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ABSTRACT
Many geo-distributed services at web-scale companies still
rely on databases (DBs) primarily optimized for single-site
performance. At AT&T this is exemplified by services in the
network control plane that rely on third-party software that
uses DBs like MariaDB and PostgreSQL, which do not pro-
vide strict serializability across sites without a significant
performance impact. Moreover, it is often impractical for
these services to re-purpose their code to use newer DBs op-
timized for geo-distribution. In this paper, a novel drop-in
solution for DB clustering across sites called Metric is pre-
sented that can be used by services without changing a single
line of code. Metric leverages the single-site performance of
an existing service’s DB and combines it with a cross-site
clustering solution based on an entry-consistent redo log
that is specifically tailored for geo-distribution. Detailed
correctness arguments are presented and extensive evalu-
ations with various benchmarks show that Metric outper-
forms other solutions for the access patterns in our produc-
tion use-cases where service replicas access different tables
on different sites. In particular, Metric achieves up to 56%
less latency and 5.2x higher throughput than MariaDB and
PostgreSQL clustering, and up to 90% less latency and 26x
higher throughput than CockroachDB and TiDB, systems
that are designed to support geo-distribution.
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1. INTRODUCTION
Services built by AT&T and other web-scale companies

such as Google and Amazon are often deployed across geo-
distributed sites to satisfy the locality, availability, and per-
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formance needs of clients.1 However, many of these services
use databases (DBs) like MariaDB [54] and PostgreSQL [50]
that are primarily optimized for single site deployments even
when they have clustering solutions. For example, in Mari-
aDB Galera [28] synchronous clustering [29] all replicas are
updated on each commit, which is prohibitively expensive
across sites with WAN latencies on the order of hundreds
of milliseconds. Similarly, in PostgreSQL master-slave [49]
clustering, requests from all sites are sent to a single master
replica, compromising on performance and availability.

Although new geo-distributed DBs have been developed
that improve the performance of cross-site transactionality
(e.g., Spanner [19], CockroachDB [17], TiDB [48]), it is often
impractical to re-purpose the code of services tied to spe-
cific DBs to use these new solutions. This is especially true
when the existing service involves third-party software. For
example, AT&T’s multi-site Service Orchestrator (SO [42])
that deploys complex virtual network functions (VNFs) re-
lies on a third-party business process engine Camunda [8]
that maintains state in MariaDB. Similarly, AT&T’s Data
Collection, Analytics and Events service (DCAE [21]) relies
on a third-party tool called Cloudify [16] that uses Post-
greSQL.2 While middleware for DB clustering does exist, it
does not provide multi-master strict serializibility [15, 34]
and/or requires extensive annotation of service code [30].

In this paper, we present a novel solution called Metric
that serves as a replacement for existing DB clustering so-
lutions. The primary challenge in designing such a system
is to satisfy all of the following goals simultaneously:

• Require no changes or annotations of the service code
or its DB aside from turning off the latter’s default
clustering solution across sites; in other words, it
should serve as a drop-in solution.

• Provide the service or user of the middleware the ab-
straction of a replicated multi-master DB across sites,
where all replicas can concurrently process requests.

• Guarantee that all transactions are strictly serializ-
able [47, 33].

• Build a system that outperforms a service’s existing
DB clustering solution, in terms of the end-to-end la-
tency for transaction execution and throughput.

1A site is a data center at a physical location connected with
other sites through a wide-area-network (WAN).
2Both SO and the DCAE are part of AT&T’s network con-
trol plane, which is open-sourced through the Open Network
Automation Platform (ONAP) effort [44].
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Figure 1: Overview of a Metric deployment where in-
stances of Metric and the SQL DB are deployed on each site
with a geo-distributed redo log deployed across the sites.
Service replicas issue requests to the Metric process closest
to them.

• Support new DBs easily with minimal additions or
changes to the middleware.

Metric achieves these goals through a novel design that
leverages the single-site guarantees of the service’s existing
DB coupled with the use of an entry-consistent (EC) key-
value store [5, 3] to maintain a geo-distributed redo log of
DB records. The EC store provides critical functionality in
the form of fault-tolerant lock-based critical sections that
are used by Metric to obtain table-level locks that guaran-
tee exclusive access to the latest values of records accessed
by a given transaction. Figure 1 illustrates this approach,
where a Metric process executes the operations in a trans-
action locally on a DB, with just one round-trip per trans-
action across sites to commit modified records in the EC
log. This is operationally not only much more efficient than
both MariaDB synchronous and PostgreSQL master-slave
clustering, but is also similar to optimized geo-distributed
DBs [19, 17], despite the drop-in nature of the Metric so-
lution. Further, Metric makes effective use of the EC
store’s higher level abstraction of critical sections that han-
dle failures to build a redo log. The above-mentioned geo-
distributed DBs design their redo log from first principles—
a complex error prone process, especially considering the
wider array of failures in geo-distributed systems.

A key aspect of Metric’s drop-in solution is that it sup-
ports general SQL queries and parses the query to determine
automatically the potentially impacted tables over which to
acquire table-level locks. For our use-cases such as DCAE
and SO, transactions are naturally partitioned across ser-
vice replicas and have no overlap in the DB records they
access, meaning that a given table is usually accessed only
by processes within a specific site. For example, SO replicas
typically deploy different VNFs, with each replica modify-
ing records in distinct DB schemas. An SO replica requires
access to another replica’s records only when the latter fails,
in order to complete VNF deployments. For this common
usage pattern Metric achieves optimal performance.

Metric is implemented in Java with support for MariaDB
and PostgreSQL [25]. Services use the middleware by replac-
ing their existing JDBC driver [62] with the Metric JDBC
driver for the choice of their DB. Through the use of SQL
triggers and basic SQL parsing, we ensure that support for
a new DB can be added with less than 1000 LOC, consisting
mainly of boilerplate code for initialization, trigger manage-
ment, and the mapping of DB data types to Java data types.

We evaluated Metric with strict serializability in multi-
site settings across different WAN latency profiles using

micro-benchmarks, use-case workloads, and TPC-C work-
loads. For the access patterns described above where ser-
vice replicas access different tables on different sites, Metric
achieves up to 56% less latency and 5.2x higher through-
put than MariaDB’s Galera synchronous clustering solution
and PostgreSQL’s master-slave clustering solution. Metric
also outperforms DBs optimized for geo-distribution on the
same access patterns, and achieves up to 90% less latency
and 26.2x higher throughput than CockroachDB and TiDB.

We also evaluated Metric for access patterns that devi-
ate from the expected workload, where service replicas fre-
quently access the same tables across sites. As expected,
Metric’s performance drops relative to the other solutions
mentioned above, which demonstrate up to 90% less latency
and 32x higher throughput than Metric. We present several
mitigation strategies in §9 as future work.

In summary, this paper makes these contributions:

• A novel approach to providing drop-in DB clustering
across sites supported by detailed correctness argu-
ments showing strict serializability (§3, §4).

• An implementation [25] with clustering support for
MariaDB and PostgreSQL that is being deployed in
production for multiple use-cases and that is open-
sourced through ONAP (§5, §6).

• Experimental results validating Metric’s effectiveness
(§7).

A previous Metric workshop paper oriented towards edge
use-cases [57] presents some of the initial design ideas related
to the system. These include how the ownership API can
be exposed to a client or service, and an approach for guar-
anteeing transactionality only to the owner of certain tables
in the DB. While we retain the name for legacy reasons,3

this paper significantly extends these concepts to encom-
pass strict serializability guarantees, and presents complete
correctness arguments, details of an implementation, and an
experimental evaluation.

