
AutoToken: Predicting Peak Parallelism for
Big Data Analytics at Microsoft

Rathijit Sen Alekh Jindal Hiren Patel Shi Qiao
{rathijit.sen, alekh.jindal, hirenp, shqiao}@microsoft.com

Microsoft Corporation

ABSTRACT
Right-sizing resource allocation for big-data queries, particularly
in serverless environments, is critical for improving infrastructure
operational efficiency, capacity availability, query performance pre-
dictability, and for reducing unnecessary wait times. In this paper,
we present AutoToken — a simple and effective predictor for esti-
mating the peak resource usage of recurring big data queries. It uses
multiple query plan identifiers to identify recurring query templates
and to learn models with the goal of reducing over-allocation in fu-
ture instances of those queries. AutoToken is computationally light,
for both training and scoring, is easily deployable at scale, and is
integrated with the Peregrine workload optimization infrastructure
at Microsoft. We extensively evaluate AutoToken on SCOPE jobs
from our production clusters and show that it outperforms state-of-
the-art solutions for peak resource estimation.

We also discuss our plans towards supporting repeatable and ex-
tensible research on resource prediction for SCOPE jobs, including
describing a simulation methodology for generating arbitrary-sized
datasets with similar characteristics as the production datasets.

PVLDB Reference Format:
Rathijit Sen, Alekh Jindal, Hiren Patel, and Shi Qiao. AutoToken: Predict-
ing Peak Parallelism for Big Data Analytics at Microsoft. PVLDB, 13(12):
3326-3339, 2020.
DOI: https://doi.org/10.14778/3415478.3415554

1. INTRODUCTION
We have witnessed a decade of tremendous interest in large scale

data processing, and consequently the rise of so called big data
systems. While the early focus was on handling the scale and com-
plexity of big data, it is increasingly critical to improve the resource
efficiency and reduce operational costs in massive data processing
infrastructures. As a result, efficient resource allocation at the data
center level has received a lot of attention in recent times [15, 37,
23, 31, 7, 12, 13, 5]. Interestingly, resource efficiency becomes
harder with the new breed of so called serverless query process-
ing, where users do not have to setup clusters. Instead, the cloud
provider takes care of allocating resources on a per-query basis,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415554

e.g., Athena [1], Big Query [16], SCOPE [11], etc. While server-
less query processing makes it easier for the users to start process-
ing massive datasets, it is challenging for the cloud providers to
estimate the resource requirements at the query level. This is be-
cause the relationship between the resources provided and the per-
formance observed for a query is often non-intuitive and even do-
main experts would struggle to manually pick the right set of re-
sources for a given query [31]. Thus, efficient use of resources in
modern big data infrastructures is a challenge for cloud providers
and other large enterprises.

In this paper, we analyze the resource allocation effectiveness in
the Cosmos big data analytics infrastructure at Microsoft. The bulk
of the workload in this infrastructure consists of batch processing
using the SCOPE query engine, which is exposed as a job service to
the users, i.e., users submit their declarative SCOPE scripts and the
engine takes care of picking the resources (e.g., the number of con-
tainers) for processing that script. Multiple prior works have con-
sidered the problem of efficient resource allocation in SCOPE [15,
23, 31]. Most recently, Morpheus [23] uses historical data to pro-
duce the resource allocation skyline of recurring jobs, i.e., SCOPE
scripts that are executed periodically with different inputs and pa-
rameters. Yet, as we show in this paper, the resource allocation
efficiency in SCOPE still has major gaps, with around 40–60% of
the jobs over-allocated in different clusters, by as much as 1000×.
The reason Morpheus is hard to apply here is because it considers
a SCOPE job as a black box, i.e., it monitors resource consumption
from the YARN logs without considering the SCOPE query plans,
and applies a single resource allocation skyline to all instances of
a recurring job. In practice, however, recurring jobs instances have
several variations, the most notable being changes in inputs sizes
which can easily grow or shrink by 2× in different instances.

Thus, we argue for building machine learning models with a
richer set of features that can capture the resource allocation re-
quirements of different instances of a recurring job more precisely.
In fact, our results show that such a model could be two orders
of magnitude more accurate than Morpheus. We use this learned
resource model to right-size the peak allocation of over-allocated
jobs, since majority of the SCOPE jobs are over-allocated any-
ways. Training this model requires grouping instances of a recur-
ring job and we consider a rigid and a relaxed (to allow for more
variations) grouping strategies, which expose the trade-off between
accuracy and coverage over the workload. We also explore other
design choices, such as model type, training support, and training
interval, that are important factors when deploying machine learn-
ing models to production. We explore these design choices with
our production settings in mind and present an extensive evalua-
tion over a large workload of 8.8 million production SCOPE jobs
collected over a period of five weeks. We show the end-to-end inte-

3326



Default Allocation
Over-
allocation

R
es

o
u

rc
es

Default Allocation

Ideal Allocation

Figure 1: Resource usage in a typical SCOPE job over time.

gration of the resulting system, AutoToken, with the SCOPE query
engine. Finally, we describe the repeatability of our experiments
using a simulator to mimic our production workloads.

In summary, our key contributions are as follows:
● We present an overview of the Cosmos big data infrastructure at

Microsoft, the current strategy for peak resource allocation, an
evaluation of the effectiveness of this strategy, and the potential
capacity and queuing time savings. (Section 2)

● We describe our production scenario consisting of recurring
jobs, the workload trace of 8.8 million jobs from over five weeks,
and the production requirements for shipping a new strategy for
peak resource allocation. (Section 3)

● We present AutoToken for better peak allocation accuracy us-
ing machine learning models, that have 50th percentile error of
close to 0 and 90th percentile error of 50% or less, orders of
magnitude lower than the 50th and 90th percentile errors of up
to 4900% and 24500% with the current default. (Section 4)

● We further evaluate and discuss various design choices in Auto-
Token over a filtered set of production candidates, constituting
around 12–29% of our entire production workloads, in order to
meet our requirements. (Section 5)

● We compare AutoToken with both a conservative allocation
strategy and with Morpheus, the prior art for optimizing the
peak resources, over the production candidates. AutoToken has
up to two orders to magnitude lower RMSE than both the con-
servative strategy and Morpheus. (Section 6)

● We discuss the production readiness of AutoToken, its integra-
tion with the SCOPE query engine, and show pre-production
experiments on customer workloads. (Section 7)

● Finally, we describe the repeatability of our experiments using
a dataset simulation tool that mimics our production workload
traces. (Section 8)

2. SCOPE RESOURCE ALLOCATION:
IMPERFECTIONS & OPPORTUNITIES

We now present an overview of Cosmos big data analytics in-
frastructure at Microsoft, with SCOPE as the primary query en-
gine. A typical SCOPE job consists of stages that are connected
in a directed acyclic graph (DAG). Each stage further contains one
or more physical operators that could be processed locally in a sin-
gle container, and instances of a stage (called vertices) can process
different partitions of data in parallel. For the sake of presentation,
we limit our discussion to maximum degree of parallelism (also
referred to as resource tokens in SCOPE) as the unit of resource,
however, one could easily extend it to other dimensions such as
container size, VM type, etc.

SCOPE and other modern big data systems, including server-
less query processing systems, shifts the onus of resource alloca-
tion from users to the query engines. This is challenging due to
several reasons. First of all, it is hard to estimate the fine-grained
resource requirements for each query at compile time. The esti-
mates in a query optimizer are often off by orders of magnitudes

0.1 1 10 100 1000
Ratio of Requested/Peak resources

0
10
20
30
40
50
60
70
80
90

100

P
er

ce
nt

ag
e

of
jo

bs

Ideal
Cluster1
Cluster2
Cluster3
Cluster4
Cluster5

Figure 2: Distributions of the percentage of jobs as a function of
of (Requested/Peak) resource allocations (x-axis, log scale).

and the problem gets worse in big data systems. Second, allocating
resources is expensive and so it is not desirable to change the allo-
cation of a query frequently. Furthermore, a resource change can
trigger query plan changes to use the new set of resources, which
can make the overall performance worse. And finally, given that
a query could consume maximum resources early on, there may
not be much room for adjusting the resources, particularly if the
resources are under allocated then query performance may have
suffered already before any adjustments could be applied.

SCOPE addresses some of the above issues by relying on a user-
specified resource limit, i.e., the maximum number of tokens that a
query could use, and reserves them as guaranteed resources before
starting the query execution. We call this the Default allocation.
Unfortunately, users rarely make an informed decision when spec-
ifying the maximum tokens. Figure 1 shows the token usage sky-
line in a typical SCOPE job. We can see the big gap between the
Default allocation and the actual peak token consumption (Ideal al-
location). Over-provisioning of tokens results in resource wastage,
unnecessary waits, and can reduce cluster utilization.

On the other hand, for under-allocation, SCOPE tries to oppor-
tunistically use spare tokens [9]. However, spare tokens are not
guaranteed and can still result in under-allocation with an accom-
panying loss in performance and/or unpredictability in query per-
formance. Interestingly, some users choose to under-allocate jobs
while prioritizing cost-savings over predictably-good performance.
Thus, fixing under-allocations can be tricky, since we need to con-
sider the user intent. We do not address this scenario in this work.

