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ABSTRACT
We frequently compute a score for each item in a data set, some-
times for its intrinsic value, but more often as a step towards clas-
sification, ranking, and so forth. The importance of computing this
score fairly cannot be overstated. In this tutorial, we will develop
a framework for how to think about this task, and then present
techniques for responsible scoring and link these to traditional data
management challenges.
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1. INTRODUCTION
From “the secret trust scores companies use” [1] to the scores

used for college admission, we are all constantly being judged by
the scores automatically generated using data about us.

The scores are often derived by combining multiple criteria (aka
features or attributes). For instance, a lender may combine at-
tributes such as payment history, salary, education, and
age to develop a creditworthiness score for each customer. The
scores can be generated with different methods, linearly or using a
complex function, and be used for different purposes. In classifica-
tion, we use the scores to draw a decision boundary to specify, for
example, if a woman is at risk of developing invasive breast cancer
over the next 5 years [2]. In ranking, the scores are used to sort the
entities and, for example, select the top-8 soccer teams for seeding
pot 1 in the world cup tournament [3].

The scores are usually assigned either through (i) a process learn-
ed by machine learning models using some labeled training data,
or (ii) using a weight vector or a procedure designed by human
experts. For example, a logistic regression model learns a weight
vector that transforms a regularized multi-dimensional feature set
into a score that translates to a class label. Conversely, the scor-
ing mechanism used by US News for university ranking is a linear
function designed by human experts [4].
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Data-informed decisions can be profitable to societies and hu-
man beings. For example, China developed an app to help identify
high risk individuals in the fight against the Coronavirus [5].

On the other hand, even if it looks promising, data-driven deci-
sion making can cause harm. Probably the main reason is that real-
life social date is almost always “biased” [6, 7]. No one can miss
the extensive recent discussion about race in the context of polic-
ing and criminal justice. But similar questions arise in many other
domains as well. Take college admission for example. It has been
shown that the GPA values has gender bias. That is due to grading
policies that, for instance, may reduce grades for students with late
homework, disruptive behavior, or inattention [8, 9]. As a result,
using GPA as one of the features for generating the scores and rank-
ing the students without considering the inherent bias in data can
lead to gender bias. Evidence of bias has also been reported in pre-
dictive policing [10], college admission [11], credit scoring [12],
and job interviewing, hiring, and promotion [13], among others.

Such failures and, more generally, bias in data-driven decision
making, started the fast-growing area of fairness in data science.
Existing work has set the ground by providing the necessary terms
and definitions [14, 15]. Still, a challenge is that fairness is norma-
tive and there is no universal definition; there are trade-offs not only
between fairness and other optimization factors, but even between
different definitions of fairness [16–18]. As a result, it is impossible
even to satisfy all fairness definitions at the same time [19].

This tutorial consists of three parts. First, as outlined in § 2, we
will discuss bias in social data and the meaning of fairness. These
definitions provide a foundation to describe the problems we seek
to address, and some challenges that make our task particularly dif-
ficult. Next, in § 3, we will present an overview the work to date
towards addressing these problems. We will provide a taxonomy
of scoring mechanism design, evaluation tasks based on the scores,
and decision types. Discussing various types of interventions, we
will survey a group of representative papers. We will conclude the
tutorial by viewing the problem domain from the perspective of
the database community, in § 4. We will discuss opportunities to
leverage techniques originated from solving core data management
challenges to make contributions to responsible scoring and algo-
rithmic fairness.

2. DEFINITIONS AND CHALLENGES
A dataset is a collection of tuples D = {t1, · · · , tn}, each de-

fined over a set of attributes (aka features)X = {x1, · · · , xm} that
are used for decision making. In addition, a dataset contains a set of
sensitive attributes S = {s1, · · · , sm′} such as gender and race

that identify the demographic groups. We want decisions based on
data to be fair across different demographic groups.
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2.1 Data-Driven Bias
A potential advantage of algorithmic decision making is that it