2. ARCHITECTURE AND OVERVIEW
Architecture. Metric provides the abstraction of a repli-

cated geo-distributed DB that can be accessed by applica-
tions implementing higher-level services. As shown in Fig-
ure 1, each application is generally composed of multiple
service replicas that are hosted on different sites for locality,
availability, and fault-tolerance. Metric itself is also geo-
distributed, with one replica per site. Service replicas sub-
mit transactions to the closest Metric process, usually at the
same site and often on the same machine. A Metric process
is in turn associated with an instance of a SQL DB, referred
to as the Metric process’s local DB. Currently, a given multi-
site Metric deployment supports a single type of SQL DB
(e.g., MariaDB, PostgreSQL), where the choice is based on
application requirements. Each local DB contains at least
the records accessed by transactions submitted to the Metric
process at that site. The DB must support strict serializ-
ability, at least for transactions within the same node.4 To
avoid conflicts and optimize performance, any internal cross-
site clustering facility provided by the DB is disabled (e.g.,
Galera clustering for MariaDB.) However, the DBs can use
their clustering solution within a site as long as that solution
provides strict serializability for transactions.

3The name is no longer considered an acronym, however.
4§9 describes strategies to relax this assumption
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Metric’s core functionality is providing efficient geo-
distributed replication. This is realized using a redo log built
on an underlying multi-site entry-consistent (EC) store,
which provides useful consistency guarantees despite the in-
creased latencies and failures prevalent in a WAN environ-
ment (details in §3.1). Both Metric and the EC store can be
deployed and scaled as independent services across multiple
geo-distributed sites.

Listing 1: Example Service Replica JDBC Code

1 Class.forName("com.mariaDB -metric.jdbc.Driver
↪→ ");// register driver

2 Connection conn = DriverManager.getConnection
↪→ (METRIC_URL ,USER ,PASS);// connect to a
↪→ METRIC process (mproc) nearby

3 Statement stmt = conn.createStatement ();
4 String query 1 = "select T2.id, T2.date from

↪→ T2 inner join T3 ON T2.id=T3.id";
5 Resultset rs = stmt.executeQuery(query1);
6 String query2 = "update table T1, set T1.

↪→ salary = 1000 where T1.id = r1;"
7 stmt.executeQuery(query2);
8 conn.commit ();// commit transaction
9 stmt.close(); rs.close(); conn.close();//

↪→ clean up

Overview. Listing 1 gives an example of the JDBC code
that would be executed by a service replica to use Metric.
Note that this is simply standard JDBC code, a key property
of the solution since it allows Metric to serve as a drop-in
replacement for existing DBs. The calls are intercepted by a
custom Metric JDBC driver that transmits it for execution
at the Metric process associated with METRIC URL.

The service code in Listing 1 starts with a statement to
import the specific Metric JDBC driver that clusters the ser-
vice’s existing DB, which in this example is MariaDB. The
subsequent getConnection and createStatement statements
involve initialization routines that create the connection be-
tween the service replica and the Metric process (mproc),
and initialize the basic Metric data structures. Metric then
performs the following sequence of actions during the course
of executing a transaction, which consists of the queries fol-
lowed by the conn.commit (details in §3.2):

1. Initialization. All DB schemas, tables and views are
created in all of the local DBs before any query is sent
to Metric.

2. Identifying the table-set. When executeQuery is in-
voked, mproc first parses the query to identify the ta-
bles impacted by the query, referred to as the query’s
table-set.

3. Acquiring Ownership. Using the locks provided by the
EC store, mproc locks the relevant entries for the table-
set in the redo log, which contains the latest records
of all the SQL tables in a compressed format. This
makes mproc the owner of these tables, with exclu-
sive read and write access. Note that while it would
potentially be useful to support record-level locking,
it is difficult to identify the precise records that are
modified when parsing the query in step 2 given the
inherent complexity of such queries.

4. Populating the Local DB. mproc reads the redo log and
populates the local DB with records of the table-set.
The EC store semantics guarantee that the owner of
a table-set will read the latest values of the records in
the table-set from the redo log.

5. Executing the Query on the Local DB. mproc then exe-
cutes the query on the local DB and uses DB write trig-
gers to populate a private Metric table in the DB called
the local tx-queue table with the modified records.

6. Committing the Transaction. On executing
conn.commit, mproc first commits the transac-
tion in the local DB, then updates the redo log at
a quorum of replicas with the new values of the
records modified by this transaction tracked in the
local tx-queue table, and finally clears the records from
the local tx-queue table. This is the commit point,
meaning that the changes will be rolled forward even
if mproc subsequently fails.

3. Metric SOLUTION
This section provides a detailed description of the Metric

solution, starting with the design of the geo-distributed EC
redo log and followed by how Metric uses this redo log to
execute transactions. Finally, we describe failure handling,
an aspect that is especially important for geo-distributed
deployments with complex failure modes.

3.1 EC Redo Log
Background. Entry consistency as originally defined for

shared memory systems specifies that data shared among
multiple processors becomes sequentially consistent at a pro-
cessor only when it acquires a synchronization object that
guards the data [5]. In prior work done as part of ONAP [3,
40], we built a replicated geo-distributed key-value store
called MUSIC in which EC semantics were expanded and
re-purposed for multi-site settings and their more complex
failure modes. Key properties of MUSIC were formally ver-
ified during the development process, and the system has
been used in production since 2017. Since Metric is de-
signed to work with any key-value store that provides EC
guarantees and not just MUSIC, we henceforth refer to the
underlying store generically.

The EC store provides traditional key-value operations
augmented with provisions for locking. In particular, to
modify the value of a set of keys, a client first acquires a
unique lock to the keys through an acquireLock function.
On acquiring the lock, the lock-holder can read the guaran-
teed latest values of the keys using the critical get function,
and can perform exclusive, sequentially consistent updates
to the keys as part of a critical section using the critical put
function. Non lock-holders attempting these critical opera-
tions are rejected by the EC store. While lock acquisition
requires distributed consensus [35, 43, 55] across the geo-
distributed replicas of the EC store, the critical reads and
writes to a key’s value use relatively efficient quorum oper-
ations. The EC store uses heartbeats to detect lock-holder
failures and release locks that they hold. For retrieving val-
ues without locking, the EC store also provides getOne and
getQuorum functions that return the value of a key from
any single replica or from a quorum of replicas, respectively.
However, the value returned is not guaranteed to be the
latest value since no lock is used.

EC Store Guarantees. The EC store provides the fol-
lowing guarantees that are critical for realizing the redo log:

• There can be only one lock holder for any key; this
lock holder has exclusive read/write access to that key
and always reads the latest value of that key.
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Figure 2: An example of the EC Redo Log table built on
the EC key-value store.

• If a lock holder to a key fails, the EC store preempts
the lock holder by forcibly releasing the lock to the
key. Even if the failure happens while the lock holder
was writing to the key, the EC store ensures that the
next lock holder reads the latest value of that key.
• If a prior lock-holder that was incorrectly detected as

failed and preempted due to imperfect failure detection
attempts to read or write to any key, the EC store
rejects these operations.

Redo Log. The EC store is used to construct a redo
log that enables Metric processes to acquire ownership of
DB tables, to perform exclusive reads and writes to those
tables, and to maintain a history of modifications. An entry
is appended to the redo log either when a Metric process
initially creates a table in the local DB or when it needs to
acquire ownership of tables during query execution.

Figure 2 gives an example redo log, where each row is a
key-value pair representing a single log entry. Each entry
has the following contents:

• A unique time-based UUID that serves as the EC store
primary key for that row. These UUIDs are Cas-
sandra’s timeuuids [11]—standard SQL UUIDs [61]
augmented with the time of the UUID’s generation—
inherited from our use of Cassandra to implement the
redo log (see §6). While the entries are shown here
sorted in descending order by UUID for convenience,
since Cassandra does not allow sorting on just primary
keys [10], these entries are sorted only when read from
the redo log.