2.1 Allocation Effectiveness
As mentioned above, SCOPE jobs rely on a user provided max-

imum number of tokens to reserve resources before the job starts
executing. Therefore, we first analyze the effectiveness of this re-
source allocation. Figure 2 shows the (cumulative) distribution of
the percentage of jobs as a function of the allocation ratio — the
ratio of the requested (guaranteed) to the actual peak consumed
resources — of SCOPE jobs in five different production clusters at
Microsoft. Allocation ratios of >, =, and < 1 represent over-, exact-,
and under-allocations respectively. The vertical dashed line repre-
sents the Ideal scenario (allocation ratio = 1). Interestingly, we see
from Figure 2 that around 40–60% of the jobs are over-allocated
in different clusters, by as much as 1000×, indicating significant
opportunities for right-sizing the resource allocation. The distribu-
tion for Cluster5 is closest to the Ideal since the business unit on
that cluster spent considerable effort to build client-side tools for
resource allocation. Despite this, Cluster5 still has 40% of the jobs
over-allocated, with 15% over-allocated more than 10×.

Reducing the above identified over-allocation has several im-
plications. First of all, it improves the operational efficiency in

3327



0 10 20 30 40 50 60 70 80 90 100
Percentage Reduction in Guaranteed Capacity

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
V

C
s

Cluster1
Cluster2
Cluster3
Cluster4
Cluster5

(a) Guaranteed Capacity reduction

1 10 100 1000 10000
Reduction in Waiting Time (secs)

94

95

96

97

98

99

100

P
er

ce
nt

ag
e

of
Jo

bs

Cluster1
Cluster2
Cluster3
Cluster4
Cluster5

(b) Absolute wait time reduction
Figure 3: Distributions of savings opportunities if no jobs are over-allocated, for (a) guaranteed VC capacities but with no change in job
wait times and (b) job wait times but with no change in VC capacities. The results are for the DT datasets (see Section 3.2) of each cluster.

Algorithm 1: Estimating min. guaranteed VC capacity
Input: VC, List of jobs run on that VC
Output: VC Capacity

1 capacity = 0, ctr = 0
2 heap = {}
3 for each job j in list do
4 insert tuple [j, j.start offset, JOB START] in heap

5 while heap not empty do
6 extract min tuple=[j, offset, mode] from heap
7 job req=tokens(j)
8 if mode == JOB START then
9 ctr = ctr - job req

10 if ctr < capacity then
11 capacity = ctr

12 insert tuple [j, j.end offset, JOB END] in heap

13 else
14 ctr = ctr + job req

15 VC Capacity = -capacity

a highly valuable business that powers big data analytics across
the whole of Microsoft, including products such as Office, Win-
dows, Bing, Xbox, etc. Second, it frees up guaranteed resources
that could be used to submit more SCOPE jobs. Third, it reduces
the queuing time of jobs by having them request for less resources.
Finally, it improves the user experience by automating a mandatory
parameter in SCOPE jobs. We quantify some of the benefits below.

2.2 Potential Capacity Savings
SCOPE clusters are logically partitioned into Virtual Clusters

(VCs), each mapping roughly to a business function or a business
unit and with an exclusive capacity of guaranteed tokens that can
be allocated to jobs submitted to that VC. To quantify the opportu-
nity for capacity reductions, we performed an offline simulation of
our jobs to infer the minimum number of tokens in each VC so that
all the jobs that actually ran on that VC can have their guaranteed
tokens requirements be satisfied.

Algorithm 1 shows the main steps of the simulation. The high-
level idea is to use event-driven simulation to approximate the be-
havior of the SCOPE job scheduler, by keeping track of capacity
reservations when jobs are submitted and capacity release when
they finish. The simulator maintains a per-VC min-heap to use as
a priority queue for scheduling job start and end events. It uses the
actual job start and end times, calculated as offsets from a fixed

timestamp, to compare across elements for maintaining the heap
property. Lines 10 – 11, 15 keep track of the largest capacity re-
quirement. This is the minimum capacity that the VC should have
if job latencies are not to be affected. A lower VC capacity would
result in jobs waiting longer for the required tokens to be available.

We ran Algorithm 1 twice, once with the Default token alloca-
tions, and once assuming that no job is over-allocated. Figure 3a
shows the distribution of the percentage of VCs as a function of the
percentage in reduction of minimum capacities. Across the clus-
ters, ∼60% of VCs show reduced capacity needs, with ∼7–16%
of VCs show a capacity reduction of 50% or more if the over-
allocation problem can be eliminated. The capacity requirements
of the entire cluster is the sum of the capacity requirements of its
constituent VCs. The cluster-level capacity reductions are also sig-
nificant — Cluster1: 10.6%, Cluster2: 9.1%, Cluster3: 13.6%,
Cluster4: 11.4%, Cluster5: 12.3%. Reduced capacity requirements
result in COGS (cost of goods and services) savings while support-
ing the same workload, or being able to accept more jobs (higher
job concurrency) for the same capacity, or both.

2.3 Potential Queueing Improvements
To quantify the opportunity for job waiting time reductions, we

performed another offline simulation using the estimated minimum
VC capacities for default job allocations. Algorithm 2 shows the
main steps of the event-driven simulation. It is similar to the ca-
pacity simulation, but now we allow a job to be scheduled within
the time interval [submit offset + min delay, start offset] where
min delay refers to the minimum delay between when a job is sub-
mitted to when it can be started owing to compilation and other
setup requirements. As a simplification for this analysis, we cal-
culate min delay as a constant from the actual time offsets in our
datasets (line 4). In practice, the delay would depend on job char-
acteristics that affect, for example, job compilation time. While
the jobs can be scheduled earlier than their actual start times in the
simulation, we constrain the job starting order to be the same as in
the actual dataset. For this reason we maintain the job order list
(line 3) and start jobs in the sequence in which they appear in that
list (lines 15–23). In contrast with the capacity simulation, we also
need to keep track of simulated time that we advance whenever an
element is extracted from the heap.

Algorithm 2 is a simplified approximation of the SCOPE job
scheduler that takes into account more factors such as job priori-
ties, job-dependent compilation and setup times, etc. Nevertheless,
our estimated wait times with default token allocations and esti-
mated VC capacities (from Algorithm 1) show good correlation
with observed wait times for the jobs. The correlation coefficients
between simulated and actual waits were as follows — Cluster1:

3328



Algorithm 2: Estimating job wait times
Input: VC, List of jobs run on that VC, VC capacity
Output: wait times

1 cur offset = 0
2 ready list = [], heap = {}
3 job order list = list of jobs sorted by start offset
4 min delay = ∀jmin(j.start offset - j.submit offset)
5 for each job j in list do
6 insert tuple [j, j.submit offset + min delay,

JOB READY] in heap
7 while heap not empty do
8 dequeue tuple=[j, offset, mode] from heap
9 cur offset=offset

10 job req=tokens(j)
11 if mode == JOB READY then
12 enqueue j in ready list

13 else
14 capacity = capacity + job req

15 repeat
16 k = next job in job order list
17 req = tokens(k)
18 if k in ready list and req < capacity then
19 capacity = capacity - req
20 insert tuple [k, cur offset + k.run time,

JOB END] in heap
21 wait times[k] = cur offset - k.submit offset
22 dequeue k from ready list

23 until no more jobs dequeued;

0.95, Cluster2: 0.99, Cluster3: 0.97, Cluster4: 0.98, Cluster5: 0.9.
We ran Algorithm 2 twice, once with the default token alloca-

tions, and once assuming that no job is over-allocated but the VC
capacities unchanged. Figure 3b show the distribution of the per-
centage of jobs as a function of the reduction of wait times. A
reduction of close to 100% in wait time means that the job could
start immediately when ready, under no over-allocations for any
job, instead of waiting for tokens, under Default token allocations
for jobs. While the percentage of jobs having reduced waits is not
very high (up to 4–5%), the magnitude of reductions can be large,
from several minutes to hours. Reduced wait times not only im-
prove customer experience, they also enable higher cluster utiliza-
tion as more jobs may be concurrently started due to the reduced
token requirements.

3. PRODUCTION SCENARIO
In this section, we describe our production scenario, including

the type of workload that we are going to focus on, the produc-
tion trace that we are going to use throughout the paper, and the
production requirements that drive many of our decisions.

3.1 Recurring Workloads
As we discussed before, we focus on recurring jobs in this work

since they are business critical and form the majority of production
workloads. Recurring jobs are periodic jobs that have the same
query template getting executed with different inputs and param-
eters each time. For example, an hourly job analyzing customer
engagement in the last 24 hours will execute with sliding filter pred-
icates (and hence newer inputs) every hour. Recurring jobs could

Figure 4: An hourly SCOPE recurring job.

Table 1: Characteristics of datasets used in this study.