removes human bias and only looks at the data dispassionately.
But “an algorithm is only as good as the data it works with” [7].
Social data is almost always biased as it inherently reflects his-
torical biases and stereotypes [6]. Data collection and represen-
tation methods often introduce additional bias. Using biased data
without paying attention to societal impacts can create a feedback
loop, and even increase discrimination in society. There are two
main perspectives on bias and the types of bias definitions: statis-
tical/algorithmic and societal bias. Biases have been looked at for
a long time in statistical community [20] but social data presents
different challenges [6,7,15]. For social data, the term bias refer to
demographic disparities in the sampled data that compromises its
representativeness and are objectionable for societal reasons [6,15].
At a high level, viewing a datasetD as a table of rows {t1, · · · , tn}
and columns {x1, · · · , xn}, bias can exist with regard to rows and
the columns:
• Bias on rows (Population bias): Systematic distortions in the

number of tuples from different demographic groups. Failing
to include enough samples from minority (sub)groups (a.k.a. the
lack of coverage [21]) in a dataset used for building or training
a scoring strategy makes it “difficult” to provide accurate ana-
lytical results for the minorities [22]. In other words, population
bias in training data can result in models that perform differently
across different groups.
• Bias on columns (Behavioral bias): differences in behavior (value

distribution) of attributes across different demographic groups.
This is also known as proxy bias, due to the high correlation with
sensitive attributes of “proxy” attributes in the dataset. Lower
salaries for employees of female sex or higher arrest rate for peo-
ple of color are some examples of biased attributes. Biased val-
ues in the data can directly transform to bias in the algorithms’
outcomes.

In addition to biases and inaccuracies occurring at the source of the
data, bias can also be introduced during the data collection, includ-
ing linking bias, content production bias, and temporal bias [6].
2.2 Fairness and Stability

There has recently been much work towards defining fairness [14,
15, 23]. Fairness, at a high level, is partitioned into individual
fairness, which deals with discrimination against individuals, and
group fairness, which considers parity over different demographic
groups. While some works such as [24] study individual fairness,
considering the social implications, most attention has been on gro-
up fairness. Kearns et al. [25, 26] proposed the notion of rich sub-
group fairness to bridge between group fairness and individual fair-
ness. Probably the more popular notion of fairness is based on
model independence or demographic parity [14, 15, 23], also re-
ferred to by terms such as statistical parity [24], and disparate im-
pact [7]. Model independence simply requires the sensitive char-
acteristic to be statistically independent of the score [15]. There is
a similarity between this model and diversity [27]. In addition to
independence, fairness can be defined using the notions of separa-
tion and sufficiency [15]. Considering a target variable (true label
in classification) for every tuple in a supervised learning setting, the
separation model allows correlation between the score and a sensi-
tive attribute to the extent that it is justified by the target variable.
Fairness measures such as predictive equality, Equal opportunity,
and Equalized odds follow the separation model. Sufficiency model
requires independence of a target variable and a sensitive attribute
conditional to the scores. In other words, a score satisfies suffi-
ciency if the sensitive attribute and target variable are clear from
the context. Predictive parity is an example fitting into this model.

Figure 1: The architecture of evaluation systems based on scoring.
In addition to fairness, we want a scoring to be stable with re-

spect to changes in the parameters used for scoring. A scoring is
stable if small changes in its parameters do not change the out-
comes based on the scores [28]. For example, consider a scoring
function for employees of a company that combines multiple per-
formance criteriaX , such as sales and customer satisfacti-

on, using a weight vector θ in the form of fθ = θ>X . The weight
vector can be designed by human experts or learned using a ma-
chine learning method. Suppose the company would like to pro-
mote the top-k employees. The scoring is stable if weight vectors
similar to θ also generate the same top-k as of θ. Formally speak-
ing, a scoring is stable if a large portion of vectors in the vicinity of
the current scoring-parameters vector also generate the same out-
come. In addition to changes in the scoring parameters, stability
has also been defined in form of changes in the input data and its
distribution in learning settings [29]. Stability from this perspective
is similar to the concept of robustness in machine learning [30].
2.3 Challenges
The following are challenges towards responsible scoring:
• Lack of representative data. A major challenge is that social

data is often limited to what is called “found data” [6, 21]. That
is, analyses are done with data that has been acquired indepen-
dently, possibly through a process on which the data scientist has
limited, or no, control. Collecting more data is often challenging
and, hence, we are restricted to the biased found data.
• Unknown values for sensitive attributes. A challenge in design-

ing scores is to mitigate disparate impact without practicing dis-
parate treatment – not to explicitly use the sensitive attributes
such as gender or race in the scores. In other words, how to be
fair without asking the the demographic information of users?
• Lack of universal definitions. As explained in § 2.2, there is not

universal definition for terms such as fairness as those are often
application-specific and identified based on societal norms.
• Trade-offs and impossibility theorems. Trade-offs between dif-

ferent objectives is a major challenge in responsible scoring de-
sign. This includes the trade-off between evaluation performance
(e.g. model accuracy in classification) and fairness [16] as well
as the trade-off between different definitions fairness [18, 19].

