
Alibaba Hologres: A Cloud-Native Service
for Hybrid Serving/Analytical Processing

Xiaowei Jiang, Yuejun Hu, Yu Xiang, Guangran Jiang, Xiaojun Jin, Chen Xia,
Weihua Jiang, Jun Yu, Haitao Wang, Yuan Jiang, Jihong Ma, Li Su, Kai Zeng

Alibaba Group

{xiaowei.jxw, yuejun.huyj, yu.xiangy, guangran.jianggr, xiaojun.jinxj, chen.xiac, guobei.jwh,
bob.yj, haitao.w, yuan.jiang, jihong.ma, lisu.sl, zengkai.zk}@alibaba-inc.com

ABSTRACT
In existing big data stacks, the processes of analytical processing and

knowledge serving are usually separated in di�erent systems. In Al-

ibaba, we observed a new trendwhere these two processes are fused:

knowledge serving incurs generation of new data, and these data are

fed into the process of analytical processing which further �ne tunes

the knowledge base used in the serving process. Splitting this fused

processing paradigm into separate systems incurs overhead such as

extra data duplication, discrepant application development and ex-

pensive system maintenance.

In this work, we propose Hologres, which is a cloud native ser-

vice for hybrid serving and analytical processing (HSAP).Hologres

decouples the computation and storage layers, allowing �exible scal-

ing in each layer. Tables are partitioned into self-managed shards.

Each shard processes its read and write requests concurrently in-

dependent of each other. Hologres leverages hybrid row/column

storage to optimize operations such as point lookup, column scan

and data ingestion used in HSAP. We propose Execution Context as
a resource abstraction between system threads and user tasks. Ex-

ecution contexts can be cooperatively scheduled with little context

switching overhead. Queries are parallelized and mapped to execu-

tion contexts for concurrent execution. �e scheduling framework

enforces resource isolation among di�erent queries and supports

customizable schedule policy. We conducted experiments compar-

ing Hologres with existing systems speci�cally designed for an-

alytical processing and serving workloads. �e results show that

Hologres consistently outperforms other systems in both system

throughput and end-to-end query latency.

PVLDB Reference Format:
Xiaowei Jiang, YuejunHu, YuXiang, Guangran Jiang, Xiaojun Jin, ChenXia,

Weihua Jiang, Jun Yu, HaitaoWang, Yuan Jiang, JihongMa, Li Su, Kai Zeng.

Alibaba Hologres: A Cloud-Native Service for Hybrid Serving/Analytical

Processing. PVLDB, 13(12): 3272 - 3284, 2020.
DOI: https://doi.org/10.14778/3415478.3415550

1. INTRODUCTION
Modern business is pervasively driven by deriving business in-

sights from huge amounts of data. From the experience of running

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415550

Alibaba internal big data service stacks as well as public cloud of-

ferings, we have observed new patterns on how modern business

uses big data. For instance, to support real-time learning and de-

cision making, the big data stack behind modern e-commerce ser-

vices usually aggregate real-time signals like purchase transactions

and user click logs to continuously derive fresh product and user

statistics.�ese statistics are heavily used in both online and o�ine

manners, e.g.: (1)�ey are served immediately online as important

features. Incoming user events are joined with these features to gen-

erate samples for real-timemodel training in search and recommen-

dation systems. (2)�ey are also used by data scientists in complex

interactive analysis to derive insights for model tuning and market-

ing operations. �ese usage patterns clearly demonstrate a host of

new trends which the traditional concept of Online Analytical Pro-
cessing (OLAP) can no longer accurately cover:
Fusion of Analytical Processing and Serving. Traditional OLAP
systems usually play a rather static role in the whole business stack.

�ey analyze large quantities of data and derive knowledge (e.g.,

precomputed views, learned models, etc.) o�-line, but hand over

the derived knowledge to another system for serving online applica-

tions. Di�erently,modern business decision-making is a constantly-

tuned online process.�e derived knowledge is not only served but

also participates in complex analytics. �e need for analytical pro-

cessing and serving on big data is fused together.

Fusion of Online and O�ine Analysis. Modern business needs to
quickly transform freshly obtained data into insights. Written data

has to be available to read within seconds. A lengthy o�ine ETL

process is no longer tolerable. Furthermore, among all the data col-

lected, the traditional way of synchronizing data from anOLTP sys-

tem only accounts for a very small portion. Orders of magnitudes

more data is from less transactional scenarios such as user click logs.

�e systems have to handle high volume data ingestion with very

low latency while processing queries.

Existing big data solutions usually host the hybrid serving and an-

alytical processing workloads using a combination of di�erent sys-

tems. For instance, the ingested data is pre-aggregated in real time

using systems like Flink [4] populated in systems like Druid [36]

that handlesmulti-dimensional analytics, and served in systems like

Cassandra [26]. �is inevitably causes excessive data duplication

and complex data synchronization across systems, inhibits an ap-

plication’s ability to act on data immediately, and incurs non-trivial

development and administrative overheads.

In this paper, we argue that hybrid serving/analytical processing

(HSAP) should be uni�ed and handled in a single system. In Al-

ibaba, we build a cloud-native HSAP service called Hologres. As a

new service paradigm, HSAP has challenges that are very di�erent

from existing big data stacks (See Section 2.2 for a detailed discus-

sion): (1) �e system needs to handle query workloads much higher

3272

than traditionalOLAP systems.�eseworkloads are hybrid, with very
di�erent latency and throughput trade-o�s. (2) While handling high-
concurrency query workloads, the system also needs to keep up with
high-throughput data ingestion. �e ingested data needs to be avail-
able to reads within seconds, in order to meet the stringent freshness
requirements of serving and analysis jobs. (3) �e mixed workloads
are highly dynamic, usually subject to sudden bursts. �e system has
to be highly elastic and scalable, reacting to these bursts promptly.
In order to tackle these challenges, Hologres is built with a com-

plete rethinking of the system design:

Storage Design. Hologres adopts an architecture that decouples
storage from computation. Data is remotely persisted in cloud stor-

age. Hologresmanages tables in table groups, and partitions a table

group into multiple shards. Each shard is self-contained, and man-

ages reads and writes independently. Decoupled from the physical

worker nodes, data shards can be �exibly migrated between work-

ers. With data shard as the basic datamanagement unit inHologres,

processes such as failure recovery, load balancing and cluster scaling

out can be implemented using shard migration e�ciently.

To support low-latency queries with high-throughput writes at

the same time, shards are designed to be versioned. �e critical

paths of reads and writes on each table group shard are separated.

Hologres uses a tablet structure to uniformly store tables. Tablets

can be in row or columnar formats, and are both managed in a

LSM-like way tomaximize the write throughput, andminimizes the

freshness delay for data ingestion.

ConcurrentQueryExecution. Webuild a service-oriented resource
management and scheduling framework, named HOS. HOS uses exe-
cution context as the resource abstraction on top of system threads.
Execution contexts are cooperatively scheduled with little context

switching overhead. HOS parallelizes query execution by dividing

queries into �ne-grained work units and mapping work units to ex-

ecution contexts.�is architecture can fully exploit the potential of

high hardware parallelism, allowing us to multiplex a huge number

of queries concurrently. Execution context also facilitates the en-

forcement of resource isolation, such that low-latency servingwork-

load can coexist with the analytical workload in the same system

without being stalled. HOSmakes the system easily scalable accord-

ing to practical workload.

In retrospect, we make the following list of contributions:

1. We introduce a new paradigm of big data service for hybrid serv-

ing/analytical processing (HSAP), and identify the new challenges

under this new paradigm.

2. We design and implement a cloud-native HSAP service called

Hologres. Hologres has a novel storage design, and a highly

e�cient resource management and scheduling layer named HOS.

�ese novel designs in combination help Hologres achieve real-

time ingestion, low-latency serving, interactive analytical pro-

cessing, and also support federated query execution with other

systems such as PostgreSQL [12].

3. we have deployed Hologres in Alibaba’s internal big data stack

as well as public cloud o�erings, and conducted a thorough per-

formance study under real-life workloads. Our results show that

Hologres achieves superior performance even compared with

specialized serving systems and OLAP engines.

�e paper is organized as follows:�e key design considerations

and system overview of Hologres are presented in Section 2. In

Section 3, we explain the data model and storage framework. Next,

we introduce the scheduling mechanism and details of query pro-

cessing in Section 4. Experimental results are presented and dis-

cussed in Section 5. Lastly, we discuss the related research in Sec-

tion 6 and conclude this work.

Onlineⓑ
Aggregate

Ingestionⓐ

OLTP
Databases

Recommendation
System

Serving①

Continuous
Aggregation③

Batch②
Aggregate

Interactive
Analysis④Real Time Events

page views
user clicks
payments

Dimension Tables

item characteristics

user demographics

Join

HSAP

BI System

Dashboard
System

Log
System

Reporting
Query④

Derived Features

5-min item clicks
7-day page views
30-day turnover

Figure 1: An example HSAP scenario: the big data stack behind a
recommendation service

2. KEY DESIGN CONSIDERATIONS
Big data systems in modern enterprises are facing an increasing

request of hybrid serving and analytical processing. In this section,

we use the recommendation service in Alibaba to demonstrate a

typical HSAP scenario, and summarize the new challenges posed

by HSAP to system design. �en we provide a system overview of

how Hologres addresses these challenges.

2.1 HSAP in Action
Modern recommendation services put great emphasis on re�ect-

ing real-time user trends and provide personalized recommenda-

tions. In order to achieve these goals, the backend big data stack

has evolved into a state with extreme complexity and diverse data

processing patterns. Figure 1 presents an illustrative picture of the

big data stack backing the recommendation service in Alibaba e-

commerce platforms.