(a) Number of jobs
Dataset Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

DR (Training) 1903095 793288 1073245 1112767 2374582
DT (Testing) 404208 161703 195449 238182 528481

(b) Number of VCs
Dataset Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

DR (Training) 165 100 204 106 171
DT (Testing) 95 72 120 55 161

be hourly, daily, weekly, monthly, or something in between. To il-
lustrate, Figure 4 shows 152 instances of an hourly recurring job,
over six and a half day period, that extracts facts from a production
clickstream. Over these 152 instances of this recurring, the execu-
tion time varies from 40 minutes to 2 hours and 25 minutes, while
the input size varies from 65,290 GB to 165,269 GB. Therefore, we
need to consider these variations in recurring job characteristics for
resource prediction.

Identifying different instances of a recurring job is tricky. A
naive way could be to use the job name and normalize any in-
stance specific details, e.g., the dates or ids, similar to as the one
used in Morpheus [23]. Another approach could be to hash the
text of the SCOPE scripts. However, either approach risks group-
ing dissimilar jobs together. For example, a generic name such
as Scope.script may be used for many very different SCOPE
scripts. Therefore, we group different instances of a recurring job
using a recurring signature, a hash that uniquely identifies a re-
curring job using the query plan characteristics instead of using
job name or script text. We hash the optimized logical query plan
while normalizing the inputs and the parameter values. Note that
prior works have also used such signatures for other applications
such as computation reuse [22, 32], learning cardinalities [39], and
learning cost models [34].

Our strategy is to group jobs that have the same recurring signa-
ture and to train a token prediction model for each group. We can
then use the model to predict token requirements for future jobs
that have the same recurring signature as that for the group. For any
group g, n(g) denotes the number of jobs belonging in that group.
In order to train models with good accuracy, we require n(g) to be
above a certain threshold value. We call this threshold the support,
S. We will train models only for groups that have n(g) ≥ S.

3.2 Production Trace
We gathered the production trace from past job runs on our pro-

duction clusters and anonymized values to remove any identifiable
and sensitive information in the workloads. Table 1 describes the
aggregate characteristics of our datasets from five of our production
clusters. For each cluster, we have a Training dataset, that corre-
sponds to a subset of jobs submitted to that cluster over a month,

3329



Job Grouping Model Training Model Validation Model Scoring

Training 
Dataset

Sig1 Groups

Sig2 Groups

Sig1 Models

Sig2 Models

Sig1 Models

Check 
Fit

Sig2 Models

Check 
Fit

New Job

Sig1 
Model?

Sig2 
Model?

Score 
OK?

Y

Y

N

N

Fallback 
Model

N

Use 
Score

Default 
Request

New 
Dataset

Retraining

Y

Figure 5: Overview of AutoToken Operations.

and a Testing dataset that corresponds to a subset of jobs submit-
ted in the following week. For a given cluster c, we refer to these
datasets as DR(c) and DT(c) respectively, or simply as DR and DT
when c is clear from the context. We train models on jobs in DR
and predict token counts for jobs in DT.

For each dataset we describe the number of jobs (Table 2a) and
the number of VCs (Table 2b). For each cluster, since DR covers
a longer time interval than DT, the counts are larger than those for
DT. There is considerable variation in the counts across clusters.
Cluster5 has the largest number of jobs (∼2.37M in DR, ∼0.53M
in DT) while Cluster2 has the smallest (∼0.79M in DR, ∼0.16M in
DT). Cluster3 has the largest number of VCs. The average number
of jobs per VC varies from ∼1.6K in DT(Cluster3) to ∼13.9K in
DR(Cluster5). Despite these variations, as we shall show, AutoTo-
ken works well for all of these clusters.

3.3 Requirements
We now discuss the key requirements when improving the paral-

lelism in SCOPE jobs, as derived from our production workloads.

R1. The resource allocation predictions must be highly accurate,
and consistently so over a time period of time.

R2. The prediction models must be applicable to a substantial por-
tion of the workload in order to realize the potential gains.

R3. All training steps and their tuning must be automatic and must
happen offline completely agnostic to the users.

R4. We want to minimize any performance regressions that affect
the customers due to changes in SCOPE job parallelism.

R5. Adjusting job parallelism should not stress the clusters with
additional resource requirements.

R6. Resource models should adapt with recurring job fluctuations
in the workload over time.

R7. We want to leverage existing workload optimization infras-
tructure [21] for offline training and feedback.

R8. And finally, we need to provide compiler flags for users to
control whether the feature is turned on or not.

4. AUTOTOKEN
In the previous section, we saw how the job characteristics in

recurring workloads vary over time. Therefore, we want to con-
sider a feature-based learning approach that can potentially lead to
much better accuracy. In this section, we describe the design of
the AutoToken predictor that we use to predict the peak resource
usage of recurring jobs. Figure 5 illustrates the five main steps in
AutoToken, which we discuss below.

Job Grouping: The brute force approach could be to feed all the
query plans and metrics into a machine learning pipeline, and learn
a single global model to predict the peak resource usage in future
jobs. However, prior works have shown that it is extremely hard
to get such a single global right [39, 34]. Indeed, we tried build-
ing a global model and the accuracy was poor (see Section 5.4).
The reason global models are hard to train is due to the combina-
torial space of all possible query plans. As a result, even with mil-
lions of queries in the cloud workloads, it is really hard to capture
the resource behavior of query plans in a single monolithic model.
Therefore, similar to the prior works, we consider building a large
number of specialized machine learning models that are expected
to be very accurate (R1). Specifically, we first group jobs based on
their recurring signatures and then learn one model per template.
Model Training: The resources required for a job depend on job
characteristics such as input size and job parameters. Therefore, a
regression analysis over these variables from the historical query
workload is expected to yield good predictions, i.e., we can train
models offline and agnostic to the users (R3). Thus, we train re-
source models for each recurring job group provided, with a mini-
mum support requirement (S) to ensure consistency over a period
of time (R1). We start with S = 10 and Linear Regression models
with inputs not standardized (LR NS), but later we evaluate dif-
ferent choices in Section 5. We use off-the-shelf implementations
from scikit-learn [30] for all model training in this work.
Model Validation: After training the models, we perform a vali-
dation step where we use the models to predict (fit) for jobs in the
training dataset. The goal is to filter out models that might lead to
performance regressions (R4). Any model that results in the pre-
dicted resource usage for any job, belonging to that group, being
less than the actual peak by a threshold, e.g., 10 tokens, is dis-
carded. This reduces prediction coverage but usually reduces the
worst-case predictions significantly.
Model Scoring: When a new job arrives, we compute its signature
and check if a resource model exists for that signature. AutoToken
could use multiple signatures to group jobs in different ways and
cover large portions of the workload (R2). For instance, Figure 5
shows two signatures that are computed for every job. If a model
exists, we use it to predict the token count for the job. Otherwise,
we use the Default value. For evaluating AutoToken, we use the
Testing datasets (DT) (see Section 3.2) for model scoring.

Despite the model validation step, we cannot provide worst-case
limits on the over- or under-allocations that may result from using
the values predicted by AutoToken. To protect against the rare but
large errors (R4), we use the predicted values only if they lie within
a predetermined range, e.g., [1, 2× the default value]. If it lies
outside this range, we use a fallback model, e.g., average of the
actual peak token counts for jobs belonging to that group.

3330



Sig1 (%signatures) Sig1 (%jobs) Sig2 (%signatures) Sig2 (%jobs)

(a) Cluster1 (b) Cluster2 (c) Cluster3 (d) Cluster4 (e) Cluster5
Figure 6: Distributions of the percentage of groups (y-axis, solid lines) and percentage of jobs belonging to those groups (y-axis, dashed
lines) as a function of n(g) (x-axis, log scale) for the DR datasets (see Section 3.2) considering only groups that have n(g) ≥ 2 and no
under-allocated job. Table 3 describes the counts of signatures and jobs corresponding to values of 100% in this figure.

Retraining: Once the newly arrived jobs have executed, we know
their actual peak resource usages. We then add these jobs to the
training dataset, retrain and validate models for groups where the
jobs got added. In this way we keep up with changing workload
characteristics over time (R6). Section 5.3 discusses the impact of
the granularity of this retraining interval .

In the following, first we describe different granularities for defin-
ing job templates, and then we discuss the accuracy and coverage
of our predictions.

4.1 Identifying Job Templates
The first question in AutoToken is to define templates that are

general enough to cover a wide workload, and yet sufficiently spe-
cialized to learn accurate models. Unfortunately, it is hard to achieve
both using a single signature [34], therefore AutoToken supports
using multiple signatures. Specifically, we consider the following
two signatures to identify recurring jobs: (1) a primary signature
(Sig1) that recursively computes the numerical hash of each oper-
ator in the logical query plan, while excluding the parameters and
inputs since they can change over time, and (2) a secondary signa-
ture (Sig2) that hashes just the inputs and outputs of the query plan,
while allowing the plan operators and graph structure to change in
between. The motivation for using the secondary signature is to in-
crease prediction coverage — it may be possible to predict its peak
resource usage of jobs consuming the same inputs even though their
query plans may look very different.

Table 2: Number of distinct job signatures and distinct non-
recurring (NR) job signatures as a percentage of total job signatures
in the DR datasets.

