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ABSTRACT
The need for responsible data management intensifies with
the growing impact of data on society. One central locus of
the societal impact of data are Automated Decision Systems
(ADS), socio-legal-technical systems that are used broadly
in industry, non-profits, and government. ADS process data
about people, help make decisions that are consequential to
people’s lives, are designed with the stated goals of improving
efficiency and promoting equitable access to opportunity,
involve a combination of human and automated decision
making, and are subject to auditing for legal compliance and
to public disclosure. They may or may not use AI, and may
or may not operate with a high degree of autonomy, but they
rely heavily on data.

In this article, we argue that the data management com-
munity is uniquely positioned to lead the responsible design,
development, use, and oversight of ADS. We outline a tech-
nical research agenda that requires that we step outside our
comfort zone of engineering for efficiency and accuracy, to
also incorporate reasoning about values and beliefs. This
seems high-risk, but one of the upsides is being able to explain
to our children what we do and why it matters.
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1. INTRODUCTION
We are in the midst of a global trend to regulate algorithms,

artificial intelligence, and automated decision systems. This
flurry of activity hardly comes as a surprise. As reported
by the recent One Hundred Year Study on Artificial Intelli-
gence [58]: “AI technologies already pervade our lives. As
they become a central force in society, the field is shifting
from simply building systems that are intelligent to building
intelligent systems that are human-aware and trustworthy.”
In the European Union, the General Data Protection Regula-
tion (GDPR) [66] offers protections to individuals regarding
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the collection, processing, and movement of their personal
data, and applies broadly to the use of such data by gov-
ernments and private-sector entities. Regulatory activity in
several countries outside of the EU, notably, Japan [48] and
Brazil [32], is in close alignment with the GDPR.

In the US, many major cities, a handful of states, and
even the Federal government are establishing task forces
and issuing guidelines about responsible development and
use of technology, often starting with its use in government
itself–—rather than in the private sector—–where there is,
at least in theory, less friction between organizational goals
and societal values. Case in point: New York City rightfully
prides itself on being a trendsetter—in architecture, fashion,
the performing arts and, as of late, in its very publicly made
commitment to opening the black box of the government’s use
of technology: In May 2018, an Automated Decision Systems
(ADS) Task Force was convened, the first such in the nation,
and charged with providing recommendations to New York
City’s agencies about becoming transparent and accountable
in their use of ADS. The Task Force issued its report in
November 2019, making a commitment to using ADS where
they are beneficial, reducing potential harm across their
lifespan, and promoting fairness, equity, accountability, and
transparency in their use [5].

Can the principles of the responsible use of ADS — of
socio-legal-technical systems that may or may not use AI,
and may or may not operate with a high degree of autonomy,
but that rely heavily on data — be operationalized as a
matter of policy [2]? Can this be done in the face of a crisis
of trust in government, which extends to the lack of trust in
the government’s ability to manage modern technology in
the interest of the public [73]? What will it take to instill
responsible ADS practices beyond government?

In this article, we hope to convince you that the data
management community should play a central role in the
responsible design, development, use, and oversight of ADS.
By engaging in this work, we have a critical opportunity to
help make society more equitable, inclusive, and just; make
government operations more transparent and accountable;
and encourage public participation in ADS design and over-
sight. To make progress, we may need to step outside our
engineering comfort zone and start reasoning in terms of
values and beliefs, in addition to checking results against
known ground truths and optimizing for efficiency objectives.
This seems high-risk, but one of the upsides is being able to
explain to our children what we do and why it matters.
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Outline. In the remainder of this paper, we will first illus-
trate the issues under discussion with an example from the
domain of hiring and employment (Section 2). We will go on
to position these issues, and possible solutions, within the
broader context of bias, worldviews, and equality of oppor-
tunity frameworks (Section 4). Then, we will discuss recent
technical work by us and others on embedding responsibility
into data lifecycle management (Sections 5) and on inter-
pretability of data and models for a range of stakeholders
(Section 6). In the technical sections, we will point out spe-
cific opportunities for contributions by the data management
community. We will conclude in Section 7.

2. AUTOMATED HIRING SYSTEMS
To make our discussion concrete, let us focus on hiring and

employment. Since the 1990s, and increasingly so in the last
decade, commercial tools are being used by companies large
and small to hire more efficiently: source and screen candi-
dates faster and with less paperwork, and successfully select
candidates who will perform well on the job. These tools are
also meant to improve efficiency for the job applicants, match-
ing them with relevant positions, allowing them to apply
with a click of a button, and facilitating the interview pro-
cess. According to Jenny Yang, former Commissioner of the
US Equal Employment Opportunity Commission (EEOC),
“Automated hiring systems act as modern gatekeepers to eco-
nomic opportunity. [...] Across industries, major employers
including Unilever, Hilton, and Delta Air Lines are using
data-driven, predictive hiring tools.” [68]

The hiring funnel. Bogen and Rieke [9] describe the hiring
process from the point of view of an employer as a series of
decisions that form a funnel (Figure 1): “Employers start by
sourcing candidates, attracting potential candidates to apply
for open positions through advertisements, job postings,
and individual outreach. Next, during the screening stage,
employers assess candidates—–both before and after those
candidates apply—–by analyzing their experience, skills, and
characteristics. Through interviewing applicants, employers
continue their assessment in a more direct, individualized
fashion. During the selection step, employers make final
hiring and compensation determinations.”

The hiring funnel is an example of an ADS: a socio-legal-
technical system operationalized as a sequence of data-driven,
algorithm-assisted steps, in which a series of decisions cul-
minates in job offers to some candidates and rejections to
others. While potentially beneficial, the use of ADS in hiring
is also raising concerns that pertain, broadly speaking, to
the decisions made by these systems and to the process by
which these decisions are made.

Discrimination. One set of concerns relates to discrimina-
tion. As pointed out by Bogen and Rieke [9], “The hiring
process starts well before anyone submits an actual job ap-
plication, and jobseekers can be disadvantaged or rejected at
any stage. Importantly, while new hiring tools rarely make
affirmative hiring decisions, they often automate rejections.”

Because of how impactful hiring decisions are for indi-
viduals and population groups, and because of a history of
discrimination, hiring practices are subject to antidiscrimi-
nation laws in many countries. In the US, Title VII of the
Civil Rights Act of 1964 broadly prohibits hiring discrimina-

Figure 1: The hiring funnel, reproduced with permission
from Bogen and Rieke [9], is an example of an Automated
Decision System (ADS): a data-driven, algorithm-assisted
process in which a series of decisions culminates in job offers
to some applicants and rejections to others.

tion by employers and employment agencies on the basis of
protected characteristics that include “race, color, religion,
sex, and national origin.” This law is supplemented by other
federal laws that extend similar protections based on age
and disability status, and by a patchwork of other federal,
state, and local laws.

Are existing legal protections against discrimination suf-
ficient today, when ADS are reshaping, streamlining, and
scaling up hiring? Or is the use of ADS reviving and reinforc-
ing historical discrimination, and giving rise to new forms of
discrimination? Is discrimination going undetected, due, for
example, to legal constraints on the types of demographic
data that a potential employer can collected, or to applicants
declining to disclose their demographic group membership?
Can attempts to de-bias datasets and models be effective,
or do they amount to fairwashing—covering up, and even
legitimizing, discrimination with the help of technological
solutions?

Due process. Another set of concerns relates to due process,
also known as procedural fairness or procedural regularity.
As explained by Kroll et al. [34]: “A baseline requirement in
most contexts is procedural regularity: each participant will
know that the same procedure was applied to her and that
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the procedure was not designed in a way that disadvantages
her. This baseline requirement draws on the Fourteenth
Amendment [to the US Constitution] principle of procedural
due process. Ever since a seminal nineteenth century case, the
[US] Supreme Court has articulated that procedural fairness
or due process requires rules to be generally applicable and
not designed for individual cases.”