To capture personalized real-time behaviors, the recommenda-

tion service heavily relies on real-time features and continuously

updated models.�ere are usually two types of real-time features:

1. �e platform aggressively collects a large number of real-time

events, including log events (e.g., page views, user clicks), as well

as transactions (e.g., payments synced from theOLTPdatabases).

As we observed from production, these events are of extremely

high volume, and the majority of them are less transactional log

data, e.g., 10
7
events/s. �ese events are immediately ingested

into the data stack (a©) for future use, but more importantly they
are joined with various dimension data on the �y to derive useful

features (1©), and these features are fed into the recommendation
system at real-time.�is real-time join needs point lookup of di-

mension data with extremely low latency and high throughput,

in order to keep up with the ingestion.

2. �e platform also derives many features by aggregating the real-

time events in sliding windows, along a variety of dimensions

and time granularities, e.g., 5-min item clicks, 7-day page views,

and 30-day turnover. �ese aggregations are carried out in ei-

ther batch (2©) or streaming fashion depending on the sliding
window granularity, and ingested into the data stack (b©).

�ese real-time data are also used in generating training data to con-

tinuously update the recommendationmodels, through both online

and o�ine training.

Despite of its importance, the above process is only a small por-

tion of the entire pipeline.�ere is a whole stack of monitoring, val-

idation, analysis and re�nement process supporting a recommenda-

tion system.�ese include but not limited to continuous dashboard

queries (3©) on the collected events tomonitor the key performance
metrics and conduct A/B testing, and periodic batch queries (4©) to

3273

generate BI reports. Besides, data scientists are constantly perform-

ing complex interactive analysis over the collected data to derive

real-time insights for business decisions, to do causal analysis and

re�nement of the models. For instance, on the double-11 shopping

festival, the incoming OLAP query requests can go up to hundreds

of queries per second.

�e above demonstrates a highly complex HSAP scenario, rang-

ing from real-time ingestion (a©) to bulk load (b©), from serving
workload (1©), continuous aggregation (3©), to interactive analysis
(4©), all theway to batch analysis (2©). Without a uni�ed system, the
above scenario has to be jointly served by multiple isolated systems,

e.g., batch analysis by systems like Hive; serving workload by sys-

tems like Cassandra; continuous aggregation by systems like Druid;

interactive analysis by systems like Impala or Greenplum.

2.2 Challenges of a HSAP Service
As a new big data service paradigm, HSAP service proposes chal-

lenges that were not as prominent just a few years ago.

High-Concurrency Hybrid QueryWorkload. HSAP systems usu-
ally face high query concurrency that is unprecedented in tradi-

tional OLAP systems. In practice, compared to OLAP query work-

load, the concurrency of serving query workload is usually much

higher. For instance, we have observed in real-life applications that

serving queries could arrive at a rate as high as 10
7 queries per sec-

ond (QPS), which is �ve orders of magnitude higher than the QPS
of OLAP queries. Furthermore, serving queries have a much more

stringent latency requirement than OLAP queries. How to ful�ll

these di�erent query SLOs while multiplexing them to fully utilize

the computation resource is really challenging.

ExistingOLAP systems generally use a process/thread-based con-

currency model, i.e., use a separate process [5] or thread [6] to han-

dle a query, and rely on the operating system to schedule concurrent

queries.�e expensive context switching caused by this design puts

a hard limit on the system concurrency, and thus is no longer suit-

able for HSAP systems. And it prevents the system to have enough

scheduling control to meet di�erent query SLOs.

High-�roughputReal-TimeData Ingestion.While handling high-
concurrency query workloads, HSAP systems also need to handle

high-throughput data ingestion. Among all the data ingested, the

traditional way of synchronizing data from an OLTP system only

accounts for a very small portion, while the majority of data comes

from various data sources such as real-time log data that do not

have a strong transaction semantics. �e ingestion volume can be

much higher than observed in a hybrid transaction-analytical pro-

cessing (HTAP) system. For instance, in the above scenario the in-

gestion rate goes up to tens of millions of tuples per second. What is

more, di�erent from traditional OLAP systems, HSAP systems re-

quire real-time data ingestion—written data has to be visible within

subsecond—to guarantee the data freshness of analysis.

High Elasticity and Scalability. �e ingestion and query workload
can undergo sudden bursts, and thus require the system to be elas-

tic and scalable, and react promptly. We have observed in real-world

applications that the peak ingestion throughput reaches 2.5X of the
average, and the peak query throughput reaches 3X of the average.
Also, the bursts in ingestion and query workload do not necessarily

coincide, which requires the system to scale the storage and compu-

tation independently.

2.3 Data Storage
In this subsection, we discuss the high-level design of data storage

in Hologres.

Decoupling of Storage/Computation. Hologres takes a cloud-

native design where the computation and storage layers are decou-

pled. All the data �les and logs of Hologres are persisted in Pangu

by default, which is a high performance distributed �le system inAl-

ibaba Cloud. We also support open-source distributed �le systems

such as HDFS [3]. With this design, both the computation and stor-

age layers can be independently scaled out according to the work-

load and resource availability.

Tablet-based Data Layout. In Hologres, both tables and indexes
are partitioned into �ne-grained tablets. A write request is decom-

posed into many small tasks each of which handles the updates to

a single tablet. Tablets for correlated tables and indexes are further

grouped into shards, to provide e�cient consistency guarantees. To

reduce contention, we use a latch-free design that each tablet isman-

aged by a single writer, but can have arbitrary number of readers.

We can con�gure a very high read parallelism for query workloads,

which hides the latency incurred by reading from a remote storage.

SeparationofReads/Writes. Hologres separates the read andwrite
paths, to support both high-concurrency reads andhigh-throughput

writes at the same time.�e writer of a tablet uses an LSM-like ap-

proach to maintain the tablet image, where the records are properly

versioned. Fresh writes can be visible for reads with subsecond-level

latency. Concurrent reads can request a speci�c version of the tablet

image, and thus are not blocked by the writes.

2.4 Concurrent Query Execution
In this subsection, we discuss the high-level design of the schedul-

ing mechanism used by Hologres.

Execution Context. Hologres builds a scheduling framework, re-
ferred to as HOS, which provides a user-space thread called execution
context to abstract the system thread. Execution contexts are super
light weight and can be created and destroyed with negligible cost.

HOS cooperatively schedules execution contexts on top the system

thread pools with little context switching overhead. An execution

context provides an asynchronous task interface. HOS divides users’

write and read queries into �ne-grained work units, and maps the

work units onto execution contexts for scheduling.�is design also

enables Hologres to promptly react to sudden workload bursts.

�e system can be elastically scaled up and down at runtime.

Customizable Scheduling Policy. HOS decouples the scheduling

policy from the execution context based schedulingmechanism. HOS

groups execution contexts from di�erent queries into scheduling

groups, eachwith their own resource share. HOS is in charge ofmon-

itoring the consumed share of each scheduling group, and enforcing

resource isolation and fairness between scheduling groups.

2.5 System Overview
Figure 2 presents the system overview of Hologres. �e frond-

end nodes (FEs) receive queries submitted from clients and return
the query results. For each query, the query optimizer in the FE node
generates a query plan, which is parallelized into aDAGof fragment

instances.�e coordinator dispatches fragment instances in a query

plan to the worker nodes, each of whichmap the fragment instances

into work units (Section 4.1). A worker node is a unit of physical
resources, i.e., CPU cores and memory. Each worker node can hold

the memory tables for multiple table group shards (Section 3.2) for

a database. In a worker node, work units are executed as execution

contexts in the EC pool (Section 4.2).�eHOS scheduler schedules
the EC pool on top of the system threads (Section 4.3), following the

pre-con�gured scheduling policy (Section 4.5).

�e resource manager manages the distribution of table group
shards among worker nodes: resources in a worker node are logi-

cally split into slots, each of which can only be assigned to one ta-

3274

Pangu Distributed File System

Storage Manager

Resource Manager

Client

EC Pools

Worker Node
HOS Scheduler

FE
Coordinator

Hologres

Shard Shard

EC Pools

Worker Node
HOS Scheduler

FE
Coordinator

Shard Shard

EC Pools

Worker Node
HOS Scheduler

Shard Shard

Figure 2: Architecture of Hologres

ble group shard. �e resource manager is also responsible for the

adding/removal of worker nodes in a Hologres cluster. Worker

nodes periodically send heartbeats to the resourcemanager. Upon a

worker node failure or a workload burst in the cluster, the resource

manager dynamically adds new worker nodes into the cluster.

�e storage manager maintains a directory of table group shards
(see Section 3.1), and their meta data such as the physical locations

and key ranges. Each coordinator caches a local copy of these meta

data to facilitate the dispatching of query requests.

Hologres allows the execution of a single query to spanHologres

and other query engines (Section 4.2.3). For instance, when frag-

ment instances need to access data not stored in Hologres, the

coordinator distributes them to other systems storing the required

data. We designed and implemented a set of uni�ed APIs for query

processing, such that work units executed in Hologres can com-

municatewith other execution engines such as PostgreSQL [12]. Non-

Hologres execution engines have their own query processing and

scheduling mechanisms independent of Hologres.

3. STORAGE
Hologres supports a hybrid row-column storage layout tailored

for HSAP scenarios. �e row storage is optimized for low-latency

point lookups, and the column storage is designed to perform high-

throughput column scans. In this section, we present the detailed

design of the hybrid storage in Hologres. We start by introducing

the data model and de�ning some preliminary concepts. Next, we

introduce the internal structure of table group shards, and explain in

details how to perform writes and reads. Lastly, we present the lay-

outs of the row and column storage, followed by a brief introduction

to the caching mechanism in Hologres.