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5
#Sig1 57.6% 57.4% 17.9% 24.1% 19.1%
#Sig2 53.0% 54.9% 16.5% 24.1% 17.6%

#Sig1 NR 53.2% 52.7% 14.4% 19.2% 15.8%
#Sig2 NR 47.8% 49.7% 13.0% 18.5% 14.4%

While describing the groupings for our training datasets, DR, we
use the total number of jobs in DR (from Table 1) as a reference for
calculating percentages. Table 2 shows the numbers (as percent-
ages) of distinct and distinct non-recurring (NR) signatures. For
example, in Cluster1, these numbers for Sig1 are 57.6% and 53.2%
respectively of the total number of jobs in DR(Cluster1). Thus, the
number of recurring signatures (with more than one job belonging
to that group) is 57.6% − 53.2% = 4.4% of the total number of jobs
in DR(Cluster1). Clusters 3 – 5 have a relatively smaller percentage
of non-recurring signatures compared to clusters 1 and 2. Across
all clusters, the number of a small number of recurring signatures
(< 5%) cover all large fraction of total jobs. This makes it feasible
to train and deploy per-signature models for recurring signatures.

4.2 Production Candidates
Our approach in this work is to train per-signature models that

learn peak token counts from past job executions (recurring jobs).
We do not target under-allocations, but want to predict accurately
for over-allocated jobs and (the small fraction of) jobs that are al-
ready correctly allocated, i.e., jobs with allocation ratio ≥ 1. While
Figure 2 shows ∼40–60% of jobs have allocation ratios of ≥ 1, a
fraction of those correspond to non-recurring/ad-hoc jobs which
would not be covered by our approach. Therefore, the question
is what maximum prediction coverage can be achieved if we only
consider recurring jobs with allocation ratio ≥ 1 in DT such that the
corresponding Sig1 or Sig2 also appear in DR and have a mini-
mum S in DR. Figure 10a shows that such a coverage ranges from
14.3% (S = 1, Cluster2) to 38% (S = 1, Cluster5). S = 2 and S = 10
have slightly less coverage, but S = 100 reduces this significantly,
to 9.2% – 28.4%.

Note that DT is not available at training time and so we need to
select which signatures to train models for using only information
from DR. An option is to consider only those signatures in DR that
have allocation ratio ≥ 1 for all jobs in DR having those signatures.
Figure 10b shows the maximum coverage in DT with this selec-
tion criteria in DR and assuming perfect per-signature models that
we denote as OPT. These numbers show an upper bound as OPT
models incur no error whereas realistic models can lead to some
signatures being discarded in the validation phase due to large er-
rors. We show S = 1 for completeness; in practice, we use S >
1 and usually S = 10 by default as we want to have multiple jobs
for training a model. Although the OPT coverage is lower than in
Figure 10a, ranging from 12.9% (S = 2, Cluster2) to 30% (S = 2,
Cluster5), this is a substantial portion of our workloads that can be
targeted while meeting our production requirements.

In consultation with our product teams we decided to adopt the
above criteria to select production candidates — job groups to train
models for AutoToken. We focus our evaluations only on these
production candidates in the rest of the paper.

Table 3: Number of filtered signatures (distinct) and corresponding
jobs, as a percentage of total, in the DR datasets, subject to S = 2
and no under-allocated jobs. Figure 6 shows their distributions.

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5
#Sig1 1.7% 3.0% 1.4% 1.8% 1.1%
#Sig2 2.1% 3.2% 1.5% 2.3% 1.1%

#Sig1 Jobs 23.9% 30.6% 55.2% 35.0% 36.0%
#Sig2 Jobs 25.8% 31.6% 48.0% 35.5% 34.6%

Table 3 shows the number of groups for each signature type and
jobs belonging to those groups, both as a percentage of the total
number of jobs in DR, for the production candidates with S = 2.
Figure 6 further shows distributions of the number of groups, and

3331



Ideal Default AutoToken

(a) Cluster1 (b) Cluster2 (c) Cluster3 (d) Cluster4 (e) Cluster5
Figure 7: Distributions of the percentage of predicted jobs (y-axis) for DT datasets as a function of the allocation ratio (= Requested/Peak
tokens, x-axis, log scale) with AutoToken (S = 10, LR NS model) and with Default allocations for those jobs.

Ideal AutoToken

(a) Cluster1 (b) Cluster2 (c) Cluster3 (d) Cluster4 (e) Cluster5
Figure 8: Comparisons between allocation ratios using AutoToken (y-axis, log scale) and Default values (x-axis, log scale) for the above set
of predicted jobs. Each dot represents a predicted job.

Ideal Default AutoToken

(a) Cluster1 (b) Cluster2 (c) Cluster3 (d) Cluster4 (e) Cluster5
Figure 9: Distributions of the percentage of predicted jobs (y-axis) as a function of (Requested − Peak) allocations (x-axis) within the
interval [-10,10] using AutoToken and Default values for the above set of predicted jobs. (Requested − Peak) allocation values of >, =, and
< 0 denote over-, exact-, and under-allocations respectively.

S=1 S=2 S=10 S=100

0

5

10

15

20

25

30

35

40

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

C
o

ve
ra

ge
 (

%
)

(a) Max. coverage

0

5

10

15

20

25

30

35

40

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

C
o

ve
ra

ge
 (

%
)

(b) OPT coverage
Figure 10: Max. coverage on DT for (a) signatures appearing in
DR, and (b) for OPT model trained on recurring signatures in DR
with non-underallocated jobs.

jobs belonging to those groups, as a function of n(g) within this
subset. The distributions of the number of groups and jobs are dif-
ferent — for a given value of n(g), there is a higher percentage
of groups having less than or equal to that value compared to the
percentage of jobs. Thus, there are more groups with few jobs and
fewer groups with more jobs. Interestingly, within each cluster, the
counts, average jobs per group, and distributions for the two group-
ing functions are similar to one another, with small differences.

Increasing the support requirement from S = 2 to S = 10 signif-
icantly improves accuracy (see Section 5.2) due to the availability
of more data for training the model for a group. Interestingly, al-
though this also eliminates a large fraction of groups, e.g., ∼ 60%
for Cluster5 (see Figure 6) from consideration for training the mod-

els, the impact on prediction coverage is small. Hence, we use S =
10 as the default configuration for training AutoToken models. S =
10 reduces the number of filtered signatures to 0.3% (Cluster1) –
0.8% (Cluster2) of total jobs in DR for both Sig1 and Sig2.

4.3 Prediction Coverage and Accuracy
For evaluating the predictions made by AutoToken, we use the

Testing dataset (DT) for each cluster. Unlike the Training dataset
(DR), we consider all jobs in DT, that is, we do not filter out jobs
belonging to groups below the support threshold or under-allocated
jobs. Indeed, in the production environment, the actual peak re-
source usage would not be known prior to the job execution. Ta-
ble 4 shows the prediction coverage and accuracy using only Sig1,
using both Sig1 and Sig2, and for OPT. Using both signatures in-
creases the coverage by 0.8% (Cluster5) – 2.7% (Cluster2) from
using only Sig1. Although the impact on overall error (RMSE)
is cluster-dependent — it may increase (Cluster1), decrease (Clus-
ter2), or stay roughly the same (Clusters 3–5) — it is < 5 except
for Cluster2. Prediction accuracy for Cluster2 is improved with a
shorter training interval (see Section 5.3).

The difference between Sig1+Sig2 and OPT is that, the latter
has RMSE = 0 and no models are discarded in the validation step.
Although validation reduces coverage by 1.1% (Cluster1) – 1.8%
(Cluster3), it improves accuracy — without it, RMSE is higher for

3332



Table 4: Prediction metrics on DT, with model training on DR, S =
10, using only Sig1, and using both Sig1 and Sig2.

(a) Prediction coverage = predicted/total jobs
Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

Sig1 14.2% 8.0% 23.7% 15.8% 27.3%
Sig1+Sig2 15.6% 10.7% 24.6% 17.0% 28.1%

OPT 16.8% 12% 26.4% 18.7% 29.4%

(b) Prediction RMSE (Root Mean Square Error)
Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

