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ABSTRACT
As applications in large organizations evolve, the machine
learning (ML) models that power them must adapt the same
predictive tasks to newly arising data modalities (e.g., a new
video content launch in a social media application requires
existing text or image models to extend to video). To solve
this problem, organizations typically create ML pipelines
from scratch. However, this fails to utilize the domain exper-
tise and data they have cultivated from developing tasks for
existing modalities. We demonstrate how organizational re-
sources, in the form of aggregate statistics, knowledge bases,
and existing services that operate over related tasks, enable
teams to construct a common feature space that connects
new and existing data modalities. This allows teams to ap-
ply methods for data curation (e.g., weak supervision and
label propagation) and model training (e.g., forms of multi-
modal learning) across these different data modalities. We
study how this use of organizational resources composes at
production scale in over 5 classification tasks at Google, and
demonstrate how it reduces the time needed to develop mod-
els for new modalities from months to weeks or days.
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1. INTRODUCTION
Large organizations that rely on machine learning (ML)

models for tasks such as content and event classification of-
ten adapt existing models to new data modalities to perform
the same predictive tasks over these new modalities. Con-
sider the following example based on a Google team.
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Figure 1: Traditional means of cross-modal adap-
tation take months to deploy a new model (top),
whereas leveraging organizational resources at each
step (bottom) shrinks that time to days or weeks.

A content moderation team uses an ML pipeline to flag
policy-violating user posts on a social media application (e.g.,
harmful speech, spam, or sensitive content). While the ap-
plication initially supported text- and image-based posts, the
application will soon support video-based posts. The moder-
ators must thus classify new video posts for the same viola-
tions as the text and image posts.

We refer to this process of adapting models to new data
modalities as cross-modal adaptation (a form of transduc-
tive transfer learning [46]). Existing work in cross-modal
adaptation assumes points across data modalities are eas-
ily or directly linked (e.g., captions directly linked to im-
ages, or clinical notes to lab results) to leverage zero-shot
learning [45, 58] or weak supervision [23]. However, in our
environment, such direct connections do not often exist, re-
sulting in a modality gap. For example, new video posts may
not contain any descriptive content (e.g., text summaries),
and may bear no relation to a users’ previous posts.

In our experience, production cross-modal deployments
typically fail to address the modality gap and instead build
a standard ML pipeline from scratch, following a three-step
split architecture [41] (Figure 1, top):
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1. Feature Generation (optional): featurize data of the
new modality.

2. Training Data Curation: label data of the new modal-
ity (often via sampling and human labeling).

3. Model Training: train a model on the labeled training
data of the new modality.

This classic ML approach can take months to complete
and leads to a set of disparate models with both their own
feature spaces and training data dependent on data modal-
ity. In our moderation example, as direct translations of
policy violations are unclear when moving from a static to
sequential modality, the team develops models from scratch.
They rely on neural network models that elide explicit fea-
ture generation, and spend weeks to months labeling video
data to train models to identify policy violations. While this
procedure fails to leverage previously developed expertise,
the general and modular split architecture allows small, yet
diverse engineering teams to easily deploy and monitor mod-
els for new tasks [31,55]. Thus, a natural question arises: is
it possible to bootstrap data-limited cross-modal adaptation
pipelines by augmenting the existing split architecture?

We find that despite the modality gap, we can leverage
auxiliary data sources to connect points across data modal-
ities. We refer to these auxiliary links as organizational
resources, which we exploit to boost the effectiveness of
each pipeline step for cross-modal adaptation. Organiza-
tions cultivate public and proprietary resources in the form
of tools or services that take existing data points as input,
and return features, metadata or statistics that describe
them (Figure 2). Even in the absence of custom classifiers
for a new modality (e.g., sensitive content detection over
video posts), it is still possible to apply existing resources
from across an organization (e.g., knowledge-graph querying
tools for videos). This holds across large enterprises [3, 4],
academic labs [39] and medical institutions [23]. As a re-
sult, the data management research community has devel-
oped systems and algorithms for systematically leveraging
these resources for ML tasks [8, 33, 42, 47, 68]. In this work,
we demonstrate how to leverage organizational resources to
bridge the modality gap and improve each of the three steps
of the split architecture as follows (Figure 1, bottom):

Feature Generation: use organizational resources to
create common features. The first step to overcome the
modality gap is to construct features that are common be-
tween modalities. We find that a straightforward, yet effec-
tive means of achieving this is by identifying organizational
resources that can transform data points to representations
common across modalities (e.g., in a topic modeling system
that applies to text and image, the common representation
is the topic of the content). In this way, we view organiza-
tional resources as a library of feature transformations: we
pass data points of different modalities into these services
and compose their outputs to form rich shared feature spaces
(Figure 2). These common features lay the foundation for
improvements in the remaining two split architecture steps.

Training Data Curation: use weak supervision with
label propagation. Given the common feature space, one
approach to cross-modal adaptation is to train a model with
labeled data from existing modalities using just the features
shared between modalities. We can then perform inference
over the new data modality using the shared features. We
find that this baseline performs worse than training a model
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Figure 2: Using organizational resources to cre-
ate a common, structured feature space across data
modalities for a post moderation task. Image and
text data share three features: category (topic
model), objects present (classifier for related task),
and the number of times the user posting the con-
tent has been reported (aggregate statistic).

on the target modality with respect to AUPRC, likely due
to distribution differences in the feature spaces. Thus, we
still require labeled training data in the new modality.

To mitigate the cost of obtaining hand-labeling training
data, organizations have leveraged weak supervision sys-
tems, such as Snorkel [8], that use labeling functions (LFs)
to programmatically label groups of data points. However,
we encounter three challenges in using weak supervision:

Challenge 1: Curating Structured Data and a Development
Set. LFs require users to specify predicates over their data
that have both high precision and recall (e.g., if a text span
contains the word SPAM, mark it as spam). This is difficult
in our setting for two reasons. First, specifying predicates
over unstructured data like video and images is an active
area of research [23,65,67] (e.g., it is difficult to easily specify
what a policy-violating image looks like). Second, to eval-
uate the performance of candidate LFs, we need a labeled
development set. To address these dual concerns, we lever-
age the common feature space we create in the first step.
As model outputs are frequently categorical and quantita-
tive (e.g., output of an object detection routine), it is easy
to define predicates over these features. In addition, we can
use labeled data of existing modalities as a development set.

Challenge 2: Creating LFs Without Domain Expertise. Do-
main experts typically construct LFs using task expertise.
However, in a production setting, experts may not be im-
mediately available to develop LFs, and engineers often do
not possess this expertise. Existing methods to automat-
ically generate LFs [66] are too costly to immediately in-
tegrate with existing workflows. As a result, we develop
new techniques to automatically create LFs for our tasks.
We leverage frequent itemset mining [59] to more quickly
and easily develop LFs. Itemset mining automatically iden-
tifies feature values that occur more frequently in positive
examples, which we can treat as LFs. This method of LF
generation enables us to mine our entire labeled data corpus
for existing data modalities (tens of millions) in minutes. In
contrast, even domain experts are limited to manually exam-
ining much smaller data volumes. Thus, we find our method
can be faster, cheaper, and perform better than domain-
expert-curated LFs with respect to F1 score and coverage.
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Challenge 3: Finding Borderline Examples. Weak super-
vision requires high precision and recall LFs that cover a
majority of data points. In our heavily class-imbalanced set-
tings, we find that developing high-precision LFs to identify
positive examples can be straightforward, but constructing
rules to identify borderline positive and negative examples,
which are crucial for recall and coverage, is difficult. In re-
sponse, we use label propagation [77] to augment our auto-
matically mined LFs. Label propagation detects data points
in the new modality that are similar to labeled examples in
the old modalities, with similarity defined using features in
the common feature space. Thus, we identify large volumes
of negative examples and more candidate positives than with
itemset mining, improving performance by up to 129× and
1.25× with respect to recall and AUPRC, respectively.