3. CURRENT SOLUTIONS
3.1 Score-based Evaluation

Scoring is the key component in the architecture of score-based
evaluators (Figure 1 [31]). The scores are computed by combining
attributes X either through a learning process (using some training
data), or using a weight vector assigned by human experts. Learn-
ing methods require that there be labeled data, and assume that
there is some known ground truth. In contrast, an expert-specified
method does not require any labeled data. Also, it has recently been
recognized that “for predicting social outcomes, AI is not substan-
tially better than manual scoring using just a few features” [32].
Such methods, however, may be ad-hoc.
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Two tasks that use scores to support decisions are classification
and ranking1. Classification is often attacked by first solving, for
example, a regression problem to summarize the data in a single
score [15]. The scores are then turned into discrete labels by dis-
cretizing them into buckets. In the case of binary classification, a
threshold t is used that when the score is larger than t the classifier
outputs one (e.g. accept) and zero (reject) otherwise.

The scores can be used to evaluate an object in a non-competitive
setting by only looking at its score value. For example, whether or
not an individual is classified as high risk for having breast cancer
only depends on that individual herself. In addition, the evaluations
can be competitive. For example, consider a company that would
like to give a raise to k percent of its employee or a student that
would like to apply to the top-20 universities in the US. In such
settings, knowing the absolute score of an entity is not enough for
identifying the decision about it, but rather we need the score rela-
tive to that of other entities.
3.2 Responsible Scoring Interventions

Interventions to achieve responsible scoring fall in two main cat-
egories: pre-processing techniques and algorithm modification [29]2.
Pre-processing techniques are mainly designed for scores learned
using training data. These methods attempt to rectify bias in train-
ing data that causes unfairness in model outcomes. They do so by
modifying the data so that any learning algorithm applied to it will
generate fair outcomes. The second category of techniques blends
fairness into the scoring algorithm design. They change the prob-
lem formulation to either ensure fairness as hard constraints, or to
trade-off between scoring performance and these terms. In the fol-
lowing, we first review some of the techniques that fall in the first
category. We will then acknowledge some representative algorithm
modification interventions for ranking and classification.
3.2.1 Pre-processing and Data Investigation

Algorithmic decisions are unfair because social data is biased.
Removing bias from the data will remove unfairness. Given a spe-
cific dataset, pre-processing techniques modify data according to
specific needs [29]. Many pre-processing techniques focus on re-
moving behavioral bias. These include removing biased attributes,
adding derived attributes, removing problematic tuples, massaging
the data (changing class labels), re-weighting (assigning weights to
tuples), and re-sampling [33–35]. Unlike other pre-processing ap-
proaches that use statistical correlations [36] formulates the prob-
lem as a causal database repair problem, proving sufficient condi-
tions for fair classifiers in terms of admissible variables.

[21,37,38] study coverage over a dataset to ensure that there are
enough representatives in the dataset for demographic subgroups
(e.g. Hispanic Female). Specifically, [21] uses “patterns” to rep-
resent the subgroups in form of attribute-value combinations and
aims to find the ones for which there are not “enough” instances in
the dataset. It also recommends a small number of additional data
points to resolve “problematic” uncovered patterns.

Besides pre-processing, it is necessary to provide tools that help
to investigate datasets. For example [39] provides task-specific in-
formation about a dataset, in the form of a set of visual widgets, as
a flexible “nutritional label”.
3.2.2 Scoring Design and Algorithm Modification

The types of algorithm modifications for responsible scoring de-
pend on the evaluation task and how those are created.
1Note that in some contexts ranking or classification is done with-
out scoring. Our focus are the evaluations based on scores.
2Post-processing techniques are another category of interventions
that minimally change the evaluations to satisfy fairness. Since
such methods do not change the scores, those are out of our scope.