3.1 Data Model
InHologres, each table has a user-speci�ed clustering key (empty

if not speci�ed), and a unique row locator. If the clustering key is
unique, it is directly used as the row locator; otherwise, a uniqui-
�er is appended to the clustering key to make a row locator, i.e.,
⟨clustering key, uniqui f ier⟩.
All the tables of a database are grouped into table groups. A table

group is sharded into a number of table group shards (TGSs), where
each TGS contains for each table a partition of the base data and a

partition of all the related indexes. We treat the base-data partition

as well as an index partition uniformly as a tablet. Tablets have two
storage formats: row tablet and column tablet, optimized for point
lookup and sequential scan respectively.�e base data and indexes

can be stored in a row tablet, a column tablet, or both. A tablet

is required to have a unique key. �erefore, the key of a base-data

tablet is the row locator. Whereas for tablets of secondary indexes, if

the index is unique, the indexed columns are used as the key of the

tablet; otherwise, the key is de�ned by adding the row locator to the

indexed columns. For instance, consider a TGS with a single table

and two secondary indexes—a unique secondary index (k1 → v1)
and a non-unique secondary index (k2 → v2)—and the base data
is stored in both row and column tablets. As explained above, the

key of the base-data (row and column) tablets are ⟨row locator⟩,
the key of the unique-index tablet is ⟨k1⟩ and the key of the non-
unique-index tablet is ⟨k2 , row locator⟩.
We observed that majorities of writes in a database access a few

closely-related tables, also writes to a single table update the base

data and related indexes simultaneously. By grouping tables into

table groups, we can treat related writes to di�erent tablets in a TGS

as an atomic write operation, and only persist one log entry in the

�le system. �is mechanism helps improve the write e�ciency by

reducing the number of log �ushes. Besides, grouping tables which

are frequently joined helps eliminate unnecessary data shu�ing.

3.2 Table Group Shard
TGS is the basic unit of data management in Hologres. A TGS

mainly comprises aWALmanager andmultiple tablets belonging to

the table shards in this TGS, as exampled in Figure 3.

Tablets are uniformly managed as an LSM tree: Each tablet con-

sists of a memory table in the memory of the worker node, and a

set of immutable shard �les persisted in the distributed �le system.

�e memory table is periodically �ushed as a shard �le. �e shard

�les are organized into multiple levels, Level0 , Level1 , ..., LevelN .
In Level0 , each shard �le corresponds to a �ushed memory table.
Starting from Level1 , all the records in this level are sorted and parti-
tioned into di�erent shard �les by the key, and thus the key ranges of

di�erent shard �les at the same level are non-overlapping. Level i+1
can hold K times more shard �les than Level i , and each shard �le
is of max size M. More details of the row and column tablets are
explained in Section 3.3 and 3.4, respectively.

A tablet also maintains a metadata �le storing the status of its

shard �les. �e metadata �le is maintained following a similar ap-

proach as RocksDB [13], and persisted in the �le system.

As records are versioned, reads andwrites in TGSs are completely

decoupled. On top of that, we take a lock-free approach by only al-

lowing a single writer for the WAL but any number of readers con-

currently on a TGS. As HSAP scenarios have a weaker consistency

requirement than HTAP, Hologres chooses to only support atomic
write and read-your-writes read to achieve high throughput and low
latency for both reads and writes. Next, we explain in details how

reads and writes are performed.

3.2.1 Writes in TGSs
Hologres supports two types of writes: single-shard write and

distributed batch write. Both types of writes are atomic, i.e., writes
either commit or rollback. Single-shard write updates one TGS at a

time, and can be performed at an extremely high rate. On the other

hand, distributed batch write is used to dump a large amount of data

into multiple TGSs as a single transaction, and is usually performed

with a much lower frequency.

Single-shardWrite. As illustrated in Figure 3, on receiving a single-
shard ingestion, the WAL manager (1) assigns the write request an

LSN, which consists of the timestamp and an increasing sequence

number, and (2) creates a new log entry and persists the log entry in

the �le system.�e log entry contains the necessary information to

replay the logged write.�e write is committed a�er its log entry is

completely persisted. A�er that, (3) operations in the write request

3275

Worker
Node

Data
Store

Table Group Shard

MemTable

Log File

Log File

Log File

1 1

2

3
4

2

Write Read

Tablet

5

L0
L1

L2 ……

…

WAL
Manager

Figure 3: Internals of TGS

are applied in the memory tables of the corresponding tablets and

made visible to new read requests. It is worth noting that updates

on di�erent tablets can be parallelized (see Section 4.1). Once the

memory table is full, (4) it is �ushed as a shard �le in the �le system

and a newone is initialized. Lastly, (5) shard �les are asynchronously

compacted in the background. At the end of a compaction or mem-

ory table �ush, themetadata �le of the tablet is updated accordingly.

Distributed Batch Write. We adopt a two-phase commit mecha-
nism to guarantee write atomicity for distributed batch write. �e

FE node which receives the bath write request locks all the accessed

tablets in the involved TGSs. �en each TGS: (1) assigns an LSN

for this batch write, (2) �ushes the memory tables of the involved

tablets and (3) loads the data as in the process of single-shard in-

gestion and �ushes them as shard �les. Note that, step (3) can be

further optimized by building multiple memory tables and �ush-

ing them into the �le system in parallel. Once �nished, each TGS

votes to the FE node. When the FE node collects all the votes from

participating TGSs, it acknowledges them the �nal commit or abort

decision. On receiving the commit decision, each TGS persists a log

indicating this batch write is committed; otherwise, all the newly

generated �les during this batch write are removed. When the two-

phase commit is done, locks on involved tablets are released.

3.2.2 Reads in TGSs
Hologres supports multi-version reads in both row and column

tablets. �e consistency level of read requests is read-your-writes,
i.e., a client will always see the latest committed write by itself. Each

read request contains a read timestamp, which is used to construct

an LSNread . �is LSNread is used to �lter out invisible records to

this read, i.e., records whose LSNs are larger than LSNread .

To facilitate multi-version read, a TGS maintains for each table a

LSNre f , which stores the LSN of the oldest version maintained for

tablets in this table. LSNre f is periodically updated according to a

user-speci�ed retaining period. During the memory table �ush and

�le compaction, for a given key: (1) records whose LSNs are equal

to or smaller than LSNre f are merged; (2) records whose LSNs are

larger than LSNre f are kept intact.

3.2.3 Distributed TGS Management
In our current implementation, the writer and all the readers of

a TGS are co-located in the same worker node to share the mem-

ory tables of this TGS. If the worker node is undergoing workload

bursts, Hologres supportsmigrating someTGSs o� the overloaded

worker nodes (see Section 4.4).

We are working on a solution that maintains for a TGS read-

only replicas remote to the corresponding writer, to futher balance

concurrent reads. We plan to support two types of read-only repli-

cas: (1) a fully-synced replicamaintains the up-to-date copy of both
the memory table and metadata �le of the TGS, and can serve all

read requests; (2) a partially-synced replica only maintains an up-
to-date copy of the metadata �le, and can only serve reads over the

data �ushed into �le system. Reads to a TGS can be dispatched to

di�erent replicas according to their read versions. Note that, both

read-only replicas do not need to replicate the shard �les, which are

loaded from the distributed �le system if requested.

If a TGS is failed, the storage manager requests an available slot

from the resource manager, and at the same time broadcasts a TGS-
fail message to all the coordinators. When recovering a TGS, we
replay theWAL logs from the latest �ushed LSN to rebuild its mem-

ory tables.�e recovery is done once all thememory tables are com-

pletely rebuilt. A�er that, the storage manager is acknowledged and

then broadcasts a TGS-recovery message containing the new loca-
tion to all the coordinators. �e coordinators temporarily hold re-

quests to the failed TGS until it is recovered.

3.3 Row Tablet
Row tablets are optimized to support e�cient point lookups for

the given keys. Figure 4(a) illustrates the structure of a row tablet:

We maintain the memory table as a Masstree [30], within which we

sort the records by their keys. Di�erently, the shard �les are of a

block-wise structure. A shard �le consists of two types of blocks:

data block and index block. Records in a shard �le are sorted by

the key. Consecutive records are grouped as a data block. To help

look up records by their keys, we further keep track of the starting

key of each data block and its o�set in the shard �le as a pair of

⟨key, block o f f set⟩ in the index block.
To support multi-versioned data, the value stored in a row tablet

is extended as ⟨value col s, del bit, LSN⟩: (1) the value col s are
the non-key column values; (2) del bit indicates if this is a delete
record; (3) LSN is the corresponding write LSN. Given a key, both
the memory table and the shard �les could have multiple records

with di�erent LSNs.

Reads in Row Tablets. Every read in row tablets consists of a key
and an LSNread .�e result is obtained by searching in the memory

table and shard �les of the tablet in parallel. Only the shard �les

whose key ranges overlaps with the given key are searched. During

the search, a record is marked as a candidate if it contains the given
key and has an LSN equal to or smaller than LSNread .�e candidate

records are merged in the order of their LSNs as the result record. If

the del bit in the result record is equal to 1, or no candidate record
is found, there is no record for the given key exists in the version of

LSNread . Otherwise, the result record is returned.