Sig1 3.5 16.0 4.6 4.5 2.2
Sig1+Sig2 4.8 14.2 4.5 4.6 2.3

OPT 0 0 0 0 0

all clusters, up to 33.2 for Cluster1 and 22.2 for Cluster2.
Cumulative distributions. Figure 7 shows the distributions of per-
centage of predicted jobs as a function of the (Requested/Peak) ra-
tio for the same DT datasets. Overall, we see that AutoToken pre-
dictions are much closer to the Ideal compared to Default. There
are still over-allocations for predicted jobs — 28% for Cluster4,
10.3% – 13.9% for other clusters. In contrast, 92.6% (Cluster5)
– 99.7% (Cluster4) of these jobs are over-allocated with the De-
fault allocation. However, 15.8% (Cluster1) – 20.3% (Cluster5) of
predictions cause under-allocations, as opposed to ≤ 0.2% with the
Default allocations for AutoToken-predicted jobs. The worst-case
under-allocation is also larger than with Default allocations, but as
we discuss below, the vast majority of absolute errors are small.
Error spread. Although Figure 7 shows distributions of alloca-
tion ratios with AutoToken and Default for the same set of jobs,
it does not show how the ratios relate for individual jobs. To gain
insight into this, we consider the error spread shown in Figure 8.
Each point in the scatter plot corresponds to a single AutoToken-
predicted job with the allocation ratios for Default and AutoTo-
ken on the x- and y-axes respectively. We observe that the verti-
cal spread is much smaller than the horizontal spread, indicating
huge improvement with AutoToken in allocation ratios for individ-
ual jobs. For example, for Cluster3, 74.5% and 99.2% of points lie
within the y-axis intervals of [0.9, 1.1] and [0.5, 2] respectively, but
the corresponding x-axis intervals for those jobs are [0.45, 1500]
and [0.42, 1500] respectively. Ideally, with perfect AutoToken pre-
dictions, all points should be aggregated along the (0,1) line.
Absolute error. Although there are some errors in the AutoToken
predictions, the absolute difference can be small if the actual peak
itself is small. This happens for quite a few jobs and such errors
can be tolerated in practice. Figure 9 shows the distribution of the
error (difference from ideal value), zooming in on the interval [-10,
10]. For all clusters, this error range comprises ≥ 99% of AutoTo-
ken predictions, with 92.5% (Cluster4) – 96.7% (Cluster5) within
the error range [-2, 2] and 84.6% (Cluster4) – 93.1% (Clusters 3,
5) within [-1, 1]. Thus, the vast majority of AutoToken predic-
tion errors are within 2 tokens or less for these datasets. Errors
with Default token allocations are considerably larger, for exam-
ple, 56.6% (Cluster5) – 95.7% (Cluster4) of the predicted jobs have
over-allocation of 10 tokens or more with the Default allocations.

5. DESIGN CHOICES
So far we have discussed prediction results for a single, default,

configuration (LR NS, S = 10). We will now discuss the rationale
for those settings and other choices for AutoToken’s design.

5.1 Choice of Model
AutoToken uses LR NS (Linear Regression models with inputs

Not Standardized) model by default. To explore the impact on

model accuracy and coverage with other models, we explore the
following models — Linear Regression (LR), AdaBoost Regres-
sion (ABR), Gradient Boosting Regression (GBR), and Random
Forest Regression (RFR). Except for LR NS, we standardize the
inputs for all other models. We use a fixed random seed and 100
estimators each for ABR, GBR, and RFR.

Figure 11 shows boxplots for the prediction accuracy, on the DT
datasets, with different models. Ideally, the ends of the boxes (quar-
tiles) and whiskers would all be at 1 and there would no outliers.
We observe that for all clusters, regardless of the choice of model,
the quartiles are very close to 1. The whiskers are also almost iden-
tically placed across models, showing hardly any impact in reduc-
ing the [1, 99]th percentile spread of values of the allocation ratio.
However, the outliers vary depending on the model indicating that
there can be a difference in the worst-case predictions depending
on the model. Usually, the more sophisticated models — ABR,
GBR, RFR (except Cluster3) outperform the linear models for the
worst-case. The simpler linear models are much faster to train and
use for predictions, so we use them by default for AutoToken. Fur-
ther, there is hardly any difference between LR NS and LR indi-
cating little benefit of standardization. We choose to use the non-
standardized version by default as that does not require having the
standardization constants available for prediction and also simpli-
fies the computation for prediction.

5.2 Model Support
AutoToken uses S = 10 by default. Figure 12 shows the coverage

and errors (RMSE), on the DT datasets, for the predicted token
counts using different values for the support, S, and for different
models. We include OPT as a reference for the maximum coverage
and minimum error achievable in our framework.

Training with few data points risks over-fitting models, resulting
in large prediction errors on the testing dataset. We observe that
the RMSE reduces with increasing values of S, with a significant
RMSE reduction in increasing S from 2 to 10 for Cluster2 that has
the smallest number of jobs in DR (and DT) among all clusters. On
the other hand, while increasing S reduces coverage due to fewer
models being trained, the reduction is much more pronounced for
S = 100 vs S = 10 than for S = 10 vs S = 2 since signatures
appearing frequently in the past (DR) are more likely to appear
again in future (DT). Overall, S = 10 provides a good operating
point with a large accuracy improvement and low coverage loss.

For a given cluster and value of support, both coverage and er-
rors depend on the model. Coverage is affected by the validation
step that discards models based on its accuracy and the validation
criteria. There is a slight increase in coverage beyond LR NS with
more sophisticated models such as RFR, e.g., 28.2% to 28.8% for
Cluster5, S = 10. Similarly, the accuracy improvement, is small,
e.g., RMSE of 2.26 to 2.05 for Cluster5, S = 10. Cluster1 sees the
most improvement — RMSE of 4.79 to 1.83 for S = 10, but the
absolute RMSE values are still small (except for Cluster2, that as
we discuss in Section 5.3, is affected by training interval length).

Overall, we conclude that the value of support, S, affects cov-
erage and accuracy more than the choice of the model. Simple
models perform well and there is little incentive to use more so-
phisticated, computationally-expensive models.

5.3 Training Interval
Figure 13 The prediction coverage and accuracy also depend on

the length of the training interval. We study this effect by using
subsets of dataset DR for the training while using the same dataset
DT for testing. Figure 13a shows the different intervals. L4, L3,
L2, L1 are 1, 2, 3, are 4 weeks long respectively and L0 covers

3333



LR NS LR ABR GBR RFR

0.01

0.1

1

10

100

(a) Cluster1
LR NS LR ABR GBR RFR

0.01

0.1

1

10

100

(b) Cluster2
LR NS LR ABR GBR RFR

0.01

0.1

1

10

100

(c) Cluster3
LR NS LR ABR GBR RFR

0.01

0.1

1

10

100

(d) Cluster4
LR NS LR ABR GBR RFR

0.01

0.1

1

10

100

(e) Cluster5
Figure 11: Boxplots for allocation ratio (= Predicted/Peak tokens) distributions for predicted jobs using different models with S = 10. The
y-axis (log scale) shows the allocation ratio, with each whisker encompassing the [1, 99]th percentile range of ratios for that model. The
prediction coverage varies slightly with the model (see Figure 12 for S = 10) due to the validation step.

0

5

10

15

20

25

30

LR
_N

S

LR

A
B

R

G
B

R

R
FR

O
P

T

LR
_N

S

LR

A
B

R

G
B

R

R
FR

O
P

T

LR
_N

S

LR

A
B

R

G
B

R

R
FR

O
P

T

LR
_N

S

LR

A
B

R

G
B

R

R
FR

O
P

T

LR
_N

S

LR

A
B

R

G
B

R

R
FR

O
P

T

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

C
o

ve
ra

ge
 (

%
)

S=2 S=10 S=100

0

10

20

30

40

50

60

70

LR
_N

S

LR

A
B
R

G
B
R

R
FR

O
P
T

LR
_N

S

LR

A
B
R

G
B
R

R
FR

O
P
T

LR
_N

S

LR

A
B
R

G
B
R

R
FR

O
P
T

LR
_N

S

LR

A
B
R

G
B
R

R
FR

O
P
T

LR
_N

S

LR

A
B
R

G
B
R

R
FR

O
P
T

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

R
M
SE

S=2 S=10 S=100

Figure 12: Prediction coverage and RMSE for predicted jobs using different models and values for the support S.

Training (DR)

L4

Testing (DT)

L3L2L1L0

Coverage,
Accuracy

(a) Training Intervals

L0 L1 L2 L3 L4

0

5

10

15

20

25

30

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

C
o

ve
ra

ge
 (

%
)

(b) Prediction Coverage

0

3

6

9

12

15

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

R
M
SE

(c) Prediction RMSE
Figure 13: (a) Different training intervals depending upon the
length of past history and corresponding prediction (b) coverage
and (c) accuracy (RMSE) for the testing dataset (DT).

the whole month. Figures 13b and 13c show the coverage and ac-
curacy with default AutoToken configurations (LR NS, S = 10).
For all clusters, increasing training length from 1 (L4) to 2 weeks
(L3) improves coverage since S = 10 precludes training for daily-
recurring jobs for L4. It also improves accuracy (lower RMSE)
for clusters other than Clusters 2 and 4. While L2 coverage is al-
most similar to L3, it tends to improve accuracy, e.g., for Cluster1,
Cluster2. Interestingly, however, longer training intervals may not
always help in improving accuracy, e.g., L1, L0 for Cluster2, due to
the changing nature of the workloads over time. Thus, we conclude
that, for these datasets, a training interval over the past 3 weeks (L2)
provides good prediction coverage and accuracy.

