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ABSTRACT

Data science has become prevalent in a large variety of domains.
Inherent in its practice is an exploratory, probing, and fact find-
ing journey, which consists of the assembly, adaptation, and exe-
cution of complex data science pipelines. The trustworthiness of
the results of such pipelines rests entirely on their ability to be re-
produced with fidelity, which is difficult if pipelines are not docu-
mented or recorded minutely and consistently. This difficulty has
led to a reproducibility crisis and presents a major obstacle to the
safe adoption of the pipeline results in production environments.
The crisis can be resolved if the provenance for each data science
pipeline is captured transparently as pipelines are executed. How-
ever, due to the complexity of modern data science pipelines, trans-
parently capturing sufficient provenance to allow for reproducibil-
ity is challenging. As a result, most existing systems require users
to augment their code or use specific tools to capture provenance,
which hinders productivity and results in a lack of adoption.

In this paper, we present URSPRUNG,' a transparent provenance
collection system designed for data science environments.> The
URSPRUNG philosophy is to capture provenance and build lineage
by integrating with the execution environment to automatically track
static and runtime configuration parameters of data science pipelines.
Rather than requiring data scientists to make changes to their code,
URSPRUNG records basic provenance information from system-
level sources and combines it with provenance from application-
level sources (e.g., log files, stdout), which can be accessed and
recorded through a domain-specific language. In our evaluation,
we show that URSPRUNG is able to capture sufficient provenance
for a variety of use cases and only adds an overhead of up to 4%.
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1. INTRODUCTION

A large fraction of industry and research nowadays has deployed
data science pipelines to extract insights and assets from the vast
amounts of available data. However, the exploratory and iterative
nature of data science work makes it difficult to reproduce the re-
sults of such pipelines. This leads to a reproducibility crisis in mod-
ern data science, in particular in artificial intelligence and machine
learning [40, 17, 43], as without knowledge of how a result was
produced or model was trained, they cannot be trusted. One can-
not repudiate [10], reproduce, reuse, or improve on previous re-
sults if their lineage is not understood. This lack of trust hinders
widespread adoption, collaboration, and continued refinement.

Incorporating provenance into execution environments for data
science pipelines offers a solution to address the reproducibility
problem. A provenance model records and stores the lineage of the
pipeline output, such as an analysis result or a machine learning
model. This lineage tracks the origin of the output and the actions
and actors that transformed it. For example, the lineage of a ma-
chine learning model may consist of the input data, the algorithms,
the configuration parameters, the associated dependencies, the var-
ious transformations applied to the input, the number of iterations,
the execution environment etc. [26, 38]. Additionally, it also in-
cludes actors such as the owner of the input data, the owner of the
executables, or the users who initiated and reviewed the pipeline.

Combining the provenance of all data in a system forms the
provenance graph. The provenance graph is well suited as the ba-
sis for investigating the provenance of different assets, e.g., a ma-
chine learning model. Within its vertices and edges, it captures the
actors, the actions and the resulting transformations. A well anno-
tated provenance graph can be utilized to understand, compare and
contrast, and consequently reproduce a data science pipeline [32].

Though promising and sound in principle, pervasive adoption
of provenance has proven challenging in practice. Capturing the
required information is not straightforward, and the main challenge
is the inherent trade-off between generality and level of detail, i.e.,
maximizing the signal to noise ratio, that provenance faces.

With current approaches, users can choose between two main
options: 1) generic provenance capture systems, which interpose at
the operating system layer to capture provenance at the granularity
of system calls and IPC [56, 33, 60]. This precision provenance is
difficult to make actionable without a deep knowledge of the inter-
nals of one’s pipeline and its execution environment; 2) model man-
agement systems [54, 69, 71, 67, 8, 5, 9], which provide richer in-
formation but force users to modify their software or adopt a partic-
ular data science framework and tool suite. While pipeline-specific
information is valuable, the vast and quickly-changing data science

3354



landscape suggests that shoehorning users into a particular system
or methodology is impractical.

We address these problems in our solution: URSPRUNG, a practi-
cal implementation of a provenance collection, storage, and mining
system for reproducing data science pipelines. URSPRUNG aims to
maximize both generality and the level of detail while remaining
transparent to users. Therefore, it taps into and combines prove-
nance data from a variety of readily-available provenance sources.
The key idea of URSPRUNG is to only support sources that are al-
ready natively part of the data science pipeline (e.g., log files or
stdout) and the underlying compute and storage system (e.g., OS
and file system). As a result, applications and pipelines can remain
unchanged while enough provenance is captured to analyze, com-
pare, and reproduce results.

URSPRUNG considers system-level sources such as system call
notifications, and application-specific sources such as log files or
databases. System-level provenance is collected through standard
auditing mechanisms such as auditd [6]. URSPRUNG introduces
a rule language to define capture rules for different application-
specific sources, which offers an easy way to harvest relevant prove-
nance information from these sources without application changes.

To increase practicality, URSPRUNG: 1) uses event aggregation
models to merge fine-grained low level provenance into more com-
pact, intuitive information to reduce resource overheads and im-
prove queryability; 2) provides configuration through provenance
classes, i.e., high-level abstractions to tailor provenance collection
to a pipeline’s needs; and 3) has an integrated interactive GUI with
a differential provenance view [27] to explore, contrast and com-
pare pipeline executions.

After introducing the relevant background on provenance and
and its requirements on data science pipelines (§2), we make the
following contributions:

e We introduce URSPRUNG, a provenance implementation tai-
lored to enhance the reproducibility of complex data science
pipelines (§3.1).

e We address challenges in provenance expressiveness and over-
head in the form of a rule language to collect application-
specific provenance from existing sources (§3.2), and prove-
nance classes and event aggregation models to increase the
practicality of the collected provenance data (§3.3).

e We describe the URSPRUNG GUI, an interactive GUI that sup-
ports a variety of features such as step-by-step graph explo-
ration, file content comparison, and differential provenance,
to ease the exploration of the provenance graph (§4).

We implement URSPRUNG and discuss practical implementa-
tion considerations (§5) and then evaluate it using four represen-
tative data science pipelines from real-world use cases and bench-
marks (§6). The evaluation demonstrates that URSPRUNG is able
to capture enough provenance to compare and reproduce differ-
ent pipeline runs while only adding an overhead of up to 4% for
pipelines consisting of a large number of small steps. For pipelines
with fewer, larger steps, URSPRUNG’s overhead stays within 1%.

2. PROVENANCE AND DATA SCIENCE

In this section we provide background on modern data science
pipelines (§2.1) and study the requirements of provenance collec-
tion for such pipelines (§2.2). We then discuss the shortcomings of
existing provenance solutions when applied in this context (§2.3).

2.1 Data Science Pipelines

The data science reproducibility crisis is fueled by the complex-
ity of the underlying pipelines. Data science pipelines involve many

steps covering disparate activities such as data integration, prepara-
tion, cleaning, and model selection [44]. Each step has parameters
that may be explored and tuned to achieve the desired result. This
leads to many iterations over the same data set and the use of differ-
ent tools for different steps of the pipeline [53, 69]. Tracing these
steps is important for several reasons. For example, quickly identi-
fying errors and rolling back pipelines to a working state is critical
in a business context [23] while in a scientific context, comparing
the effect of different parameters is helpful for experimentation and
ensuring the validity of the work. The need for in-depth, end-to-end
tracking of complex data science pipelines has also been called out
most recently as one of the main functionalities Enterprise Grade
Machine Learning must offer [13].

However, tracing the detailed history for different pipeline ex-
ecutions is challenging as data science is often an unstructured,
ad-hoc process [71, 67]. The problem worsens as the number of
generated data sets [36] and the complexity of the pipelines in-
creases [65]. For example, Microsoft’s teams describe lengthy data
science pipelines, starting with data cleaning and concluding with
deployment and monitoring [15]. Companies like Google [23],
Facebook [37], Pinterest [75], Booking.com [19], and AirBnB [35]
maintain similar pipelines. These pipelines involve many tools and
can involve a mix of automated and manual effort, which make
them error-prone for both technical and sociological reasons.

