �le service for big data analytics. In
SIGMOD, pages 51�63, 2017.

[23] Veselin Raychev, Madanlal Musuvathi, and Todd
Mytkowicz. Parallelizing user-de�ned aggregations
using symbolic execution. In SOSP, pages 153�167,
2015.

[24] Matthias Schlaipfer, Kaushik Rajan, Akash Lal, and
Malavika Samak. Optimizing big-data queries using
program synthesis. In SOSP, pages 631�646, 2017.

[25] Maximilian Schleich, Dan Olteanu, Mahmoud
Abo Khamis, Hung Q. Ngo, and XuanLong Nguyen. A
layered aggregate engine for analytics workloads. In
SIGMOD, pages 1642�1659, 2019.

[26] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain,
Zheng Shao, Prasad Chakka, Suresh Anthony, Hao
Liu, Pete Wycko�, and Raghotham Murthy. Hive: a
warehousing solution over a map-reduce framework.
PVLDB, pages 1626�1629, 2009.

[27] Florian Waas et al. Counting, enumerating, and
sampling of execution plans in a cost-based query
optimizer. In ACM SIGMOD Record, 2000.

[28] Yongwen Xu. E�ciency in the columbia database
query optimizer. Master's thesis, Portland State
University, 1998.

[29] Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark:
Cluster computing with working sets. HotCloud, 2010.

[30] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching,
and Michael J. Freedman. Ri�e: Optimized shu�e
service for large-scale data analytics. In EuroSys,
pages 43:1�43:15, 2018.

[31] J. Zhou, P. Larson, and R. Chaiken. Incorporating
partitioning and parallel plans into the scope
optimizer. In ICDE, pages 1060�1071, 2010.

[32] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu,
Per-Ake Larson, Ronnie Chaiken, and Darren Shakib.
Scope: parallel databases meet mapreduce. In
PVLDB, volume 21, pages 611�636, 2012.

360

https://docs.microsoft.com/en-us/visualstudio/modeling/code-generation-and-t4-text-templates
https://docs.microsoft.com/en-us/visualstudio/modeling/code-generation-and-t4-text-templates
https://docs.microsoft.com/en-us/visualstudio/modeling/code-generation-and-t4-text-templates
 https://en.wikipedia.org/wiki/Lambda_calculus
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.microsoft.com/en-us/sql-server/sql-server-2019

[33] Calisto Zuzarte, Hamid Pirahesh, Wenbin Ma,
Qi Cheng, Linqi Liu, and Kwai Wong. Winmagic:
Subquery elimination using window aggregation. In
SIGMOD, pages 652�656, 2003.

361

	Introduction
	Preliminaries
	Super-operators and abstract operator trees
	Abstract operator trees
	Super-operator examples
	Characteristics of abstract operator trees

	Extending the query optimizer
	Current Rule matching algorithm
	Rule matching with abstract trees
	Streamability Checks
	Capture Parameters
	Costing super-operators

	Implementation
	Physical operator and code generation
	Implementation summary and status

	Discussion & Related Work
	Evaluation
	Experimental Setup
	Super-operators in action
	Operator trees and execution plans
	Cost and latency improvements

	Conclusions
	References