Model Training: combine data and label sources.
Given the common features, we can leverage multi-modal
techniques for model training that combine inputs from mul-
tiple data and label sources (e.g., data from new and ex-
isting modalities, human-generated labels, and labels from
weak supervision). We evaluate three techniques for com-
bining the features for model training: by concatenating the
features directly, concatenating embeddings independently
learned for each data modality, and by projecting the new
modality to an embedding learned using existing modalities.
We demonstrate that combining label and data modalities
improves end-modal performance by up to 1.63× in com-
parison to using any modality in isolation, and that simple
feature concatenation outperforms the alternatives.

Overall, we make the following contributions in this paper:

• We outline how our augmented three-step split archi-
tecture addresses the production challenges in deploy-
ing, maintaining and evaluating pipelines for cross-
modal adaptation with access to the limited but rich
ecosystem of human resources present in a typical in-
dustrial team. We validate our design decisions using
5 cross-modal classification workloads at Google.

• We demonstrate how using organizational resources to
augment the split architecture enables us to develop
cross-modal pipelines that obtain the same classifica-
tion performance as using up to 750k fully supervised
image data points by instead using 7.4M unlabeled im-
age data points, and 25M previously hand-labeled text
data points—decreasing the time to develop models for
cross-modal adaptation from months to days or weeks.

• We develop a pipeline that overcomes the challenges
of using weak supervision for cross-modal adaptation
by automatically generating labeling functions up to
1.87× faster than a domain expert, who must divide
the task into days or weeks. We also obtain increased
performance with respect to coverage and F1 score.

2. CROSS-MODAL ADAPTATION
In this section, we define cross-modal adaptation and de-

scribe key challenges we overcome to develop a cross-modal
pipeline in production. We divide the described challenges
into three categories: contending with limited human re-
sources, handling new data modalities, or uniting available
organizational resources. We then provide an overview of
our system design.

2.1 Problem Statement
Growing organizations increasingly support applications

over multiple data modalities—products that may initially
only support text must evolve to support richer modalities
including image, videos, or animations (e.g., gifs). As orga-
nizations increasingly rely on machine learning (ML) models
for content and event classification, they must therefore de-
velop models to perform existing classification tasks over
these new modalities as they arise. We refer to this problem
as cross-modal adaptation: our goal is to train a model for
existing classification tasks over the new data modality as
quickly as possible, when labeled data of the new modality
is limited or nonexistent at the desired time of deployment.

We assume a user can access organizational resources to
process given modalities and return structured (i.e., cate-
gorical or quantitative) outputs, and that new modalities
provide additional means of conveying of information (i.e.,
are as rich or richer than existing modalities). While we con-
struct examples based on adapting text and image tasks for
video, our techniques apply to other commonly-processed
modalities including audio signals, time series, point clouds,
or network behavior in graphs.

2.2 Cross-Modal Challenges
We highlight three challenges in cross-modal adaptation:

[Human Resources] Labeling Rich Modalities. For
several learning tasks in production, labeling training data is
a labor-intensive and time-consuming procedure, especially
when facing large class imbalances [47]. Referring to our
example from the introduction, the team must sample hun-
dreds to thousands of data points to find a few examples
of sensitive content. In our workloads, the cost of labeling
richer data modalities is greater than that of existing modal-
ities (e.g., manually classifying text is faster than viewing
and classifying video). We only focus on this subset of cross-
modal tasks, where reviewing new modalities is increasingly
costly, and thus requires alternative labeling methodology.

[Data Modalities] Bridging the Modality Gap. So-
lutions for similar cross-modal problems (see Section 8) as-
sume that other tasks have already been trained for the
target modality [36, 45, 58], or data of different modalities
are directly connected [23]. Examples of direct connections
are images paired with captions, 2D projections of 3D point
clouds, or clinical notes and lab results. The setting we con-
sider often lacks these connections, resulting in a modality
gap between data points that we must bridge to leverage
information and resources across modalities.

[Organizational Resources] Leveraging Resources
Across Task, Data, and Label Source. Organizations
possess large amounts of data and expertise generated across
existing tasks and data modalities (see Section 3). In cross-
modal adaptation, we must identify how to combine these
information sources to train a high-performing end-model.

2.3 Design Considerations in Production
We outline four obstacles to the deployment and mainte-

nance of cross-modal pipelines at scale.

[Human Resources] Diverse Teams. A typical ML
pipeline is developed by a rich ecosystem of humans across
each pipeline step. Domain experts and human reviewers
curate training data and validate the performance of ML
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models; systems engineers develop the architecture and in-
frastructure to easily deploy models; ML engineers train and
tune models for deployment; and quality assurance engineers
ensure that criteria for successful deployment are being met.
A system for cross-modal adaptation must enable each indi-
vidual to enter and exit at different steps of the pipeline to
contribute their expertise, implying well-defined inputs and
outputs for each step to decrease interference across roles.

[Human Resources] Low Engineer-to-Pipeline Ratio.
Machine learning teams, though rich in roles, are small in
contrast to the hundreds—or thousands—of ML pipelines
they must deploy and maintain. Each individual must per-
form their role as efficiently as possible in a manner that can
scale to these large pipeline volumes. A system for cross-
modal adaptation must allow each individual to develop,
deploy and manage their roles as easily and quickly as pos-
sible, implying a repeatable procedure that can be applied
across as many of their tasks as possible.

[Data Modalities] Rich Data Modalities. Richer data
modalities (e.g., image or video as opposed to text) pose
a challenge at each of the three split architecture steps.
For feature generation, teams are allocated storage budgets
that are sometimes insufficient to capture all incoming raw
data. For curating training data, new modalities require in-
tegrated interfaces to enable human reviewers to select and
evaluate data points. Finally, ML models must have low
inference latency to be deployed in real-time, especially if
user-facing; rich modalities are more expensive to process
in raw feature space. A system for cross-modal adaptation
must rely on efficient storage, classification, and inference
over these rich modalities, to incur minimal overhead when
these modalities are released in the application.

[Organizational Resources] Diverse Info Sources. In-
put features for various steps of the ML pipeline are drawn
from services common across the organization (e.g., a com-
mon service to return the content of a post). Coordinating
the input features of different models may require changes to
system architectures if drawing from a new feature source,
and necessitate population in advance. As a result, adding
new features to a deployed model is often a time-consuming
process. In addition, not all accessible features can be served
at inference time due to the cost of extracting them from
their respective data sources and systems. A system for
cross-modal adaptation must be able to leverage features
even if they cannot be deployed and served in production.