2.2 Data Science Provenance Requirements

From our study of data science practices, both those described
in the scientific literature (see §2.1) and those followed in-house
at IBM Research, we believe that a provenance system for modern
data science must meet the following requirements:

1. Tailored Provenance: Every data science pipeline is different,
using different (and changing!) tools and following different pro-
cesses. The particular provenance necessary to describe and re-
produce the output of a pipeline will vary. A practical prove-
nance system must allow users to tailor the provenance captured
to suit their pipelines and their needs.

2. Scalable Provenance: Analytics clusters can often be large in

size, spanning tens and hundreds of nodes. Provenance collec-
tion needs to be able to work in a distributed environment and
scale to those cluster sizes.

3. Lightweight Provenance: Analytics pipelines may run 24/7 on

terabytes of data. A provenance system must capture enough in-
formation to be useful, but need not be encyclopedic and should
avoid storing an excessive amount of data.

4. Usable Provenance: Provenance systems are only useful if they

can be used. They must not impose significant configuration re-
quirements, nor are our data scientist colleagues willing to sig-
nificantly modify their software in the pursuit of provenance.
Once collected, the provenance must be presented in terms that
a data scientist would understand.

2.3 Families of Provenance Systems

Provenance systems have been proposed for a range of comput-
ing contexts. URSPRUNG sits at the intersection of two families
of provenance systems: fixed-toolset capture systems and whole-
system capture systems. We introduce those families here and dis-
cuss why we believe they do not meet all of the above requirements.

The Fixed-toolset Capture Approach. Provenance systems in the
fixed-toolset family support provenance capture for data science
pipelines built using the toolsets that they support. Workflow man-
agement systems and model management systems both fall into this
category. Scientific workflow management systems allow users to
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construct and execute processing pipelines through a specific inter-
face (often graphical) [25, 48, 74]. During execution, these systems
can capture provenance for a pipeline. Other researchers have con-
sidered workflow provenance for single-language pipelines, e.g.,
the Python-only noWorkflow provenance capture system [57, 63].

Rather than following the process-oriented approach and captur-
ing provenance for workflows, model management systems focus
on capturing provenance for some of their products — machine
learning models. The idea was introduced by Kumar et. al. [44]
and has been implemented in a variety of research projects [71, 53,
67, 69] and community projects [8, 5, 9].

Overall, these fixed-toolset systems are effective for capturing
provenance for pipelines that use the tools they support. However,
imposing a framework and toolset onto their users violates the Tai-
lored Provenance and Usable Provenance requirements.

The Whole-system Capture Approach. We call the second fam-
ily of interest whole-system capture systems. These systems aim
to construct a provenance graph for every operation performed on
a computing system, often for the purpose of security auditing.
Some interpose at the level of the OS kernel [56, 33, 18, 60], while
others consider subsystems like the file system [70, 66]. Because
system users are typically uninterested in fine-grained information,
the whole-system capture approach requires solving the layer prob-
lem [55]. These systems must handle system interactions at differ-
ent levels of abstraction, e.g., interpreting the lower-level events
they collect in terms of the higher-level semantics relevant to a
user. The common solution is to require (possibly-automated [33])
changes to applications to add annotations or use a provenance li-
brary [55, 50]. This violates our Usable Provenance principle.
Due to the above reasons, we believe that the reproducibility use
case for data science requires a different approach to provenance
collection, which can meet all four major requirements (see §2.2).

3. THE URSPRUNG SYSTEM

We now describe the URSPRUNG system, which blends techni-
ques from fixed-toolset and whole-system provenance capture sys-
tems. We first give an overview of the architecture (§3.1) and ex-
plain how URSPRUNG fulfills the four provenance requirements.
We then discuss in detail how URSPRUNG enables Tailored Pro-
venance through its rule language (§3.2), and Lightweight Prove-
nance through provenance classes and event aggregation (§3.3).

3.1 Architecture

As shown in Figure 1, URSPRUNG consists of three main com-
ponents: (i) the provenance sources; (ii) the collection system; and
(iii) the provenance store and the GUI The collection system itself
comprises a base system and provenance daemons (provd) on each
cluster node, which are responsible for configuring individual hosts
for provenance collection.

Provenance Sources. The provenance sources provide the foun-
dation of URSPRUNG and emit provenance-related events, which
are captured and processed. URSPRUNG distinguishes between two
types of sources: system-level and application-specific sources.

System-level sources are generic, application-independent com-
ponents such as the operating or file system, and they generate low-
level events such as system calls or file system interactions. This
information is used to assemble the base provenance, i.e., basic
information on creation and deletion of processes and data (files,
objects, etc.) and their interactions.

There are different ways to extract relevant events from system-
level sources. One option is to directly collect events in the OS
kernel by augmenting the kernel with collection-specific code [56].
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Figure 1: URSPRUNG architecture overview
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Another way is to use existing hooks inside the kernel and once
triggered, emit the corresponding event [60]. Finally, user-space
applications can subscribe to a variety of notification mechanisms
to receive provenance-relevant events, e.g., Linux’s auditd [6]
and inotify [7], or IBM® Spectrum® Scale’s Watch Folders [3].
Learning from SPADE [33], we designed URSPRUNG to run in user
space to avoid tight kernel dependencies. In particular, URSPRUNG
uses auditd to receive system call notifications, and Spectrum
Scale’s Watch Folders for cluster-wide file system interactions.

Application-specific sources can be anything that an application
depends on or produces during its execution. This includes sources
such as log, config, and tmp files, any databases on which an appli-
cation relies, and the application’s command line output. This high-
level provenance augments the base provenance information, pro-
viding more detailed insight into the operation of a pipeline [55].

URSPRUNG comes with a rule language to permit users to tap
into application-specific sources (§3.2). These rules are triggered
by base provenance events. For example, when URSPRUNG is
configured to extract provenance from a temporary file fimp, UR-
SPRUNG will monitor base provenance to detect write interactions
with fimp. When writes occur, URSPRUNG will trigger the rule to
extract provenance data from the new content. This addresses the
Tailored Provenance requirement.

Collection System. The collection system is at the core of UR-
SPRUNG and is responsible for consuming the events emitted by
the provenance sources. It addresses the requirements of Scalable
and Lightweight Provenance.

To provide Scalable Provenance, URSPRUNG employs an event-
driven architecture. Each provenance source pushes its events to a
scalable, distributed message queue, from which consumers pick
them up. Our implementation uses the Kafka message queue [4],
which some sources already support as a sink for events [3] while
others can be configured to redirect events to Kafka through plug-
ins [6]. Due to the message queue’s distributed nature, URSPRUNG
can collect events across all nodes in the cluster in a scalable way.

Additionally, the push-based approach helps URSPRUNG access
transient provenance data with low overhead. Transient prove-
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Table 1: Summary of URSPRUNG rules

Rule Description Syntax

FileLoad Bulk load temporary data FILELOAD path INTO user:password@host:port/table USING
from file coll,col2,...,coln

LogTransfer Extract relevant records LOGTRANSFER path MATCH ‘regex’ FIELDS f1,f2,...,fn DELIM
from log files ‘delimiter’ INTO user:password@host:port/table USING

coll,col2,...,coln

DBTransfer Transfer newly added data DBTRANSFER ‘query’/‘queryStateAttribute’ FROMDSN ‘dsn’ TO
from application DB user:password@host:port/table USING coll,col2,...,coln

CaptureCout Extract relevant records CAPTURESOUT MATCH ‘regex’ FIELDS f1,f2,...,fn DELIM ‘delimiter’
from a prOCCSS’ stdout INTO user:password@host:port/table USING coll,col2,...,coln

Track Track the content of TRACK ‘regex’

matching files

nance, e.g., the stdout of a process or a temporary file, exists
only during the execution of a pipeline and can be accessed through
URSPRUNG rules. This means that, as the provenance is ephemeral
and may only exist for a short period of time, these rules must be
triggered quickly enough to extract all relevant provenance before
it disappears. The push model ensures that events reach the collec-
tion system as fast as possible to allow timely event delivery.