• A table-set containing the DB tables accessed by the
query that appended the entry. If the entry has been
locked by using acquireLock with the associated UUID,
the executing Metric process is the current owner of
the tables in the table-set. Note that any given table
may also appear in an entry with a smaller UUID, in-
dicating that ownership of that table has transitioned
at some point to the current owner.

• A transaction queue (tx-queue) containing the records
modified by queries executed by the owner of the tables
in the entry. The queue is maintained in compressed
form, and records are added to the queue in order of
execution. The tx-queue starts out empty when an
entry is created and grows as records are modified.
The collection of tx-queues across the entire redo log
provides a historical trace of updates to the records.

Figure 2 illustrates the contents of a redo log at a certain
snapshot of time. Assume that the entry with key UUID3 is
locked by some Metric process mproc, meaning that mproc
is the current owner of DB tables T1 and T2. In the tx-
queues, Ti.Rj indicates that record Rj of table Ti has been
modified, and the records within each parenthetical clause

correspond to a single transaction. In the figure, the tx-
queue grows from left to right. Hence, the tx-queue for the
entry UUID3 indicates that after acquiring the lock, mproc
committed three transactions to tables T1 and T2, where the
first transaction modified R1 in T1 followed by R3 in T2 and
finally R4 in T1. Since each table can be owned by at most
one process, this implies that UUID2 is not locked since its
table-set also contains T2; this indicates that ownership of
T2 transitioned at some point to mproc. The entry with key
UUID1 containing table T3 has no tx-queue, indicating that
the process that has locked UUID1 and owns T3 is in the
midst of making updates, or that no updates were done.

The EC store’s higher-level abstraction of critical sections
and the associated guarantees make it relatively easy to
build a redo log, handle failures, and reason about correct-
ness. While DBs like Spanner and CockroachDB also rely
on a geo-distributed redo/undo log, they build their solu-
tions from scratch by combining distributed consensus with
shared data structures to handle failures rather than build-
ing on an underlying system that effectively abstracts away
failures by providing similar assurances.

3.2 Executing Transactions
This section elaborates on the steps for executing a trans-

action outlined above in §2 by describing how queries are
executed by the Metric process mproc to which they are
submitted. In §4, we show how this solution and EC redo
log guarantees together ensure that transactions are strictly
serializable across different DB/Metric processes from the
perspective of the service submitting the transactions.

Initialization. As part of the initialization of Metric, we
assume that all DB schemas, tables, and views are created
in all of the local DBs before any transactions are executed.
Further, whenever a view is created, we create a view cache
at each Metric process that contains the mapping between
the view name and the set of tables that will be queried in
the view. As mentioned in §3.1, Metric also creates corre-
sponding entries in the redo log for each table. Since our
use-cases do not demand it, we currently do not support
dynamic modification of table definitions to add or delete
columns, views, or schemas. Such modifications need to be
performed at each of the local DBs offline when no client re-
quests are being serviced by Metric. As part of this process,
the view caches at all Metric processes are also cleared.

Identifying the table-set. Upon receiving a query in
a transaction, mproc first identifies the query’s target table-
set. This set consists of: (1) all tables whose records may be
modified by the query including insertion/deletion, and (2)
all tables that have a foreign-key relationship with any table
in (1), i.e., tables that have a column that is a primary key
for a table in (1). Despite the complexity of SQL queries,
it is easy to identify all the tables that are affected by a
query just by basic text parsing (e.g., T2, T3 in query 1
and T1 in query 2 of Listing 1). For (2), mproc obtains
primary/foreign key information by reading the local DB’s
system tables. To account for views, on extracting a table
name from a query, we perform a look-up in mproc’s view
cache to check if it is a view and identify the precise tables
being modified. Note that our current implementation does
not include views, although we are in the process of adding
that functionality to support production deployments.

Acquiring Ownership. After identifying a query’s tar-
get table-set, mproc needs to obtain ownership of these ta-
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bles to ensure that it has the latest values and to guarantee
exclusive read/write access. This is done using the locking
abstractions provided by the underlying EC store, as shown
in Listing 2. For simplicity, we omit the code for handling
failures from this listing; these considerations are addressed
in detail in §3.3.

Listing 2: Pseudocode for Acquiring Ownership

1 own(table -set target) executed at mproc:
2 if (mproc does not own all tables in target

↪→ )
3 release all the locks held by mproc;
4 create new entry E-new in redo log;
5 while (acquireLock (UUID of E-new)) skip;
6 for each table T in target do:
7 E = findLatest (T); // function

↪→ described in the text
8 while (acquireLock (UUID of E)) skip;
9 if (findLatest (T)) != E) // another

↪→ contending process has created an
↪→ entry

10 return nack;
11 else
12 add T to table -set of E-new; //mproc

↪→ is now the owner of T
13 return SUCCESS;

The first step is for mproc to determine if it already owns
all the tables in the target table-set. This will be true if it
retained the locks for redo log entries that have at least these
tables in their own table-sets from, for example, a previous
transaction. In this case, mproc can proceed with the next
step of populating the local DB. However, if mproc does not
already own all the tables, it relinquishes ownership of the
tables it does own by releasing the locks to those entries. It
then creates a new entry E-new with an empty table-set, and
obtains the lock to that entry. Assuming mproc successfully
executes own, the table-set of E-new will contain all the
tables in target. This ensures that all tables owned by a
process are present in the table-set of one consolidated redo
log entry where the tx-queue can be updated atomically.

At this point, mproc must obtain ownership of each table
T in its target table-set by locking the most recent redo log
entry E containing T in its table-set. To obtain this entry
E, Metric uses a simple helper function findLatest(T), which
iterates over each entry in the redo log using the getQuorum
function (which does not require a lock), and then sorts
them according to UUID and returns the latest entry that
contains T in its table-set.5 However, there are scenarios
where the latest entry containing T may be missed if mproc
had been in contention for the lock to E with another pro-
cess. Specifically, mproc has to check for the latest entry a
second time using findLatest(T) in case another process (a)
had held the lock for E, and (b) released it after creating
a new entry that has T in its table-set. In this scenario,
mproc is guaranteed to find the new entry on the second
attempt. Finding a newer entry implies that mproc does
not have the most recent version of T, so it returns a nack
indicating that ownership cannot be acquired at this point.
When this happens, mproc releases all the locks it acquired
during the execution of this algorithm (code omitted from
Listing 2 for simplicity). The technical report [39] describes
an optimization where tokens are used to identify the latest

5§4 shows why using just the quorum operation without any
locking is sufficient for correctness.

entry in the redo log that contains a given table, resulting
in a more efficient implementation of findLatest(T).

As an example of ownership acquisition, consider starting
with the redo log in Figure 2. To acquire ownership of T2 in
the target table-set (T2, T3) of query 1, mproc first creates
a new locked entry in the redo log with the key UUID4,
acquires the lock to the entry with key UUID3 since it is
the latest entry containing T2, and then updates the table-
set of UUID4 with T2. Following similar steps for T3 results
in (T2, T3) as the table set for UUID4. Similarly, execution
of query2 causes a new entry with UUID5 as the key to be
created with table-set (T1). At this point, mproc holds the
locks for both UUID5 and UUID4, and owns tables T1, T2,
and T3.

Our algorithm creates a new entry with the required table-
set, but it would be feasible to re-use entries in the redo log
that already contain the required tables. Our choice to cre-
ate these new entries was driven by a desire to facilitate con-
currency across sites. In our running example, since mproc
has new locked entries with T1, T2 and T3 and has released
locks to the older entries containing these tables, another
Metric process is free to acquire the lock to the entry with
key UUID2 if it wants ownership of T4.