2.4 Solution Overview
We develop a system for cross-modal adaptation that ad-

dresses both sets of challenges (Figure 3). In this section,
we describe our system architecture and pipeline steps.

2.4.1 Architecture
We preserve the canonical split architecture to ensure ease

of management and deployment in light of the first two pro-
duction challenges (§ 2.3): diverse teams and low engineer-
to-ML-pipeline ratios (Figure 3). Having different architec-
tures for each task, data modality, and label source is chal-
lenging to manage. A modular and general architecture that
is reused across task-data-label configuration makes it easy
for even a single engineer to maintain several ML pipelines.

In addition, this split architecture enables a diverse ecosys-
tem of engineers and domain experts to focus on their area of

expertise. For instance, by default, a human reviewer need
not worry about feature engineering or model training. Sim-
ilarly, an engineer deploying models need not focus on fea-
ture generation or data curation. While more “end-to-end”
methods for cross-modal adaptation exist (see Section 8),
we find this split architecture effectively trades-off between
generality and ease of maintenance and deployment.

2.4.2 Pipeline Steps
Given that we preserve the traditional split architecture,

we augment each step for a cross-modal setting as follows:

Feature Generation (Figure 3A, §3). We generate
features common to both new and existing data modalities.
To do so, we identify and apply organizational resources that
process data points of multiple modalities, and output values
in a space common between them (as in Figure 2). These
features lay the foundation to using data across modalities
in the subsequent pipeline steps. This step addresses the
production challenge of processing rich data modalities, and
the cross-modal challenge of bridging the modality gap.

Training Data Curation (Figure 3B, §4). We auto-
matically generate labels for the new, unlabeled data modal-
ity to develop a training dataset. To do so, we perform weak
supervision [47] using new methods for automatic labeling
function creation via frequent itemset mining [59] and label
propagation [77] that leverage the shared features from the
first step. This step addresses the production challenge of
leveraging diverse information sources, and the cross-modal
challenge of labeling rich modalities.

Model Training (Figure 3C, §5). We train a model
using both the weakly supervised data in the new modal-
ity and fully supervised data of existing modalities. To do
so, we combine the features generated in the first step to
construct a vector feature representation by concatenating
the generated common features directly. We evaluate three
approaches, but find that simple concatenation outperforms
alternatives. This step addresses the cross-modal challenge
of combining all available resources at deployment.

3. FEATURE GENERATION
In this section, we describe the first step of our cross-

modal pipeline. As input, we are given data of a new modal-
ity (e.g., video posts), and must train models for existing
tasks. We have labeled data and models that perform these
tasks for existing data modalities, but cannot be directly
used due to the modality gap (Challenge 2 in §2.2). Further,
processing new, rich data modalities is time and resource in-
tensive (Challenge 3 in §2.3). We describe how to overcome
these hurdles by developing structured (i.e., categorical and
quantitative) features common across data modalities via
organizational resources (see Figures 2 and 3A).

3.1 Generating a Common Feature Space
As ML becomes more common across domains, organi-

zational resources are being curated by industrial product
teams and labs [3, 4, 75], stand-alone companies [1, 2], and
academic research groups [39]. These resources take as input
data points of various modalities, and return categorical and
quantitative outputs in the form of features, class metadata
and statistics that describe these data points. As a result,
while a user has yet to develop models for their specific tasks
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in the new modality, they can still apply these organizational
resources to data points of the new modality.

We directly apply organizational resources to transform
new and existing data modalities to a common feature space
(see Figure 3A). The output of each resource corresponds to
a numeric feature or multivalent categorical feature (equiv-
alently, a set of one-hot-encoded features). A set of k re-
sources will return k features, fi for i ∈ {1, ..., k}. We denote
the resulting common feature space as F = {f1, ..., fk}, with
a data point x being represented as Fx = {f1(x), ..., fk(x)}.
As an example, consider a text and image post represented
as data points t and i, respectively. We have services to de-
tect the presence of profanity in text (Tprofanity) and image
posts (Iprofanity), and to detect their setting (Tsetting, Isetting).
Applying these resources to each data point provides us with
the following feature representation (Ft, Fi):

Ft = (Tprofanity(t), Tsetting(t)) = (f1(t), f2(t)) = (True, outdoor),

Fi = (Iprofanity(i), Isetting(i)) = (f1(i), f2(i)) = (False, outdoor).

In this work, users must curate applicable organizational
resources. This may be challenging for proprietary or less-
supported modalities (e.g., graph-structured data), and we
discuss how developing systems for organizational resources
discovery can help in Section 7.1.

3.1.1 Examples of Organizational Resources

Model-Based Services. Teams can access classification
and processing services that operate over new and existing
data modalities. Examples include: topic models that cate-
gorize content; motif discovery tools to transform time series
to categorical patterns; knowledge graph querying tools to
extract entities and relationships from data points.

In our moderation example, the organization has topic
modeling services that map text or image and data points
to a common set of categories (e.g., brands), services that
caption images, and tools that split a video into representa-
tive image frames. To featurize data points for the new video
data modality, the team can extract frames from a video post
to create image data points using the video splitting tool. The
extracted image data points can then be used as input to the
topic modeling and captioning services to generate a shared
features between video, image, and text posts.

Aggregate Statistics and Metadata. Teams collect
statistics fitting their applications’ and customers’ needs.

Organizations also possess metadata to track data points
across different teams (e.g., user or post ID), enabling these
statistics to be used as features across modalities.

In our moderation example, a team that identifies prob-
lematic users may track the number of times a user is re-
ported, and a content recommendation team might track how
many times a post is shared. The content moderation team
can use the user ID metadata field to connect moderated
posts with the statistics from these two teams. They can
then use these statistics as input features in determining if
a post may be policy-violating (e.g., a post from a user who is
often reported and posts policy-violating content that spreads
quickly is more likely to continue violate policies).

Rule-Based Services. Teams develop heuristics and
rules to make manually collecting, analyzing and labeling
data more efficient. For instance, to sample candidate pos-
itive examples in class-imbalanced scenarios, experts first
use heuristics to justify transitioning to automated methods
including active learning [56].

In our moderation example, the team may know that cer-
tain keywords are related to sensitive content, or that certain
user behaviors are correlated with spammers. They may have
used these rules to sample candidate training data to review
for sensitive content, and can use them as binary features.

4. TRAINING DATA CURATION
Once we generate common features across data modali-

ties, we must curate labeled examples for model training. As
we show in Section 6.6, using the shared features to train a
model with the labeled data of existing modalities performs
worse than training a model on the target modality. We
instead demonstrate how to leverage existing modalities to
generate labeled data in the target modality without addi-
tional human labeling (Challenge 1 in §2.2). We achieve this
via weak supervision (WS), which also allows us to use fea-
tures unavailable at deployment time (Challenge 4 in §2.3).
We now introduce WS, and describe how to use our common
feature space to overcome three challenges in using WS for
cross-modal adaptation (see Figure 3B).