To support Lightweight Provenance, URSPRUNG offers pro-
venance classes and event aggregation models (§3.3). Provenance
classes permit configuring which events are of interest and which
events can be filtered, reducing processing and storage costs. They
offer a simple abstraction for users to tailor collection to their spe-
cific needs. Event aggregation models define how different events
can be combined to form denser, semantically richer events. Where
possible, filters and aggregations are distributed to the provenance
daemons to reduce load on the collection system.

Figure 1 shows how a raw event is processed by the collec-
tion system. If not filtered by the configured provenance classes,
an event is passed to the Stateful Event Curator (SEC). The SEC
has different Event Aggregation Models (EAM), which define, how
to transform events into provenance events. While some trans-
formations are local to a single event and hence, stateless, others
are stateful as they require to combine several subsequent events.
The ready provenance events are passed to the Application-specific
Provenance Collector (APC), which matches the event against the
configured rules. If there’s a match, the APC will execute the rule
and fetch any new application-specific provenance records, which
are fed back to the SEC for potential aggregation.

Provenance Store and GUI. For consumption by the user, prove-
nance events are persisted in the provenance database. Previous
systems have utilized a variety of data stores for provenance data,
including relational, XML, RDF, and graph stores [39]. URSPRUNG
uses a relational database as its provenance store due to their scal-
ability and fast query performance. The schema is optimized to
allow for fast exploration of the provenance graph as part of the
GUI by minimizing joins and not using expensive recursive queries.
Hence, it is currently not compliant with PROV-DM [72]. How-
ever, PROV-DM or other schemas and stores can be supported by
URSPRUNG by adapting the SEC.

URSPRUNG comes with a Web-based GUI that can be accessed
from any browser. The GUI allows to interactively explore the
provenance of files in a graph viewer panel and provides additional
features to compare and analyze data science pipeline executions.
To reduce complexity, it shields the actual database queries from
the user and only allows a predefined set of queries through GUI
interactions. It also permits configuring URSPRUNG through rules
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and provenance classes. In combination, the GUI satisfies the re-
quirement of Usable Provenance.

3.2 Application-specific Capture Rules

To make provenance collection complete, it is necessary to aug-
ment system-level provenance with higher-level, application-spe-
cific provenance [55, 50]. To remain transparent and support a
wider range of applications out of the box, URSPRUNG only relies
on provenance that is already exposed through existing application-
specific sources. We identify 3 main such sources: (i) files pro-
duced or used by the application, e.g., log, config, or temporary
files; (ii) application-internal databases, which keep application state
across runs of the application; and (iii) the command line output
(stdout and stderr) of an application. File sources are further
subdivided into files for bulk loading and files from which only
specific parts should be extracted.

URSPRUNG’s rule language provides generic capture rules for
each of these provenance sources (see Table 1 for a summary).
Each rule has conditions that govern when it should fire. Next we
describe these conditions, and then the rules themselves.

Conditions. Conditions are used to prescribe the events to which
a rule applies, and the circumstances under which it should be ap-
plied. They are Boolean expressions over the fields of an incoming
provenance event, with support for arithmetic and regex matching.

FileLoad. The FileLoad rule is used to bulk load an entire file into
the provenance database. This is useful when an application gen-
erates temporary data, e.g., in the form of a . csv file, which needs
to be captured and stored for later analysis. The rule requires the
connection string to the provenance store, and the table name and
schema into which the data should be loaded. The path argument
is a constant and describes that the path field of the event should be
used to determine the file to be loaded.

LogTransfer. This rule enables watching an application file for
new provenance-relevant records, such as log entries noting pipeline
parameters. The path and database connection string are the same
as in the FileLoad rule. The LogTransfer rule additionally requires
a regex to indicate the entries of interest and the fields to extract
from the entry. For files that follow append-only semantics, UR-
SPRUNG will track the file offset so that only new content is parsed.

DBTransfer. The DBTransfer rule has the same purpose as the
LogTransfer rule, except that the source is a database. URSPRUNG
connects to this database via ODBC and requires the corresponding
DSN. Additionally, users need to specify the SELECT query, which
is used to extract new records from the source database. Again,
URSPRUNG assumes an append-only table to avoid re-scanning the



collected provenance data, URSPRUNG uses the concepts of prove-
nance classes for filtering, and event aggregation models for aggre-
gating provenance events.

path=/gpfs/spark/logs/+Master AND written>0 AND
event=CLOSE

->

LOGTRANSFER path

MATCH ‘Registered app’

FIELDS 1,8,11 DELIM ‘ '

INTO dbUser:dbPassword@dbHost:dbPort/workflows

USING starttime, name, id

Provenance Classes. Provenance classes are high-level abstrac-
tions for system-level provenance relationships. URSPRUNG al-
lows users to select different provenance classes and underneath
configures the corresponding system call filters. Those filters are
then pushed down to each node in the cluster.

Currently, URSPRUNG supports four provenance classes: (i) file-
based provenance, which captures the interactions between pro-
cesses and files; (ii) process-group provenance, which captures in-
formation on Linux process groups and displays process group mem-
bership; (iii) pipe-based inter-process communication (IPC), which
tracks pipes between processes to capture IPC; and (iv) network
provenance, which tracks creation of sockets and connections to
capture remote process interactions. Other classes such as IPC
through shared memory can be added.

Due to their abstraction level, provenance classes make it easy
for non-expert users, such as data scientists, to configure what prove-
nance should be collected. Instead of requiring knowledge on what
system calls constitute what type of provenance relationship, users
can select what relationships they want to capture (e.g., files, pro-
cesses, network) by simply enabling/disabling the corresponding
provenance classes through a checkbox in the GUI. By default, all
classes are enabled in URSPRUNG.

Listing 1: A LogTransfer rule to extract job information from the
Spark master log

database and redundantly loading records each time the rule fires.
Therefore, users need to provide the queryStateAttribute, a
monotonically increasing attribute such as a timestamp or a surro-
gate key that is used as the offset into the (sorted) table.

CaptureCout. CaptureCout rules are used to extract provenance
from the command line output of an application. Similar to Log-
Transfer rules, a regex and a format (fields and delimiter) need to
be specified to identify the relevant provenance records. Once UR-
SPRUNG detects that a process that should be watched has been
started (by looking for exec events), it will transparently redirect
the stdout and stderr streams of the process to a temporary file
through pt race and then watch the file for provenance data.

Track. Track rules allow URSPRUNG to support tracking file con-
tents. This is useful to keep track of specific pipeline parameter
or algorithm changes in source or config files. Each time a file is
updated, URSPRUNG will copy the affected file to a private version
control repository (Mercurial) and commit the new version. It also
creates an entry in the provenance store to link the version hash to
the update event. This rule uses a regex to identify the files to track.
For best performance, this rule should be used preferably on small
files to avoid high IO and storage overhead.

Listing 1 shows a sample LogTransfer rule to collect information

Event Aggregation Models. An event aggregation model defines
how to aggregate lower-level events into semantically richer ones.
Such models can be applied to raw events, and can also raise pre-
viously aggregated provenance events to higher semantic levels.
Aggregation reduces the amount of collected provenance data, and
also curates events into more abstract entities to simplify querying.

One example for such an aggregation is the creation of pro-
cess events. Our data scientist colleagues do not care about fork,
execve, and exit system calls, but they do care about the argu-

from Spark jobs. The conditions direct URSPRUNG to watch the
Spark master log and trigger the rule whenever the log file is closed
after a write. The rule searches the log for the string ‘Registered
app‘ and extracts the fields 1, 8, and 11, corresponding to a job’s
start time, name, and ID, from matching entries. The triple is then
loaded into the work flows table in the provenance database.

Rules offer data scientists a convenient way to tap into external,
application-specific provenance sources. Compared to requiring
application-level changes such as adding or annotating code to emit
provenance from existing applications, URSPRUNG’s rules are less
intrusive and take less effort to set up. This is particularly useful in
cases in which provenance needs to be extracted from large exist-
ing applications not written by the data scientist: understanding an-
other codebase and instrumenting provenance-generating locations
is both complex and time consuming. While basic understanding
of the application behavior is required to write useful rules, such
knowledge can often be retrieved from the documentation or by
reading through examples. URSPRUNG can also offer pre-defined
rules for the most commonly used data science applications.