Populating the Local DB. Before executing a query on
the local DB, mproc has to ensure that the local DB has the
most recent records for each table T in Listing 2 for which it
had to acquire ownership, i.e., the latest values of T’s records
that are present in the tx-queues of a quorum of redo log
replicas. To do this, mproc relies on the fact that acquiring
ownership of T implies that the redo log is guaranteed to
have the latest values of all entries that contain T in the
table-set (see §4 for correctness arguments). mproc reads
the tx-queues of all such entries, sorts them in increasing
UUID order, identifies the records in T that were modified
by past transactions, and applies these changes to the local
DB. For example, after acquiring ownership of T2 and T3 for
query 1 in Listing 1, mproc iterates through the redo log and
applies the updates to T2 in the local DB for records R9 and
R6 (from entry with key UUID2) and then for R3 and R5
(from entry with key UUID3); no updates are needed to T3
since the redo log shows no history for the tx-queue of T3.
The technical report [39] describes optimizations that use a
background thread to read the redo log through a series of
table-specific pointers to populate the local DB.

Executing the Query on the Local DB. After en-
suring that the local DB has the latest records of all the
relevant tables, mproc now executes the query on the lo-
cal DB. While read queries simply involve reading the lo-
cal DB, write queries are more complex since the records
they update need to be captured. This is done using the
triggers that most DBs like MariaDB and PostgreSQL pro-
vide to identify the precise rows updated by the write query.
Specifically, whenever a row is inserted, updated, or deleted,
a trigger fires that calls a custom Metric function with the
old and new values of that row. This function populates a
private Metric table local tx-queue in the local DB with the
row that was modified. An entry in this tx-queue is similar
to an entry in the redo log tx-queue shown in Figure 2.

Committing the Transaction. On receiving
conn.commit, mproc first tries to commit the transaction
in the serializable local DB, which will execute the commit
only if there are no other conflicting transactions within that
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DB. Then mproc uses critical operations to write the entries
from the local tx-queue to the relevant tx-queue in the redo
log, thereby ensuring that the records modified by the trans-
action are geo-replicated. For the above example, this in-
volves updating the tx-queue in the entry with key UUID4
that was newly created for query 1. This is the commit
point, meaning that even if mproc subsequently fails, other
Metric processes have access to these records in the redo
log. Finally mproc clears the committed entries from the lo-
cal tx-queue. If any of these operations fails, mproc returns
failure to the service that submitted the transaction.

Releasing Ownership. At this point mproc owns all the
tables potentially impacted by the transaction. The policy
of when this ownership should be relinquished by releasing
the locks to redo log entries can be configured by the service
to balance the trade-off between the cost of acquiring own-
ership and enhancing concurrency across sites. Specifically,
the service can configure the number of transactions α after
which the Metric process will release ownership. For exam-
ple, if a service has transactions to the same tables underway
at different sites, it may be prudent to release ownership at
the end of each transaction or after a small number of trans-
actions so that another Metric process can acquire owner-
ship quickly. On the other hand, for our use-cases the Metric
process never releases ownership voluntarily since ownership
transition is only needed for initialization and during certain
failure scenarios (details in §3.3).

For simplicity, this section assumes single-threaded Metric
processes. The technical report [39] describes how Metric
supports multi-threading using just process-level locks and
standard wait-notify blocks.

Solution cost. Transactions received at a Metric process
are executed efficiently at the local DB with cross-site quo-
rum updates for geo-replication of state during commits.
This is not only much more efficient than existing Galera
synchronous and PostgreSQL master-slave clustering, it is
operationally similar to optimized geo-distributed DBs [19,
17], despite the drop-in nature of the Metric solution. The
most expensive parts of the Metric solution are acquiring
ownership, which requires cross-site consensus, and popu-
lating the local DB, which requires cross-site quorum reads.
However, our optimized implementation ensures that these
operations only take ∼460 msecs and ∼3 secs respectively
(§7). This is acceptable for our use-cases, especially since
ownership over a set of tables is typically acquired only on
initialization and failovers (§5), and is retained for multiple
transactions. In §9, we discuss several ways to reduce this
overhead as part of future work.

3.3 Handling Failures
Our system model assumes distributed nodes that com-

municate using messages that can be lost or re-ordered. To
overcome the impossibility of distributed consensus in asyn-
chronous systems [26], we assume partial synchrony [23, 24]
where there are sufficient periods of communication syn-
chrony with an upper bound on message delay. Nodes can
suffer crash failures [36], which implies that other nodes can-
not distinguish between a failed node and one that is slow to
respond and/or unable to communicate. This is relatively
common in geo-distributed systems where link failures [63,
51] can partition a node from some subset of other nodes.

One failure scenario occurs when a service replica fails to
obtain a response from the Metric process to which it is

connected within a specified timeout interval or receives a
nack. The return of a nack indicates that the Metric process
is alive, but a) is unable to connect to or receives an error
response from either the local DB or the redo log, or b) is
unable to obtain locks to execute transactions since other
processes are holding them. If either Metric times out or
a nack is received, the service replica considers the Metric
process to have failed and treats it the same way it would a
failed DB node. For example, it can retry the entire trans-
action at a different Metric process. The Metric process
that subsequently executes this transaction will perform all
the steps described in §3.2, i.e., obtain exclusive ownership
to the necessary tables, populate its local DB, execute the
queries in the transaction, and then commit it.

A Metric process can acquire locks and execute critical
EC store operations on an entry if it can reach a quorum of
non-failed EC store replicas, while it can execute non-critical
operations that do not require a lock even if it can just reach
one non-failed replica. If a Metric process fails to obtain a
response from the EC store replicas within a timeout period
or receives a nack, it has to retry the function—usually at
a different EC store replicas—until the operation succeeds,
the Metric process fails, or the Metric process is told it is
no longer the lockholder. If the Metric process does not re-
ceive a response after these retries, it must not attempt any
other EC store operation on the key; in this case, the Metric
process can simply exit the code and attempt to modify the
value of the key in a new critical section if desired. All locks
are associated with a configurable lease period, and the EC
store will forcibly release the lock from Metric processes once
the lease period expires.

We use Nagios [41] to detect failures in the local DBs, EC
store replicas, and Metric processes, and to restart them.
We assume that there are enough replicas of each compo-
nent and that failures are infrequent enough that all proper
requests eventually succeed.

4. STRICT SERIALIZABILITY
The abstraction that Metric offers to services is a repli-

cated database, which we refer to as the Metric DB. In the
following paragraphs we show how the Metric solution de-
scribed in §3 combined with the EC Store Guarantees de-
scribed in §3.1 together ensure strict serializability. Specif-
ically, we show that (1) the solution ensures that at most
one Metric process can execute transactions on any table in
the Metric DB at any given time, and (2) that this process
always reads and writes the table’s latest values. Due to
space constraints, we defer the extended definition of serial-
izability based on [33] and the proofs of theorems to [39].

To perform transactions on tables, a Metric process has to
first acquire ownership of the tables. We define the notion
of ownership formally in the following definition.

Definition 1. The latest redo log entry is defined as the
entry with the highest UUID present in at least a quorum of
redo log replicas.

Definition 2. The Metric process that holds the lock to the
latest redo log entry containing T is defined as the owner of
T, where a redo log entry contains T if T is member of the
entry’s table-set.

Observation 1. Since the latest redo log entry containing
T is uniquely defined, there can be at most one owner for
any table T.
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For example, in Figure 2, while the redo log entries with
keys UUID2 and UUID3 both contain T2, only the Metric
process that holds the lock to UUID3 is the unique owner
of T2.

We now define the guarantee provided by the own function
when executed by a Metric process mproc.

Guarantee 1. On successfully executing the own function
in Listing 2, mproc becomes the unique owner of the tables
in target.

In [39], we show that successfully executing own guaran-
tees that mproc is the lock-holder for the latest redo log
entry containing T for each table T in target. The two calls
to findLatest(T) and the locking semantics of the EC store
ensure that even if multiple processes are trying to lock the
latest entry, only one of them will succeed.

We now move on to the critical Ownership property.

Ownership Property. Only the unique owner of a set
of tables can commit a transaction that modifies records in
those tables.