4.1 Introduction to Weak Supervision
WS uses cheap but noisy labels to curate training data.

Snorkel is a WS framework where users generate labeling
functions (LFs) to programmatically label groups of data
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points [47]. To label a set of unlabeled data points, X ,
Snorkel’s pipeline proceeds as follows:

1. Develop LFs. Domain experts use a small, labeled
development dataset to create LFs. LFs are functions
that take a data point and all related features as input,
and output a label or abstain (e.g., in a binary setting,
an LF returns positive, negative, or abstain). In our
moderation example, a sample LF may be: if a post
contains excessive profanity it is harmful speech, else
abstain. Snorkel requires both high precision and high
recall LFs that each perform better than random.

2. Programatically apply generated LFs to X . Un-
like a standard labeling pipeline, X can be very large
as labels are not human-generated. Snorkel performs
best when many data points in X have LFs that return
labels instead of abstaining, i.e., have high coverage.

3. Learn probabilistic labels from Step 2. Snorkel
uses a generative model to estimate each LF’s accuracy
by evaluating correlations between them when applied
to X . The estimated accuracies are used to return
a weighted combination of the weak labels applied to
each data point, i.e., probabilistic labels.

The probabilistically labeled data can be used to train an
end discriminative model for the target task that operates
over a noise-aware loss function.

This entire process is offline—the LFs used in training are
only used to generate training data, and are not used when
models are served. As a result, we can generate probabilis-
tic training data using features that are not feasible to com-
pute or obtain at serving time (i.e., nonservable features).
We leverage Snorkel as one of many primitives in our end-
to-end pipeline. While Snorkel supports both binary and
multi-class classification tasks, in this work, we evaluate our
methods on binary classification tasks, but can easily extend
to multi-class. Snorkel does not apply to regression tasks.
However, the feature space we induce via organizational re-
sources can be used for tasks including similarity search and
clustering, as we use for label propagation in Section 4.4.

We build on Snorkel Drybell’s industrial case study [8]
to extend WS for cross-modal adaptation. In this process,
we encountered three challenges in developing LFs at scale.
We now describe how to use organizational resources to over-
come each (see Figure 3B).

4.2 Curating Structured Data and a Dev Set
Users typically construct LFs by defining predicates that

operate over their data points. This is challenging in our
setting for two reasons. First, generating LFs over unstruc-
tured data modalities (such as image and video) is an active
area of research [27,54,65,67,76]. In contrast, defining pred-
icates is straightforward over structured feature spaces such
as text (e.g., string or pattern matchers), quantitative data
(e.g., thresholds), or categorical data (e.g., checking pres-
ence of a topic) variables. For instance, lacking captions or
metadata, existing work to detect if an image post displays a
sporting event requires off-the-shelf classifiers to identify the
setting, players and spectators, and rules to verify that they
coexist in the right locations. This is difficult for nuanced
tasks, such as sensitive content identification. Second, users
require a labeled development set to develop and validate
the performance of candidate LFs. In a cross-modal setting,
neither of these data nor label requirements are met.

We overcome these challenges by leveraging the common
feature space induced in our first pipeline step. This fea-
ture space provides categorical outputs (e.g., post setting or
objects) over which users can define LFs for both new and
existing data modalities. This feature space also enables
users to leverage labeled data of existing data modalities
as a development set for LF creation in the new modality.
Users can thus define LFs over features common to existing
and new modalities, and evaluate LF performance using the
labeled data from existing modalities. For instance, in the
moderation example, if an expert knows that specific topics
in text or image are frequently flagged as spam, then split-
ting a video into image frames and running topic models on
the images would enable the same LFs to apply to video.

4.3 Creating LFs Without Domain Expertise
In a typical WS deployment, domain experts construct

LFs using their expertise. They must understand how clas-
sification tasks vary across language, country, and region, as
well as how the task evolves in a new data modality. How-
ever, not all teams have access to domain experts who can
swiftly develop LFs for their tasks in the new data modal-
ity. Prior work in automatic LF generation can overcome
this challenge, including model-based approaches such as
Snuba [66]. We found such methods difficult to immedi-
ately integrate (and justify) with existing production work-
flows and infrastructure given limited developer capacity. In
response, we developed a method based on frequent item-
set mining to automatically generate LFs that results in less
engineering overhead and outperformed our experts.

Our method mimics domain-experts via rules that are
a conjunction of feature values. To construct an LF, we
identify feature combinations that occur more often in pos-
itive than negative examples, and vice versa. We first se-
lect feature values that—when used as an LF—meet pre-
specified precision and recall thresholds over the develop-
ment set. Higher order feature combinations are added when
they meet the threshold, as in the Apriori algorithm [59]. In
our experiments, we found order-1 sufficient in practice.

To minimize correlations across LFs, each LF is a con-
junction of feature values identified by the mining proce-
dure, defined over a single feature. To decrease runtime
in class-imbalanced scenarios, similar to difference detection
and explanation in large scale data [10], we first mine for
candidate feature values in the positive examples.

We evaluate the gap in performance (in terms of preci-
sion, recall, and F1 score) and development time between
our automatically- and expert-generated functions for one
classification task in Section 6.7.1. We find our approach
straightforward for an engineer to deploy and maintain as
opposed to leveraging complex techniques that, for instance,
require evaluating and maintaining model ensembles.

While Snorkel enables users to automatically construct
labeling function generators [47], these methods still require
domain knowledge to align data sources and dictate how
to construct LFs (e.g., knowledge graph relationships X are
sensitive). Our method alleviates these needs if a non-expert
engineer is developing pipelines as a prototype or finalized
product. Validating our approach’s performance provides
justification to invest resources to develop custom interfaces
and pipelines for our domain experts similar to [47], as may
be needed for more nuanced future tasks (see Section 7.2).
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Algorithm 1 Graph Weight Computation

Input: Fi, Fj : data points’ features
Let F denote the set of all features instantiated by Fi, Fj

Output: wij : weight between input data points

1: function compute-weight(Fi, Fj , F ):
2: Initialize: wij = 0
3: for k = 1, ..., |F | do
4: if fk is numeric then
5: wij = wij + ‖fk(i)− fk(j)‖ . any norm, e.g. `2

6: if fk is categorical then
7: wij = wij + jaccard(fk(i), fk(j))

8: return wij

4.4 Finding Borderline Examples
WS requires positive and negative LFs with high preci-

sion, recall, and coverage. We found that users struggle
to create LFs with high recall and coverage, and LFs that
capture the negative class’ behavior. This occurs as it is
straightforward to develop rules that describe “easy” exam-
ples in the positive class when basic modes are well defined
(e.g., profanity to identify hate speech). In contrast, the be-
havior of borderline positives and the negative class is vast
and unspecified—especially in class imbalanced settings. In
response, we leverage our common features to identify and
propagate labels to data points in the new modality that are
similar to labeled examples in previous data modalities via
label propagation [77] (as is common in active learning).