5.4 Global Predictor
AutoToken trains and uses per-signature models. Another option

could be to train a predictor over all jobs, which we call a global
predictor. It uses the same features as the per-signature predictor,
but does not group jobs separately based on their signatures. Such
a global predictor would be able to predict token counts for any
new job as it would not be restricted to signature matches. Thus,

Ideal Default AutoToken

(a) LR NS (b) RFR
Figure 14: Distributions of the percentage of predicted jobs (y-
axis) on Cluster2 as a function of the allocation ratio (= Request-
ed/Peak tokens, x-axis, log scale) with (a) LR NS and (b) RFR
models for AutoToken global predictor, and Default allocations for
those jobs.

prediction coverage would be 100%. However, we observed that
the prediction accuracy is low. Figure 14 shows distributions of
jobs as a function of the allocation ratio (= Requested/peak tokens)
for the testing dataset (DT) of Cluster2. The distributions for Au-
toToken are far from Ideal, and the RMSE was 634.7 with LR NS
model and 550.3 with RFR which is substantially higher than the
RMSE of 14.2 with the per-signature models! Apart from building
highly accurate specialized models, the signature-based approach
also allows discarding specific signatures based on some criteria,
e.g., under-allocated jobs, poor validation (fitting) results, etc.

5.5 Expanding Production Candidates
AutoToken trains models only for signatures such that no job be-

longing to that corresponding group is under-allocated. One could
relax this restriction and train for all signatures, but still have the
same validation step for keeping or discarding models. Figure 15
shows prediction coverage and accuracy for this policy (’All’) along
with those of the default (’Filtered’) policy. ’All’ can significantly
improve coverage, e.g., 40.6% instead of 28.2% for Cluster5, but
comes with a cost of reduced accuracy, e.g., RMSE of 7.1 instead of
2.3 for Cluster5. Thus, we use the ’Filtered’ policy by default, not

3334



0
5

10
15
20
25
30
35
40
45

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

C
o

ve
ra

ge
 (

%
)

All Filtered

(a) Prediction Coverage

0

3

6

9

12

15

18

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

R
M
SE

All Filtered

(b) Prediction RMSE
Figure 15: (a) Prediction coverage (%) and (b) accuracy (RMSE)
for the testing dataset (DT) with all-groups and filtered (default)
configuration for AutoToken.

just for better accuracy but also due to our production requirement
to not stress the clusters with more resource requests (R5).

6. BASELINE COMPARISONS
In this section, we first compare AutoToken with two strong

baselines, and then we discuss other related work.

6.1 Conservative Allocation
Given that our focus is to avoid over-allocation, we first consider

the most conservative policy that predicts the peak resource usage
of a job as the maximum seen, in the past, over all jobs belonging to
the same group. We call this strategy MaxPeak. MaxPeak uses the
normalized job name as a grouping function, trains over all groups,
and predicts a single peak value for all jobs in the group. MaxPeak
has very little computational requirements and therefore it is the
fastest in terms of both training and scoring.

As before, we train AutoToken on production candidates and
compare with MaxPeak over the same sets of jobs. Table 5 and Fig-
ure 16 compare the prediction results. Both AutoToken and Max-
Peak have lower RMSE than Default, significantly reducing the
over-allocations and having closer-to-Ideal distributions. However,
they do have some under-allocations: 10.6% (Cluster2) – 22.3%
(Cluster4) for AutoToken, 0.5% (Cluster5) – 1% (Clusters 1 and
4) for MaxPeak, vs 0.1% for Default. As we have discussed ear-
lier 4.3, most under-predictions for AutoToken have small abso-
lute values that are easily tolerable with spare tokens. Compared
to AutoToken, MaxPeak results in a lower percentage of under-
allocations, but not necessarily in the worst-case, e.g., -101 tokens
vs -3 for AutoToken for Cluster2.

6.2 Best-fit Allocation
Morpheus [23] computes a job resource model given the resource

usage skylines of past occurrences of a recurring job. It computes
a new skyline that best fits the set of skylines for the job executions
subject to constraints on the extent of over-allocation and under-
allocation of resources. The extents are determined from values of
two hyper-parameters.

AutoToken differs from Morpheus in four ways. First, Morpheus
groups jobs by job names after normalizing instance-specific fields
such as job ids and timestamps. In contrast, AutoToken groups
jobs by plan-based signatures, which are more accurate in identify-
ing recurring jobs and avoid grouping unrelated jobs with similar
names. We looked at jobs over a day’s interval for each of our
clusters and found that, depending on the cluster, 12% – 31.3% job
groups (by normalized name) have > 1 distinct primary signature
(Sig1) values for jobs within the group, 2.3% – 9.5% have ≥ 10,
and 0.1% – 0.5% have ≥ 100 distinct values for Sig1.

Second, Morpheus generates a single skyline for a group, with
the same peak for all the jobs in that group. As a result, it misses

Table 5: RMSE for the common set of predicted jobs.
Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

AutoToken 2.8 3.1 1.3 3.5 8.3
MaxPeak 76.6 115.8 24.6 57.6 18.0
Morpheus 164.0 138.2 66.6 384.7 198.2

Default 305.2 185.4 111.6 82.9 76.9

fluctuations in the input data, job parameters, or even plan struc-
ture, within the group. For the single day’s test data mentioned
above, we found that depending on the cluster, 16.4% – 24.6% of
groups have a Coefficient of Variation (CV) ≥ 10%, and 0.3% –
3.9% have CV ≥ 100%, in intra-group per-job peak tokens used.
Consequently, using a single peak value for all jobs in the group
would result in errors. In contrast, AutoToken treats these variables
as features and adjusts the peak for each job instance.

Third, Morpheus models the problem as linear programs which
are much more computationally intensive, often taking hours with
off the shelf open source solvers. In contrast, linear regressions
in AutoToken terminate way quickly. Finally, Morpheus needs the
resource-usage skylines from past executions as input whereas Au-
toToken only needs the peak and a few feature values. Saving sky-
lines for long-running jobs may incur overheads in storage costs.

For each job, we extracted its resource skyline with 10-second
granularity and fed it to the single threaded Morpheus implementa-
tion on a single machine. We use the LP solver from ojAlgo [4] for
Morpheus training with a 1-hour timeout period per group. Similar
to the AutoToken’s default configuration, we use S = 10, i.e., only
consider groups with n(g) ≥ 10. Due to the long model-training
times for Morpheus, we study its coverage and accuracy using a
smaller training and testing dataset, each of which correspond to
one day’s set of jobs on that cluster with the testing interval suc-
ceeding the training interval. Note that one could potentially im-
prove Morpheus performance using commercial LP solvers but that
was beyond the scope of this work. Table 5 and Figure 16 show that
compared to Default, Morpheus has lower RMSE except for Clus-
ters 4 and 5, but can result in a large under-allocations, e.g., 32.6%
(Cluster1), 36.2% (Cluster4). Overall, MaxPeak is more accurate
than Morpheus, but AutoToken outperforms them both with up to
two orders of magnitude lower RMSE and a smaller error spread.

6.3 Other Related Work
We now present a qualitative discussion on other related work in

resource optimization. Other than Morpheus, Jockey [15] was also
proposed in the context of SCOPE and it uses an offline simulator to
mimic the behavior, with some simplifications, of the SCOPE job
scheduler and estimate the runtimes of recurring SCOPE jobs. The
simulator inputs include performance statistics and per-stage tim-
ing information from past job executions, along with job operators,
stages, dependencies, and a target token count. AutoToken uses
simple, closed-form models that do not need information about job
timing or scheduling and hence can be more easily deployed and
evaluated at scale, without requiring expensive simulation.

Ernest [37] predicts the performance of analytics jobs using a
black-box approach. It involves running instances of the job on
smaller scales of input data and cluster size. Thereafter, Ernest
uses the performance data to determine the parameters of a model.
In contrast, AutoToken uses job characteristics that are known/esti-
mated before dispatch to determine model parameters and does not
need to profile job performance with a different number of tokens.

Perforator [31] uses a gray-box approach for estimating perfor-
mance impact of resource allocations for BigData queries. This in-
volves using semantic analysis, sampling, profiling, and non-linear
regression for data-size estimation; black-box profiling with cali-

3335



Ideal Default AutoToken Morpheus MaxPeak

(a) Cluster1 (b) Cluster2 (c) Cluster3 (d) Cluster4 (e) Cluster5
Figure 16: Distributions of the percentage of predicted jobs (y-axis) as a function of the allocation ratio (= Requested/Peak tokens) (x-axis,
log scale) with AutoToken, Morpheus, MaxPeak, and Default allocations for those jobs. Allocation ratios of >, =, and < 1 denote over-,
exact-, and under-allocations respectively. These are a common set of jobs that have predictions for all the different techniques.

Query 
Compiler

Query 
Optimizer

Job 
Scheduler

Job 
Manager

W
or

kl
oa

d 
In

sig
ht

s S
er

vi
ce

AutoToken

Learn peak resource models 
from past workloads

SCOPE 
script

Serialize and 
store the models

Lookup

Peak resource model

In-process 
scoring for peak 

resource models

AST + 
Models

Peak resource 
hint

Workload Repository
• Query plans
• Stage graphs
• Telemetry

Logs

1

2

3

4

5

6

7

Result

8

9

Figure 17: Putting it all together.

bration queries for hardware performance modeling; white-box an-
alytical models for framework performance modeling. In contrast,
AutoToken does not need profiling for data size estimation — it
reuses metadata information about input streams and estimates gen-
erated by the SCOPE query optimizer. Also, its prediction models
do not assume anything about the structure of the job execution
framework or hardware characteristics.