Notably, research demonstrates that, as long as a process
is seen as fair, people will accept outcomes that may not
benefit them. This finding is supported in numerous domains,
including hiring and employment, legal dispute resolution
and citizen reactions to police and political leaders, and it
remains relevant when decisions are made with the assistance
of algorithms [63].

Citron and Pasquale [12] discuss the need for due process
safeguards in scoring systems: “The act of designating some-
one as a likely credit risk (or bad hire, or reckless driver)
raises the cost of future financing (or work, or insurance
rates), increasing the likelihood of eventual insolvency or
un-employability. When scoring systems have the potential
to take a life of their own, contributing to or creating the sit-
uation they claim merely to predict, it becomes a normative
matter, requiring moral justification and rationale.” Score-
based selection and ranking are indeed in broad use at all
stages of the hiring funnel, and can amount to self-fulfilling
prophecy if left unchecked.

An immediate interpretation of due process for the hiring
ADS is that the employer ought to be able to show that
the same decision making procedure was used for all job
candidates. Yet, simply stating that the same code was
executed for everyone does not get to the heart of the issue,
precisely because individuals and population groups may
be represented differently in the data. For example, groups
that are historically under-represented in the workforce will
also be under-represented in the data record, which may in
turn reduce generalizability of predictive models for those
groups [11]. Further, values of a particular feature may
be missing more frequently for one sub-population than
for another (e.g., age may be unspecified for women more
frequently than for men), also leading to disparate predictive
accuracy. Finally, it has been documented that survey data
can be noisier for minority groups than for others [28]. (Lehr
and Ohm [36] give additional examples of the impact of data
on discrimination and due process in machine learning.)

Feature selection. An important dimension of due process,
closely linked to discrimination, is substantiating the use
of particular features in decision-making. Regarding the
use of predictive analytics to screen candidates, Yang [68]
states: “Algorithmic screens do not fit neatly within our
existing laws because algorithmic models aim to identify
statistical relationships among variables in the data whether
or not they are understood or job related.[...] Although
algorithms can uncover job-related characteristics with strong
predictive power, they can also identify correlations arising
from statistical noise or undetected bias in the training data.
Many of these models do not attempt to establish cause-
and-effect relationships, creating a risk that employers may
hire based on arbitrary and potentially biased correlations.”
That is, identifying features that are impacting a decision
is important, but it is insufficient to alleviate due process
and discrimination concerns. The employer should also show
that these features are relevant for performance on the job.

An extreme case of feature selection gone wrong is when
tools claim to predict job performance by analyzing an in-
terview video for body language and speech patterns. In his
recent talk, Arvind Narayanan refers to tools of this kind
as “fundamentally dubious” and places them in the category
of AI snake oil [44]. The premise of such tools, that (a) it
is possible to predict social outcomes based on a person’s
appearance or demeanor and (b) it is ethically defensible
to try, reeks of scientific racism and is at best an elaborate
random number generator.

Even features that can legitimately be used for hiring may
capture information differently for different individuals and
groups. For example, it has been documented that the mean
score of the math section of the SAT (Scholastic Assessment
Test, used broadly in the US) differs across racial groups,
as does the shape of the score distribution [50]. These dis-
parities are often attributed to racial and class inequalities
encountered early in life, and are thought to present persis-
tent obstacles to upward mobility and opportunity.

Auditing and disclosure. Because of the wide-spread use
of commercial ADS in hiring, and because of the discrimina-
tion and due process concerns they raise, there is a push to
strengthen the accountability structure in this domain. The
gist of most proposals is to develop new legal and regula-
tory mechanisms—and the supporting technical methods—to
facilitate auditing of these systems and public disclosure.

For example, Yang [68] advocates that “A federal explain-
ability standard that sets forth the parameters for what it
means to explain an algorithm to different audiences (such
as workers, employers, or technologists) would be valuable
to ensure these considerations are built into the design of an
algorithmic system from the outset.” She also speaks to the
importance of the right to an explanation—that “employers
should explain the rationale for a decision in terms that a
reasonable worker could understand. Standards could be
established to include disclosure of the material variables con-
sidered and the types of inferences the algorithm is making
to score the individuals.”

As another example, New York City Commission on Tech-
nology is entertaining a bill “in relation to the sale of auto-
mated employment decision tools” that would require audit-
ing such tools for bias and disclosing to the candidate the
job qualifications or characteristics used for assessment [67].

3. WHAT IS AN ADS? AND WHY US?
We have been referring to Automated Decision Systems

(ADS) throughout this paper. Yet, there is currently no
consensus as to what is, and is not, an ADS. In fact, the need
to define this term for the purpose of regulation has been the
subject of much debate. As a representative case, Chapter
6 of the NYC ADS Task Force report [5] summarizes their
months-long struggle to, somewhat ironically, define their
own mandate—come up with a definition that is sufficiently
broad to capture the important concerns discussed earlier in
this section, yet sufficiently specific to be practically useful.

If an intentional definition is out of reach, we may attempt
to define ADS by extension. An automated resume screening
tool seems like a natural example of an ADS, as does a tool
that matches job applicants with positions in which they
are predicted to do well. But is a calculator an ADS? (No!)
What about a formula in a spreadsheet? (Depends on what
it’s used for [23].)
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The hiring funnel in Figure 1, as well as each component of
the funnel, are ADS examples. These systems (1) process data
about people, some of which may be sensitive or proprietary;
(2) help make decisions that are consequential to people’s
lives and livelihoods; (3) are designed with the stated goals of
improving efficiency and promoting, or at least not hindering,
equitable access to opportunity; (4) involve a combination of
human and automated decision making; and (5) are subject
to auditing for legal compliance and, at least potentially, to
public disclosure.

Central to this ADS definition is the placing of techni-
cal decision-making components—a spreadsheet formula, a
matchmaking algorithm, or a predictive analytic—within
the lifecycle of data collection and analysis. Much excellent
work on algorithmic fairness and transparency goes on in the
machine learning, data mining, and algorithms communities.
Yet, a critical shortcoming of that work is their focus on the
last mile of data analysis. In contrast, and precisely because
of the importance of a lifecycle view of ADS, the data man-
agement community is uniquely positioned to deliver true
practical impact in the responsible design, development, use,
and oversight of these systems.

• Because data management technology offers a natural
centralized point for enforcing policies, we can develop
methodologies to transparently and explicitly enforce
requirements through the ADS lifecycle.

• Because of the unique blend of theory and systems in
our methodological toolkit, we can help inform regula-
tion by studying the feasible trade-offs between different
classes of legal and efficiency requirements.

• Because of our pragmatic approach, we can support
compliance by developing standards for effective and
efficient auditing and disclosure, and developing proto-
cols for embedding these standards in systems.

Importantly, the ADS lifecycle discussed in this section is
itself embedded within the societal context of ADS purpose
and impacts. We elaborate on this point in the next section.

4. FRAMING TECHNICAL SOLUTIONS
Before diving into specific research directions, let us step

back and think carefully about the role that technological
interventions, such as data management solutions, can play
in supporting the responsible use of ADS. This discussion
is necessary to help us find a pragmatic middle ground be-
tween the harmful extremes of techno-optimism—a belief
that technology can single-handedly fix deep-seated societal
problems like structural discrimination in hiring, and techno-
bashing—a belief that any attempt to operationalize ethics
and legal compliance in ADS will amount to fairwashing and
so should be dismissed outright.