3.3 Reducing Provenance Data

Provenance data can grow quickly, putting pressure on the prove-
nance store and making queries expensive. This problem is inher-
ent to provenance, but it can be staved off by reducing the data
collected. Filtering and aggregation are two basic methods for re-
ducing data. However, one must know what to filter and how to
aggregate. This is often not straightforward, especially if crossing
semantic gaps from system-level provenance to application-level
provenance. To ease this task and effectively reduce the amount of
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ments given to their Python processes. So URSPRUNG aggregates
raw system call events from auditd for fork, execve, and exit
system calls.> URSPRUNG extracts relevant information from each
of these events, e.g., process start time (from fork), process com-
mand line (from execve), and process end time (from exit). UR-
SPRUNG'’s provenance daemons assemble each process event grad-
ually. Once complete, the event is emitted for storage in the prove-
nance database. As an application-level example, Spark jobs can
be assembled from two different log entries, one entry signaling
the start of the job and one signaling its completion.

Event aggregation is stateful, as the curated event must be accu-
mulated from a series of incoming events. If the cluster is unstable
or delays affect time-to-insight for users, it is possible to already
emit partial events to the provenance store to persist the state and
then augment those events later.

4. THE URSPRUNG GUI

Next, we introduce the URSPRUNG GUI. We first describe how
users can navigate and explore the provenance graph (§4.1), and
then discuss URSPRUNG’s differential provenance views (§4.2) and
reproducibility support (§4.3).

4.1 Graph Exploration

Visualizing provenance graphs for users to consume has been a
difficult problem due to the mostly large scale of such graphs [49].
URSPRUNG’s graph explorer view (see Figure 2a for a screenshot)

3This also includes calls with similar functionality such as clone,
vfork, and exit_group.
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Figure 2: URSPRUNG GUI features

has several features which aim to reduce complexity for users dur-
ing exploration by trying to keep the graph clear.

To display the provenance graph, URSPRUNG uses a node-link
diagram visualization. Users can input an object of interest into
a search field and then retrieve the provenance for it. However,
instead of fetching the entire graph at once, URSPRUNG only re-
trieves the initial node. Starting from this node, users can then in-
teractively explore the graph by clicking on the node and expanding
its immediate dependencies (1-hop neighbors). Input dependencies
will be placed on the left of the node while output dependencies
appear on its right. This allows users to analyze each step in detail
and selectively follow new dependencies at their own pace.

Besides step-by-step exploration, URSPRUNG also uses several
other techniques to improve the graph visualization. First, it uses
shapes and colors to distinguish different types of nodes and dif-
ferent relationships. For example, processes are displayed as red
squares while files are blue circles; orange edges denote file re-
names, and blue edges indicate read/write dependencies. Second,
node labels, such as file names, are displayed in tool tips. They only
appear when hovering over a node, decluttering the display. Third,
nodes can be manually moved and arranged by users to change the
layout of the graph. Finally, users can define filters to remove nodes
not relevant to the task at hand.

If the content of a file is tracked (§3.2), URSPRUNG can display
content changes as part of the provenance graph (see Figure 2b). A
right click on a specific file will open a dialog box, which lists all
the different versions of a file with the process that changed it and
the time of the change. Users can select one of the versions and
a diff between the selected and the previous version is displayed.
This can help, e.g., to analyze how a parameter changed between
two runs of a data science pipeline.

4.2 Differential Summary Views

As the provenance graph can get difficult to explore the larger it
gets, URSPRUNG allows users to compare different pipeline execu-
tions through a differential provenance summary view. As stated by
recent work [27], analyzing the differences between two runs rather
than looking at the provenance for a single run can help users better
understand why a run produced a particular result.

To use the differential provenance view, users must select two ex-
ecutions of a pipeline for comparison. URSPRUNG will then com-
pute the dependencies for each of the runs and display the differen-
tial summary (see Figure 2¢). Currently, the summary shows which
files were used by both runs, which files were specific to each run,
and what output was produced. We are planning to extend this view
with a richer comparison to meet the needs of our users.

URSPRUNG uses three criteria to identify different files: the file
path, the inode, and the file version. The file path and inode are
provided by the base provenance sources. URSPRUNG calculates
file versioning itself using a hash over its contents. Each time a
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Algorithm 1 Constrained prioritized BFS to compute the set R of

input dependencies for node v

Require: G = (V,E),Yv € V : v = (h,t),Ve € E : e =
(u,v,t), vs

1: R=9,PQ=0,vs.t=00,YVv eV :v.h=0,vt=0
2: PQ.enqueue(vs, vs.t)

3: while PQ # @ do

4: v = PQ.dequeue()

5: if v ¢ R then

6: R=RU{v}

7: U={ueV|(uvt) e EANt <wvt}
8: Vu € U : u.t = et where e = (u,v,t)
9: if isFile(v) then

10: Umax = MaXyey (u.t)
11: v.h = getVersion (tmax.t)

12: Vu € U : PQ.enqueuve(u, u.t)

13: return R

file modification is detected, URSPRUNG will compute the file hash
and store it with the modification event. If not required, version
tracking can be disabled to reduce overhead.

To compute the differential summary, URSPRUNG must com-
pute the dependencies for each individual run of the pipelines that
should be compared. URSPRUNG does this using a modified breadth-
first-search (BFS) as shown in Algorithm 1. The main modifica-
tions are the use of a priority queue for ordering, and a constrained
traversal of edges to observe time boundaries.

The BFS modifications ensure two properties: (i) dependencies,
such as processes modifying files, which occurred after the run of
the pipeline are excluded from the pipeline’s dependencies. This
is achieved through the constrained neighbor detection; (ii) all de-
pendencies that occurred before the run of the pipeline are included.
This is achieved through the use of a priority queue, which ensures
that the timestamp of a newly detected node is set to the timestamp
of its latest incoming dependency. As a result, the maximum subset
of neighbors is detected for that node.

The algorithm takes as input the complete provenance graph and
a start node vs (see Algorithm 1). Edges are directed and labeled
with a timestamp ¢, which indicates, when the dependency oc-
curred. Each node in the graph has a version h and a timestamp
t, which are initially set to 0, except for v (Line 1). The prior-
ity queue P(Q is initialized with v, and its corresponding times-
tamp as the priority (Line 2). The BFS then starts by removing the
first element from the queue and retrieving all of its ancestor nodes
(Lines 3-7). The ancestor retrieval is constrained to only nodes
whose edges have a timestamp less than the current node (Line 7).
Once found, the timestamp of each ancestor is set to its correspond-
ing edge timestamp (Line 8). If the current visited node is a file



node, it also needs to have its correct version set, i.e., the version
corresponding to the last edit of the file (Lines 9-11), to ensure that
the correct versions are compared in the differential view.

4.3 Reproducibility Support

URSPRUNG helps to improve both repeatability and reproducibil-
ity. By repeatability, we mean activity that does not actively repro-
duce a result but helps users understand how a result was created
so they are able to recall and repeat the steps. By reproducibil-
ity, we mean supporting users to actively re-run the computational
steps necessary to recreate a result. These definitions are similar to
ACM’s terminology [11] but are not standardized [64].

Repeatability is supported in URSPRUNG through the provenance
graph explorer and the additional features presented above. Through
the provenance graph, users can explore a data science pipeline by
investigating the associated processes and their parameters. They
can drill down into the different pipeline steps by analyzing, how
the content of code or configuration files has changed and compare
entire pipelines through the differential view.