To perform label propagation, we must determine what
labels to propagate, and how to propagate them. For the
former, we can propagate weak labels (LF outputs), proba-
bilistic labels (Snorkel outputs), or human-generated labels.
While each of these label sources demonstrated promise in
early experimentation, we use the third as they would be
least impacted by biases and inaccuracies in our LF gener-
ation method. For the latter, we first develop a graph G
induced by our common feature representation (Figure 3B).
An unlabeled data point that shares edges with labeled data
points is assigned a weighted combination of its neighbors’
labels. We update this assignment to convergence to return
a weighted score. This score is used to construct a threshold-
based LF, but can also be used as a form of probabilistic
label. We again leverage a development set of labeled ex-
amples in existing modalities to tune this threshold.

To construct G, each data point (across all modalities) cor-
responds to a vertex Vi. We construct edges between vertices
i and j with weight wij assigned based on the similarities
between their feature representations Fi, Fj—their Jaccard
similarity if the features are categorical, or a pre-specified
distance metric if the features are quantitative or based on
pre-trained embeddings (see Algorithm 1). As an example,
an edge between text data point t with Ft = (True, outdoor)
and image data point i with Fi = (False, outdoor) returns
wti = 1. In practice, each feature’s contribution is normal-
ized in lines 5 and 7, which we omit for simplicity.

Label propagation can leverage features that are difficult
to construct LFs with as long as a distance metric can be
defined for them; we use features specific to the new modal-
ity to construct edges, including unstructured features such
as image embeddings. As label propagation is too costly
to run at deployment time, we leverage this as nonservable
information for training data curation to boost end-model
performance. We evaluate its effectiveness in Section 6.7.2.
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Figure 4: Three means of performing cross-modal
training, displayed in the two-modality setting.

5. MODEL TRAINING
Following the curation of labeled training data, we must

train a model for classification. Our goal is to leverage in-
formation across all of the generated modalities and label
sources to train a better model for the new data modality
(Challenge 3 in §2.2). Prior work in cross-modal training as-
sumes one-to-one mappings between modalities [23, 44, 60],
and that operating directly over the new modality provides
high-quality features [42]. However, we find that operating
directly over our feature space performs up to 1.54× bet-
ter than operating directly over the new modality (see Sec-
tion 6.6). Thus, we evaluate three methods to jointly train
over new and existing modalities and label sources under
our induced feature representation (Figure 4):

Early Fusion. We merge the features of all data modali-
ties to create a single common representation as in Figure 2.
Features shared by all data modalities are merged into a sin-
gle field (e.g., raw text from text posts, and captions derived
from image data points), and features specific to certain data
modalities are left empty for those that do not have these
features present (e.g., image-specific embeddings will not be
present in text data). All data modalities and label sources
are then trained by combining them into a single dataset.

Intermediate Fusion. We learn an embedding for each
data modality, and concatenate these embeddings as input
to a final, jointly trained model. Training proceeds in two
passes over the training data. In the first stage, we create
independent models for each data modality. In the second
stage, we remove the final prediction layer (e.g., softmax)
from each of these models. We then perform a second pass
over all of the data, where the shared features are passed
into all models in which they exist. The model outputs
are concatenated to create a new feature embedding. This
embedding is used as input to a final model for training.
Our motivation in constructing this architecture is that data
modalities with fewer data points may get overpowered in
the early fusion model. By training each modality indepen-
dently prior to concatenation, we hope to alleviate this.

DeViSE [26]. We learn an embedding using existing
data modalities, and then project data points from the new
modality to the embedding space for classification. The orig-
inal DeViSE algorithm is a classic cross-modal baseline that
we have adapted to our setting as follows (see Figure 4).
First, we train a model A over existing data modalities as
in early fusion, similar to DeViSE’s language model pre-
training. This model is then “frozen,” so none of its param-
eters change. Next, we pre-train a model B over the weakly
supervised data of the new modality, similar to DeViSE’s vi-
sual model pre-training. In the final training stage, we pass
points of the new modality to B and simultaneously pass
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Table 1: We report the number of labeled text data
points, unlabeled image data points that we label via
weak supervision, labeled image data points used as
a test set, and the test set positive rate for each task.

Task nlbd,text nunlbld,image nlbd,image % Pos
CT 1 18M 7.2M 17k 4.1%
CT 2 26M 7.4M 203k 9.3%
CT 3 19M 7.4M 201k 3.2%
CT 4 25M 7.3M 139k 0.9%
CT 5 25M 7.4M 203k 6.9%

the shared features between the existing and new modali-
ties as input to A, and compute the model outputs prior to
the final prediction (e.g., softmax) layer of both A and B,
which we denote X and Y , respectively. We then train a
“projection layer” P (as in DeViSE) to match Y with X.
At inference time, we pass incoming data points through B
and the projection layer P, and use the final prediction layer
of the initially trained, frozen A.

6. EVALUATION: GOOGLE CASE STUDY
We present our case study in cross-modal adaptation at

Google. We describe our 5 classification tasks, organiza-
tional resources and experimental setup, and show that:

1. End-to-End (§6.4): Our cross-modal pipeline out-
performs a fully supervised pipeline that uses up to
750k data points with respect to AUPRC.

2. Organizational Resources (§6.5): Model perfor-
mance with respect to AUPRC scales with the amount
of organizational resources used.

3. Modalities (§6.6): Training a model using human-
labeled data of existing data modalities is up to 1.63×
less effective than using weakly supervised data of the
target modality with respect to AUPRC.

4. Modalities (§6.6): Jointly training data modalities
is up to 1.63× and 1.23× better than training on text
or image in isolation, respectively, in terms of AUPRC.

5. WS (§6.7.1): Automatic LF creation is up to 1.87×
faster than manual development by a human expert,
which required 7 hours spread over 2 weeks, and per-
forms better by 2.71 F1 points.

6. WS (§6.7.2): Label propagation complements our
high-precision LFs to improve recall by up to 162×,
providing up to 1.25× improvement in F1 score.

6.1 Classification Tasks
We evaluate 5 binary topic or object classification tasks

developed by an engineering team (see Table 1). In topic
classification, engineers classify if a given entity (e.g., user
post) represents a topic of interest (e.g., explicit content or
hate speech). In object classification, the engineers classify
if a given entity contains a specific object or object type
(e.g., illegal products). We consider a two-modality setting
where models are trained for text entities and must now
apply to image entities. T refers to a fully supervised text
model, and I refers to a weakly supervised image model.

We treat a modality with curated, human-labeled data
(i.e., image) as the “new” modality. Labeled data is sampled
uniformly at random over all curated data points prior to
a specified point in time. We sample live traffic after this
time to generate unlabeled data independent of previously
labeled image data, ensuring no train-test leakage.

Figures 5-7 reflect the results from CT 1. We focus on CT
1 for these feature-related microbenchmarks as it captured
a majority of the different possibilities we saw when adding
new features (substantial gain, little gain, and no gain), but
provide high-level details for the other tasks in the text, with
all end-to-end results in Table 2.

6.2 Team-Specific Organizational Resources
We leverage organizational resources across two of the cat-

egories described in Section 3:

Model-Based Services. Google has several custom topic
models, knowledge graphs, named entity recognition mod-
els, and object detection models that are maintained for
use across the organization. Teams query these services to
generate information such as topic hierarchies and catego-
rizations, and language translations. We use two types of
model-based services: topic-model-based, and page-content-
based. The former refers to topic-models applied directly
to the data points. The latter refers to models that apply
to web pages and auxiliary information regarding the data
points. Each provides different views into a data point, and
contributes differently to each task. For instance, in the
social media example, policy violations may be defined in
terms of a user’s post or content that a users post links to.