4.1 Data: a Mirror Reflection of the World
We often hear that ADS, such as automated hiring systems,

operate on biased data and result in biased outcomes. What
is the meaning of the term “bias” in this context? Informally,
data is a mirror reflection of the world. More often than not,
this reflection is distorted. One reason for this may be that
the mirror itself (the measurement process) is distorted: it
faithfully reflects some portions of the world, while amplifying
or diminishing others. Another reason may be that even if

the mirror was perfect, it may be reflecting a distorted world
— a world such as it is, and not as it could or should be. The
mirror metaphor helps us make several simple but important
observations, on which we will elaborate more formally (and
less poetically) in Section 4.2.

1. A reflection cannot know whether it is distorted. Based
on the reflection alone, and without knowledge about
the properties of the mirror and of the world it reflects,
we cannot know whether the reflection is distorted, and,
if so, for what reason. That is, data alone cannot tell
us whether it is a distorted reflection of a perfect world,
a perfect reflection of a distorted world, or whether
these distortions compound.

2. Beauty is in the eye of the (human) beholder. It is
up to people — individuals, groups, and society at
large — and not up to data or algorithms, to come to a
consensus about whether the world is how it should be,
or if it needs to be improved and, if so, how we should
go about improving it.

3. Changing the reflection does not change the world. If
the reflection itself is used to make important decisions,
and we agree that it is distorted and explicitly state
the assumed or verified nature of such distortions, then
compensating for the distortions is worthwhile. But
the mirror metaphor only takes us so far. We have to
work much harder—usually going far beyond techno-
logical solutions—to propagate the changes back into
the world, not merely brush up the reflection.

In their seminal 1996 paper, Friedman and Nissenbaum
identified three types of bias that can arise in computer
systems: pre-existing, technical, and emergent bias [19]. In
the remainder of this section we will use this classification to
structure our discussion on bias, worldviews, and mitigation
strategies.

4.2 Pre-existing Bias
Pre-existing bias exists independently of an algorithm

itself and has its origins in society. Often, the presence or
absence of pre-existing bias cannot be scientifically verified,
but rather is postulated based on a belief system. We already
discussed that disparities in math SAT scores have been
observed among ethnic groups [50]. If we believed that the
test measures an individual’s academic potential, we would
not consider this an indication of pre-existing bias. If, on
the other hand, we believed that standardized test scores are
sufficiently impacted by preparation courses that the score
itself says more about socio-economic conditions than an
individual’s academic potential, then we would consider the
data to be biased.

Worldviews. Friedler et al. [18] reflect on the impossibility
of a purely objective interpretation of algorithmic fairness
(in the sense of a lack of bias): “In order to make fairness
mathematically precise, we tease out the difference between
beliefs and mechanisms to make clear what aspects of this
debate are opinions and which choices and policies logically
follow from those beliefs.” They model the decision pipeline
of a task as a sequence of mappings between three metric
spaces: construct space (CS), observed space (OS), and
decision space (DS), and define worldviews (belief systems)
as assumptions about the properties of these mappings.

3477



observed space 
(OS)

construct space 
(CS) 

decision space 
(DS) 

•

•
•
•

• •

•

•
•

• • •

grit 
knowledge of job

college GPA 
years of experience

performance  
on the job

WAE

WYSIWYG

•

•
•
•

• •

•

•
•

• • •

hire

reject

hire

reject

observed space 
(OS)

construct space 
(CS) 

decision space 
(DS) 

Figure 2: An illustration of worldviews from Frieder et
al. [18] for hiring. “What you see is what you get” (WYSY-
WIG) assumes that the mapping from the construct space
(CS) to the observed space (OS) shows low distortion, while
“We are all equal” (WAE) assumes that this mapping shows
structural bias, leading to a distortion in group structure.

The spaces and the mappings between them are illustrated
in Figure 2 for the hiring ADS. Individuals are represented by
points. CS represents the “true” properties of an individual
(e.g., grit and knowledge of the job for the hiring ADS), OS
represents the properties that we can measure (e.g., college
GPA as a proxy for grit, years of experience as a proxy for
knowledge of the job). OS is the feature space of a component
in the decision pipeline, such as a classifier, a score-based
selection procedure, or a human hiring manager. Finally, DS
is the space of outcomes of that component.

When considering mappings, we are concerned with whe-
ther they preserve pair-wise distances between individuals.
Importantly, because both CS and the mapping from CS to
OS are, by definition, unobservable, a belief about the proper-
ties of the mapping has to be postulated. Friedler et al. [18]
describe two extreme cases: WYSIWYG (“what you see is
what you get”) assumes low distortion from CS to OS, while
WAE (“we are all equal”) assumes the presence of structural
bias—a systematic distortion in group structure.

While in general we cannot confirm the presence of pre-
existing bias in a dataset, we are sometimes able to use
another dataset, or contextual knowledge about the dataset
or about the world itself, to corroborate or challenge the claim
of pre-existing bias. For example, Lum and Isaac [39] showed
that two areas with non-white and low-income populations in
Oakland, CA experience 200 times more drug-related arrests
than other areas. Yet, based on the 2011 National Survey on
Drug Use and Health, the estimated number of drug users
is distributed essentially uniformly across Oakland, with
variation driven primarily by differences in population density.
This information can be combined with our knowledge about
policing practices, namely, that low-income neighborhoods
are patrolled more frequently than other neighborhoods, and
influence our belief about the presence of bias in the drug-
related arrests dataset.

If pre-existing bias in a dataset is postulated, perhaps with
corroboration from other datasources and with background
knowledge about data collection practices, yet we are still
interested in using this data in decision-making, then we

need to identify an appropriate bias mitigation strategy. The
WAE worldview justifies mitigations that enforce equality
of outcomes, which are most intuitively operationalized as
statistical parity, a requirement that the demographics of in-
dividuals receiving any outcome (positive or negative, in the
case of binary classification) is the same as their demograph-
ics in the input. For example, if half of the job applicants
are women, then half of those selected for in-person inter-
views should be women even if they appear less qualified by
conventional metrics. (See Mitchell et al. [41] for a recent
survey of fairness measures, of which statistical parity is an
example.) This mitigation is simple to enact, but it’s a blunt
instrument: it does not tell us which women to select or,
more generally, whether and how to look for useful signal in
the data under the assumption of pre-existing bias. Next, we
look at an alternative framework that brings more nuance
into the treatment of pre-existing bias and can help inform
the design of mitigation strategies.

Equality of opportunity. Heidari et al. [22] show an ap-
plication of equality of opportunity (EOP) frameworks to
algorithmic fairness. EOP emphasizes the importance of
personal qualifications, and seeks to minimize the impact
of circumstances and arbitrary factors on individual out-
comes. “At a high level, in these models an individual’s
outcome/position is assumed to be affected by two main
factors: his/her circumstance c and effort e. Circumstance c
is meant to capture all factors that are deemed irrelevant, or
for which the individual should not be held morally account-
able; for instance c could specify the socio-economic status
they were born into. Effort e captures all accountability
factors—those that can morally justify inequality.” [22]

Several conceptions of EOP have been proposed, differing
in what features they consider to be relevant (or morally
acceptable to use) and which they deemed irrelevant. So,
libertarian EOP allows all features to be used in decision-
making, while formal EOP prohibits the use of sensitive
features like gender and race but can still use proxy features.