There is large body of prior work on Hadoop MapReduce, in-
cluding learning cost models for MapReduce [35], cluster sizing
and self tuning [17, 18], applying resource constraints [20], work-
load modeling [40], job performance model [25], building resource
profile [38], optimal resource provisioning [29], and for graph pro-
cessing [10]. However, the complexity and structure of query DAGs
have evolved since the early days of Hadoop MapReduce. Recent
works propose simulation based approaches for performance pre-
diction in Spark [7, 12]. AutoToken, in contrast, leverages actual
production workloads and recurring job patterns to learn the peak
resource model. Others have considered forecasting workload at
the machine level [24, 19, 36, 26]. AutoToken leverages the re-
curring job patterns to avoid the forecasting problem and also con-
siders workload at the query level. Still others have considered
dynamic and global nature of the resource allocation problem [6,
28, 8, 27, 5, 13, 14]. Overall, AutoToken focuses on peak resource
usage prediction, but not performance prediction of jobs. This suf-
fices as the goal is to avoid over-allocation (with no performance
impact) and we are able to achieve this with simple models, albeit
with a small (tolerable) fraction of under-allocated job predictions.

7. PUTTING IT ALL TOGETHER
We have implemented AutoToken, as part of the broader work-

load optimization platform Peregrine [21], as per requirement R7,
and integrated it with the SCOPE query engine. Figure 17 illus-
trates the end to end system integration. Starting from the work-
load repository that consists of SCOPE query plans, stage graphs,
and associated telemetry seen in the past, AutoToken learns the
peak resource models (Step 1) and stores them into a workload in-
sight service (Step 2). We focus on over-allocated jobs since that

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

R
eq

u
es

te
d

 T
o

ke
n

s

Job Number

(a) AutoToken predictions (blue bars) normalized to Default allo-
cations (orange bars).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

A
u

to
To

ke
n

 T
im

e/
B

as
el

in
e 

Ti
m

e

Job Number

(b) Performance impact due to AutoToken-predicted allocations.
Figure 18: (a) Token allocations, with AutoToken (darker fore-
ground) normalized to Default (lighter background) and (b) slow-
downs, for AutoToken-predicted jobs in a customer VC. Baseline
refers to job flighting with the Default token count. The red dia-
monds (◆) mark the six jobs that AutoToken under-predicted with
respect to the peak allocations for those jobs. The dashed line in
(b), at ∼1.027, corresponds to the ratio of the sum of AutoToken
times to the sum of Baseline times for all predicted jobs.

will reduce the resource consumption without affecting the run-
time performance, i.e., a win-win for both the customers and the
service operators. Therefore, we filter out the under-allocated jobs
and load models only for the over-allocated jobs into the workload
insight service. For a new SCOPE job, users can specify an addi-
tional flag for enabling AutoToken (Step 3), as per requirement R8.
Once AutoToken is enabled, the SCOPE compiler loads the peak
resource models from the workload insight service (Step 4 and 5),
and passes the models along with the query AST to the query opti-
mizer (Step 6). The query optimizer provides the features to score
the peak resource model (Step 7) and passes the peak resource hint
(the token count) to the job scheduler (Step 8). The job scheduler
takes care of enforcing the peak resource when scheduling the job
for execution. All query processing logs are finally collected back
into the workload repository (Step 9), thereby completing the end-
to-end feedback loop. The training overhead is in the range of a
few hours for a large cluster (over hundred thousand jobs) while
the feedback loop latencies are in the range of few milliseconds.

3336



Figure 18 shows the token savings and performance impact for
AutoToken-predicted jobs on a customer VC. The training inter-
val for this experiment was for three weeks and the testing interval
was for the subsequent three days. AutoToken predicted peak to-
ken counts for 151 jobs out of a total of 692 jobs (21.8% coverage)
for this VC in the testing interval. Figure 18a shows, for each of
the 151 jobs, the predicted token counts (foreground, darker color)
normalized to the Default values (background, lighter color). For
these jobs, the median token savings was 97.5% and the sum of
tokens predicted was 7.6% that of the sum of Default token counts
for those jobs. To understand the performance impact, we reran the
production jobs with the same inputs, once for the Default alloca-
tion (baseline) and once with the predicted token counts, similar
to in prior works [39, 34]. For six jobs, specially marked in Fig-
ure 18b, the predicted tokens were below the actual peak (under-
allocation), but their performances were close to that of the base-
line. Although we ran each job for 8–20 times for both the baseline
and predicted tokens, we observed some variance in the average
run times — an issue that has been discussed in prior work [33].
As a result, while the sum of the average run times with the pre-
dicted token counts was 2.7% higher than with Default counts, this
is mostly due to the runtime variances in the cloud. We conclude
that there are substantial token savings with AutoToken without a
noticeable loss of performance in these jobs.

8. REPEATABILITY
To encourage further research on resource estimation for our

workloads, we will release1 a dataset simulation tool that can gen-
erate datasets of arbitrary size using characteristics from the real
datasets that we have used. The simulator takes as inputs distri-
bution information for multiple recurring jobs and can generate ar-
bitrary number of instances per job. We have extracted the mean
and standard deviation of each of the columns, and the covariance
matrix across of all the columns. The simulator separates the in-
dependent columns, i.e., columns having no correlation with any
other column. Different sets of columns can correlate for different
job groups, so it is not possible to discard all such columns stati-
cally from the entire dataset. For correlated columns, we compute
the Cholesky decomposition [2] of the truncated covariance matrix,
generate normal distribution dataset of desired size (as specified by
the user), and then shape the normal distribution using the desired
mean and factorization. The simulated dataset Y is given as:

Y =M +A ⋅Z (1)

where M is the mean vector, A is the Cholesky decomposition,
and Z is the normal distribution of desired size. For independent
columns, we simply shape the normal distribution using the mean
and standard deviation, i.e., Y for independent columns is given as:

Y =M + SD ⋅Z (2)

where SD is the standard deviation vector.
Divergence. To verify that the simulated datasets are close to the
actual ones, we computed the Kullback-Leibler divergence [3] be-
tween the actual and simulated datasets (having k dimensions each),
with mean vector and covariance matrix M0, M1, C0, C1, respec-
tively, as follows:

DKL(d0∣∣d1) = 1

2
(tr(C−11 C0) + (M1 −M0)TC−11 (M1 −M0)

− k + ln(det C1

det C0
)) (3)

1https://github.com/microsoft/Peregrine

0
10
20
30
40
50
60
70
80
90

100

0.0001 0.001 0.01 0.1 1 10 100

Pe
rc

en
ta

ge
 o

f 
d

is
ti

n
ct

 S
ig

1

KL-divergence values

Dataset1 Dataset2

Figure 19: Distributions of job groups (Sig1) as a function of KL-
divergence values (x-axis, log scale) for Dataset1 and Dataset2.

Ideal Default AutoToken

(a) Train real, Test synthetic (b) Train synthetic, Test real
Figure 20: AutoToken evaluation results using scaled datasets gen-
erated. In both figures, the x-axis in log scale shows the ratio of
(Requested/Peak) allocations and y-axis shows the percentage of
predicted jobs. (a) shows the distributions for models trained on
the real dataset (DR) and tested on the generated dataset (Dataset2).
(b) shows distributions for models trained on the generated dataset
(Dataset1) and tested on the real dataset (DT).

We generated two datasets from Cluster3, S = 10: Dataset1 from
DR, and Dataset2 from DT. Dataset1 has 995K jobs while Dataset2
has 990K jobs. Figure 19 shows the distributions of distinct Sig1
values as a function of KL-divergence values for these datasets.
Smaller KL-divergence values indicate a better fit between the sim-
ulated and actual datasets. The user may choose to retain a subset
of the generated datasets based on the KL-divergence values.
Validation. We used our models on the generated datasets to see if
similar prediction profiles are obtained. Figure 20 shows the distri-
butions of (requested/peak) token allocation ratios for two scenar-
ios — (a) models trained on DR, Cluster3 and tested on Dataset2,
and (b) models trained on Dataset1 and tested on DT, Cluster3.
Both results show improvements by AutoToken over default allo-
cations, similar to those observed with real datasets. The synthetic
datasets also show the deviation of the AutoToken predictions from
the Ideal values, again similar to those observed with real datasets.

9. CONCLUSIONS AND FUTURE WORK
In this paper we study the problem of estimating peak resource

requirements of jobs to reduce over-allocations and describe Auto-
Token, a simple but effective predictor that we have developed for
this task. We show how AutoToken improves upon state-of-the-art
approaches for resource prediction by using signatures to identify
recurring jobs, and linear models that learn peak token counts us-
ing features such as job costs, cardinalities, input sizes, etc. from
past executions of recurring jobs. We also describe AutoToken’s
prediction pipeline and discuss how it is integrated into the Pere-
grine workload optimization infrastructure at Microsoft. Further
improvements to both prediction coverage and accuracy may be
possible by considering the shape of the job plan as an additional
input feature to the models. We plan to explore this in future work.