To actively reproduce a result, URSPRUNG can generate the list
of processes that need to be rerun to regenerate the result file. Us-
ing the GUI, users can “long click” on a node in the graph to get
its associated list of generative processes. The list is ordered and
contains the exact commands for each step of the pipeline, includ-
ing the machine on which it was run. Additionally, if application-
specific provenance is collected, URSPRUNG can detect whether
a result was created by a higher-level job. URSPRUNG will then
display only the information necessary to launch the job, not to
run each individual process therein. Finally, URSPRUNG’s version
tracking can be used to notify users if dependent files have changed
since the desired result file was created. If content tracking is en-
abled for the changed files, URSPRUNG can assist in reverting them
to the appropriate versions.

5. IMPLEMENTATION

We implemented the URSPRUNG collection system in C++ and
the GUI with Node.js. URSPRUNG currently relies on auditd
and IBM Spectrum Scale’s Watch Folder as system-level prove-
nance sources. The provenance store is a Db2 database. In the
implementation, we address the challenges of reliable (§5.1) and
timely (§5.2) event delivery. We also discuss scalability considera-
tions (§5.3) and describe current limitations of our prototype §5.4.

5.1 Reliable Event Delivery

Reliable event delivery is crucial for provenance collection. Miss-
ing an event means missing relationships, affecting the precision of
the provenance graph. This applies in particular to system-level
provenance as it forms the basic relationships between entities.

We analyze URSPRUNG’s reliability properties in terms of the
event pipeline. We assume all events are persistent once they reach
the distributed message queue. Application-level events are re-
trieved by the rule engine downstream from the persistent message
queue, and are thus likewise reliable. Hence, the main source of un-
reliability comes from the upstream event sources. URSPRUNG de-
pends on two upstream sources for base provenance: Watch Folders
for file system events, and auditd for other system events.

Watch Folders is Spectrum Scale’s event notification mechanism.
Its API permits users to subscribe to cluster-wide file system events
such as the opening, closing, or creation of a file. The choice to use
Watch Folders notifications has the main benefit of obtaining richer
metadata for a single event. In particular, Watch Folders notifica-
tions include how many bytes a process has read from/written to a

file. This allows URSPRUNG to reliably determine read/write rela-
tionships without having to track individual read and write calls,
which significantly reduces overhead. Watch Folders is reliable; it
guarantees event delivery in most cases. The only exceptions are
node crashes, network failures, and file system panics. However,
such cases are rare and would disrupt provenance collection in any
case, so we view them as an acceptable risk.

In contrast to Watch Folders, auditd is a best-effort system. We
configured auditd with blocking and unbounded queues, but there
is a bounded retry limit when adding events to the auditd plugin
queue” after which vanilla auditd will give up when under heavy
load. We extended auditd to permit infinite retries, giving users a
trade-off between system performance and precision in the prove-
nance graph. Despite these modifications, we still observe occa-
sional auditd event loss during heavy bursts. We are investigating
this behavior to explore whether it is possible to guarantee event
delivery in auditd and the implication of such guarantees.

5.2 Timely Event Delivery

In addition to reliably capturing provenance events, these events
must also move quickly through the pipeline to capture transient
provenance data (§3.2). If events are processed too late, the infor-
mation becomes stale and the rule will not collect any data. For
example, if a rule exists to extract provenance from the stdout of
a process, the capture should start promptly after the execve call is
issued. As another example, to extract data from a temporary file,
URSPRUNG must start monitoring before the application deletes it.

URSPRUNG keeps event latencies low by minimizing process-
ing on the critical path. Besides some data transformations and
(de)serialization, no other synchronous processing occurs. Rule
evaluation and content tracking happen asynchronously. Each type
of rule has a task queue and one or more worker threads to execute
the rules. Whenever an event is received that matches the condi-
tions of a rule, that event will be added to the corresponding task
queue and processed asynchronously.

While these strategies reduce the processing latency, our choice
of an asynchronous delivery pipeline means that URSPRUNG can-
not eliminate latency entirely. Thus URSPRUNG’s rule engine may
race with short-lived processes or files, leading to potential prove-
nance loss. Recall, however, that we chose the asynchronous de-
sign in light of our problem context: data science pipelines. Data
science pipelines typically consist of long-running processes and
long-lived files, and so URSPRUNG can be applied in those cases
without losing provenance.

5.3 Scalability

Several aspects of URSPRUNG’s design and implementation fa-
cilitate scalability. Each of its components (event queue, collection
system, provenance store) can be scaled to support larger analytics
clusters and bursty workloads. Following Figure 1, ordered from
provenance generation to storage:

Event Queue. URSPRUNG uses Kafka as its event queue. Kafka
can be scaled with the cluster size by adding additional message
brokers on different nodes, which ensures fast event delivery to the
collection system.

Collection System. To ensure low latencies and high event through-
put, even under high loads, the collection system itself can be scaled
out. First, URSPRUNG leverages Kafka’s consumer groups to parti-
tion event streams from provenance sources and processes individ-
ual partitions in parallel. The partition keys are chosen such that

“URSPRUNG uses an auditd plugin to transfer auditd events to
its Kafka queue.
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Table 2: Raw event statistics for application use cases

Workload #events event rate event size
CleanML 72K 75/s 1.3MB
ImageML 13.2K 28/s 2.6 MB
Spark 0.6M 1,400/s 92 MB
Vanderbilt 32M 13,900/s 540 MB

consumers do not share state across partitions and hence, the col-
lection system is distributed. Second, as mentioned in §5.2, events
inside a single consumer are processed in parallel as stateless rules
are executed by different threads. Third, event aggregation and fil-
tering is pushed upstream to the provenance sources whenever pos-
sible to distribute the computational load across all cluster nodes.

Provenance Store. To prevent the ingest into the provenance store
from becoming a bottleneck, URSPRUNG uses a scalable storage
solution (Db2 in our case). Additionally, URSPRUNG supports asyn-
chronous loading of provenance data into the provenance store to
avoid congestion during peak load periods (see §6.3).

5.4 Current Limitations

Our current prototype implementation of URSPRUNG still has
several limitations. First, as it is currently based on Spectrum Scale
Watch Folders, it requires a Spectrum Scale file system on which
the data science pipelines are executed. However, the dependency
on Watch Folders is not strict and the same functionality can be
achieved through other mechanisms [70, 33, 66].

Another limitation is that URSPRUNG is currently not tracking
software and environment dependencies such as library or operat-
ing system versions for pipeline executions. We plan to add support
for environment tracking in URSPRUNG through techniques such
as tracking mmap calls (for dependencies) and capturing the pro-
cess environment (e.g., by calling env or pip freeze) whenever
a certain process is executed.

6. EVALUATION

In our evaluation, we aim to understand if URSPRUNG is able to
capture the necessary provenance for different data science pipe-
lines (§6.2). We also study URSPRUNG’s performance in terms of
how much overhead it adds and under varying event loads (§6.3),
the impact of provenance classes on storage and processing over-
head (§6.4), the performance of rule executions (§6.5), and UR-
SPRUNG'’s ability to scale in larger analytics clusters (§6.6).

6.1 Experimental Setup

Our testbed consists of a 13 node cluster, 12 nodes for running
the workloads and one node for URSPRUNG. Each node has an
Intel Xeon Gold 6142 CPU with 64 cores running at 2.6 GHz and
128 GB memory. Nodes are connected through 100 Gbps Ether-
net and storage is provided from an IBM ESS 3000-based system,
consisting of 24 NVMe devices and connected through 3x100 Gbps
Infiniband to the nodes. In our charts, we plot the median measure-
ment and indicate the 25" and 75" percentiles as error bars.

Application Workloads. We use four main workloads to evaluate
URSPRUNG: CleanML, Vanderbilt, Spark, and ImageML. Vander-
bilt and ImageML are real-world examples, used by colleagues at
Vanderbilt University and IBM Almaden. CleanML and Spark are
benchmarks resembling common machine learning workloads.
The CleanML workload is taken from the recently published
CleanML benchmark [46] and models the steps of a common ma-
chine learning pipeline. The steps include initialization to split the
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input data into train and test set, cleaning to remove missing val-
ues, preprocessing to extract labels, and finally training. We use
the provided Airbnb dataset and train a logistic regression model
for predicting Airbnb property prices. The pipeline is python-based
and we modify the code such that each step is run separately. The
raw Airbnb input data is 13 MB.