In contrast, substantive EOP, notably, Rawlsian [49] and
luck egalitarian [51], seeks to offer equal opportunity in
access to positions by providing fair access to the necessary
qualifications for the positions. Both conceptions concede
that opportunity is only equal relative to one’s effort, but
they differ in how effort is modeled: Rawlsian EOP asserts
that equal effort should imply equal opportunity (represented
as a utility distribution), regardless of circumstances. Luck
egalitarian EOP considers effort relative to one’s demographic
group (“type” in their terms): two individuals are considered
to have exercised the same level of effort if “they sit at the
same quantile or rank of the effort distribution for their
corresponding types.” [22]

4.3 Technical Bias
Technical bias can be introduced at any stage of the ADS

lifecycle, and it may exacerbate pre-existing bias. The bad
news is that risks of introducing technical bias stemming
from data management components abound. The good news
is that, unlike with pre-existing bias, there is no ambigu-
ity about whether a technical fix should be attempted: if
technical systems we develop are introducing bias, then we
should be able to instrument these systems to measure it and
understand its cause. It may then be possible to mitigate
this bias and to check whether the mitigation was effective.
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Importantly, as we instrument our systems, we must once
again take the lifecycle view. The goal is to understand how
properties of individual components compose, and whether
we can make guarantees about the presence or absence of
technical bias in the pipeline overall based on what we know
about individual components. In what follows, we discuss
potential sources of technical bias in several lifecycle stages
that are within our (data management) purview.

Data cleaning. Methods for missing value imputation that
are based on incorrect assumptions about whether data is
missing at random may distort protected group proportions.
Consider a form that gives job applicants a binary choice of
gender and also allows to leave gender unspecified. Suppose
that about half of the users identify as men and half as
women, but that women are more likely to omit gender.
Then, if mode imputation (replacing a missing value with
the most frequent value for the feature, the default in scikit-
learn) is used, then all (predominantly female) unspecified
gender values will be set to male. More generally, multi-class
classification for missing value imputation typically only uses
the most frequent classes as target variables [8], leading to a
distortion for small population groups, because membership
in these groups will never be imputed.

Next, suppose that some individuals identify as non-binary.
Because the system only supports male, female, and unspeci-
fied as options, these individuals will leave gender unspecified.
If mode imputation is used, then their gender will be set
to male. A more sophisticated imputation method will still
use values from the active domain of the feature, setting
the missing values of gender to either male or female. This
example illustrates that bias can arise from an incomplete
or incorrect choice of data representation.

Finally, consider a form that has home address as a field.
A homeless person will leave this value unspecified, and it
is incorrect to attempt to impute it. While dealing with
null values is known to be difficult and is already considered
among the issues in data cleaning, the needs of responsible
data management introduce new problems. As we pointed
out in Section 2 under due process, data quality issues often
disproportionately affect members of historically disadvan-
taged groups, and we risk compounding technical bias due
to data representation with bias due to statistical concerns.

Filtering. Selections and joins can arbitrarily change the
proportion of protected groups (e.g., female gender) even if
they do not directly use the sensitive attribute (e.g., gender)
as part of the predicate or of the join key. This change
in proportion may be unintended and is important to de-
tect, particularly when this happens during one of many
preprocessing steps in the ADS pipelines.

Another potential source of technical bias is the usage of
pre-trained word embeddings. For example, a pipeline may
replace a textual name feature with the corresponding vector
from a word embedding that is missing for rare, non-western
names. If we then filter out records for which no embedding
was found, we may disproportionately remove individuals
from specific ethnic groups.

Ranking. Technical bias can arise when results are presented
in ranked order, such as when a hiring manager is considering
potential candidates to invite for in-person interviews. The
main reason is the inherent position bias — the geometric

drop in visibility for items at lower ranks compared to those
at higher ranks, which arises because in Western cultures
we read from top to bottom, and from left to right, and
so items in the top-left corner of the screen attract more
attention [7]. A practical implication is that, even if two
candidates are equally suitable for the job, only one of them
can be placed above the other, suggesting that it should be
prioritized. Depending on the needs of the application and
on the level of technical sophistication of the decision-maker,
this problem can be addressed by suitably randomizing the
ranking, showing results with ties, or plotting the score
distribution.

4.4 Emergent Bias
Emergent bias arises in a context of use and may be present

if a system was designed with different users in mind or
when societal concepts shift over time. For ranking and
recommendation in e-commerce, emergent bias arises most
notably because searchers tend to trust the systems to indeed
show them the most suitable items at the top positions [46],
which in turn shapes a searcher’s idea of a satisfactory answer,
leading to a “rich-get-richer” situation.

This example immediately translates to hiring and em-
ployment. If hiring managers trust recommendations from
an ADS, and if these recommendations systematically prior-
itize applicants of a particular demographic profile, then a
feedback loop will be created, further diminishing workforce
diversity over time. Bogen and Rieken [9] illustrate this
problem: “For example, an employer, with the help of a
third-party vendor, might select a group of employees who
meet some definition of success–—for instance, those who
‘outperformed’ their peers on the job. If the employer’s per-
formance evaluations were themselves biased, favoring men,
then the resulting model might predict that men are more
likely to be high performers than women, or make more errors
when evaluating women. This is not theoretical: One resume
screening company found that its model had identified having
the name ‘Jared’ and playing high school lacrosse as strong
signals of success, even though those features clearly had no
causal link to job performance.”

4.5 Summary
In summary, (1) We must clearly state the beliefs against

which we are validating fairness. Technical interventions
to improve fairness should be consistent with these beliefs.
Beliefs cannot be checked empirically or falsified, as they
are not hypotheses; they can only be stated axiomatically.
(2) We cannot fully automate responsibility, particularly
because many of the concerns we are looking to address
are themselves a consequence of automation. We embrace
the idea that technical interventions are only part of an
over-all mitigation strategy, and should verify that they
are even an effective step — there is no guarantee that
is the case. (3) We need to broaden the scope of data
management research beyond manipulations of properties of
either a dataset or an algorithm; ADS are datasets together
with algorithms together with contexts of use: the calculator
is not discriminatory, but its context of use may be.

5. MANAGING THE ADS LIFECYCLE
As we discussed in Section 3, ADS critically depend on

data and so should be seen through the lens of the data
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lifecycle [26]. Responsibility concerns, and important deci-
sion points, arise in data sharing, annotation, acquisition,
curation, cleaning, and integration. Several lines of recent
work argue that opportunities for improving data quality and
representativeness, controlling for bias, and allowing humans
to oversee the process, are missed if we do not consider these
earlier lifecyle stages [30, 36, 61].

Database systems centralize correctness constraints to sim-
plify application development via schemas, transaction pro-
tocols, etc.; algorithmic fairness and interpretability are now
emerging as first-class requirements. But unlike research in
the machine learning community, we need generalized require-
ments and generalized solutions that work across a range
of applications. In what follows, we give examples of our
own recent and ongoing work that is motivated by this need.
These examples underscore that tangible technical progress
is possible, and also that much work remains to be done to
offer systems support for the responsible management of the
ADS lifecycle.

5.1 Data Acquisition
Data used for analysis is often originally created for a

different purpose, and therefore is frequently not represen-
tative of the true distribution. Even if the data is explicitly
collected for the purpose of analysis, it can be hard to obtain
a representative sample. Consider, for example, a website
with reviews of products (or restaurants or hotels or movies).
The point of collecting reviews and scores is to provide users
with a distribution of opinion about the product, including
not only the average score, but also the variance, and other
aspects in the detailed reviews. Yet, we know that not every
customer leaves a review—in fact only a very small fraction
do. There is no reason to believe that this small fraction
is a random sample of the population. It is likely that the
sample skews young and well educated, potentially leading
to a substantial bias in the aggregate opinions recorded.