The proof is based on the fact that, to commit a transac-
tion, the owner of a set of tables updates the tx-queues of
all the latest redo log entries containing the tables. By def-
inition, this owner holds the lock to all these entries, mean-
ing that the EC store will accept the modification to the
tx-queues. Further, the EC store detects failures in lock-
holders and forcibly releases their locks. Hence, the reads
and writes of a prior owner of a table that was preempted
will be rejected by the EC store.

We have demonstrated so far that that a Metric process
has exclusive access to a set of tables once it acquires own-
ership to those tables. Next, we show how the owner also
has access to the latest value of these tables.

Definition 3. The latest value of a record in the Metric DB
is the value of the most recent write to this record performed
in a successful transaction by a service replica.

Invariant 1. For each table T that is currently owned by
some Metric process, the latest value of each record R in T
is the top-most value of R in the tx-queue of the latest redo
log entry that contains R.

We prove this invariant in [39] using an inductive approach
referring to the variables used in Listing 2. Before return-
ing success to the service replica, mproc first appends the
records modified in each transaction to the tx-queue of E-
new using a EC store critical operation that modifies a quo-
rum of redo log replicas. Hence, the invariant holds for every
record modified by the current owner of a table mproc in a
successful transaction. Even for the subtle case when the
previous owner of E fails while updating the tx-queue and
the EC store forcibly releases the lock to E, the EC store en-
sures that mproc is guaranteed to read the latest state of E
once it acquires the lock, despite the forcible release. Based
on this invariant, we prove the Latest-Record property.

Latest-Record Property. The owner of a table always
reads the latest value of any record in the Metric DB.

When a Metric process acquires ownership of a table T, it
populates the records of T in its local DB with the values
of the records in the redo log. Invariant 1 ensures that after
this step, the local DB has the latest values of the records of

T and all other tables owned by mproc. The strict serializ-
ability guarantees of the local DB ensure that the owner of
a table continues reading the latest values of all the table’s
records as it commits new transactions.

The Ownership Property guarantees that transactions
that affect at least one table in common are executed one at
a time by the owners of the tables affected by the transac-
tion. The Latest-Record Property guarantees that the val-
ues committed in a transaction are read by all subsequent
transactions despite ownership transitions. Hence, the se-
quential history of the values of modified records match the
exact order in which they are modified by successful trans-
actions, thereby guaranteeing strict serializability.

5. PRODUCTION USE-CASES
This section describes how Metric supports multi-site DB

clustering in AT&T’s network control plane. Solutions for
these use-cases are now being implemented and will be de-
ployed in production in 2021.

Service Orchestrator (SO) is a core service in
AT&T’s network control plane responsible for the instanti-
ation, release, migration and relocation of VNFs on various
AT&T sites [42]. SO executes well-defined BPMN (Business
Process Model and Notation [6]) process workflows to com-
plete its objectives and is typically triggered by the receipt
of VNF instantiation requests by the client. The key aspect
of SO relevant to this paper is that SO’s BPMN flows are
specified and executed in an internal BPMN engine called
Camunda [4], which maintains all the state associated with
these workflows in MariaDB. SO is designed to operate in
multi-master mode across sites, where any SO replica can
process instantiation requests. If a SO replica (its Camunda
engine) is unable to communicate with a certain DB replica
due to failure, it is designed to seamlessly failover to another
DB replica and continue operations as long as the replicated
DB provides transactional guarantees.

SO is currently deployed in production, but only within
a single site where each SO replica communicates with a
shared MariaDB-Galera cluster. However, production re-
quirements dictate that it be deployed across multiple geo-
distributed sites, something that is prohibitively expensive
using MariaDB-Galera as mentioned in §1. This solution is
especially suboptimal in this context since the latency per-
ceived by the sequential Camunda calls to the DB translates
to long delays in service deployment and instantiation.

This problem can be addressed with a much more efficient
Metric-based solution identical to Figure 1, where the ser-
vice replicas are SO replicas and the SQL DB is MariaDB
with its cross-site Galera clustering turned off. SO replicas
across different sites can concurrently process instantiation
requests by communicating with the Metric process of its
choice, typically the one closest to the SO replica. For a
specific VNF instantiation request, an SO replica sends all
DB accesses to the same Metric process. Every SO replica
has its own DB schema and all Camunda SQL queries it
generates are specific to the tables in this schema. As part
of initialization, all distinct schemas and the tables within
them are created in the local DB at each site.

As it executes transactions, a Metric process acquires own-
ership of tables. The set of these tables is guaranteed to be
disjoint from the set of tables acquired by every other Metric
process since each Metric process is executing requests from
different SO replicas, each with their own distinct schema.
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Hence, during failure-free operation there is no ownership
transition across Metric processes. Only on detection (or
suspicion) of failure does an SO replica redirect requests
to another Metric process, which will acquire ownership of
the tables of the failed Metric process as and when required.
Since failures are relatively infrequent, this usage pattern en-
sures high performance, as quantified by experiments in §3
that compare the performance of Camunda benchmarks [9]
across different clustering solutions.

The Data Collection, Analytics and Events
(DCAE) service [21] in AT&T’s network control plane ex-
ecutes independent closed loop flows that detect anomalous
events about VNFs and triggers appropriate actions from
other network controllers. For example, a closed loop flow
can detect hot spots in the physical hosts on which a VNF
has been deployed and trigger SO to perform migrations of
VMs belonging to that VNF to lesser congested hosts. These
closed loop flows are specified and executed by DCAE using
a tool called Cloudify [16] that uses a PostgreSQL DB to
maintain state. While there is a production requirement to
deploy DCAE replicas across geo-distributed sites in multi-
master mode, as mentioned in §1 there are problems asso-
ciated with transactional clustering of PostgreSQL across
sites. This can be addressed using a Metric solution for
PostgreSQL clustering similar to the one described above
for SO. Since again there are no overlapping transactions
across independent DCAE flows executing in different DB
schemas, the usage pattern of DCAE will also achieve high
performance with Metric.

This design pattern of multi-master replication with each
replica executing independent flows is also common across
other geo-distributed services in AT&T’s network plane and
elsewhere. For example, we are currently designing a Metric-
based solution for AT&T’s SDN Controller (SDNC) [59].
This controller is based on OpenDaylight [52], which main-
tains state in MariaDB or PostgreSQL in a manner similar
to the other services described above.

6. IMPLEMENTATION
This section provides an overview of how the Metric so-

lution and optimizations described in [39] have been imple-
mented. The code [25] is open-sourced as part of ONAP.

Metric has been implemented in ∼9000 lines of Java code.
We use Avatica [1], a subproject of Apache Calcite [7], to
implement the Metric JDBC solution. Specifically, Avat-
ica provides a framework for JDBC API management that
can be used to build JDBC-compliant custom solutions like
Metric. As shown in Figure 3, the service replica simply im-
ports the Avatica client driver with no change. The driver
code sends every JDBC request from the service code to
the Avatica server process which resides at the Metric pro-
cess. Communication between the Avatica client and server
is serialized using Protobuf [53]. We realize the Metric solu-
tion by implementing certain functions in the JDBC server
process, including the getConnection, createStatement, ex-
ecuteQuery and commit functions described in §2. Metric
also leverages Apache Calcite for parsing the SQL queries
and extracting the target table-set.

Our EC store implementation is ONAP’s MUSIC
v3.2.1 [40], which has been deployed and used in AT&T’s
production deployments since 2017. MUSIC is built as a
Java library that interacts with a multi-site Cassandra 3.11.4
deployment. The library contains all the APIs and code for

Figure 3: Components in the Metric Implementation.

the locks and key-value access necessary for entry consis-
tency. Hence, as shown in Figure 3, each Metric process
includes the EC store/MUSIC library and uses the MUSIC
EC store APIs to construct the redo log. Since Metric writes
a potentially large tx-queue on each commit, we maintain it
in the local DB as a Protobuf object and compress it using
Zlib [67] before writing to the redo log.