Aggregate Statistics and Metadata. Teams can ex-
tract metadata including user ID, customer ID, URL, key-
words, and categorization from a data point. The engineer-
ing team has been deploying classification models while col-
lecting this metadata for several years. As a result, they can
compute aggregate statistics from the outputs of these mod-
els across users, customers, URLs, topics and categories.
We use keyword-based and URL-based metadata services.

We use 15 services to generate 15 features: 14 are cate-
gorical and multivalent with vocabularies of up to several
thousand categories, and two are nonservable (including the
output of label propagation as in §4). In addition, images
possess 3 pre-trained embedding and image-specific features.
We evaluate four types of services used to generate feature
sets: URL-based, keyword-based, topic-model-based, page-
content-based, labeled as sets A, B, C, and D, which provide
us with 3, 2, 5, and 5 features, respectively. We state which
features are included in the discriminative model for each
modality as T + [ABCD]* and I + [ABCD]*.

Services we use are pre-computed for each data point as
the generated features assist teams across the organization.
Thus, we leverage these features without incurring addi-
tional overhead to generate them. When an organization
curates resources from scratch, they must account for the
potentially large computational overheads that are incurred
from applying organizational resources to new modalities for
feature generation—especially for large-scale datasets in rich
modalities such as video, which require heavy processing.

6.3 Experimental Setup
Implementation. We implement the feature engineer-
ing and LF pipeline using our MapReduce framework. We
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Figure 5: AUPRC of our cross-modal model, and
a fully supervised image model with two or four
sets of features, relative to a fully supervised model
trained on pre-trained image embeddings for CT 1.
We require around 60k hand-labeled images to out-
perform our approach when using all four sets (top),
and around 140k when using two sets (bottom).

use Snorkel Drybell [8] as a scalable WS system, and Ex-
pander [48], a large-scale graph-based machine learning plat-
form, for streaming, distributed label propagation [49]. For
model training and serving, we use TFX [12]. We lever-
age the same models used by the engineering team in our
case study, modified to train with probabilistic labels us-
ing a cross-entropy loss function, with hyperparameters set
by Vizier [28]. For multi-modal training, this refers to the
models for each modality prior to embedding concatenation.
The models supported by the team’s TFX pipelines are lo-
gistic regression and fully-connected deep neural networks,
where the best performing is used in production. We report
performance over the neural network models for CT 1-4, and
logistic regression for CT 5 due to improved performance.

Evaluation Metric. We compute the area under the
precision-recall curve (AUPRC) over the labeled image test
set to evaluate our pipeline. Depending on the task sensi-
tivity in the organization, the cut-off to compute metrics in-
cluding F1 score are decided upon viewing live performance,
rendering AUPRC more representative for offline evaluation.
We report AUPRC relative to a baseline fully supervised im-
age model trained with only pre-trained embedding features.

6.4 End-to-End Comparison
In Figure 5, we compare the performance of our pipeline

for cross-modal adaptation with a hand-labeled, fully super-
vised model using features from all services (top) and with
two sets of services (bottom) for CT 1. We use all features
to generate LFs for weak supervision in both cases.

We demonstrate two takeaways in this experiment. First,
we show that our architecture can save weeks to months of
human-curation time, depending on how many resources are
expended for the task. We see that the cross-over point at
which a fully supervised model outperforms our cross-modal
pipeline: 60k (top) or 140k (bottom) data points, represent-
ing substantial human labeling effort. Second, we show that
using nonservable features [47] to develop LFs improves the
performance of the weakly supervised cross-modal pipeline
relative to a fully supervised baseline without these features
(bottom vs. top). We include fewer features for the dis-
criminative end-model than the LFs to mimic nonservable

Table 2: AUPRC for a fully-supervised text model
(T + ABCD), a weakly-supervised image model (I
+ ABCD) and a cross-modal model (T, I + ABCD)
using all four sets of features, relative to a fully su-
pervised image model trained with only pre-trained
image embedding features. We report the number
of fully-supervised image examples required to out-
perform our approach (i.e. “cross-over” point).

Task Text Image Cross-Modal Cross-Over
CT 1 1.12 1.43 1.52 60k examples
CT 2 1.49 2.32 2.43 50k examples
CT 3 0.88 0.95 1.14 5k examples
CT 4 1.74 2.00 2.45 4k examples
CT 5 1.67 2.03 2.42 750k examples

features in Figure 5 (bottom). We see that using feature
sets C and D only for weak supervision (i.e., via LFs) and
not the fully supervised model (bottom) requires more hand-
labeled data points to meet the performance of the weakly
supervised model (140k vs. 60k).

For the remainder of the tasks, we display the cross-over
point at which a fully supervised model outperforms our
cross-modal pipeline in Table 2. Similarly, the relationship
between the servable and simulated “nonservable” use case
holds for these other tasks with the difference ranging from
400 to 190k data points. Regardless of the exact cross-over
point, our cross-modal pipeline enables us to deploy mod-
els in production without waiting for domain experts to be
trained for the task. For our non-mission-critical tasks (e.g.,
internal or non-user facing tasks) with safeguards in place
(either in the form of heuristics, or human reviewers with un-
derstanding of the task for alternative modalities), this en-
ables rapid initial model deployment that can be augmented
via techniques for active learning [56] or self-training [53] on
the order of days. However, in the usual case, where a rep-
resentative, unbiased test set is required to validate a model
for production, the model deployment time will be on the
order of weeks, as our methods only reduce, not remove, the
time needed to curate data for both training and validation.

Table 2 demonstrates a wide range of cross-over points
across each task. We believe this range is a result of the
relative difficulty in modeling each task with our manually
curated features. In tasks where our features provide ade-
quate discriminative capabilities, our labeling functions can
capture the behavioral modes of positive and negative exam-
ples. For instance, in the social media example, detecting
politically-inclined posts (i.e., those with candidate faces,
or party imagery) may be easier than detecting false news.
As we verify for CT 1 in Section 6.7.1, tasks that perform
well (CT 1, 2, 6) likely exhibit this behavior. Understand-
ing which in regime we are operating is currently a manual
procedure, and an area for future work (see Section 7.4).