While bias in restaurant reviews may not be a socially
critical issue, similar bias could manifest itself in many other
scenarios as well. Consider the use of ADS for pre-screening
employment applications. As discussed above, historical
under-representation of some minorities in the workforce can
lead to minorities being under-represented in the training set,
which in turn could push the ADS to reject more minority
applicants or, more gennerally, to exhibit disparate predictive
accuracy [11]. It is worth noting that the problem here
is not only that some minorities are proportionally under-
represented, but also that the absolute representation of
some groups is low. Having 2% African Americans in the
training set is a problem when they constitute 13% of the
population. But it is also a problem to have only 0.2% Native
Americans in the training set, even if that is representative
of their proportion in the population. Such a low number
can lead to Native Americans being ignored by the ADS as
a small “outlier” group.

To address the problem of low absolute representation,
Asudeh et al. [4] proposed methods to assess the coverage
of a given dataset over multiple categorical features and to
mitigate inadequate coverage. An important question for the
data owner is what they can do about the lack of coverage.
The proposed answer is to direct the data owner to acquire
more data, in a way that is cognizant of the cost of data
acquisition. Further, because some combinations of features
are invalid or unimportant, a human expert helps identify

regions of the feature space that are of interest and sets
coverage goals for these regions.

Asudeh et al. [4] use a threshold to determine an appro-
priate level of coverage. Experimental results in the paper
demonstrate an improvement in classifier accuracy for mi-
nority groups when additional data is acquired. This work
addresses a step in the ADS lifecycle upstream from model
training, and shows how improving data representativeness
can improve accuracy and fairness, in the sense of disparate
predictive accuracy [11]. As we will discuss in Section 5.5,
there is an opportunity to integrate coverage-enhancing in-
terventions more closely into ADS lifecycle management,
both to help orchestrate the pipelines and, perhaps more
importantly, to make data acquisition task-aware, setting
coverage objectives based on performance requirements for
the specific predictive analytics downstream, rather than
based on a global threshold.

5.2 Preprocessing for Fair Classification
Even when the acquired data satisfies representativeness

requirements, it may still be subject to pre-existing bias, as
discussed in Section 4.2. Further, preprocessing operations,
including data cleaning, filtering, and ranking, can exhibit
technical bias in subtle ways, as discussed in Section 4.3.
We may thus be interested in developing fairness-enhancing
interventions to mitigate these effects.

In this section, we assume that data acquisition and pre-
processing are preparing data for a prediction task that
involves training a classifier. In most contexts, there are
many prediction tasks associated with a given dataset, each
representing a separate application requiring distinct domain
knowledge. We first we briefly describe associational fairness
measures, and then present methods that use causal models
to capture this domain knowledge, and intervene on the data
at the preprocessing stage to manage unfairness for a specific
downstream prediction task.

Associational fairness. Most treatments of algorithmic
fairness rely on statistical correlations in the observed data.
A prominent example is statistical parity (discussed in Sec-
tion 4.2), a requirement that the demographics of individuals
receiving any outcome is the same as their demographics in
the input. Conditional statistical parity [13] controls for a
set of admissible factors to avoid some spurious correlations.

Equalized odds requires protected and privileged groups to
have the same false positive rates and the same false negative
rates [21]. This notion is consistent with Rawlsian equality
of opportunity (EOP), discussed in Section 4.2, under the
assumption that all individuals with the same true label have
the same effort-based utility. As a final example, predictive
value parity (a weaker version of calibration [31]) requires
the equality of positive and negative predictive values across
different groups and is consistent with luck egalitarian EOP
if the predicted label is assumed to reflect an individual’s
effort-based utility. (See Heidari et al. [22] for details.)

Associational fairness measures are based on data alone,
without reference to additional structure or context [41].
Consequently, these measures can be fooled by anomalies
such as Simpson’s paradox [47].

Causal fairness. Avoiding anomalous correlations moti-
vates work based on causal models [29, 35, 43, 52, 53, 74].
These approaches capture background knowledge as causal
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relationships between variables, usually represented as causal
DAGs: directed graphs in which nodes represent variables
and edges represent potential causal relationships. Discrimi-
nation is measured as the causal influence of the protected
attribute on the outcome along particular causal paths that
are deemed to be socially unacceptable.

An important concept in causal modeling is a counterfac-
tual — an intervention where we modify the state of a set
of variables X in the real world to some value X = x and
observe the effect on some output Y . For example, we may
ask “Would this applicant have been hired if they had (or
had not) been female?” Kusner et al. [35] define fairness in
terms of counterfactuals for an individual, which in general
cannot be estimated from observational data [47]. Kilber-
tus et al. [29] define fairness as equal outcome distributions
for the whole population under counterfactuals for a different
value of the protected attribute, however, the distributions
can be equal even when there is discrimination [54].

Salimi et al. [54] introduced a measure called interven-
tional fairness that addresses these issues, and also showed
how to achieve it based on observational data, without re-
quiring the complete causal model. The user specifies a set
of admissible and inadmissible variables, indicating through
which paths in the causal model influence is allowed to flow
from the protected attribute to the outcome. The Markov
boundary (MB) (parents, children, children’s other parents)
of a variable Y describes those nodes that can potentially
influence Y . A key result is that, if the MB of the outcome
is a subset of the MB of the admissible variables (i.e., ad-
missible variables “shield” the outcome from the influence
of sensitive and inadmissible variables), then the algorithm
satisfies interventional fairness.

This condition on MB is used to design database repair
algorithms, through a connection between the independence
constraints encoding fairness and multi-valued dependencies
(MVD). Several repair algorithms are described, and the
results show that, in addition to satisfying interventional
fairness, the classifier trained on repaired data performs well
against associational fairness metrics.

5.3 Preprocessing for Fair Ranking
In Section 5.2 we discussed fairness-enhancing interven-

tions for classification. We now turn to ranking, another
common operation in automated hiring systems. Ranking
may be invoked as part of preprocessing, with results passed
to a predictive analytic; alternatively, its output may be
presented directly to a human decision-maker.

Algorithmic rankers take a collection of candidates as
input and produce a ranking (permutation) of the candidates
as output. The simplest kind of a ranker is score-based;
it computes a score of each candidate independently and
returns the candidates in score order (e.g., from higher to
lower, with suitably specified tie-breaking). Another common
kind of a ranker is learning-to-rank (LTR), where supervised
learning is used to predict the ranking of unseen candidates.
In both score-based ranking and LTR, we may output the
entire permutation, or, more often, only the highest scoring
k candidates, the top-k, where k is much smaller than the
size of the input n. Set selection is a special case of ranking
that ignores the relative order among the top-k.

Associational fairness. Yang and Stoyanovich [71] were
the first to propose associational fairness measures for rank-

ing. Their formulation is based on an adaptation of equality-
of-outcomes fairness measures, such as statistical parity (see
Section 4.2) to account for position bias, a kind of technical
bias that is prominent in rankings (see Section 4.3). The
intuition is that, because it is more likely that a higher-
ranked candidate will be selected, it is also more important
to achieve statistical parity at higher ranks.

For example, suppose that there is a single job opening,
that half of the applicants are women, and that at most
10 of the applicants will be invited for in-person interviews.
It is insufficient to guarantee that 5 women are among the
top-10, because they may end up in positions 6 through
10. Rather, men and women should alternate at the top-
10, and it is particularly important to see both genders
in equal proportion in earlier prefixes. To operationalize
this intuition, Yang and Stoyanovich [71] place proportional
representation fairness within the NDCG framework [27],
imposing proprotionality constraint over every prefix of the
ranking and accounting for position bias with a logarithmic
discount.