In Metric, the only requirements for the local DB are that
it provides strict single node serializability and supports DB
triggers on writes. Hence, configuring a service to use a dif-
ferent DB just requires importing a different Metric JDBC
driver; the code for the Metric process itself and the redo
log remain the same. For example, to provide clustering for
MariaDB the Metric process imports the MariaDB JDBC
driver [38]. Metric currently supports clustering for Post-
greSQL and MariaDB, packaged as two distinct solutions
that services can use based on their requirements. These
solutions differ by just ∼1000 lines of boilerplate code for
initialization, trigger management, and the mapping of DB
data types to Java data types. For example, the Java float
data type maps to the MariaDB float data type but maps
to the PostgreSQL real data type. Hence, as described in
§3.2, it is very easy to add support for new DBs.

7. EVALUATION
This section demonstrates that for the access patterns in

our use-cases, Metric outperforms the clustering solutions of
both MariaDB and PostgreSQL across geo-distributed sites
for latency microbenchmarks, use-case workloads based on
Camunda benchmarks, and TPC-C workloads. It also out-
performs CockroachDB and TiDB, which have been opti-
mized for geo-distribution. While these solutions outper-
form Metric for other access patterns as expected, we offer
several mitigation strategies in §9.

7.1 Methodology
Setup. All our experiments are performed on three vir-

tual machines (VMs), each of which logically represents a
geo-distributed site. The VMs are hosted using KVM on
a 2xAMD EPYC 7501 32-Core Processor server, with 256
GB of RAM and a 4x240 GB SATA SSD. We use Ubuntu
18.04 as both guest and host OS. To capture the effect of
geo-distribution, we emulate WAN latencies across the VM-
s/sites using NetEm [32].6 We use two latency profiles, one
for sites located across the U.S. and Europe (lUsEu) and
one for sites located within the U.S. (lUs). For lUs, the
three sites, S1 (N. Cali.), S2 (Ohio), and S3 (Oregon) have
round trip latencies of 53.8, 24.2, and 72.1 ms for S1-S2, S1-
S3, and S2-S3 respectively, based on EC2 measurements [2].
These values are independent of which of the two sites is
used as the starting point. We defer results for lUsEu to
[39] since the trends are similar to lUs. These profiles re-
flect the target production deployments of AT&T and other
carriers involved in ONAP.

6We did not perform these experiments on Amazon’s EC2
cloud to have a tighter control over traffic and latencies.
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Comparisons. In our experiments, we focus on the fol-
lowing broad comparisons. The first is the Metric implemen-
tation described in §6 with clustering for MariaDB 10.3.18
(M-Metric) against MariaDB 10.3.18 with Galera syn-
chronous [29] clustering (GaleraSync), which provides multi-
master serializability across sites. The second is Metric with
clustering for PostgreSQL 11.5 (P-Metric) against Post-
greSQL master-slave [49] (PostgresMS) or active-passive
clustering where the single master deployed on Site 1 pro-
cesses all requests and replicates them synchronously across
a quorum of sites.7 Finally, we compare M-Metric and P-
Metric against CockroachDB 19.2 and TiDB 3.1.1, both
of which are highly optimized to provide multi-master se-
rializability across sites. We carefully configured Cock-
roachDB [14, 13] to use the “Follow-the-Workload” strat-
egy [12], since that is the only one that provides serializ-
ability for both reads and writes, tolerates site failures, and
does not require any locality annotations to the SQL tables.
We configured TiDB using the specifications in [64, 65], and
followed their recommendation to use three additional nodes
to host the underlying TiDB key-value store.

Due to the different pair-wise latency between the sites
and the asymmetric PostgresMS deployment (one master,
two slaves), in our comparisons, we highlight the site-specific
throughput and latency measurements.

Workloads. For the latency microbenchmarks we use
OpenJDK JMH [45] as the framework for sending trans-
action requests and measuring the latency on all systems.
For the TPC-C [31] benchmarks, we use the OLTP-Bench
[22] framework. For the use-case benchmarks, we use the
Camunda performance test suite [9]. Unless specified other-
wise, to follow the usage patterns described in §5, we main-
tain different tables across DB/Metric instances on differ-
ent sites, and hence, issue non-overlapping transactions, i.e.,
transactions that modify different tables. For this usage pat-
tern, we acquire ownership of the relevant tables during ini-
tialization at each Metric process and no locks are obtained
during execution of the queries.

Deployment. In all our comparisons we deploy a repli-
cated cluster of each of the above-mentioned systems with
one instance of each DB on each site. Depending on the ex-
periment, a JMH, OLTP-Bench or Camunda process (i.e.,
the service replica) co-located on each site/VM sends trans-
actions to the systems. While for the Metric and GaleraSync
solutions the requests are sent to the Metric process or DB
co-located on the same site, all requests are sent to Site 1
for the single-master PostgresMS solution.

7.2 Latency Microbenchmarks
We evaluate the end-to-end latency as perceived by the

services/users of the five systems described above. Specif-
ically, we measure the difference between the beginning of
a transaction at a service and the time at which it receives
an acknowledgment for its commit. With respect to List-
ing 1, this corresponds to the difference between the time
at which conn.commit returns and the time at which the
first query was sent to the DBs. For our latency measure-
ment using JMH, we create one table in the DB, populate it
with 50 rows each of size 46 bytes, and perform two exper-
iments each with one transaction updating either 10 or 50

7To the best of our knowledge there is no official Post-
greSQL solution that provides multi-master serializability
across sites.

rows respectively. In the update, the contents of a string col-
umn are replaced and a counter is incremented in each row.
Latency measurements for reads are deferred to [39] since
read-only transactions have no impact on geo-distribution
in any of these solutions. We first run five warm-up iter-
ations followed by 20 measured iterations. Each of these
iterations lasts 10 seconds during which as many operations
as possible are executed.

Overview. Figure 4(a) shows the latency CDF for the
various solutions with different number of rows updated in
each transaction (10 and 50) using a log scale x-axis. Figure
4(b) shows the corresponding operation-level breakdown of
the mean latency with standard deviation bars for the in-
dividual operations in M-Metric (breakdown was similar for
P-Metric). The CDF has steep latency steps for the Met-
ric systems and CockroachDB due to the asymmetry in the
pair-wise latencies among sites and also because these sys-
tems wait for replies from a quorum of replicas. So two-
thirds of the total requests (66th percentile)—i.e, those sent
from the JHM thread on Site 1 or Site 2—experience far
less latency than the ones sent from the thread on Site 3.
For PostgresMS, which also waits for a quorum of replies,
the requests sent from the thread on Site 1 that runs the
master experience less latency compared with the latency
of requests sent from the thread on Site 2 to the master on
Site 1. The maximum latency is experienced by the thread
sending requests from Site 3 to the master on Site 1. As
expected, the CDF for GaleraSync does not have any steps
since it waits for replies from all replicas.

M-Metric and GaleraSync. For the 33th percentile
latency, M-Metric has 56% and 37.3% less latency than
GaleraSync for 10 rows and 50 rows, respectively. For the
median or 50th percentile latency, M-Metric has 54.5% and
16% less latency than GaleraSync for 10 rows and 50 rows,
respectively. M-Metric clearly outperforms GaleraSync, per-
haps because of the latter’s need to wait for replies from all
replicas as opposed to M-Metric, which only waits for a quo-
rum of replies.8 For the 90th percentile latency, while M-
Metric has 17.6% less latency than GaleraSync for 10 rows,
the latter has 25.9% less latency than M-Metric for 50 rows.
This is because of the relatively larger tx-queue with an in-
creased number of rows that need to be written to the redo
log. While the number of rows in a transaction is typically
less than 50 for our use-cases, we plan to investigate ways
to mitigate this cost as part of our future work.