Writes in Row Tablets. In row tablets, an insert or update con-
sists of the key, column values and an LSNwr i te . A delete contains

a key, a special deletion mark and an LSNwr i te . Each write is trans-

formed into a key-value pair of row tablets. For insert and update,

the del bit is set as 0. For delete, the column �elds are empty and
del bit is set as 1. �e key-value pairs are �rst appended into the
memory table. Once the memory table is full, it is �ushed into the

�le system as a shard �le in Level0 .�is could further trigger a cas-
cading compaction from Level i to Level i+1 if Level i is full.

3.4 Column Tablet
Column tablets are designed to facilitate column scans. As de-

picted in Figure 4(b), di�erent from row tablets, a column tablet

consists of two components, a column LSM tree and a delete map.
�e value stored in a column LSM tree is extended in the format

of: ⟨value col s, LSN⟩, where value col s are the non-key columns
and LSN is the corresponding write LSN. In a column LSM tree, the

3276

Flush

Index Block :

Row Tablet

Memory

L0
L1

L2 ……

…

Data
Block

...

……

<value_cols;del bit;LSN>

Data
Block

Data
Block

<value_cols;del_bit;LSN> <value_cols;del_bit;LSN>

<value_cols;del_bit;LSN>

Masstree
<key,<value_cols; del_bit;LSN>>

MemTable

(a)

Data Block

MemTable

Flush
Shard File

Data Column

…Column_2

…Column_1

Index Block Meta Block

(Clustering Key)

Row Group

Column Tablet

Memory

L0
L1

L2 ……

…

Masstree
<fileid,<bitmap; del_bit;LSN>>

MemTable

L0

L1

L2 ……

…

Apache Arrow
Col 1 Col 2

Flush

Delete Map Column LSM-tree

(b)

Figure 4: (a)�e structures of a row tablet, and (b) the structures of a column tablet

memory table stores the records in the format of Apache Arrow [2].

Records are continuously appended into the memory table in their

arriving order. In a shard �le, records are sorted by the key and log-

ically split into row groups. Each column in a row group is stored

as a separate data block. Data blocks of the same column are con-

tinuously stored in the shard �le to facilitate sequential scan. We

maintain the meta data for each column and the entire shard �le

in the meta block to speed up large-scale data retrieving.�e meta

block stores: (1) for each column, the o�sets of data blocks, the value

ranges of each data block and the encoding scheme, and (2) for the

shard �le, the compression scheme, the total row count, the LSN

and key range. To quickly locate the row according to a given key,

we store the sorted �rst keys of row groups in the index block.

�e delete map is a row tablet, where the key is the ID of a shard

�le (with the memory table treated as a special shard �le) in the col-

umn LSM tree, and the value is a bitmap indicating which records

are newly deleted at the corresponding LSN in the shard �le. With

the help of the delete map, column tablets can massively parallelize

sequential scan as explained below.

Reads in Column Tablets. A read operation to a column tablet
comprises of the target columns and an LSNread . �e read results

are obtained by scanning the memory table and all the shard �les.

Before scanning a shard �le, we compare its LSN rangewith LSNread :

(1) if its minimum LSN is larger than LSNread , this �le is skipped;

(2) if its maximum LSN is equal to or smaller than LSNread , the

entire shard �le is visible in the read version; (3) otherwise, only a

subset of records in this �le are visible in the read version. In the

third case, we scan the LSN column of this �le and generate an LSN

bitmap indicating which rows are visible in the read version. To �l-

ter out the deleted rows in a shard �le, we perform a read in the

delete map (as explained in Section 3.3) with the ID of the shard �le

as the key at version LSNread , where the merge operation unions

all the candidate bitmaps. �e obtained bitmap is intersected with

the LSN bitmap, and joined with the target data blocks to �lter out

the deleted and invisible rows at the read version. Note that di�er-

ent from row tablets, in a column tablet each shard �le can be read

independently without the need of consolidating with shard �les in

other levels, as the delete map can e�ciently tell all the deleted rows

up to LSNread in a shard �le.

Writes in Column Tablets. In column tablets, an insert operation
consists of a key, a set of column values and an LSNwr i te . A delete op-
eration speci�es the key of the row to be deleted, with which we can

quickly �nd out the �le ID containing this row and its row number

in this �le. We perform an insert at version LSNwr i te in the delete

map, where the key is the �le ID and the value is the row number of

the deleted row.�e update operation is implemented as delete fol-
lowed by insert. Insertions to the column LSM tree and the delete
map can trigger memory table �ush and shard �le compaction.

3.5 Hierarchical Cache
Hologres adopts a hierarchical caching mechanism to reduce

both the I/O and computation costs. �ere are in total three layers

of caches, which are the local disk cache, block cache and row cache.
Every tablet corresponds to a set of shard �les stored in the dis-

tributed �le system.�e local disk cache is used to cache shard �les

in local disks (SSD) to reduce the frequency of expensive I/O oper-

ations in the �le system. On top of the SSD cache, an in-memory

block cache is used to store the blocks recently read from the shard

�les. As the serving and analytic workloads have very di�erent data

access patterns, we physically isolate the block caches of row and

column tablets. On top of the block cache, we further maintain an

in-memory row cache to store the merged results of recent point

lookups in row tablets.

4. QUERY PROCESSING & SCHEDULING
In this section, we present the parallel query execution paradigm

of Hologres and the HOS scheduling framework.

4.1 Highly Parallel Query Execution
Figure 5 illustrates the query-processing work�ow in Hologres.

On receiving a query, the query optimizer in the FE node generates

a query plan represented as a DAG, and divides the DAG at shuf-
�e boundaries into fragments. �ere are three types of fragments:
read/write/query fragments. A read/write fragment contains a read-
/write operator accessing a table, whereas a query fragment only

contains non-read/write operators. Each fragment is then paralel-

lized intomultiple fragment instances in a data parallel way, e.g., each
read/write fragment instance processes one TGS.

�e FE node forwards the query plan to a coordinator. �e co-

ordinator then dispatches the fragment instances to worker nodes.

Read/write fragment instances are always dispatched to the worker

nodes hosting the accessed TGSs. Query fragment instances can be

executed in anyworker node, and are dispatched taking into account

the existing workloads of worker nodes to achieve load balancing.

�e locality and workload information are synced with the storage

manager and resource manager, respectively.

In a worker node, fragment instances are mapped intowork units
(WUs), which are the basic units of query execution in Hologres.
A WU can dynamically spawn WUs at run time. �e mapping is

described as follows:

3277

Storage
Manager

Resource
ManagerCoordinator

Remote File System

FEQuery
Query Plan

read/write/query
fragment instance

read/write/query
fragment instance

read/write/query
fragment instance

Worker
Node

Worker
Node

Worker
Node

fragment
instance

work
unit

Figure 5: Work�ow of Query Parallelization

● A read fragment instance is initially mapped to a read-sync WU,
which fetches the current version of the tablet from the metadata

�le, including a read-only snapshot of the memory table and a

list of shard �les. Next, the read-sync WU spawns multiple read-
apply WUs to read the memory table and shard �les in parallel,
as well as to execute downstream operators on the read data.�is

mechanism exploits high intra-operator parallelism to make bet-

ter use of the network and I/O bandwidth.

● A write fragment instance maps all non-write operators into a
query WU, followed by a write-sync WU persisting the log en-
try inWAL for the written data.�e write-syncWU then spawns

multiple write-apply WUs, each updating one tablet in parallel.
● A query fragment instance is mapped to a query WU.

4.2 Execution Context
As a HSAP service, Hologres is designed to execute multiple

queries submitted by di�erent users concurrently. �e overhead of

context switching amongWUs of concurrent queries could become

a bottleneck for concurrency. To solve this problem, Hologres pro-

poses a user-space thread, named as execution context (EC) , as the
resource abstraction forWU. Di�erent from threads which are pre-

emptively scheduled, ECs are cooperatively scheduled without us-

ing any system call or synchronization primitive. �us the cost of

switching between ECs is almost negligible. HOS uses EC as the basic

scheduling unit. Computation resources are allocated in the granu-

larity of EC, which further schedules its internal tasks. An EC will

be executed on the thread which it is assigned to.

4.2.1 EC Pools
In aworker node, we groupECs into di�erent pools to allow isola-

tion and prioritization. ECpools can be categorized into three types:

data-bound EC pool, query EC pool and background EC pool.
● A data-bound EC pool has two types of ECs:WAL EC and tablet
EC. Within a TGS, there is oneWAL EC andmultiple tablets ECs,
one for each tablet. �e WAL EC executes the write-sync WUs,

while the tablet EC executes the write-apply WUs and read-sync

WUs on the corresponding tablet. �e WAL/tablet ECs process

WUs in a single-threaded way, which eliminates the necessity of

synchronization between concurrent WUs.

● In a query EC pool, each queryWU or read-applyWU ismapped
to a query EC.

● In a background EC pool, ECs are used to o�oad expensive work
fromdata-bound ECs and improve the write throughput.�is in-

cludes memory table �ush and shard �le compaction, etc. With

this design, the data-bound ECs are reserved mainly for opera-

tions on the WAL and writes to memory tables, and thus the sys-

tem can achieve a very high write throughput without the over-

head of locking.

To limit the resource consumption of background ECs, we physi-

cally isolate background ECs from the data-bound and query ECs in

di�erent thread pools, and execute the background ECs in a thread

pool with lower priority.

4.2.2 Internals of Execution Context
Next, we introduce the internal structure of an EC.

Task Queue. �ere are two task queues in an EC: (1) a lock-free
internal queue which stores tasks submitted by the EC itself, (2) a

thread-safe submit queuewhich stores tasks submitted by other ECs.

Once scheduled, tasks in the submit queue are relocated to the in-

ternal queue to facilitate lock-free scheduling. Tasks in the internal

queue are scheduled in FIFO order.