3337



10. REFERENCES
[1] Amazon Athena.

https://aws.amazon.com/athena/.
[2] Cholesky decomposition. https://en.wikipedia.

org/wiki/Cholesky_decomposition.
[3] Kullback-Leibler divergence.

https://en.wikipedia.org/wiki/
Kullback-Leibler_divergence.

[4] oj! Algorithms. https://www.ojalgo.org/.
[5] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu,

and M. Zhang. CherryPick: Adaptively unearthing the best
cloud configurations for big data analytics. In Proceedings of
the 14th USENIX Conference on Networked Systems Design
and Implementation, NSDI’17, pages 469–482, USA, Mar.
2017. USENIX Association.

[6] M. Amiri and L. Mohammad-Khanli. Survey on prediction
models of applications for resources provisioning in cloud.
Journal of Network and Computer Applications,
82(C):93–113, Mar. 2017.

[7] D. Ardagna, E. Barbierato, A. Evangelinou, E. Gianniti,
M. Gribaudo, T. B. M. Pinto, A. Guimarães, A. P. Couto da
Silva, and J. M. Almeida. Performance prediction of
cloud-based big data applications. In Proceedings of the
2018 ACM/SPEC International Conference on Performance
Engineering, IKPE ’18, pages 192–199, New York, NY,
USA, 2018. Association for Computing Machinery.

[8] A. Biswas, S. Majumdar, B. Nandy, and A. El-Haraki.
Automatic resource provisioning: A machine learning based
proactive approach. In Proceedings of the 2014 IEEE 6th
International Conference on Cloud Computing Technology
and Science, CLOUDCOM ’14, pages 168–173, USA, Dec.
2014. IEEE Computer Society.

[9] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,
M. Wu, and L. Zhou. Apollo: Scalable and coordinated
scheduling for cloud-scale computing. In Proceedings of the
11th USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, pages 285–300, USA, 2014.
USENIX Association.

[10] A. Cela, Y. C. Lee, and S.-H. Hong. Resource provisioning
for memory intensive graph processing. In Proceedings of
the Australasian Computer Science Week Multiconference,
ASCW ’18, New York, NY, USA, 2018. Association for
Computing Machinery.

[11] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: easy and efficient parallel
processing of massive data sets. PVLDB, 1(2):1265–1276,
2008.

[12] Y. Chen, J. Lu, C. Chen, M. Hoque, and S. Tarkoma.
Cost-effective resource provisioning for Spark workloads. In
Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, CIKM ’19, pages
2477–2480, New York, NY, USA, 2019. Association for
Computing Machinery.

[13] A. Chung, J. W. Park, and G. R. Ganger. Stratus: Cost-aware
container scheduling in the public cloud. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC ’18, pages
121–134, New York, NY, USA, 2018. Association for
Computing Machinery.

[14] Z. Fan, R. Sen, P. Koutris, and A. Albarghouthi. Automated
tuning of query degree of parallelism via machine learning.
In Proceedings of the Third International Workshop on
Exploiting Artificial Intelligence Techniques for Data

Management, aiDM ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[15] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and
R. Fonseca. Jockey: Guaranteed job latency in data parallel
clusters. In Proceedings of the 7th ACM European
Conference on Computer Systems, EuroSys ’12, pages
99–112, New York, NY, USA, 2012. Association for
Computing Machinery.

[16] Google BigQuery.
https://cloud.google.com/bigquery.

[17] H. Herodotou, F. Dong, and S. Babu. No one (cluster) size
fits all: Automatic cluster sizing for data-intensive analytics.
In Proceedings of the 2nd ACM Symposium on Cloud
Computing, SOCC ’11, New York, NY, USA, 2011.
Association for Computing Machinery.

[18] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B.
Cetin, and S. Babu. Starfish: A self-tuning system for big
data analytics. In Fifth Biennial Conference on Innovative
Data Systems Research, pages 261–272. www.cidrdb.org,
2011.

[19] R. Hu, J. Jiang, G. Liu, and L. Wang. KSwSVR: A new load
forecasting method for efficient resources provisioning in
cloud. In Proceedings of the 2013 IEEE International
Conference on Services Computing, SCC ’13, pages
120–127, USA, June 2013. IEEE Computer Society.

[20] V. Jalaparti, H. Ballani, T. Karagiannis, A. Rowstron, and
P. Costa. Bazaar: Enabling predictable performance in
datacenters. Technical Report MSR-TR-2012-38, Feb. 2012.

[21] A. Jindal, H. Patel, A. Roy, S. Qiao, Z. Yin, R. Sen, and
S. Krishnan. Peregrine: Workload optimization for cloud
query engines. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC ’19, pages 416–427, New York,
NY, USA, 2019. Association for Computing Machinery.

[22] A. Jindal, S. Qiao, H. Patel, Z. Yin, J. Di, M. Bag,
M. Friedman, Y. Lin, K. Karanasos, and S. Rao. Computation
reuse in analytics job service at Microsoft. In Proceedings of
the 2018 International Conference on Management of Data,
SIGMOD ’18, pages 191–203, New York, NY, USA, 2018.
Association for Computing Machinery.

[23] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy,
A. Tumanov, J. Yaniv, R. Mavlyutov, I. n. Goiri, S. Krishnan,
J. Kulkarni, and S. Rao. Morpheus: Towards automated
SLOs for enterprise clusters. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, pages 117–134, USA, 2016.
USENIX Association.

[24] A. Khan, X. Yan, S. Tao, and N. Anerousis. Workload
characterization and prediction in the cloud: A multiple time
series approach. In 2012 IEEE Network Operations and
Management Symposium, pages 1287–1294, Apr. 2012.

[25] M. Khan, Y. Jin, M. Li, Y. Xiang, and C. Jiang. Hadoop
performance modeling for job estimation and resource
provisioning. IEEE Transactions on Parallel and Distributed
Systems, 27(2):441–454, Feb. 2016.

[26] I. K. Kim, W. Wang, Y. Qi, and M. Humphrey. Empirical
evaluation of workload forecasting techniques for predictive
cloud resource scaling. In 2016 IEEE 9th International
Conference on Cloud Computing (CLOUD), pages 1–10,
June 2016.

[27] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource
management with deep reinforcement learning. In
Proceedings of the 15th ACM Workshop on Hot Topics in

3338



Networks, HotNets ’16, pages 50–56, New York, NY, USA,
2016. Association for Computing Machinery.

[28] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and
D. Pendarakis. Efficient resource provisioning in compute
clouds via VM multiplexing. In Proceedings of the 7th
International Conference on Autonomic Computing, ICAC
’10, pages 11–20, New York, NY, USA, 2010. Association
for Computing Machinery.

[29] P. P. Nghiem and S. M. Figueira. Towards efficient resource
provisioning in MapReduce. Journal of Parallel and
Distributed Computing, 95(C):29–41, Sept. 2016.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, Nov. 2011.

[31] K. Rajan, D. Kakadia, C. Curino, and S. Krishnan.
PerfOrator: Eloquent performance models for resource
optimization. In Proceedings of the Seventh ACM Symposium
on Cloud Computing, SoCC ’16, pages 415–427, New York,
NY, USA, 2016. Association for Computing Machinery.

[32] A. Roy, A. Jindal, H. Patel, A. Gosalia, S. Krishnan, and
C. Curino. SparkCruise: Handsfree computation reuse in
Spark. PVLDB, 12(12):1850–1853, 2019.

[33] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime
measurements in the cloud: Observing, analyzing, and
reducing variance. PVLDB, 3(1–2):460–471, 2010.

[34] T. Siddiqui, A. Jindal, S. Qiao, H. Patel, and W. Le. Cost
models for big data query processing: Learning, retrofitting,

and our findings. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’20, pages 99–113, New York, NY, USA, 2020. Association
for Computing Machinery.

[35] F. Tian and K. Chen. Towards optimal resource provisioning
for running MapReduce programs in public clouds. In 2011
IEEE 4th International Conference on Cloud Computing,
pages 155–162, July 2011.

[36] C. Vazquez, R. Krishnan, and E. John. Time series
forecasting of cloud data center workloads for dynamic
resource provisioning. Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications
(JoWUA), 6(3):87–110, Sept. 2015.

[37] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and
I. Stoica. Ernest: Efficient performance prediction for
large-scale advanced analytics. In Proceedings of the 13th
Usenix Conference on Networked Systems Design and
Implementation, NSDI’16, pages 363–378, Santa Clara, CA,
USA, Mar. 2016. USENIX Association.

[38] A. Verma, L. Cherkasova, and R. H. Campbell. Resource
provisioning framework for MapReduce jobs with
performance goals. In Proceedings of the 12th
ACM/IFIP/USENIX International Conference on
Middleware, Middleware ’11, pages 165–186, Berlin,
Heidelberg, 2011. Springer-Verlag.

[39] C. Wu, A. Jindal, S. Amizadeh, H. Patel, W. Le, S. Qiao, and
S. Rao. Towards a Learning Optimizer for Shared Clouds.
PVLDB, 12(3):210–222, 2018.

[40] H. Yang, Z. Luan, W. Li, and D. Qian. MapReduce workload
modeling with statistical approach. Journal of Grid
Computing, 10(2):279–310, June 2012.

3339