The Vanderbilt workload is an image analysis pipeline that pro-
cesses cell images from a High Throughput Screening device for
drug analysis used by researchers at Vanderbilt University. The
pipeline first analyzes image metadata to create job descriptions
for image pairs and then submits each job to the IBM® Spectrum®
LSF® scheduler [2] for parallel processing. Once the processing
has finished, a post processing step is run to produce a result sum-
mary. The pipeline consists of R and python scripts and is pro-
grammed using the common workflow language (CWL) [1]. The
total input data set is 16 GB.

The Spark workload is an example workflow from Databricks,
which demonstrates Spark machine learning pipelines [29]. The
pipeline trains a logistic regression model to predict whether a cus-
tomer’s product review is good or bad. It first preprocesses the
text data by bucketizing and tokenizing the individual reviews and
then creates a vectorized representation which is used as an input to
training. The job is written in pyspark and uses the Amazon review
dataset as its input. The dataset size is 55 GB.

The ImageML workload is a machine learning pipeline used by
IBM Research to classify X-ray images. It includes model training
and deployment. In the training step, a TensorFlow-based deep
neural network is trained for image classification. The resulting
model is deployed as a REST service so users can POST images for
inference. The pipeline is a mix of python and bash and the training
step accesses 1,174 images. As part of our pipeline execution, we
send one inference query to the REST service.

Table 2 shows the raw event statistics for each workload, i.e.,
how many raw events are generated in the provenance sources and
at what rate. The size is determined by the overall disk space the
events consume when represented as an uncompressed .csv file.
The CleanML and ImageML workloads are very light and only
generate several thousand raw events, occupying few MB at a rate
of tens of events per second. The Spark workload is an intermediate
workload with hundreds of thousands of events at a rate of roughly
1,400 events/second. The Vanderbilt workload is the most demand-
ing workload with millions of events being generated for a total
amount of 540 MB and at a rate of almost 14,000 events/second.

6.2 Usability

To evaluate URSPRUNG’s utility, we compile a set of common
usability requirements for data science reproducibility. These re-
quirements are taken from a variety of sources [73, 42, 58, 24, 69]
and from conversations with IBM Research colleagues who work
on machine learning. We extract six requirements that provenance
should address in this context:

R1) It must track changes to the dataset.

R2) It must track changes to algorithms, code, and parameters.

R3) It must track pipeline metadata during execution such as par-
tially trained weights, ran epochs, etc.

R4) It must track framework dependencies.

RS5) It must support different tools and frameworks.

R6) It must require minimal effort from users to get benefit.

SPADE. We compare URSPRUNG to SPADE [33]. SPADE is a
popular open-source provenance collection system. In the litera-
ture, we believe it is the closest to URSPRUNG in design and func-
tionality. It supports combining operating system provenance from



Table 3: Comparison of URSPRUNG and SPADE in terms of us-
ability requirements (parentheses indicate requirements that are
feasible but not yet supported in the prototype)

R1 R2 R3 R4 RS ‘ R6
Ursprung v v v ) v 4
SPADE v — — v 4 X

auditd with higher-level application-specific provenance. For sys-
tem provenance, SPADE’s users can enable/disable a certain set
of system call events in auditd. We believe URSPRUNG’S con-
cept of provenance classes provide simpler, more fine-grained con-
trol (§3.3). For application-specific provenance, SPADE requires
users to manually send application-specific provenance to SPADE’s
collection server, e.g. through code instrumentation, implement-
ing a reporter, or LLVM-based code annotation. We believe UR-
SPRUNG'’s application-level language for provenance capture (§3.2)
also simplifies the capture of application-specific provenance.

Requirements Analysis. Table 3 summarizes which requirements
are addressed by URSPRUNG and SPADE. We will discuss each
requirement in detail in the following.

URSPRUNG and SPADE both satisfy R1 through base prove-
nance collection. Base provenance captures all changes that are
made to a dataset including addition, removal, and updating of
items. This allows both systems to capture updates in terms of data
versions and the process, which updated the data. URSPRUNG ad-
ditionally allows to record the actual changes through a Track rule.
However, this may be infeasible for larger data sets.

R2 is supported by URSPRUNG through Track rules, which can
track file content and hence capture how specific code or configu-
ration parameters have changed between different executions of a
pipeline. While this is technically possible in SPADE, e.g., through
implementing a custom reporter, which watches the necessary files
and manages their content, it requires high implementation effort
from the user (indicated by a dash in Table 3).

Information regarding R3 is usually outputted in either log files,
databases, or to the command line. All of these sources can be ac-
cessed through URSPRUNG’s LogTransfer, DBTransfer, and Cap-
tureCout rules while larger temporary data can be indexed through
FileLoad rules. Similar to R2, capturing this information in SPADE
would only be possible with significant effort for the user.

R4 is enabled in URSPRUNG and SPADE through base prove-
nance collection. URSPRUNG currently only supports dependency
tracking if processes access dependencies (e.g., libraries) through
standard file IO as we have not yet implemented support for other
loading mechanisms, e.g., through mmap. SPADE can track depen-
dencies for both approaches.

RS is met by both URSPRUNG and SPADE as they sit at a layer
below applications and hence, support provenance capture for any
tool or framework that is run on top.

Overall, we conclude that R6 is fulfilled by URSPRUNG by de-
sign. URSPRUNG’s main goals are transparency and simplicity, and
we strive to minimize the configuration options exposed to users.
URSPRUNG minimizes the impact on data scientists because it re-
quires neither changes to existing workflows, nor a deep under-
standing of the applications. As SPADE does not support R2 and
R3 out of the box, R6 is not fulfilled as users would need to spend
significant effort to collect application-specific information, rele-
vant to different data science pipelines.

Case Study. As a case study for its usability, we run the four ap-
plication workloads and configure URSPRUNG to collect all nec-
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essary provenance. We are able to do so using base provenance
plus a small set of 11 rules. For the Vanderbilt workload, we col-
lect data from LSF and CWL logs to list different executions of
the pipeline and find the output data of a specific run. Additionally,
we also load temporary data created as part of the workload into the
database. This requires a total of 6 rules (3 FileLoad, 2 DBTransfer,
1 LogTransfer). For the CleanML workload, we use 1 Track rule to
obtain parameter and algorithm changes, by monitoring changes to
all python files in the workload’s root directory. For the ImageML
workload, job information like the current epoch and accuracy is
printed to stdout. To capture this information, we use 1 Capture-
Cout rule. For the Spark workload, we use 3 LogTansfer rules to
capture job submission information and all warning and error logs.

6.3 Performance

Next, we study URSPRUNG’s performance in terms of its over-
head on application workloads and the event rates it can sustain in
terms of latency and throughput. For the overhead analysis, we use
the four application workloads. To study latency and throughput,
we use a set of four microbenchmarks, each of them repeatedly
producing the same set of events.

The four microbenchmarks are: 1) open-close, which opens and
closes a file; 2) fork-exec-exit, which runs a new process; 3) pipe-
dup-close, which creates two processes and establishes a pipe be-
tween them; and 4) socket-connect, which creates a process that
opens a TCP socket to a server. To stress the system, we also push
raw events into the provenance database, besides any aggregated
provenance events. This allows us to increase the event load on
URSPRUNG. We run each benchmark for 20 s and measure event la-
tency and overall throughput. As we are limited to a single database
node in our experiments, we write incoming events to disk first
and asynchronously import them into the database to prevent the
database ingest from becoming a bottleneck. This does not impact
reliability as events are persisted to disk.

Overhead. To measure URSPRUNG’s impact on performance, we
run the four application workloads and compare completion times
to the baseline (without any provenance collection) and SPADE.
Each run is repeated five times, except the CleanML workload,
which is repeated 20 times as its completion time was more vari-
able. Both the CleanML and ImageML workloads are run on a sin-
gle node while the Vanderbilt and Spark workloads are distributed
and run on five nodes (we scale out the cluster in §6.6).