Fairness measures of this kind can be used in supervised
learning to train a fair LTR model. They can also be used to
formulate a fairness objective that a ranking—score-based
or learned—must meet to be legally or ethically admissible.
Asudeh et al. [3] develop methods to design fair score-based
rankers that rely on such fairness objectives. These methods
query a fairness oracle that, given a ranking, returns true if it
meets fairness criteria. If the ranking is found inadmissible,
an alternative ranking is suggested that is both fair and
close to the original, in the sense of being generated by a
score-based ranker with similar feature weights.

For example, if a job applicant’s score is computed as
0.5x1 + 0.5x2, where x1 is their years of experience and x2

is their college GPA (both suitably normalized), and the
resulting ranking turns out to be unfair, then the system
may suggest to the hiring manager a satisfactory ranking,
computed as 0.55x1 + 0.45x2 instead.

Causal intersectional fairness. Much previous research
on algorithmic fairness, including also on fairness in raking,
considers a single sensitive attribute, such as either gender or
race, or allows constraints on the combinations of sensitive
attribute values. In all these cases, the set of sensitive at-
tribute values induces a partitioning on the set of candidates.
However, this treatment may be insufficient because we often
need to impose fairness constraints on gender and on race,
and on some combinations of gender and race. For example,
we may be interested in detecting discrimination with respect
to women, Blacks, and Black women. This is because, as
noted by Crenshaw [14], it is possible to give the appearance
of being fair with respect to each sensitive attribute such as
race and gender separately, while being unfair with respect
to intersectional subgroups.

Yang et al. [70] developed a causal framework for inter-
sectionally fair ranking. Consider the task of selecting (and
ranking) job applicants at a moving company (this example
is inspired by Datta et al. [15]), and the corresponding causal
model in Figure 3. Applicants are hired based on their quali-
fication score Y , computed from weight-lifting ability X, and
affected by gender G and race R, either directly or through
X. By representing relationships between features in a causal
DAG, we gain an ability to postulate which relationships
between features and outcomes are legitimate, and which are
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Figure 3: Causal model that includes sensitive attributes
G (gender), R (race), utility score Y , other covariates X.

potentially discriminatory.
In our example, we may state that the impact of gender

G on score Y through weight-lifting ability X is legitimate
(because men are on average better at lifting weights than
women), but that direct impact of gender on score Y is
discriminatory. Further, we may state that the impact of
race R on score Y is discriminatory, both directly and through
X. Technically, we can encode these constraints by treating
X as a resolving mediator [29] for gender but not for race.

If the qualification score Y is lower for female applicants
and for Blacks, then the intersectional group Black females
faces greater discrimination than either the Black or the
female group. The gist of the methods of Yang et al. [70]
is to rank on counterfactual scores to achieve intersectional
fairness. From the causal model, they compute model-based
counterfactuals to answer the question, “What would this
person’s score be if they had (or had not) been a Black
woman (for example)?” By ranking on counterfactual scores,
they are treating every individual in the sample as though
they had belonged to one specific intersectional subgroup.

This method can be justified by a connection to luck
egalitarian EOP in that it considers the fine-grained impacts
of group membership on the effort-based utility distribution
Y .

5.4 Diversity in Set Selection and Ranking
The term diversity captures the quality of a collection of

candidates S ⊂ C of size k with regards to the variety of
its constituent elements [16]. Diversity constraints on the
output of an ADS may be imposed for legal reasons, such as
for compliance with Title VII of the Civil Rights Act of 1964.
Beyond legal requirements, benefits of diversity in hiring and
elsewhere are broadly recognized [45, 65]. Further, when set
selection or ranking are used as part of preprocessing, im-
proving diversity of the training set can improve performance
of the predictive analytic upstream.

A popular measure of diversity is coverage, which ensures
representation of the demographic categories of interest in
S, or in every prefix of a ranking τ (S). Coverage diversity
is closely related to proportional representation fairness: a
unifying formulation is to specify a lower bound `v for each
sensitive attribute value v, and to enforce it as the minimum
cardinality of items satisfying v in the selected set S [64].
If the k selected candidates need to also be ranked in the
output, this formulation can be extended to specify a lower
bound `v,p for every attribute v and every prefix p of the
returned ranked list, with p ≤ k [10]. Then, at least `v,p
items satisfying v should appear in the top p positions of the
output. Given a set of diversity constraints, one can then
seek to maximize the score utility of S (the sum of utility
scores of the elements of S), subject to these constraints.

Stoyanovich et al. [64] consider on-line set selection. Their

Table 1: 12 candidates with sensitive attributes race and
gender. Each cell lists an individual’s id, and score in paren-
theses.

Male Female
White A (99) B (98) C (96) D (95)
Black E (91) F (91) G (90) H (89)
Asian I (87) J (87) K (86) L (83)

work extends the classic Secretary problem [17, 37], and it’s
more recent k-choice variant [6], to account for diversity over
a single sensitive attribute. In on-line set selection, candi-
dates are interviewed one-by-one, their utility is revealed
during the interview, the decision is made to hire or reject
the candidate, and this decision is irreversible. The goal is
to hire k candidates to maximize the expected utility of the
selected set. The strategy is to (1) estimate the expected
scores by observing and, initially, not hiring any candidates;
then (2) hire candidates whose utility meets or exceeds the
estimate. Stoyanovich et al. [64] estimate expected scores
independently for different demographic groups to meet the
`v constraints, thus deriving a relative view of utility, which
is consistent with luck egalitarian EOP.

Yang et al. [69] also take a relative view of utility. They
consider set selection and ranking in presence of multiple
sensitive attributes, with diversity constraints on each. They
observe an intersectional issue — that utility loss is non-
uniform across groups, and that groups with systematically
lower scores suffer the loss disproportionately. They ad-
dress this by placing additional constraint on the selection
procedure, balancing utility loss across groups.

For example, consider 12 candidates in Table 1 who are ap-
plying for k = 4 positions, and suppose that we wish to hire
two candidates of each gender, and at least one candidate
from each race. The set that maximizes utility while satis-
fying diversity is {A, B, G, K} (utility 373). This outcome
selects the highest-scoring male and White candidates (A
and B), but misses the highest-scoring Black (E and F) and
Asian (I and J) candidates. This type of unfairness is un-
avoidable, but it can be distributed this unfairness in a more
balanced way: the set {A, C, E, K} (utility 372) contains
the top female, male, White, and Black candidates.

5.5 Holistic View of the Pipeline
In Sections 5.1-5.4, we discussed fairness and diversity

considerations at different lifecycle stages. We now show how
components such as these can be treated holistically.

Schelter et al. [56] developed FairPrep, a design and eval-
uation framework for fairness-enhancing interventions in
machine learning pipelines that treats data as a first-class
citizen. The framework implements a modular data lifecycle,
enables re-use of existing implementations of fairness metrics
and interventions, and integration of custom feature trans-
formations and data cleaning operations from real world use
cases. FairPrep pursues the following goals:

• Expose a developer-centered design throughout the life-
cycle, which allows for low effort customization and
composition of the framework’s components.

• Surface discrimination and due process concerns, in-
cluding disparate error rates, failure of a model to fit
the data, and failure of a model to generalize.
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Figure 4: Data life cycle in FairPrep [56], designed to enforce isolation of test data, and to allow for customization through
user-provided implementations of different components. An evaluation run consists of three different phases: (1) Learn different
models, and their corresponding data transformations, on the training set; (2) Compute performance / accuracy-related
metrics of the model on the validation set, and allow the user to select the ‘best’ model according to their setup; (3) Compute
predictions and metrics for the user-selected best model on the held-out test set.