6.5 Organizational Resources Factor Analysis
In Figure 6, we perform a factor analysis to show that

adding features and data modalities (i.e., organizational re-
sources) incrementally improves end-model performance for
CT 1. At each step of the factor analysis, we add a new
feature to either the text modality or the image modality.
We train an early fusion model as described in Section 5.
We typically observe that the addition of new features im-
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Figure 6: Factor analysis for CT 1 demonstrating the increase in AUPRC when adding additional sets of
features (A,B,C,D) for each data source (T, I), relative to a baseline fully supervised model trained using
pre-trained image embeddings. We show that for this task, adding new features and data improves AUPRC.
After including image data (first to second), we find adding features (solid to hashed) improves performance
more on average than adding modalities with that feature (0.11 vs 0.04).
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Figure 7: AUPRC of text, image, and cross-modal
models, relative to a fully supervised image model
trained with just pre-trained image embeddings for
CT 1. Combining modalities is better for each fea-
ture space induced by the services (A,B,C,D).

proved performance more significantly than the inclusion of
more data modalities containing these features (in Figure 6,
these are steps from solid to hatched bars). We note that
this behavior can be dependent on the task and the relative
distribution differences across features in different modali-
ties. For instance, we found no improvement from adding
image features D (final hatched to solid increment) for CT
1, and little improvement from adding image features C. We
found these results to hold true across our tasks, with rel-
ative AUPRC improvements of 0 to 6.23×. This may have
occurred as our feature space was constructed with manually
curated organizational resources that resulted in similar fea-
ture distributions across text and image data points. How-
ever, a low quality feature/organizational resource might
negatively impact performance if it were selected via au-
tomated processes without validation; not all features may
be relevant for the downstream task, thus quality must be
validated in advance. Identifying how to best weight and
value candidate organizational resources is critical to scal-
ing our proposed techniques. We are evaluating scalable
methods for domain adaptation [13, 16, 18], which together
with feature attribution [34, 51, 63] indicate promise in un-
derstanding which features to leverage from each modality.

6.6 Multi-Modal Training Lesion Study
In Figure 7, we perform a lesion study over data modality

for CT 1 as we augment our feature set. We first find that
training a fully supervised model over existing data modal-

ities (i.e., text) and using it for inference on a new target
modality (i.e., image) is not as effective as a weakly super-
vised model trained in the target modality. A model trained
on 7.2M weakly supervised images (Figure 7, blue) outper-
forms one trained on a fully supervised text dataset of 18.4M
examples (Figure 7, yellow) despite lacking human-curated
labels. The exact improvement is dependent on the features
used. For instance, the difference when using two features
(A, B) is insubstantial. Table 2 shows this result holds for all
other tasks, with improvements ranging from 1.1-1.6× in the
case with all features used. Using fully supervised data of
the target modality only increases the performance gap: in
CT 1, the text model performed 1.4× worse despite having
48× more data. This result holds true across all tasks, and,
as seen in Table 2, CT 3 and CT 4 in particular, which have
much lower cross-over points. We hypothesize this occurs as
despite the common feature space, the input distribution is
not identical across modalities.

Second, we find that combining data modalities (Figure 7,
green) improves performance compared to using any one
modality. This is true as we augment our feature set, and for
CT 2 - 5. We present the results for the case with all fea-
tures A,B,C,D for other tasks in Table 2. Understanding
why combining modalities improves performance requires
decomposing the effect of dataset size, modality, and feature
distribution, and is an area for future work (see Section 7.3).

Effect of training method. Existing cross-modal tech-
niques assume one-to-one mappings between modalities [23,
42,44,60], whereas we have different entities for each modal-
ity and use our common feature space to construct many-
to-many mappings. To determine if general cross-modal op-
timizations [42] can be leveraged in conjunction with our
techniques, we evaluate if training a CNN (inception-v3 [64])
to materialize features performs better than our services.
We found that our features perform up to 1.54× times bet-
ter, and our proprietary (black-box, Google-wide) embed-
ding also outperforms this generated embedding by a small
(1.04×) factor. Thus, we instead evaluate methods to fuse
the two data modalities under our feature space. We found
that the early fusion model outperformed our alternatives.
Compared to intermediate fusion, early fusion performs up
to 1.22× (average 1.08×) better across the tasks. Com-
pared to DeViSE, early fusion performs up to 5.52× (av-
erage 2.21×) better. While DeViSE represents a canonical
baseline for cross-modal workloads, we hypothesize that re-
using an embedding space specific to the old data modal-
ities fails to sufficiently leverage information from the new
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modality. Thus, using methods for domain adaptation [13]
with our methods may further boost performance over these
multi-modal and fusion techniques. This hypothesis is sub-
stantiated by recent work on understanding when and how
information transfers in multi-task learning [72], which we
seek to extend to our scenario.

6.7 Weak Supervision in Practice
In this section, we evaluate our training data curation

phase. Correspondingly, we also look at canonical metrics
for evaluating the weak supervision generative model: pre-
cision, recall and F1 score. We first compare automatically
generated labeling functions to human-generated ones, and
then evaluate using label propagation as an LF.

6.7.1 Automatic vs. Manual LF Generation
To evaluate our automatically generated LFs, for compar-

ison, our ground truth collection team manually developed
candidate LFs for CT 1. As previously noted, a limitation
in using humans to generate LFs is that experts for each
language and region are required to construct high-quality
LFs. As a result, in this subsection, we restrict our data
points to English for a representative comparison.

We compare LFs in terms of time to construct and the per-
formance of Snorkel’s generative model. The automatically
generated LFs require 3.75 hours (14 minutes for itemset
mining and 3.75 hours for label propagation in parallel), and
the human generated LFs require 7 hours spread over days
to weeks. While both tasks can be parallelized based on ma-
chine and labeling resources, these gains are representative
of typical resource availability. Despite their simplicity, our
LFs outperform the more complex, multi-feature, human-
generated LFs by 2.7 F1 points, reflecting a 14.3% precision
increase and 9.6% recall decrease, with a 3% coverage in-
crease and 1.35× AUPRC improvement. We hypothesize
this reflects the discriminative power of our extracted fea-
tures for CT 1, and are evaluating additional tasks to verify.

6.7.2 Label Propagation
In Table 3, we compare the precision, recall and F1 score

of Snorkel’s generative model, and the AUPRC of the dis-
criminative model when using LFs developed with and with-
out label propagation. All values show the relative improve-
ment that label propagation provides compared to LFs gen-
erated with only itemset mining. As stated in Section 4,
label propagation provides high recall LFs, resulting in net
F1 improvement—up to over an order of magnitude.

In tasks such as CT 2, our automatically mined LFs are
sufficient in capturing both high precision and recall, in-
dicating the positive class is “easier” to identify. We can
identify such cases a priori by evaluating results of WS us-
ing only the mined LFs with a text development set, saving
3.5 to 5 hours of processing time. Simultaneously, there are
tasks such as CT 1 or CT 5 where improvements in F1 score
do not translate to AUPRC improvement in the end model.
Rather than being a limitation of the method, we believe this
is a limitation of the human-curated test set. In small-scale
experiments, we have verified that label propagation’s im-
proved recall signifies that it is better identifying borderline
positive and negatives, and thus may be uncovering exam-
ples that were either not sampled for review (e.g., in the rare
events case) or incorrectly labeled by human reviewers, but
are not reflected in our final test set. Thus, we are exploring

Table 3: Relative improvement gained in the train-
ing data curation step from using label propagation.
Label propagation results in a net F1 score increase.

Task Precision Recall F1 AUPRC
CT 1 0.95× 1.23× 1.10× 1.01×
CT 2 1.00× 1.00× 1.00× 1.00×
CT 3 0.87× 1.31× 1.21× 1.25×
CT 4 1.45× 162× 129× 1.24×
CT 5 1.40× 46.0× 44.0× 1.05×

when graph-based, nearest-neighbor methods using organi-
zational resources can de-noise, label, or identify candidate
examples to label (e.g., active learning) in isolation.