We configure SPADE to produce the least amount of provenance
and make it comparable to URSPRUNG. We disable tracking for
memory- and IO-related system calls, use a blacklist filter to only
process events from the Spectrum Scale file system, and apply a
deduplication filter to remove duplicate edges and vertices. We
also found it necessary to modify SPADE’s implementation, giving
auditd an unlimited event buffer in the kernel. Otherwise, the
Vanderbilt workload exhausts the buffer and the machine stalls.’

Overall, the results show that the overhead is small for both UR-
SPRUNG and our modified version of SPADE for all workloads (see
Figure 3). CleanML has the highest overhead (8.5% and 10% for
URSPRUNG and SPADE, respectively) in the median. However,
CleanML is noisy in general due to a non-deterministic training
phase, and the completion times for all three setups are within the
error bars of each other. Both ImageML and Spark experience no
visible overhead with provenance collection enabled.

The largest consistently observable overhead is incurred by the
Vanderbilt workload. We observe a 4% overhead added by UR-
SPRUNG and a 6.5% overhead added by SPADE in the median.

SWe attribute this to excessive error handling/logging in the kernel.
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Figure 6: Overhead for provenance classes

Unsurprisingly, Vanderbilt is also the most provenance-intensive
workload. It launches approximately 900 LSF jobs, which each ac-
cess two small input files and write three output files. This results
in a larger rate of events compared to the other workloads (see Ta-
ble 2), which spend most of their time in compute and large file IO
and hence, incur a smaller number of system calls. As SPADE is
tracking more system calls compared to URSPRUNG, which cannot
be disabled, SPADE adds an additional overhead of 2.5%.

As a result, we see that for most machine learning pipelines,
which consist of long-running steps and large file IO, URSPRUNG
does not add any significant overhead. For workloads that consist
of a large number of smaller steps, URSPRUNG’s overhead is vis-
ible but remains acceptable within 4%. The finer-grained control
over system calls through provenance classes gives URSPRUNG an
advantage over existing systems under high load.

Latency. Looking at the latency results (see Figure 4) shows that
URSPRUNG is able to keep latencies stable as event rates increase.
Overall, latencies stay below 500 ms up to an event rate of 10,000
events per second. The open-close microbenchmark shows the low-
est latencies, which are stable around 150 ms. This is due the fact
that the corresponding events, triggered by the file close, are gen-
erated by Watch Folders and are directly pushed to Katka, whereas
events from the other microbenchmarks arrive via auditd and
go through an event source model for aggregation. This leads to
slightly higher latencies for events from the auditd source. For
event rates over 10,000, events start to queue and latencies rise.

Throughput. The throughput for the microbenchmarks is shown in
Figure 5. Overall, it increases linearly with increasing event rates,
which means that URSPRUNG can scale to higher event rates. The
maximum sustained throughput is around 15,000 events/second,
apparently the maximum throughput that a single Kafka consumer
in URSPRUNG can sustain. We also see that the auditd-based
microbenchmarks show higher throughputs than the actual event
rates. This is due to event amplification, i.e., after raw events are
aggregated to provenance events, both raw and provenance events
are delivered, increasing the total number of events.

Figure 7: Provenance storage demand
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Figure 8: Rule execution latency

6.4 Provenance Classes

We now study the impact of provenance classes on processing
and storage overhead. We aim to answer the question of how much
overhead is added by enabling additional provenance classes. We
start from the base class of file-process interactions (1 class) and
then gradually add process group tracking (2 classes), pipe-based
IPC (3 classes), and network provenance (4 classes).

Processing Impact. To analyze the impact of provenance classes
on processing overhead, we use the Vanderbilt workload as it is the
most provenance-intensive. We vary the input dataset size from 1 to
16 GB and measure completion times for the different provenance
class configurations compared to a run without URSPRUNG. We
repeat each experiment five times and plot the overhead in Figure 6.

For smaller dataset sizes, there is no observable difference be-
tween the different provenance class configurations. This is be-
cause the workload only runs for a short duration and hence, the
overall completion time variation dominates any potential benefits.

As the input dataset grows to 8§ GB and 16 GB, URSPRUNG’s
overhead becomes more visible. Specifically, for all four classes
enabled, the median overhead increases by approximately 5 s com-
pared to the other configurations. This translates to an additional
overhead of 2.5%. We do not observe a significant difference be-
tween three or less classes. This is due to the fact that the Vander-
bilt workload does not generate a large amount of events in those
classes and hence, their impact is not visible. Only once all classes
are enabled, the overhead increases and becomes significant.

The results yield two key observations: 1) Provenance classes
are able to reduce overhead; 2) The reduction depends on the load
generated by each class. For example the Vanderbilt workload does
not create any pipes and hence, enabling pipe-based IPC tracking
does not make any difference. The heavier the load in each class,
the more overhead can be reduced by disabling that class.

Storage Impact. To evaluate the potential storage benefits of tun-
able provenance classes, for each of the workloads we measure the
amount of provenance data generated under the same provenance
class configurations as in the previous experiment. We also com-
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Figure 9: Latency as a function of cluster size

pare URSPRUNG’s storage demand to SPADE. We repeat each mea-
surement five times to cover non-determinism in the workloads and
the underlying system. The results are shown in Figure 7.

For the CleanML, Spark, and ImageML workloads, we do not
observe significant difference between the provenance class con-
figurations. This is for the same reason described above: these
workloads do not generate any significant load in the higher prove-
nance classes (e.g., they do not use pipes or socket 10), so enabling
those provenance classes does not impact storage consumption.

For the Vanderbilt workload, we observe a slight increase of
0.12MB between 1 and 2 classes and of 0.65 MB between 3 and 4
classes. This results in an 8% overall storage saving when compar-
ing 1 and 4 classes. The storage space reduction will vary based on
the load generated by each provenance class. If the load is higher,
the space savings will increase further.

Compared to SPADE, URSPRUNG requires significantly less stor-
age across all 4 workloads (ranging from 1.8 x for ImageML to
14.6x for Vanderbilt). Upon investigation, we found two reasons
for this gap. First, URSPRUNG is tailored to provenance for the
data science use case and hence, collects less data in general. Sec-
ond, URSPRUNG’s event aggregation models curate raw events and
store only the relevant information into the database, which further
reduces storage consumption.

6.5 Rule Execution

Next, we study the performance of rule executions. As men-
tioned in §5.2, the latency between an event that triggers a rule
and the actual rule execution needs to be low to ensure that tran-
sient provenance can be captured. Rule execution happens asyn-
chronously in separate threads and events that trigger a rule are
queued until a processing thread becomes available. In this experi-
ment, we are interested in the maximum rate at which rules can be
processed before this event queue starts to build up.

Our workload is a set of microbenchmarks that allows us to trig-
ger repeated execution of one of the five rule types at a specified
rate. We measure the latency between an event’s arrival in the mes-
sage queue and the execution of the rule that it triggers. We vary
the rate of event arrival and plot the results in Figure 8.

Our first observation is that the overall rate at which rules can
be processed is low (tens of rules per second). Rule execution is
expensive! For example, a DBTransfer rule needs to establish a
connection to an application-specific database, submit a SQL query
to extract the latest provenance records, and insert this information
into the provenance database. Hence, for LogTransfer and DB-
Transfer rules, the maximum sustainable rate is 10 rules/second.

For the CaptureCout and FileLoad rules, URSPRUNG is able to
keep latencies stable for higher rates as these rules are stateless, i.e.,
they do not have to keep track of file or database offsets. Hence,
new incoming rules can be processed in parallel. While the Track-
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Content rule is stateful, it is still cheaper to process compared to
the DBTransfer and LogTransfer rules as it does not have to parse
file/database contents but only copies and commits a file to a local
repository. In our benchmark, the tracked files were small (bytes)
but the cost of TrackContent rules increases with larger files.

Overall, the results show that URSPRUNG rules are suitable for
infrequent events (tens per second). If events are more frequent,
timely event delivery cannot be guaranteed and transient prove-
nance records may be lost.