Modifying learning algorithms for achieving fairness in score-
based classification has extensively been studied [40–42]. For ex-
ample, [40] adds fairness as a regularization term in the optimiza-
tion of logistic regression. Zafar et al. [42] observe that fairness
constraints are non-convex and propose a convex approximation
for the purpose of optimization. Zemel et al. [41] propose a combi-
nation of preprocessing and algorithm modification. They formu-
late fairness as the problem of finding an unbiased representation
of data that is good for classification.

Expert-designed scores in the form of fθ = θ>X are commonly
used for ranking (and sometimes for classification). A major issue
with such scores is that the assignment of weights is ad-hoc. De-
signing fair score-based rankings has been studied in [43]. It pro-
poses a query answering system that helps experts choose weight
vectors that lead to greater fairness – for a set of user-defined fair-
ness requirements. Given a user-defined weight vector θ, it returns
the most similar vector to θ whose output (ranking) satisfies the
fairness requirements. The expert can choose the system sugges-
tion, or use it to explore different weights before finalizing their
scoring function. [28] aims at obtaining stable evaluations based on
ranking. The size of the region, in parameter space, that produces
an observed ranking identify its stability. The intuition behind this
is that if only a few weight choices can produce an output, it may
suggest that the output was engineered or “cherry-picked”. Besides
measuring the stability of a given ranking, [28] designs a GET-
NEXT operator that returns the next stable ranking upon calling it.
It also provides an unbiased samplers from the weight-vector space
that enables Monte-carlo methods for responsible scoring [44]. [45]
combines [43] and [28] in system for responsible ranking.

4. OPPORTUNITIES
Fairness has become a big topic for the ML/AI research com-

munity. However, the construction of the ML model is only one
step in the Big Data ecosystem. We must address all parts of this
ecosystem to ensure fairness. In the following we highlight some
of the many contributions the database community can make in the
general area of algorithmic fairness:

• Input data preparation. Mitigating bias through the pipeline of
data preparation is a necessary step towards algorithmic fairness.
The database community has a lot to offer here, given its exper-
tise in data discovery, cleaning, and integration. Removing bias
from the input data can be viewed as a special case of data clean-
ing where the goal is to replace, modify, or delete problematic
tuples or values that cause bias.
• Data representation. Representation choices are critical design

decisions, traditionally approached with performance as the cen-
tral objective. These decisions can also impact fairness. For ex-
ample bucketization choices can lead to very different analysis
results.
• Data investigation. Data scientists require tools to investigate

bias in the data. Topics such as data profiling, context, and prove-
nance have an important role to play in designing such tools.
• Algorithm design. Topics such as ranking and top-k queries are

well-studied in the database community. Utilizing such tech-
niques for responsible scoring is a promising direction.
• Result presentation. How results are presented can also intro-

duce bias. The database community has studied biased framing,
cherry-picking [46], and such other spin methods. This work can
be continued to understand implications for fairness.
• Integrating to databases. Last but not least, an important step

is to fully implement fairness concepts and requirements in the
database engine and to add declarative functions to SQL.
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[14] I. Žliobaitė. Measuring discrimination in algorithmic
decision making. DATA MIN KNOWL DISC,
31(4):1060–1089, 2017.

[15] S. Barocas, M. Hardt, and A. Narayanan. Fairness and
machine learning: Limitations and opportunities.
fairmlbook.org, 2019.

[16] S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and
A. Huq. Algorithmic decision making and the cost of
fairness. In SIGKDD. ACM, 2017.

[17] A. K. Menon and R. C. Williamson. The cost of fairness in
binary classification. In FAT*, 2018.

[18] J. Kleinberg, S. Mullainathan, and M. Raghavan. Inherent
trade-offs in the fair determination of risk scores. CoRR,
abs/1609.05807, 2016.

[19] S. A. Friedler, C. Scheidegger, and S. Venkatasubramanian.
On the (im) possibility of fairness. CoRR, abs/1609.07236,
2016.

[20] J. Neyman and E. S. Pearson. Contributions to the theory of
testing statistical hypotheses. Statistical Research Memoirs,
1936.

[21] A. Asudeh, Z. Jin, and H. Jagadish. Assessing and
remedying coverage for a given dataset. In ICDE, 2019.

[22] R. A. Baeza-Yates. Big data or right data? In AMW, 2013.
[23] A. Narayanan. Translation tutorial: 21 fairness definitions

and their politics. In FAT*, 2018.
[24] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel.