P-Metric and PostgresMS. For the median or 50th
percentile latency, P-Metric has 53% and 14.1% less latency
than PostgresMS for 10 rows and 50 rows, respectively. For
the 90th percentile latency, P-Metric has 51.4% and 19.8%
less latency than PostgresMS for 10 rows and 50 rows, re-
spectively. Hence, while the PostgresMS clustering protocol
is quorum-based like P-Metric, the time taken to route re-
quests across the WAN to the master in PostgresMS imposes
considerable overhead, resulting in P-Metric’s superior per-
formance. For the 33th percentile latency, PostgresMS has
3.7% and 22.7% less latency than P-Metric for 10 and 50
rows, respectively. These points in the CDF correspond to
the requests sent directly from the JMH thread located at
Site 1 to the PostgresMS master without any routing across

8There maybe other reasons that account for this difference,
but they are difficult to ascertain from our experimental
study of GaleraSync or from documentation.
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(a) Latency CDF across Sites (b) M-Metric Latency Breakdown

Figure 4: Latency Microbenchmarks (P- and M-Metric are indistinguishable in (a))

the WAN. Even though P-Metric uses PostgresMS as its lo-
cal DB, it incurs additional but constant overhead for main-
taining a separate tx-queue in the local DB and for fetching
and serializing its contents before writing to the redo log.
PostgresMS, which is not a drop-in solution, does not in-
cur this overhead since it can read directly from its internal
write-ahead log and send it to the replicas.

P/M-Metric and TiDB/CockroachDB. Both of the
Metric solutions outperform TiDB and CockroachDB across
all the data points, with 54-89% and 14-80% less latency, re-
spectively. In TiDB, this follows because the owners of key-
ranges are spread across sites, which can lead to extra cross-
site accesses for writes in addition to the transaction com-
mit. Also, TiDB needs to allocate a globally unique id per
transaction using a centralized service. This is is contrast
with Metric, where all writes are performed locally with only
commits going across sites. For CockroachDB, Metric has
consistently lower latency, even though the CockroachDB
results used in the graph are from only those runs where
writes were served by lease-holders/owners on the same site,
the best case from a latency perspective. While the reasons
for Metric’s lower latency are not entirely clear, we specu-
late that this is because the quorum write operation used
for committing a transaction in Metric is more efficient in
practice than the distributed consensus used for writes in
CockroachDB.

Latency Breakdown. In the latency breakdown in Fig-
ure 4(b), the labels in the figure are abbreviated versions of
the labels used in the bullets in the overview of §2. While
identifying the table set and executing the query on the local
DB has a mean latency of just 0.4-0.4 msecs and 2.38-7.28
msecs respectively, committing the transaction has mean la-
tency of 31.88-45.2 msecs since it involves updating the redo
log at a quorum of geo-distributed sites.

Failover. In Metric, failover involves a different Metric
process acquiring ownership (AO) over the tables held by the
previous owner of the tables through table-level locks and
then populating its local DB (PLD) with the latest records
of those tables present in the EC redo log (see §3.3). The
AO and PLD operations have not been shown in Figure
4(b), since for our experiments and use-cases these opera-
tions are only performed during initialization and failover
and not during fault-free executions of transactions. How-
ever, to provide a preliminary view of the cost of failover,
we executed the same transaction used in the latency mi-
crobenchmarks for updating 10 rows 100 times, giving one
entry in the redo log with 100 elements in the tx-queue. We
then performed the AO and PLD operations, which resulted

in a mean latency of ∼460 msecs for AO and a mean latency
of ∼3 secs for PLD. The results for 50 rows were similar.

7.3 Camunda Benchmarks
The Camunda performance suite runs basic BPMN work-

flows on the Camunda engine, where each workflow is con-
figured with the number of threads and the number of ex-
ecution runs. At the end of a test, the suite returns the
total latency required to execute all the runs. Using this
information, we show the mean throughput (#runs/total
latency) and mean latency for different solutions on dif-
ferent sites in Figure 5(a) and Figure 5(b), respectively.
While we experimented with different workflows and con-
figurations, here we only present the results for the “Se-
quencePerformanceTest.syncSequence15Steps” (SS15) with
12 threads and 50 runs since the different systems achieved
their highest throughput for this workflow. To exercise mul-
tiple writes to the DB, this workflow is configured so that
Camunda maintains a history of operations in the DB. The
SS15 test performs 31 queries: 1 select, and 30 inserts. The
results for other workflows are similar.

Figure 5: Camunda Benchmarks: Mean throughput and
mean latency per site.

When compared with PostgresMS, P-Metric achieves 2.2
and 1.92 times higher mean throughput on Sites 2 and 3,
while PostgresMS achieves 1.63 times higher mean through-
put on Site 1. Similarly, when compared with GaleraSync,
M-Metric achieves 65% and 68% higher mean throughput on
Sites 1 and 3, and comparable mean throughput on Site 2.
The reasons for these trends are similar to those described
in our discussion on latency microbenchmarks.

Both Metric solutions achieve 3.98-7.24x and 7.63-13.99x
higher mean throughput than CockroachDB and TiDB, re-
spectively, across all the sites. The inverse of these trends
are observed in Figure 5(b). Metric’s superior performance
over these solutions is mainly because the owners/lease-
holders of the key-ranges were spread across sites for all
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the runs in both CockroachDB and TiDB. This often adds
an additional cross-site access to operations when compared
to Metric, as explained in §7.2.

7.4 TPC-C Benchmarks
TPC-C simulates a warehouse-centric order processing

system consisting of 9 tables and 5 procedures, where all
transactions have an associated warehouse id. We use the
default ratios for all the procedures, viz., 45%, 43%, 4%, 4%,
and 4% for “NewOrder”,“Payment”, “OrderStatus”, “De-
livery”, and “StockLevel”, respectively. Using OLTP-bench
we run the TPC-C benchmark and evaluate the throughput
and latency as measured at the OLTP process on each site.
These transactions have a mixture of both reads and writes.
We evaluate the impact of 10 warehouses9 to increase the
data-set and the range of queries, and perform each experi-
ment 5 times. We first present results where OLTP processes
access different tables on different sites with no distributed
transactions, i.e., there are independent copies of the 9 tables
on each site. We then present results where the processes
access a common set of 9 tables across sites.

Figure 6: TPC-C: Mean throughput per site where OLTP
processes access different tables.

Different tables on different sites. In Figure 6, we
present the mean throughput with standard deviation bars
for each solution with 12 and 15 OLTP processes. When
compared with PostgresMS, P-Metric achieves [4.2x, 5.2x]
and [3.5x, 3.8x] higher mean throughput on Sites 2 and 3,
while PostgresMS achieves [2.3x, 2.5x] higher mean through-
put on Site 1. The last result is mainly because the mas-
ter is located on Site 1. Similarly, when compared with
GaleraSync, M-Metric achieves [1.38x, 1.52x] and [1.44x,
1.61x] higher mean throughput on Sites 1 and 3, while
GaleraSync achieves a comparable mean throughput to M-
Metric on Site 2. The last result follows mainly because
Site 2 is close to both Sites 1 and 3 in terms of latency, and
the gains achieved by M-Metric in waiting only for a quo-
rum of responses are largely overridden by the overhead of
fetching from a local tx-queue and writing to the redo log).
Both Metric solutions achieve 2.11-5.2x and 12.94-26.21x
higher mean throughput than CockroachDB and TiDB, re-
spectively, across all the sites. The inverse of these trends
are reflected in the site-specific latency CDFs shown in Fig-
ure 7 that correspond to the experiments in Figure 6 with
15 OLTP processes. The reasons for these trends are similar
to those described in §7.3.