State. During the lifetime of an EC, it switches between three
states: runnable, blocking and suspended. Being suspended means
the EC cannot be scheduled, as its task queues are empty. Submit-

ting task to an EC switches its state as runnable, which indicates the

EC can be scheduled. If all the tasks in an EC are blocked, e.g., by

I/O stall, the EC switches out and its state is set as blocking. Once

receiving new task or the blocked task returns, a blocking EC be-

comes runnable again. ECs can be externally cancelled or joined.

Cancelling an EC will fail the incompleted tasks and suspend it. Af-

ter an EC is joined, it cannot receive new tasks and suspends itself af-

ter its current tasks are completed. ECs are cooperatively scheduled

on top the system thread pools, and thus the overhead of context

switching is almost negligible.

4.2.3 Federated Query Execution
Hologres supports federated query execution to interact with

the rich services available from the open source world (e.g., Hive [7]

and HBase [6]). We allow a single query spanning Hologres and

other query systems which are physically isolated in di�erent pro-

cesses. During query compilation, operators to be executed in dif-

ferent systems are compiled as separate fragments, which are then

dispatches to their destination systems by coordinators inHologres.

Other systems interacting with Hologres are abstracted as special

stubWUs, each of which is mapped to an EC uniformlymanaged in

Hologres.�is stub WU handles pull requests submitted by WUs

in Hologres. Besides functionality considerations such as access-

ing data in other systems, this abstraction also serves as an isolation

sandbox for system security reasons. For instance, users can submit

queries with possibly-insecure user-de�ned functions. Hologres

disseminates the execution of these functions to PostgreSQL pro-

cesses, which execute them in a context physically isolated from

other users in Hologres.

4.3 Scheduling Mechanism
In this subsection, we introduce details about howWUsof a query

are scheduled to produce the query outputs.

Asynchronous Pull-basedQuery Execution. Queries are executed
asynchronously following a pull-based paradigm in Hologres. In

a query plan, the leaf fragments consume external inputs, i.e., shard

�les, and the sink fragment produces query outputs.�e pull-based

query execution starts from the coordinator, which sends pull re-

quests to theWUs of the sink fragments. When processing a pull re-

quest, the receiver WU further sends pull requests to its dependent

WUs. Once the WU of a read operator, i.e., column scan, receives a
pull request, it reads a batch of data from the corresponding shard

�le and returns the results in the format of ⟨record batch, EOS⟩,
where record batch is a batch of the result records and EOS is a
bool indicating if the producer WU has completed its work. On

3278

receiving results for the previous pull request, the coordinator de-

termines if the query has completed by checking the returned EOS.
If the query has not completed, it sends out another round of pull

requests. A WU depending on multiple upstream WUs needs to

pull from multiple inputs concurrently to improve the parallelism

of query execution and the utilization of computation/network re-

source. Hologres supports concurrent pulls by sending multiple

asynchronous pull requests.�is approach is more natural and e�-

cient compared with traditional concurrency model which requires

multiple threads to cooperate.

Intra-worker pull request is implemented as a function call, which

inserts a pull task into the task queue of EChosting the receiverWU.

An inter-worker pull request is encapsulated as an RPC call between

the source and destination worker nodes. An RPC call contains ID

of the receiverWU, according to which the destinationworker node

inserts a pull task into the task queue of the corresponding EC.

Backpressure. Based on the above paradigm, we implemented a
pull-based backpressure mechanism to prevent a WU from being

overwhelmed by receiving too many pull requests. First of all, we

constrain the number of concurrent pull requests that a WU can

issue at a time. Secondly, in aWUwhich produces outputs for mul-

tiple downstreamWUs, processing a pull request may results in the

production of new outputs for multiple downstream WUs. �ese

outputs are bu�ered waiting for the pull requests from the corre-

sponding WUs. To prevent the output bu�er in a WU growing too

fast, the downstreamWU that pullsmore frequently than others will

temporarily slow down sending new pull requests to this WU.

Prefetch. HOS supports prefetching results for future pull requests
to reduce the query latency. In such cases, a set of prefetch tasks

are enqueued.�e results of prefetch tasks are queued in a prefetch

bu�er. When processing a pull request, results in the prefetch bu�er

can be immediately returned and a new prefetch task is created.

4.4 Load Balancing

�e load balancing mechanism in Hologres are of two folds:

(1) migrating TGSs across worker nodes, and (2) redistributing ECs

among intra-worker threads.

MigrationofTGSs: In our current implementation, read/write frag-
ment instances are always dispatched to the worker nodes hosting

the TGS. If one TGS becomes a hotspot, or a worker node is over-

loaded, Hologres supports migrating some TGSs from the over-

loaded worker nodes to others with more available resources. To

migrate a TGS, we mark the TGS as failed in the storage manager,

and then recover it in a new worker node following the standard

TGS recovery procedure (see Section 3.2.3). As discussed in Sec-

tion 3.2.3, we are implementing read-only replicas for TGSs, which

enables balancing the read fragment instances to a TGS’s read-only

replicas located in multiple worker nodes.

Redistribution of ECs: In a worker node, HOS redistributes ECs
among threads within each EC pool to balance the workload. HOS

performs three types of redistribution: (1) a newly created EC is al-

ways assigned to the thread with minimum number of ECs in the

thread pool; (2)HOSperiodically reassigns ECs between threads such

that the di�erence of the numbers of ECs among threads is mini-

mized; (3) HOS also supports workload stealing. Once a thread has
noEC to schedule, it “steals” one from the threadwhich has themax-

imum number of ECs in the same thread pool.�e reassignment of

an EC is conducted only when it is not running any task.

4.5 Scheduling Policy
A critical challenge for HOS is to guarantee the query-level SLO in

multi-tenant scenarios, e.g., large-scale analytic queries should not

block the latency-sensitive serving queries. To solve this problem,

we propose Scheduling Group (SG) as a virtual resource abstraction
for the data-bound and query ECs in a worker node. More speci�-

cally, HOS assigns each SG a share, whose value is proportional to the
amount of resources assigned to this SG.�e resources of an SG are

further split among its ECs, and an EC can only consume resources

allocated to its own SG.

In order to separate the ingestion workloads from query work-

loads, we isolate data-bound ECs and query ECs into di�erent SGs.

Data-bound ECs handle critical operations that need synchroniza-

tion shared by all queries, and are mainly dedicated to ingestion

workload (read-sync WU are usually very light-weight), we group

all the data-bound ECs in a single data-bound SG. On the contrary,
we put query ECs of di�erent queries into separate query SGs. We
assign the data-bound SG a large enough share to handle all inges-

tion workload. By default, all the query SGs are assigned of the same

share to enforce fair resource allocation. SG shares are con�gurable.

Given a SG, the amount of CPU time assigned to its ECs in a time

interval is impacted by two factors: (1) its share, (2) the amount of

CPU time it has occupied in the last time interval.�e share of an SG

is adjusted according to the status of its ECs in the last time interval,

as explained below:

An EC can only be scheduled when it is runnable. Denoting the
share of EC i as EC share i , we calculate EC share avg i to represent
the practical share of EC i in a time interval, while the practical share

of SG i is the sum of the shares of its ECs:

EC share avg i = EC share i ∗
∆Trun

∆Trun + ∆Ts pd + ∆Tbl k

SG share avg i =
N

∑
j=1

EC share avg j

∆Trun , ∆Ts pd and ∆Tbl k represent the time intervals while EC i is in

the status of runnable, suspend and blocking.
For EC i in SG j , wemaintain aVirtual Runtime re�ecting the state

of its historical resource allocation. Denoting the CPU time that

EC i is assigned of during the last time interval as ∆CPU time i , the
increment on EC i ’s Virtual Runtime, ∆vruntime i , during the last
time interval is calculated as follows:

EC vshare i =
EC share i ∗ SG share j

SG share avg j
;

∆vruntime i =
∆CPU time i
EC vshare i

When selecting the next EC to be scheduled, the thread scheduler

always selects the one with the minimum vruntime.

5. EXPERIMENTS
In this section, we conduct experiments to evaluate the perfor-

mance of Hologres. We �rst study the performance of Hologres

on OLAP workloads and serving workloads respectively, by com-

paring it with state-of-the-art OLAP systems and serving systems

(Section 5.2). We show that Hologres has superior performance

even compared with these specialized systems.�en we present ex-

periment results on various performance aspects of Hologres han-

dling hybrid serving and analytical processing workloads:

● We study in isolation how well the design of Hologres can par-
allelize and scale when handling analytical workloads or serving

workloads alone. We experiment with increasing the workload

and the computation resource (Section 5.3).

3279

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
TPC-H Query

0

50

100

150

200

250

300
La

te
nc

y
(s

ec
on

d)
Hologres
Greenplum

(a)

Q1-DOP
Q20-Plan

Q13-Storage
Q15-AVX512

Features

0

10

20

30

40

50

60

70

La
te

nc
y

(s
ec

on
d)

Feature-On
Feature-Off

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Throughput (100k QPS)

102

103

104

105

La
te

nc
y

(u
s)

HBase Average
Hbase P95
HBase P99
Hologres Average
Hologres P95
Hologres P99

(c)

Figure 6: (a) Analytical query latencies of Hologres and Greenplum on the TPC-H benchmark. (b) A breakdown study on the e�ects of
Hologres’s performance-critical features. (c) Serving query throughputs/latencies of Hologres and HBase on the YCSB benchmark.

● We study two aspects of HOS’s performance: (1) whether HOS can
enforce resource isolation and fair scheduling when handling hy-

brid serving and analytical workloads; (2) whether HOS can react

in a prompt way to sudden workload bursts (Section 5.4).