Fairness through awareness. In ITCS, pages 214–226, 2012.
[25] M. Kearns, S. Neel, A. Roth, and Z. S. Wu. An empirical

study of rich subgroup fairness for machine learning. In

FAT*, pages 100–109, 2019.
[26] M. Kearns, S. Neel, A. Roth, and Z. S. Wu. Preventing

fairness gerrymandering: Auditing and learning for subgroup
fairness. In ICML, pages 2564–2572, 2018.

[27] M. Drosou, H. Jagadish, E. Pitoura, and J. Stoyanovich.
Diversity in big data: A review. Big data, 5(2):73–84, 2017.

[28] A. Asudeh, H. Jagadish, G. Miklau, and J. Stoyanovich. On
obtaining stable rankings. PVLDB, 12(3):237–250, 2018.

[29] S. A. Friedler, C. Scheidegger, S. Venkatasubramanian,
S. Choudhary, E. P. Hamilton, and D. Roth. A comparative
study of fairness-enhancing interventions in machine
learning. In FAT*, 2019.

[30] J. Steinhardt. Robust Learning: Information Theory and
Algorithms. PhD thesis, Stanford University, 2018.

[31] A. Asudeh, H. Jagadish, and J. Stoyanovich. Towards
responsible data-driven decision making in score-based
systems. Data Engineering, 42(3):76–87, 2019.

[32] A. Narayanan. How to recognize ai snake oil
www.cs.princeton.edu/˜arvindn/talks.
Technical report, MIT-STS-AI-snakeoil.pdf, 2019.

[33] F. Kamiran and T. Calders. Data preprocessing techniques
for classification without discrimination. Knowledge and
Information Systems, 33(1):1–33, 2012.

[34] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and
S. Venkatasubramanian. Certifying and removing disparate
impact. In SIGKDD, 2015.

[35] F. Calmon, D. Wei, B. Vinzamuri, K. N. Ramamurthy, and
K. R. Varshney. Optimized pre-processing for discrimination
prevention. In NIPS, pages 3992–4001, 2017.

[36] B. Salimi, L. Rodriguez, B. Howe, and D. Suciu.
Interventional fairness: Causal database repair for
algorithmic fairness. In SIGMOD, pages 793–810, 2019.

[37] Z. Jin, M. Xu, C. Sun, A. Asudeh, and H. Jagadish.
MithraCoverage: A system for investigating population bias
for intersectional fairness. SIGMOD, 2020.

[38] Y. Lin, Y. Guan, A. Asudeh, and J. H. V. Identifying
insufficient data coverage in databases with multiple
relations. PVLDB, 13(11):2229–2242, 2020.

[39] C. Sun, A. Asudeh, H. Jagadish, B. Howe, and
J. Stoyanovich. MithraLabel: Flexible dataset nutritional
labels for responsible data science. In CIKM, 2019.

[40] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma.
Fairness-aware classifier with prejudice remover regularizer.
In ECML PKDD, pages 35–50. Springer, 2012.

[41] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork.
Learning fair representations. In ICML, 2013.

[42] M. B. Zafar, I. Valera, M. G. Rodriguez, and K. P. Gummadi.
Fairness constraints: Mechanisms for fair classification.
CoRR, abs/1507.05259, 2015.

[43] A. Asudeh, H. Jagadish, J. Stoyanovich, and G. Das.
Designing fair ranking schemes. In SIGMOD, 2019.

[44] A. Asudeh and H. Jagadish. Responsible scoring
mechanisms through function sampling. CoRR,
abs/:1911.10073, 2019.

[45] Y. Guan, A. Asudeh, P. Mayuram, H. Jagadish,
J. Stoyanovich, G. Miklau, and G. Das. MithraRanking: A
system for responsible ranking design. In SIGMOD, 2019.

[46] A. Asudeh, H. Jagadish, Y. Wu, and C. Yu. On detecting
cherry-picked trendlines. PVLDB, 13(6):939–952, 2020.

3448

bcrisktool.cancer.gov
bit.ly/39HjnGQ
fairmlbook.org
www.cs.princeton.edu/~arvindn/talks

	Introduction
	Definitions and Challenges
	Data-Driven Bias
	Fairness and Stability
	Challenges

	Current Solutions
	Score-based Evaluation
	Responsible Scoring Interventions
	Pre-processing and Data Investigation
	Scoring Design and Algorithm Modification


	Opportunities
	References