• Follow software engineering and machine learning best
practices to reduce the technical debt of incorporat-
ing fairness-enhancing interventions into an already
complex development and evaluation scenario [55, 57].

Figure 4 summarizes the architecture of FairPrep that is
based on three main principles: Data isolation — to avoid tar-
get leakage, user code should only interact with the training
set, and never be able to access the held-out test set. Com-
ponentization — different data transformations and learning
operations should be implementable as single, exchangable
standalone components; the framework should expose sim-
ple interfaces to users, supporting low effort customization.
Explicit modeling of the data lifecycle — the framework de-
fines an explicit, standardized data lifecycle that applies a
sequence of data transformations and model training in a
predefined order.

FairPrep currently focuses on data cleaning (including dif-
ferent methods for data imputation), and model selection
and validation (including hyperparameter tuning), and can
be extended to accommodate earlier lifecycle stages, such as
data acquisition, integration, and curation. Schelteret al. [56]
measured the impact of sound best practices, such as hyper-
parameter tuning and feature scaling, on the fairness and
accuracy of the resulting classifiers, and also showcased how
FairPrep enables the inclusion of incomplete data into studies
and helps analyze the effects.

6. INTERPRETABILITY
Interpretability—allowing people to understand the pro-

cess and the decisions of an ADS—is critical to responsibility.
Interpretability is needed because it allows people, including
software developers, decision-makers, auditors, regulators,
individuals who are affected by ADS decisions, and members
of the public, to exercise agency by accepting or challenging
algorithmic decisions and, in the case of decision-makers, to
take responsibility for these decisions.

Making ADS interpretable is difficult, both because they
are complex (multiple steps, models with implicit assump-
tions), and because they rely on datasets that are often
re-purposed—used outside of the original context for which
they were intended. For these reasons, humans need to be

able to determine the “fitness for use” of a given model or
dataset, and to assess the methodology that was used to
produce it.

To address this need, we have been developing interpreta-
bility tools based on the concept of a nutritional label, draw-
ing an analogy to the food industry, where simple, standard
labels convey information about the ingredients and pro-
duction processes [60, 72]. Short of setting up a chemistry
lab, the consumer would otherwise have no access to this
information. Similarly, consumers of data products cannot
be expected to reproduce the computational procedures just
to understand fitness for their use. Nutritional labels, in
contrast, are designed to support specific decisions rather
than provide complete information.

6.1 Properties of a Nutritional Label
The data management community has been studying sys-

tems and standards for metadata, provenance, and trans-
parency for decades [24, 1, 42]. We are now seeing renewed
interest in these topics, and clear opportunities for this com-
munity to contribute.

Several recent projects, including the Dataset Nutrition
Label project [25], Datasheets for Datasets [20], and Model
Cards [40], are proposing to use metadata to support in-
terpretability. Notably, all these method rely on manually
constructed annotations. In contrast, our goal is to generate
labels automatically or semi-automatically as a side effect of
the computational process itself, embodying the paradigm
of interpretability-by-design.

To differentiate a nutritional label from more general forms
of metadata, we articulate several properties.

• Comprehensible: The label is not a complete (and
therefore overwhelming) history of every processing
step applied to produce the result. This approach
has its place and has been extensively studied in the
literature on scientific workflows, but is unsuitable
for the applications we target. The information on a
nutritional label must be short, simple, and clear.

• Consultative: The label should provide actionable in-
formation, not just descriptive metadata. Based on
this information, consumers may cancel unused credit
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Figure 5: Ranking Facts for the CS departments dataset.

cards to improve their credit score and job applicants
may take a certification exam to improve their chances
of being hired.

• Comparable: Labels should enable comparisons between
related products, implying a standard. The IEEE is
developing a series of ethics standards, known as the
IEEE P70xx series, as part of its Global Initiative on
Ethics of Autonomous and Intelligent Systems. These
standards include “IEEE P7001: Transparency of Au-
tonomous Systems” and “P7003: Algorithmic Bias
Considerations” [33]. The work on nutritional labels is
synergistic with these efforts.

• Concrete: The label must contain more than just gen-
eral statements about the source of the data; such
statements do not provide sufficient information to
make technical decisions about fitness for use.

• Computable: Although primarily intended for human
consumption, nutritional labels should be machine-
readable to enable data discovery, integration, and
automated warnings of potential misuse.

• Composable: Datasets are frequently integrated to con-
struct training data; the nutritional labels must be
similarly integratable. In some situations, the com-
posed label is simple to construct: the union of sources.
In other cases, the biases may interact in complex ways:
a group may be sufficiently represented in each source
dataset, but underrepresented in their join.

• Concomitant: The label should be carried with the
dataset; systems should be designed to propagate labels
through pipelines, modifying them as appropriate.

Figure 6: Stability: detailed widget.

6.2 A Nutritional Label for Rankings
To make our discussion more concrete, we now describe

Ranking Facts, a system that automatically derives nutritional
labels for rankings, developed by Yang et al. [72].

Figure 5 presents Ranking Facts that explains a ranking
of Computer Science departments. Ranking Facts is made
up of a collection of visual widgets. Each widget addresses
an essential aspect of interpretability, and is based on our
recent technical work on fairness, diversity, and stability in
algorithmic rankers. We spoke about fairness and diversity
in Section 5.3, and will now briefly describe the remaining
components of the tool.

Features and methodology. The Recipe and Ingredients
widgets help explain the ranking methodology. Recipe suc-
cinctly describes the ranking algorithm. For example, for a
linear scoring formula, each attribute would be listed together
with its weight. Ingredients lists attributes most material
to the ranked outcome, in order of importance. For exam-
ple, for a linear model, this list could present the attributes
with the highest learned weights. Put another way, the ex-
plicit intentions of the designer of the scoring function about
which attributes matter, and to what extent, are stated in
the Recipe, while Ingredients may show attributes that are
actually associated with high rank. Such associations can be
derived with linear models or with other methods, such as
rank-aware similarity in our prior work [59].

Stability. The Stability widget explains whether the ranking
methodology is robust on the given dataset. An unstable
ranking is one where slight changes to the data (e.g., due
to uncertainty or noise), or to the methodology (e.g., by
slightly adjusting the weights in a score-based ranker) could
lead to a significant change in the output. This widget can
report whether the ranking is sufficiently stable according
to some pre-specified criterion, or give a score that indicates
the extent of the change required for the ranking to change.

A detailed Stability widget complements the overview wid-
get. An example is shown in Figure 6, where the stability
of a ranking is quantified as the slope of the line that is fit
to the score distribution, at the top-10 and over-all. A score
distribution is unstable if scores of items in adjacent ranks
are close to each other, and so a very small change in scores
will lead to a change in the ranking. In this example the
score distribution is considered unstable if the slope is 0.25 or
lower. Alternatively, stability can be computed with respect
to each scoring attribute, or it can be assessed using a model
of uncertainty in the data. In these cases, stability quantifies
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the extent to which a ranked list will change as a result
of small changes to the underlying data. A complementary
notion of stability, quantifies the magnitude of change as a
result of small changes to the ranking model.

Asudeh et al. [3] develped methods for quantifying and
improving the stability of a score-based ranker with respect
to a given dataset, and focused on a notion of stability that
quantifies whether the output ranking will change due to
a small change in the attribute weights. This notion of
stability is natural for consumers of a ranked list (i.e., those
who use the ranking to prioritize items and make decisions),
who should be able to assess the magnitude of the region
in the weight space that produces the observed ranking. If
this region is large, then the same ranked order would be
obtained for many choices of weights, and the ranking is
stable. But if this region is small, then we know that only a
few weight choices can produce the observed ranking. This
may suggest that the ranking was “cherry-picked” by the
producer to obtain a specific outcome.