● We study the e�ciency of Hologres’s storage design: (1) the im-
pact of high-speed data ingestion on read performance, and (2)

the write latency and write throughput under the maintenance of

multiple indexes (Section 5.5).

5.1 Experiment Setup
Workloads.We use the TPC-H benchmark [15] (1TB) to simulate a
typical analytical workload, and the YCSB benchmark [17] to sim-

ulate a typical serving workload, which contains a table of 100 mil-

lion records, each record has 11 �elds, and each �eld is 100 bytes.

When testing on a hybrid serving and analytical workload on the

same data (Sectioin 5.4.1), we use the TPC-H dataset and mix the

TPC-H queries with synthetic serving queries (point lookup) on the

lineitem table. To study undermixed read/write requests, we sim-

ulate a production workload in Alibaba, referred to as PW. PW has

a shopping cart table that consists of 600 million rows, and has 10
6

updates per second. Each record has 16 �elds, and the size of a record

is 500 bytes. We replay the updates during the experiment.

System Con�gurations. We use a cluster consisting of 8 physical
machines, each with 24 virtual cores (via hyper-threading), 192GB

memory and 6T SSD. Unless explicitly speci�ed, we use this default

setting in the experiments on the TPC-H and YCSB benchmarks.

To the best of our knowledge, there is no existing HSAP system.

In order to study the performance of Hologres, we compared it

with specialized systems for analytical processing and serving re-

spectively. For analytical processing, we compared against Green-

plum 6.0.0 [5]; for serving, we compared against HBase 2.2.4 [6].

�e detailed con�gurations of each system are explained as follows:

(1)�eGreenplum cluster has in total 48 segments, which are evenly

allocated among 8 physical machines. Each segment is assigned 4

cores. �is is the recommended setting from Greenplum’s o�cial

documentation [11], in consideration of both intra-query (multi-

ple plan fragments in a query) and inter-query concurrency during

query execution. Greenplum uses the local disks to store the data

�les, and the data is stored in column format. (2)�e HBase cluster

has 8 region servers, each of which is deployed on a physical ma-

chine. HBase stores the data �les in HDFS, con�gured using the

local disks. HBase stores the data in row format. (3)�e Hologres

cluster has 8 worker nodes, each worker node occupying one physi-

calmachine exclusively. Tomake a fair comparisonwithGreenplum

and HBase, Hologres is also con�gured to use the local disks.�e

data is stored in both row and column formats in Hologres.

�e experiments on the PW workload are conducted in a cloud

environmentwith 1, 985 cores and 7, 785GBmemory. Weuse Pangu—

the remote distributed �le system inAlibaba Cloud to store the data.

�e base data of the shopping cart table is stored in column format.

�is table also has an index stored in row format.

Experiment Methodology. All the experiments start with a warm-
up period of 20 minutes. For every reported data point, we repeat

the experiment for 5 times and report the average value.

In the experiments, we use the standard YCSB client for all the

experiments on the YCSB data. For experiments on TPC-H and PW

data, we implemented a client similar to YCSB. More speci�cally,

the client connections submit query requests asynchronously. We

can con�gure the maximal number of concurrent queries a single

connection can submit (denoted asW). Multiple client connections
submit query requests concurrently. Unless explicitly speci�ed, we

setW = 100 throughout the experiments.

5.2 Overall System Performance
In this set of experiments, we study the performance of Hologres

on analytical workloads and serving workloads respectively, com-

pared against specialized OLAP and serving systems.

Analytical Workloads. In this experiment, we compare Hologres
and Greenplum using the TPC-H dataset. To accurately measure

the query latency, we use a single client and setW to 1. Figure 6(a)

reports the average end-to-end latency of the 22 queries.

As shown in the �gure, Hologres outperforms Greenplum on

all the TPC-H queries: the query latency in Hologres is on average

only 9.8% of that in Greenplum. For Q1, Hologres is 42X faster
than Greenplum. �e reasons are as follows: (1) HOS enables �ex-

ible high intra-operator parallelism for query execution. �e read

parallelism can go as high as the number of shard �les in the tables.

�e �exibility allows Hologres to have the right parallelism for all

queries. On the other hand, GreenPlum’s parallelism is determined

by the number of segments and cannot make full use of CPU for

all queries (e.g., Q1). (2)�e layout of column tablets support e�-

cient encoding and indexes.�ese storage layout optimizations can

greatly improve the performance, if the query has �lters that can

be pushed down to data scan (e.g., Q13). (3) Hologres adopts e�-

cient vectorized execution, and can support theAVX-512 instruction
set [8], which can further speed up queries that bene�t from vector-

ized execution
1
(e.g., Q15). (4) Hologres can generate better plans,

making use of optimizations such as dynamic �lters for joins (e.g.,

Q20).�ese optimizations together contribute to the improved per-

formance of analytic processing in Hologres.

To verify the e�ect of the above performance-critical techniques

(1)-(4), we conduct a breakdown experiment using theTPC-Hbench-

1
We use AVX-512 mainly in: (1) arithmetic expressions (e.g., addi-
tion, subtraction, multiplication, division, equals, not-equals); (2)
�ltering; (3) bitmap operations; (4) hash value computation; and (5)
batch copy.

3280

1 2 4 8 16 32
Number of Concurrent Queries

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Th
ro

ug
hp

ut
 (Q

PS
) Q6

(a)

1 2 4 8 16 32
Number of Concurrent Queries

0
5

10
15
20
25

La
te

nc
y

(s
ec

on
d) Q6

(b)

24 48 96 192
Number of Cores

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Th
ro

ug
hp

ut
 (Q

PS
) Q6

(c)

24 48 96 192
Number of Cores

0
10
20
30
40
50

La
te

nc
y

(s
ec

on
d) Q6

(d)

1 3 5 7 9 11 13 15
Throughput (100k QPS)

0
10
20
30
40
50

La
te

nc
y

(m
s)

Latency SLO:2ms

Average
P95
P99

(e) #Core = 24

1 3 5 7 9 11 13 15
Throughput (100k QPS)

0
4
8

12
16
20

La
te

nc
y

(m
s)

Latency SLO:2ms

Average
P95
P99

(f) #Core = 48

1 3 5 7 9 11 13 15
Throughput (100k QPS)

0

4

8

12

La
te

nc
y

(m
s)

Latency SLO:2ms

Average
P95
P99

(g) #Core = 96

1 3 5 7 9 11 13 15
Throughput (100k QPS)

0
1
2
3
4
5

La
te

nc
y

(m
s)

Latency SLO:2ms

Average
P95
P99

(h) #Core = 192

Figure 7: �e throughput and latency of analytical workloads under (a)(b) di�erent numbers of concurrent queries and (c)(d) di�erent
numbers of cores. (e)(f)(g)(h)�e throughput/latency curves of serving workloads under di�erent numbers of cores.

mark. For each technique we choose a representative query, and

compare the query latency in Hologres with the technique turned

on and o�. Speci�cally: For (1), we useQ1, and to turn the feature o�

we set the parallelism to the number of segments in Greenplum. For

(2), we use Q13, and to turn the feature o� we disable the dictionary

encoding. For (3), we use Q15, and to turn the feature o� we use a

build without AVX-512. For (4), we use Q20, and to turn the fea-

ture o� we disable the dynamic �lter optimization. �e results are

reported in Figure 6(b), where (1) (2) (3) (4) are denoted asQ1-DOP,
Q13-Storage,Q15-AVX512, andQ20-Plan respectively. As we can see,
these techniques brings a performance boost from 1.2X to 7.6X.

We also conduct a micro-benchmark on the single-machine per-

formance by comparing Hologres with Vectorwise (Actian Vector

5.1 [1]) using the TPC-H benchmark (100GB). �e experiment is

conducted on a single machine with 32 cores and 128GBmemory. It

takes Hologres 84s to run all the 22 TPC-H queries, while 27s for

Vectorwise.�is result shows that Hologres still has room for per-

formance improvements. However, the optimization techniques in

Vectorwise are applicable to Hologres and in future work we will

integrate them into Hologres.

Serving Workloads. In this experiment, we compare Hologres
and HBase in terms of the throughput and latency using the YCSB

benchmark. We gradually increase the query throughput from 100K

QPS to 1600KQPS. For each throughput, we report the correspond-

ing average, 95% and 99% percentile of query latencies of both sys-
tems in Figure 6(c). We set the 99% latency SLO to 100ms, and do

not report the data points exceeding the SLO.

First to note that, HBase does not scale to throughputs larger than

1000KQPS, as the query latency exceeds the latency SLO.Whereas,

even at 1600KQPS, the 99% latency of Hologres is still under 6ms,

and the 95% latency is even below 1.18ms. For throughputs under

1000KQPS, the average, 95% and 99% latencies of Hologres on av-

erage are better thanHBase by 10X, 22X and 57X respectively.�is is

because the thread-based concurrency model in HBase incurs sig-

ni�cant context switching overhead when facing highly concurrent

servingworkload. On the contrary, execution contexts in Hologres

are very light-weight and can be cooperatively scheduled with little

context switching overhead.�is design also makes the scheduling

well under control, guaranteeing the stability of query latencies. For

instance, at throughput = 800K QPS, the 99% latency of HBase is

10.5X higher than its average latency; on the contrary, this di�er-

ence in Hologres is only 1.8X.

�e above experiments clearly demonstrate thatwith the new stor-

age and scheduling design, Hologres consistently outperforms state-

of-the-art specialized analytical systems and serving systems.