6.6 Scalability

Finally, we investigate URSPRUNG’s capability to scale to larger
clusters. We use our heaviest provenance workload, Vanderbilt,
and run it on clusters of 2, 4, 8, and 12 nodes. For each config-
uration, we have one dedicated LSF master node, which manages
job submissions but does not run jobs itself. We use the rest of the
cluster as workers. We use Kafka consumer groups to scale out UR-
SPRUNG’s consumers to parallelize event processing and improve
throughput. We measure event latency and throughput for different
numbers of consumers and, similar to §6.3, we enable raw events
to be processed by URSPRUNG to increase the load on the system.

In our initial experiments, we found that by default, the Vander-
bilt workload submitted all its corresponding jobs to LSF at the
start of the workload. This generated a high volume of concurrent
events on the master node (hundreds of thousands), which led to
long event queues in the auditd provenance source and resulted
in high latencies. To mitigate this effect, we changed the workload
such that jobs are submitted gradually as old jobs finish to distribute
the load on the master node over the entire workload duration.

Latency. The latency results are shown in Figure 9. For smaller
clusters, the overall event load is lower as there are less nodes gen-
erating events. Hence, URSPRUNG is able to achieve stable laten-
cies in the range of 500 ms with a lower number of consumers and
even a single consumer is sufficient. As the cluster size increase,
the event load increases. In the case of a single consumer, a size
of 8 nodes leads to latency degradation, while 2 consumers are not
able to sustain the rates in a 12 node cluster. The 4 and 8 consumer
setups are able to keep latencies stable for all cluster sizes.

Throughput. The throughput results in Figure 10 show a simi-
lar trend as the latency results (note that the throughput is shown
per consumer so the overall system throughput for N consumers
is N times the reported value). A single consumer cannot sustain
the event rate when the cluster size reaches 8 nodes and caps at
around 14,000 events/second. With more consumers, the individ-
ual throughput rates decrease but the overall system throughput in-
creases, reaching a maximum of 24,000 events/second for 12 nodes
and 4 or 8 parallel consumers.

In summary, this shows that URSPRUNG is able to scale with the
size of the cluster through parallelizing event consumption. How-

3364



ever, if a large burst of events is generated in a provenance source,
latencies will deteriorate until URSPRUNG is able to process all out-
standing events and recovers.

7. RELATED WORK

Provenance Capture Systems. Research has proposed a variety
of provenance collection systems in the past. One of the earliest
systems is PASS [56], which proposes to capture provenance trans-
parently in the kernel through system call interception. However,
PASS is not able to collect application-specific provenance. Later
systems such as PASSv2 [55], Story Book [68], and the CPL [50]
allow to augment system-level provenance with application-specific
provenance. However, these systems require to change the applica-
tion by adding additional calls to emit provenance records, which
is infeasible for the variety of tools used in data science.

Ghoshal et. al. [34] proposed the idea of capturing provenance
from log files. Similar to URSPRUNG, they propose a rule language
to define capture rules to extract provenance from log files. How-
ever, they do not capture system-level provenance and also do not
support other sources such as databases or process stdout.

Like URSPRUNG, SPADE [33] and CamFlow [60], are prove-
nance collection systems that support both transparent system-level
and application-specific capture. However, we believe URSPRUNG
is easier to configure, and integrates a rule-based capture system
rather than requiring users to know low-level information, e.g., an
application’s function call pattern.

Machine Learning Model Management. Kumar et. al. [44] intro-
duced the idea of model selection management systems. Such sys-
tems structure the model creation process and are also able to col-
lect the provenance of different models. This vision has been im-
plemented by a variety of research systems such as ModelDB [71],
ProvDB [53], Schelter et. al. [67], and Sridhar et. al. [69]. There is
also a set of open source projects to help with managing the model
lifecycle, e.g., MLflow [8], CodaLab [5], and Pachyderm [9].
However, the above solutions are either not fully transparent, i.e.,
they require code annotations or the use of a specific tool to run
and/or define pipelines [69, 8, 5, 9], or only support a fixed set of
tools [71, 53, 67]. Compared to that, URSPRUNG aims at full tool
flexibility and generality. While this can sometimes lead to less
detailed provenance, it still suffices for the majority of uses cases.

Big Data Provenance. Adding provenance capture to big data pro-
cessing systems has been another field of active research. Systems
such as Lipstick [16], RAMP [59], and HadoopProv [14] explore
provenance capture for MapReduce while Titian [41] is targeted
at Spark. Newt [47] is instrumentation-based and hence, can sup-
port different platforms. As the above systems are built for specific
applications, they are able to collect detailed, record-level prove-
nance for jobs and pipelines. While this provides finer granularity,
it is harder to generalize beyond the big data domain.

Workflow Management. Scientific workflow management sys-
tems such as VisTrails [25], Kepler [48], or Taverna [74] allow sci-
entists to define workflows and capture their provenance during ex-
ecution. While the collected provenance is detailed and allows for
easy reproducibility, the problem is that users need to define and
run their workflows through these specific systems, limiting their
flexibility and adding additional effort.

noWorkflow [57, 63] allows to capture provenance from python
scripts, including script-specific information such as declared func-
tions and information on the execution environment. While this
works transparently and provides fine-grained, application-specific
provenance relationships, e.g., how data was transformed by indi-

vidual function calls inside the script, it is harder to generalize to a
broader set of non-python based applications.

Provenance Consumption. The need for consumable provenance
for non-expert users has been pointed out by Deutch et. al. [30].
One promising approach in this direction is differential provenance,
which was introduced by Chen et. al. for failure root cause analy-
sis [27]. noWorkflow [57, 62] has similarly proposed the diff-based
analysis of different workflow executions. URSPRUNG’s differen-
tial view follows noWorkflow’s file access diff, which includes files
that are added, removed, and changed [62].

Similar to URSPRUNG, SPADE allows temporal traversal of the
provenance graph through a query transfomer [12]. However, it
does not support tracking the specific versions of the nodes in the
temporally constrained graph. This behavior, which URSPRUNG
supports, is needed to compare two runs of the same pipeline.

Other work has focused on making the provenance graph easier
to navigate. Different layouts such as node-link diagrams [49] and
radial visualization [22] have been explored. URSPRUNG is most
similar to the Provenance Map Orbiter [49], which uses node-link
diagrams to display coarse-grained provenance through summary
nodes and allows to zoom into summary nodes to view finer grained
information. In comparison, URSPRUNG has additional features
such as a file diff viewer and allows step-by-step graph exploration.

Data Discovery. Provenance collection has been identified as an
important part in the larger space of data discovery to search for
and identify existing data sets and their relationships to each other.
Goods [36] and Guider [52] both use provenance for this purpose.
Decibel [51] is a system that can track provenance and dependen-
cies between data sets, similar to a source code version control
system. Compared to URSPRUNG, these systems focus on coarser
provenance dependencies and they do not provide more detailed
information about the processing and the executed pipelines.

Record & Replay. To improve reproducibility, previous research
has studied record & replay systems. Such systems support repro-
ducibility either on a per-process or a per-job basis, by leverag-
ing lower-level primitives including memory accesses [61, 20, 45],
copy-on-write checkpointing [31], and monitoring the language run-
times [28, 21]. In contrast, URSPRUNG’s design assumes that data
science pipelines are sufficiently deterministic that higher-level pro-
venance is adequate to reproduce them. Additionally, these systems
do not assist with understanding individual pipeline steps.

8. CONCLUSION

The reproducibility crisis in data science and machine learning
requires new tools to ease the task of documenting and tracking
complex workflow pipelines. We presented URSPRUNG, a trans-
parent provenance capture system, which is specifically designed
for the data science domain. URSPRUNG makes capturing base
provenance efficient and easy to configure through provenance clas-
ses and event aggregation models. It can augment base prove-
nance with application-specific information, collected through a
rule-based language without application-level changes. The in-
tegrated GUI has various features to ease the exploration of the
provenance graph. We have implemented a prototype and showed
that it can collect comprehensive provenance for a variety of data
science pipelines with only a small overhead of up to 4%. UR-
SPRUNG supports data scientists by simplifying the tracking of their
pipelines and thereby helps to improve result reproducibility.
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