7. DISCUSSION
In this section, we describe avenues for future work across

each of the split architecture steps, and comment on how to
determine if a cross-modal approach should be deployed.

7.1 Feature Generation
Organizational resources are becoming increasingly com-

mon across organizations as teams rely more heavily on
ML [29, 30, 75]. We demonstrate that leveraging these aux-
iliary resources provides opportunity to train better models
for related tasks of new modalities.

However, as the number of available resources rises, it
becomes challenging to discover and curate which may be
useful for a new task. Low quality organizational resources
incorrectly handled may hurt model performance, but our
manual curation of these sources limits our scalability to
new, non-Google domains. Methods for feature attribution
would enable us to evaluate the contribution of specific data
modalities and resources on a per-service basis, and devel-
oping methods to scale these techniques to our data volumes
would improve performance [34, 51, 63]. Simultaneously, we
require systems and algorithms that build off those in the
data management community [8,42,68] to enable better ser-
vice discovery and exploration.

7.2 Training Data Curation
We present an automated WS pipeline that outperforms

human curated LFs. However, we hypothesize this is a re-
sult of our feature space easily discriminating between the
two classes. A more robust interface would instead target
expert-attention when they explore data slices and validate
LF performance. Maintaining a human in the loop may
avoid potentially unwanted features emphasized in LFs that
may either be unrelated to the target task or bias the train-
ing dataset in negative ways. A first step in achieving this is
to present our mined results as a starting point for experts’
exploration. Moving forward, we hope to augment and draw
from the experience of [47] to understand ways to interface
with non-experts to develop LFs in a cross-modal setting.

In addition, using label propagation for data curation re-
vealed that existing, traditional random-, rule-, and active-
learning-based sampling to identify positive examples may
not capture certain behavioral modes and edge-cases. Semi-
supervised methods such as label propagation provide op-
portunity to augment and improve existing training datasets
by leveraging organizational resources such as pre-trained
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models and corresponding embeddings. Further understand-
ing when semi-supervised methods augment or outperform
existing techniques in this space is an exciting area for con-
tinued research in training data management for ML [47].

7.3 Model Training
We demonstrated the power of combining data modali-

ties under an induced common feature representation, unlike
previous work that operates on the disjoint feature spaces
but common label spaces. However, this can lead to chal-
lenges. First, as the number of data modalities increases,
their differences in feature distributions may compound to
negatively impact performance. Second, as the number of
data modalities grows, fewer features may overlap with one
another, resulting in non-uniform relationships across modal-
ities. As a result, certain data and label sources will be of a
higher quality for a task than others. Better managing and
leveraging the relationships between data modalities, label
sources, and the chosen organizational resources will more
effectively leverage these data sources. Thus, we are explor-
ing domain adaptation as a primitive to help balance be-
tween the data modalities under our common feature space.

7.4 Cross-Modal vs. Fully Supervised
We see in Section 6.4 that there are regimes where a cross-

modal approach is better than a fully supervised approach,
ranging from 4k to 750k fully supervised data points. Know-
ing the current operating regime in production is often un-
clear. Further, offline metrics such as precision and recall on
a hold out set rarely reflect production performance or busi-
ness needs (i.e., relative sensitivity or user-impact of tasks).

A solution is to train and deploy models in parallel. How-
ever, to (1) understand when models are performing poorly
in production, or (2) compare the performance of many can-
didate models, sampling and human reviewing is often re-
quired. In the former, data samples—a combination of ran-
dom and importance sampling—can be used to periodically
check live model performance. In the latter, the same can be
performed over the classification differences between models.
Developing methods to characterize the difference between
online and offline metrics across task and modalities will im-
prove performance by understanding the operating regime.

8. RELATED WORK
End-to-End Methods in ML. Cross-modal adaptation
is a form of transductive transfer learning [7,46]. Most work
in this space assumes the same feature space across modal-
ity [9,52], but with different distributions, similar to domain
adaptation [13,14,17,38]. However, our feature spaces differ.

In few- or one-shot learning [35,40], a classifier is trained
to perform well on classes with few examples. This area
focuses on learning from existing labeled data for closely re-
lated tasks/classes of a given modality [25,57,62,70], which
does not exist to begin with in our setting. In zero-shot
learning, labels of the target class do not exist at training
time [37]. Most closely related to our setting is work that
classifies descriptions or metadata about data in the source
modality [24], and work that uses semantic representations
or human-provided descriptions from other modalities to
classify the target modality [36,45,58]. In multi-modal learn-
ing [44, 60], common feature representations represent gen-
eral “concepts” jointly across multi-modal data. However, a

subset of tasks must still be trained in the target modality
to enable mapping data points across modalities.

Weak supervision [47] allows domain experts to label large
volumes of data using weak, noisy labeling sources. While
weak supervision has demonstrated success in cross-modal
settings for medical applications [23], data points are di-
rectly linked between data modalities (e.g., clinical notes
and lab results), which is not true in our setting. Upon
construction of a common feature space, while we focus on
the opportunities of weak supervision, we can also consider
methods for unsupervised domain adaptation [61], exten-
sions to our initial integration with semi-supervised learn-
ing [15], and extensions of universal or semantic embedding
construction [26,43,69,73].

Multi-Modal Analytics and DBMSs. Multi-modal
content retrieval [6,71,74] explores how to store, index, and
query multi-modal data [32]. This work explores how to
represent unstructured data via structured representations,
as we do in our feature generation step. More closely related
is work that focuses on transferring features across domains
for multi-modal analytics [42], where image features derived
from neural network models are used to join images with
their structured features. We focus on how to leverage these
resources to develop models for these new modalities, and
are complementary with systems such as Vista [42].

Data Integration, Fusion, and Explanation. We
leverage methods used for attention prioritization [11] in re-
sult explanation [10] and difference detection [5] to construct
a pipeline to automatically develop LFs. Our work is related
to problems in data integration and management [19,21,22],
such as data fusion [20,50], in that we consider the problem
of handling and managing heterogeneous data sources with
widely different properties and quality to tackle a common
problem of cross-modal adaptation.

9. CONCLUSION
We develop a scalable pipeline for cross-modal adaptation

in production that uses organizational resources to connect
new and existing data modalities. We demonstrate how to
bootstrap models for cross-modal adaptation that perform
as well as a fully trained model with several thousand data
points in days to weeks, instead of months. These results
highlight the opportunity in leveraging new resources both
within an organization and externally, which only become
increasingly available as ML becomes commoditized.
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and C. Ré. Snorkel: Rapid training data creation with
weak supervision. The VLDB Journal, pages 1–22,
2019.

[48] S. Ravi. Graph-powered Machine Learning at Google,
2016. https://ai.googleblog.com/2016/10/graph-
powered-machine-learning-at-google.html.

[49] S. Ravi and Q. Diao. Large scale distributed
semi-supervised learning using streaming
approximation. In Artificial Intelligence and Statistics,
pages 519–528, 2016.

[50] T. Rekatsinas, M. Joglekar, H. Garcia-Molina,
A. Parameswaran, and C. Ré. Slimfast: Guaranteed
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model structure with static analysis. In Advances in
neural information processing systems, pages 240–250,
2017.
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