5.3 Parallelism and Scalability of Hologres
Next, we study the parallelism and scalability of Hologreswhen

handling analytical workloads and serving workloads respectively.

Analytical Workloads. For analytical workloads, we study two as-
pects: (1) how well Hologres can parallelize analytical queries, and

(2) how scalable Hologres is withmore computation resources. We

choose TPC-H Q6 as a representative OLAP query of sequential
scans over a large amount of data.

In the �rst experiment, we use the default cluster setting (8worker

nodes each with 24 cores). We use a single client to submit the

queries, but gradually increase the number of concurrent queries

W from 1 to 32.�e results are reported in Figure 7(a) and 7(b). As

we can see, with the number of concurrent queries increasing, the

throughput keeps stable. �is result clearly shows that even with a

single analytical query, Hologres can fully utilize the parallelism

in the hardware. �e latency increases linearly as the resources are

evenly shared by all the concurrent queries.

In the second experiment, we �x the number of concurrent queries

W = 8, but scale out the resources. Speci�cally, we use 8 worker
nodes, and gradully increase the number of cores in each worker

node from 3 to 24.�e results are presented in Figure 7(c) and 7(d),

which show that the throughput increases linearly, and meanwhile

the query latency decreases as the number of cores increases. Again,

this shows that the high intra-operator parallelism mechanism of

Hologres can automatically saturate the hardware parallelism.

Serving Workloads. In this set of experiments, we evaluate the
throughput and latency of Hologres on servingworkloads by vary-

ing the amount of resources. Again, we use 8 worker nodes, and

gradually increase the number of cores from 3 to 24 in each worker

node. For each cluster setting, we increase the throughput until the

99% latency exceeds a latency SLO of 2ms. We use 8 clients to con-

tinuously submit the queries. We report the corresponding query

latencies for each throughput.

�e results are presented in Figure 7(e)-7(h) respectively. We have

two observations from these �gures. First, the maximum through-

3281

0.2 0.4 0.6 0.8 1.0
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F #Backgroud Queries=0

#Backgroud Queries=1
#Backgroud Queries=2
#Backgroud Queries=4
#Backgroud Queries=8
#Backgroud Queries=16

(a)

0 10 20 30 40 50 60 70

Time (second)

0

20

40

60

80

100

C
P
U

 U
ti

liz
a
ti

o
n

Q1 (TPC-H Q18)

Q2 (TPC-H Q18)

Q3 (TPC-H Q1)

Q4 (TPC-H Q1)

Q5 (TPC-H Q1)

Q6 (TPC-H Q1)

Q7 (TPC-H Q1)

Q8 (TPC-H Q18)

Q9 (TPC-H Q1)

Q10 (TPC-H Q1)

(b)

Figure 8: (a) Hybrid workload: the latency CDF of the foreground serving queries under di�erent background analytical workloads. (b)
�e dynamic shares of CPU time HOS assigned to concurrent queries.

1 2 4 8 16 32
Number of Connections

0

200

400

600

La
te

nc
y

(m
s)

OLAP Query

(a)

0 200 400 600 800 1000 1200
Time (second)

180

200

220

240

260

W
rit

e
Th

ro
ug

hp
ut

 (T
PS

)

(b)

0 1 2 4 8 10
Number of Indexes

0
100
200
300
400
500

La
te

nc
y

(u
s)

P95 P99

(c)

0 1 2 4 8 10
Number of Indexes

0
10
20
30
40
50

Th
ro

ug
hp

ut
 (1

0k
 Q

PS
)

Write Query

(d)

Figure 9: (a)�e foreground latency of read queries under di�erent background write workloads. (b)�e distribution of per-TGS write
throughput over time in the PWworkload. (c)(d)�e write latency/throughput whenmaintaining varied numbers of secondary indexes.

put that Hologres can achieve increases linearly as the number of

cores increases. For instance, we can see that themaximum through-

put at #core=192 is 8 times of themaximum throughput at #core=24.

Second, before the system reaches its maximum throughput, the

query latencies remain at a stable level. Taking #core=192 as an ex-

ample, the average, 95% and 99% latencies increase very slowly as

the throughput grows. �is is due to the fact that Hologres can

fully control the scheduling of execution contexts in user space.

5.4 Performance of HOS
In this subsection, we study two performance aspects of HOS: (1)

resource isolation under hybrid serving and analytical workloads,

and (2) scheduling elasticity under sudden workload bursts.

5.4.1 Resource Isolation under Hybrid Workloads
Akey scheduling requirement inHSAP services is that the latency-

sensitive serving queries are not a�ected by resource-consuming an-

alytical queries. To study this, we generate a hybrid serving/analyt-

ical workload that has two parts: (1) background: We continuously
submit analytical queries (TPC-H Q6 with di�erent predicates) in
the background. We vary the background workloads by increasing

the number of concurrent queriesW from 0 to 16. (2) foreground:
We submit serving queries in the foregound and measure the query

latency. To accurately test the latency, we set the number of concur-

rent queriesW = 1. For each setting of the background workloads,
we collect 50K data points, and plot their CDF.

Figure 8(a) presents the results. We can see that: by increasing

the number of background queries from 0 to 1, there is a small in-

crement on the latency of serving query; but further increasing the

background worklaods (from 1 to 16) brings no increment.

It clearly shows that resources allocated to di�erent queries are

well isolated by HOS, because execution contexts of di�erent queries

are grouped into separate scheduling groups. �erefore, analytical

queries and serving queries can coexist in the same system while

both their latency SLOs can still be ful�lled.

5.4.2 Scheduling Elasticity under Sudden Bursts
In this experiment, we demonstrate how well HOS can react to

suddernworkload bursts.�e experiment is started by concurrently

issuing Q1 and Q2 at time 0. At time 5, we issue 5 new queries (Q3-
Q7). Q3-Q7 �nish roughly at time 30. At time 40, query Q8 enters
the system. Q1 and Q2 �nish roughly at time 50. In the end, at time
60, we submit Q9 and Q10, and leave Q8-Q10 run to completion.
All the queries are assigned with equal priorities. Figure 8(b) shows

the fraction of CPU used by each query along the timeline.

Note that at time 5, HOS quickly adjusts the resource assignment

so that all the seven queries have an equal share of CPU. At time 30,

a�er Q3-Q7 �nish execution, HOS immediately adjusts the schedul-
ing and reassigns CPU equally betweenQ1 andQ2 that are still run-
ning. Similar behaviors can be observed at time 40, 50 and 60.�is

experiment highlights that HOS can dynamically and promptly ad-

just its scheduling behaviors according to the real-time concurrent

workloads in the system, always guaranteeing fair sharing.

5.5 Performance of Hologres Storage
In this set of experiments, we evaluate the e�ects of read/write

separation on query latency and study the write performance under

index maintenance in Hologres .

5.5.1 Separating Read/Write Operations
To study the impacts of writes on query latency, we generate a

mixed read/write workloads on the PW workload consisting of two

parts: (1) background:We replay the tuple writes in PW to simulate
a 20-minute background workloads. We vary the write throughput

by increasing the number of write clients from 1 to 32. �e writes

are uniformly distributed across TGSs. E.g., for the case that the

number of write clients is 32, we sample the write throughput ev-

ery 10 seconds, and report the average/min/max write throughputs

among all the TGSs in Figure 9(b). (2) foreground:Weuse 16 clients
to submit OLAP queries as the foregound workloads. To accurately

measure the query latency, each client has its W set to 1. We re-

3282

port the average query latency at each throughput setting in Fig-

ure 9(a). As shown, the latency of the OLAP queries is stable de-

spite of the increase on write throughputs.�is result evidences that

high-throughput writes has little impact on query latencies.�is is

because of the read/write separation in Hologres. �e versioned

tablets guarantee that reads are not blocked by writes.

5.5.2 Write Performance
Next, we study the write performance of Hologres under index

maintenance using the YCSB benchmark, where we create a num-

ber of secondary indexes for the YCSB table. We vary the number of

secondary indexes from 0 to 10. For each setting, we push the sys-

tem to its maximum write throughput and report the 95% and 99%

percentile of the write latencies.

As shown in Figure 9(c) and 9(d), as the number of indexes in-

creases, the write latency and the write throughput keep rather sta-

ble, and only change slightly. Compared to the case with no sec-

ondary index, maintaining 10 secondary indexes only incurs a 25%

increment on the write latency and a 8% decrement on the write

throughput.�is result shows that indexmaintenance in Hologres

is very e�cient and has very limited impact on write performance.

�e main reasons are three folds: (1) Hologres optimizes the write

performance by sharing a WAL among all the index tablets in a

TGS.�erefore, adding more indexes does not incur additional log

�ushes. (2) For each write to a TGS, each index is updated by a sep-

arate write-apply WU in parallel. (3) Hologres aggressively paral-

lelizes operations such asmemory table �ushes and �le compactions

by o�oading them to the background EC pool. With enough com-

putation resources, this design removes performance bottleneck.

6. RELATED WORK
OLTP and OLAP Systems. OLTP systems [10, 12, 35] adopt row
store to support quick transactions which frequently perform point

lookups over a small number of rows. OLAP systems [34, 37, 14, 27,

24, 22, 36] utilize column store to achieve e�cient column scans,

which is the typical data access pattern in analytic queries. Unlike

the above OLTP/OLAP systems, Hologres supports hybrid row-

column storage. A table can be stored in both the row and column

storage formats to e�ciently support both point lookup and column

scans required by HSAP workloads.

MPPdatabases likeGreenplum [5] usually partition data into large

segments, and co-locate the data segmentswith the computing nodes.