Same tables on different sites. In Figure 8, we
present the mean throughput and mean latency per site
for 12 OLTP processes; trends for 15 processes were sim-
ilar and the latency CDF did not yield new insights. When
9[39] shows similar trends for 6 warehouses.

Figure 7: Latency CDF for Figure 6 (P- and M-Metric are
indistinguishable.)

the same 9 tables are accessed by OLTP processes across
sites, GaleraSync, PostgresMS, CockroachDB, and TiDB
achieve 18.58-32.08x, 8.63x-30.79x, 3.29x-4.58x, and 1.72x-
2.79x higher mean throughput, respectively, than both the
Metric solutions across all the sites. The inverse of these
trends are observed in Figure 8(b). This is primarily be-
cause, unlike other solutions, every time a table is accessed
in Metric across different sites, ownership needs to transition
and the local DB on that site needs to be populated with
the latest data—a time consuming process, as evidenced by
the AO and PLD numbers in §7.2. CockroachDB and TiDB
in particular have been optimized for such access patterns
with conflict-resolution and fine-grained record-level locking
to ensure high performance. While our current use-cases do
not require it, we discuss several mitigating strategies in §9
to support future use-cases with such access patterns.

Figure 8: TPC-C: Mean throughput and mean latency per
site, where OLTP processes access the same tables.

8. RELATED WORK
Several existing middleware systems support DB cluster-

ing through a JDBC interface, but these either do not pro-
vide multi-master strict serializibility, require extensive an-
notation of service code, or both. An example is C-JDBC
[15], which provides a single virtual DB on top of a collection
of heterogeneous DBs. It strict serializability in single mas-
ter or active-passive architectures, where each transaction is
processed by a single controller and each update is propa-
gated to all back-end DBs that contain the tables. While
non-overlapping transactions can be executed on different
controllers, they leverage explicit knowledge of service code
to use this feature. Metric, which is specifically tailored
for geo-distribution, supports a multi-master architecture in
which any Metric process can execute any transaction and
only commits of a transaction needs to be communicated to
a quorum of replicas. Another example is Gyro [30], which
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provides multi-master strict serializability with high perfor-
mance across sites using code annotation to identify trans-
actions that can be executed fully on a local DB instance.
In contrast, Metric is a drop-in solution that leverages use-
cases in which there are very few overlapping transactions
across sites to provide the same properties without requir-
ing any change or annotations to the service code. Apache
Ignite [34] also serves as a transparent middleware that can
be used on top of any JDBC-compliant DB. However, this
system only acts as a caching layer and relies on the existing
DB’s clustering solution.

Certain aspects of enterprise DBs are also related to the
type of functionality realized by Metric. In particular, since
transactions in our use-cases are partitioned across sites, it is
possible to build a DB solution for these by deploying Inde-
pendent Master-Slave Clusters (IMSC) configured for syn-
chronous replication across the slaves where a service replica
sends all requests to the closest master replica [49, 37, 46].
While IMSC is conceptually simpler, Metric has two major
advantages. First, to provide a replication or scale-out fac-
tor of r across s sites, IMSC requires s · r DB replicas while
Metric requires only s DB replicas and r Cassandra replicas.
From an operational point of view, it is far harder to size,
maintain, and deploy all these additional stateful replicas in
IMSC. Second, while Metric is optimized for access patterns
where there is no overlap between DB records across sites,
it is still capable of supporting such transactions. For exam-
ple, while in Metric a service replica can read and write to
the same DB record at different sites, IMSC cannot support
such access patterns since the masters belong to indepen-
dent clusters with no shared DB records. Such transactions
in Metric currently incur a higher cost, but as discussed be-
low in §9, there is a clear path towards improvement.

Like Metric, other existing DB solutions are specifically
optimized for geo-distribution [19, 17, 56, 66, 48, 27, 18, 58].
While other individual differences are outlined below, the
most important distinction between all of these systems and
Metric is that none are drop-in solutions, i.e., a service has
to replace its existing DB. As mentioned in §1 and §5, this is
often impractical for production use-cases, especially those
that rely on third party software that use a specific DB.
However, unlike the table-level locking used by Metric, these
solutions use techniques like conflict-resolution and locking
at the record level to improve performance for transactions
with overlapping records across sites. Even though Metric
currently performs well within its targeted domain, as its
use expands we will leverage ideas from these systems to
further optimize our solution (see §9.)

Our use of EC store locks is similar to the use of locks
over data tablets in Spanner [19] or key-value maps in Cock-
roachDB [17]. However, as described in §3.1, Metric uses the
EC store’s higher-level abstraction of critical sections that
handle failures rather than constructing redo logs from first
principles, a far more complex and error prone process. Fur-
ther, the EC store provides semantics that are tailor-made
for realizing a drop-in solution. SLOG [56] also exploits lo-
cality of data-access patterns to achieve serializability with-
out compromising on performance across sites. However, it
assumes that the full transaction is available before process-
ing it and further, require knowledge of what data is accessed
by the transaction. While Metric is most efficient when dif-
ferent replicas are processing non-overlapping transactions,
it does not require any advance planning. PNUTS [18, 58]

provides a geo-distributed store with a per-record timeline
consistency model, where a master replica assigned to each
record based on locality enforces consistent read/writes for
that record. Like Metric, PNUTS uses an externalized log
and exploits predictable locality of writes to optimize perfor-
mance. However, PNUTs does not provide a standard SQL
interface nor does it support consistent updates to multiple
records across tables. Metric’s use of table-level ownership
is similar to G-store’s [20] key-group ownership abstraction,
but the latter only provides multi-key transactional access
for single-site usage, as opposed to Metric’s abstraction of a
serializable replicated DB.

9. FUTURE WORK
Tunable isolation Levels. While in this paper we fo-

cus on providing strict serializability, we intend to explore
providing a range of isolation levels such as asynchronous
replication, read committed, and repeatable reads through
selective use of locks in the redo log. Further, we could make
this configurable at a per-table level. Thus, for example, if
a service only requires asynchronous replication for certain
DB tables, then operations on these tables could proceed
without requiring locking the redo log.

Reducing cost of ownership. As mentioned above, the
current use-cases for Metric typically issue non-overlapping
transactions across different Metric processes, and hence
ownership transition happens only during initialization and
failure. However, we are currently working on reducing
the cost of ownership acquisition for use-cases for which
the transition is more frequent. Our approach is based on
three broad ideas: (1) richer ownership semantics over ta-
bles such as separate read and write ownership to provide
more concurrency (e.g., multiple concurrent readers), (2)
finer-grained ownership over different parts of a table with
non-overlapping access patterns (e.g., concurrent ownership
of non-overlapping views in a table), and (3) mining usage
patterns to prevent premature release of ownership.

Building a standalone DB. While our focus here has
been to provide a drop-in solution for DB clustering, the
performance advantage for our usage patterns over Cock-
roachDB and TiDB has motivated us to pursue building a
standalone DB based on Metric. In this solution a high per-
formance in-memory DB such as SQLite [60] would be used
in place of MariaDB or PostgreSQL.

10. CONCLUSIONS
Production geo-distributed services at AT&T and else-

where often rely on DBs that are not optimized for multi site
performance. In this paper, we present a novel, yet prag-
matic approach to this problem in the form of a drop-in mid-
dleware called Metric that uses an existing service’s DB in
conjunction with a cross-site clustering solution specifically
tailored for geo-distribution. Metric’s significant advantage
lies in how easily it can be integrated with existing services—
not a single line of their original code needs to be changed.
We present the novel design of Metric based on an entry-
consistent redo log and prove that it achieves strict serial-
izability. For the access patterns common in our use-cases,
Metric outperforms the clustering solutions of widely-used
DBs, and work is underway on enhancing the performance
of Metric for other use-cases through tunable isolation lev-
els and fine-grained ownership semantics. The open-source
implementation of Metric is being integrated with multiple
AT&T production services with more in the planning stage.
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