6.3 Interpretability in the Service of Trust
Interpretability means different things to different stake-

holders, including individuals being affected by decisions,
individuals making decisions with the help of algorithmic
tools, policy-makers, regulators, auditors, vendors, data sci-
entists who develop and deploy the systems, and members
of the general public. Stoyanovich et al. [63] proposed a
framework that connects interpretability of ADS with trust,
which was one of the starting points of our discussion in
Section 1. Indeed, remarkably little is known about how
humans perceive and evaluate algorithms and their outputs,
what makes a human trust or mistrust an algorithm, and
how we can empower humans to exercise agency –— to adopt
or challenge an algorithmic decision.

The authors argued that designers of nutritional labels
should explicitly consider what they are explaining, to whom,
and for what purpose. Further, to design effective expla-
nations, it will be helpful to rely on concepts from social
psychology such as procedural justice (that links with due
process, discussed in Section 2), moral cognition, and social
identity. Finally, it is necessary to experimentally validate
the effectiveness of explanations, because information disclo-
sure does not always have the intended effect.

For example, although the nutritional and calorie labelling
for food are in broad use today, the information conveyed
in the labels does not always affect calorie consumption. A
plausible explanation is that “When comparing a $3 Big Mac
at 540 calories with a similarly priced chicken sandwich with
360 calories, the financially strapped consumer [. . . ] may well
conclude that the Big Mac is a better deal in terms of calories
per dollar” [38]. It is therefore important to understand, with
the help of experimental studies, what kinds of disclosure
are effective, and for what purpose.

7. CONCLUSIONS
In this article, we gave a perspective on the role that the

data management research community can play in the respon-
sible design, development, use, and oversight of Automated
Decision Systems (ADS). We intentionally grounded our dis-
cussion in automated hiring tools, a specific use case that
gave us ample opportunity to both appreciate the potential
benefits of data science and AI in an important domain, and
to get a sense of the ethical and legal risks.

We also intentionally devoted half of this paper to setting
the stage — bringing in concepts from law, philosophy and
social science, and grounding them in data management
questions, before discussing technical research. This break-
down underscores that we (technologists) must think carefully
about where in the ADS lifecycle a technical solution is
appropriate, and where it simply won’t do.

On a related note, an important thread that runs through
this paper is that we cannot fully automate responsibility.
While some of the duties of carrying out the task of, say, legal
compliance can in principle be assigned to an algorithm, the
accountability for the decisions being made by an ADS always
rests with a person. This person may be a decision maker or
a regulator, a business leader or a software developer. For
this reason, we see our role as researchers in helping build
systems that “expose the knobs” or responsibility to people,
for example, in the form of explicit fairness constrains or
interpretability mechanisms.

Those of us in academia have an additional responsibility to
teach students about the social implications of the technology
they build. A typical student is driven to develop technical
skills and has an engineer’s desire to build useful artifacts,
such as a classification algorithm with low error rates. A
typical student may not have the awareness of historical
discrimination, or the motivation to ask hard questions about
the choice of a model or of a metric. This typical student
will soon become a practising data scientist, influencing
how technology companies impact society. It is critical that
the students we send out into the world have at least a
rudimentary understanding of responsible data science and
AI.

Towards this end, we are developing educational materials
on responsible data science. Jagadish launched the first
Data Science Ethics MOOC on the EdX platform in 2015
(https://www.edx.org/course/data-science-ethics).
This course has since been ported to Coursera (https://www.
coursera.org/learn/data-science-ethics) and to
Futurum, and has been taken by thousands of students
worldwide. More importantly, individual videos, including
case study videos, have been individually licensed under
Creative Commons and can be freely incorporated in your
own teaching where appropriate.

Stoyanovich has a highly visible technical course on Respon-
sible Data Science [62], with all materials publicly available
online. In a pre-course survey, in response to the prompt,
“Briefly state your view of the role of data science and AI
in society”, one student wrote: “It is something we cannot
avoid and therefore shouldn’t be afraid of. I’m glad that as
a data science researcher, I have more opportunities as well
as more responsibility to define and develop this ‘monster’
under a brighter goal.” Another student responded, “Data
Science [DS] is a powerful tool and has the capacity to be
used in many different contexts. As a responsible citizen,
it is important to be aware of the consequences of DS/AI
decisions and to appropriately navigate situations that have
the risk of harming ourselves or others.”
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pages 3543–3554, 2018.

[12] D. K. Citron and F. A. Pasquale. The scored society:
Due process for automated predictions. Washington
Law Review, 89, 2014.

[13] S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and
A. Huq. Algorithmic decision making and the cost of
fairness. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, Halifax, NS, Canada, August 13 - 17,
2017, pages 797–806. ACM, 2017.

[14] K. Crenshaw. Demarginalizing the intersection of race
and sex: A black feminist critique of antidiscrimination
doctrine, feminist theory and antiracist politics.
University of Chicago Legal Forum, (1):139–167, 1989.

[15] A. Datta, S. Sen, and Y. Zick. Algorithmic
transparency via quantitative input influence: Theory
and experiments with learning systems. In IEEE
Symposium on Security and Privacy, SP 2016, San

Jose, CA, USA, May 22-26, 2016, pages 598–617.
IEEE Computer Society, 2016.

[16] M. Drosou, H. V. Jagadish, E. Pitoura, and
J. Stoyanovich. Diversity in big data: A review. Big
Data, 5(2):73–84, 2017.

[17] E. Dynkin. The optimum choice of the instant for
stopping a markov process. Sov. Math. Dokl., 4, 1963.

[18] S. A. Friedler, C. Scheidegger, and
S. Venkatasubramanian. On the (im)possibility of
fairness. CoRR, abs/1609.07236, 2016.

[19] B. Friedman and H. Nissenbaum. Bias in computer
systems. ACM Trans. Inf. Syst., 14(3):330–347, 1996.

[20] T. Gebru, J. Morgenstern, B. Vecchione, J. W.
Vaughan, H. M. Wallach, H. D. III, and K. Crawford.
Datasheets for datasets. CoRR, abs/1803.09010, 2018.

[21] M. Hardt, E. Price, and N. Srebro. Equality of
opportunity in supervised learning. In D. D. Lee,
M. Sugiyama, U. von Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, pages 3315–3323, 2016.

[22] H. Heidari, M. Loi, K. P. Gummadi, and A. Krause. A
moral framework for understanding fair ML through
economic models of equality of opportunity. In
Proceedings of the Conference on Fairness,
Accountability, and Transparency, FAT* 2019, Atlanta,
GA, USA, January 29-31, 2019, pages 181–190. ACM,
2019.

[23] T. Herndon, M. Ash, and R. Pollin. Does high public
debt consistently stifle economic growth? a critique of
Reinhart and Rogof. Political Economy Research
Institute working Paper Series, (322), 2013.

[24] M. Herschel, R. Diestelkämper, and H. Ben Lahmar. A
survey on provenance: What for? what form? what
from? VLDB J., 26(6):881–906, 2017.

[25] S. Holland, A. Hosny, S. Newman, J. Joseph, and
K. Chmielinski. The dataset nutrition label: A
framework to drive higher data quality standards.
CoRR, abs/1805.03677, 2018.

[26] H. V. Jagadish, J. Gehrke, A. Labrinidis,
Y. Papakonstantinou, J. M. Patel, R. Ramakrishnan,
and C. Shahabi. Big data and its technical challenges.
Commun. ACM, 57(7):86–94, 2014.

[27] K. Järvelin and J. Kekäläinen. Cumulated gain-based
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