When scaling the system, MPP databases usually need to reshard

the data. Conversely, Hologres manages data in TGSs which is a

much smaller unit segments. Hologres maps TGSs dynamically to

worker nodes, and can �exibly migrate between worker nodes with-

out resharding the data. Also, the worker nodes only need to keep

the memory tables of the hosted TGSs in memory, but fetch TGS’s

shard �les from the remote �le system on demand. In terms of

multi-tenant scheduling, [5] handles di�erent requests in di�erent

processes and relies on the OS to schedule concurrent queries, eas-

ily putting a hard limit on the query concurrency. Instead Hologres

multiplexes concurrent queries on a set of user space threads, achiev-

ing much better query concurrency.

[31, 29] study the highly parallel query processingmechanisms for

analytical workloads. �ey decompose query execution into small

tasks and schedules tasks across a set of threads pinned in physi-

cal cores. Hologres takes a similar high parallel approach. But

Hologres uses a hierarchical scheduling framework, and the ab-

straction of work units reduces the complexity and overheads when

scheduling a large number of tasks in a multi-tenant scenario. Exe-

cution contexts and scheduling groups provide a powerful mecha-

nism to ensure resource isolation across di�erent tenants. [19] dis-

cusses a CPU sharing technique for performance isolation in multi-

tenant databases. It emphasizes an absolute CPU reservation that is

required inDatabase-as-a-Service environments. While, Hologres

only requires relative CPU reservation, which is enough to prevent

analytical queries form delaying serving queries.

HTAP Systems. In recent years, with the fast increasing needs for
more real-time analysis, we have seen a lot of research interest on

providing Hybrid Transactional/Analytical Processing (HTAP) so-

lutions over big data sets. [33] studies how the hybrid row and col-

umn format helps improve the databases’ performance for queries

with various data access patterns. Follow-up systems such as SAP

HANA [21], MemSQL [9], HyPer [23], Oracle Database [25] and

SQL Server [20, 28] support both transactional and analytical pro-

cessing. �ey usually use row formats for OLTP and column for-

mats for OLAP, but require converting the data between row and

column formats. Due to these conversions, newly committed data

might not be re�ected in the column stores immediately. On the

contrary, Hologres can store tables in both row and column tablets,

and each write into a table updates both types of tablets at the same

time. Hologres parallelizes writes to all tablets at the same time to

achieve high write throughput. In addition, HSAP scenarios have

much higher ingestion rates than transaction rates in HTAP sce-

nario (e.g., users usually generate tens of page view events before

making a purchase transaction), but usually with a weaker consis-

tency requirement. Hologres deliberately only supports atomic

write and read-your-write read, which achieves amuch higher read-

/write throughput by avoiding the complex concurrency control.

[32] studies task scheduling for highly concurrent workloads in

HTAP systems. For OLTP workloads, it adapts concurrency level

to saturate CPU as OLTP tasks include heavy usage of synchroniza-

tion. However, Hologres adopts a latch-free approach and avoids

frequent blocking. For OLAP workloads, it uses a concurrency hint

to adjust task granularity for analytical workloads, which can be in-

tegrated into Hologres to schedule execution contexts.

NewSQL. �e sharding mechanism adopted in Hologres is sim-
ilar to BigTable [16] and Spanner [18]. BigTable uses the abstrac-

tion of table tablet to facilitate range search over sorted data. Span-

ner is a globally-distributed key-value store supporting strong con-

sistency. �e data shard in Spanner is used as the basic unit for

maintaining data consistency with the existence of distributed data

replication. Unlike Spanner which is mainly used as an OLTP so-

lution, Hologres deliberately chooses to support a weaker consis-

tency model for HSAP scenarios to chase for better performance.

7. CONCLUSION & FUTURE WORK
�ere are a host of new trends towards a fusion of serving and

analytical processing (HSAP) in modern big data processing. In Al-

ibaba, we design and implement Hologres, a cloud-native HSAP

service. Hologres adopts a novel tablet-based storage design, an

execution context-based scheduling mechanism, as well as a clear

decoupling of storage/computation and reads/writes. �is enables

Hologres to deliver high-throughput data ingestion in real-time

and superior query performance for the hybrid serving and analyt-

ical processing. We present a comprehensive experimental study of

Hologres and a number of big data systems. Our results show that

Hologres outperforms even state-of-the-art systems that are spe-

cialized for analytical or serving scenarios.

�ere are a number of open challenges for even higher perfor-

mance in HSAP.�ese challenges include better scale-out mecha-

nism for read-heavy hotspots, better resource isolation of memory

subsystem and network bandwidth, and absolute resource reserva-

tion in distributed environments. We plan on exploring these issues

as part of future work.

3283

8. REFERENCES
[1] Actian vector. https://www.actian.com.

[2] Apache arrow. https://arrow.apache.org.

[3] Apache hdfs. https://hadoop.apache.org.

[4] Flink. https://flink.apache.org.

[5] Greenplum. https://greenplum.org.

[6] Hbase. https://hbase.apache.org.

[7] Hive. https://hive.apache.org.

[8] Intel avx-512 instruction set. https://www.intel.com/

content/www/us/en/architecture-and-technology/

avx-512-overview.html.

[9] Memsql. http://www.memsql.com/.

[10] Mysql. https://www.mysql.com.

[11] Pivotal greenplum. https://gpdb.docs.pivotal.io/

6-0/admin_guide/workload_mgmt.html.

[12] Postgresql. https://www.postgresql.org.

[13] Rocksdb.

https://github.com/facebook/rocksdb/wiki.

[14] Teradata. http://www.teradata.com.

[15] Tpc-h benchmark. http://www.tpc.org/tpch.

[16] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:

A distributed storage system for structured data. ACM Trans.
Comput. Syst., 26(2), June 2008.

[17] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and

R. Sears. Benchmarking cloud serving systems with ycsb. In

Proceedings of the 1st ACM Symposium on Cloud Computing,
SoCC 2010, New York, NY, USA, 2010. Association for

Computing Machinery.

[18] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.

Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,

and et al. Spanner: Google’s globally distributed database.

ACM Trans. Comput. Syst., 31(3), Aug. 2013.
[19] S. Das, V. R. Narasayya, F. Li, and M. Syamala. CPU sharing

techniques for performance isolation in multitenant relational

database-as-a-service. PVLDB, 7(1):37–48, 2013.
[20] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,

R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: Sql

server’s memory-optimized oltp engine. In Proceedings of the
2013 ACM SIGMOD International Conference on Management
of Data, pages 1243–1254, 2013.

[21] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe,

and J. Dees.�e sap hana database–an architecture overview.

IEEE Data Eng. Bull., 35(1):28–33, 2012.
[22] J.-F. Im, K. Gopalakrishna, S. Subramaniam, M. Shrivastava,

A. Tumbde, X. Jiang, J. Dai, S. Lee, N. Pawar, J. Li, and et al.

Pinot: Realtime olap for 530 million users. In Proceedings of
the 2018 International Conference on Management of Data,
SIGMOD 2018, New York, NY, USA, 2018. Association for

Computing Machinery.

[23] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap

main memory database system based on virtual memory

snapshots. In 2011 IEEE 27th International Conference on Data
Engineering, pages 195–206. IEEE, 2011.

[24] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching,

A. Choi, J. Erickson, M. Grund, D. Hecht, M. Jacobs, I. Joshi,

L. Ku�, D. Kumar, A. Leblang, N. Li, I. Pandis, H. Robinson,

D. Rorke, S. Rus, J. Russell, D. Tsirogiannis,

S. Wanderman-Milne, and M. Yoder. Impala: A modern,

open-source SQL engine for hadoop. In CIDR 2015, Seventh
Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 4-7, 2015, Online Proceedings.
www.cidrdb.org, 2015.

[25] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh,

M. Gleeson, S. Hase, A. Holloway, J. Kamp, T. Lee, J. Loaiza,

N. Macnaughton, V. Marwah, N. Mukherjee, A. Mullick,

S. Muthulingam, V. Raja, M. Roth, E. Soylemez, and M. Zait.

Oracle database in-memory: A dual format in-memory

database. In 2015 IEEE 31st International Conference on Data
Engineering, pages 1253–1258, 2015.

[26] A. Lakshman and P. Malik. Cassandra: A decentralized

structured storage system. SIGOPS Oper. Syst. Rev., 44(2),
Apr. 2010.

[27] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver,

L. Doshi, and C. Bear.�e vertica analytic database: C-store 7

years later. PVLDB, 5(12):1790–1801, 2012.
[28] P.-r. Larson, A. Birka, E. N. Hanson, W. Huang,

M. Nowakiewicz, and V. Papadimos. Real-time analytical

processing with sql server. PVLDB, 8(12):1740–1751, 2015.
[29] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven

parallelism: A numa-aware query evaluation framework for

the many-core age. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, SIGMOD
2014, New York, NY, USA, 2014. Association for Computing

Machinery.

[30] Y. Mao, E. Kohler, and R. T. Morris. Cache cra�iness for fast

multicore key-value storage. In Proceedings of the 7th ACM
European Conference on Computer Systems, EuroSys 2012,
New York, NY, USA, 2012. Association for Computing

Machinery.

[31] J. M. Patel, H. Deshmukh, J. Zhu, N. Potti, Z. Zhang,

M. Spehlmann, H. Memisoglu, and S. Saurabh. Quickstep: A

data platform based on the scaling-up approach. PVLDB,
11(6):663–676, 2018.

[32] I. Psaroudakis, T. Scheuer, N. May, and A. Ailamaki. Task

scheduling for highly concurrent analytical and transactional

main-memory workloads. In Proceedings of the Fourth
International Workshop on Accelerating Data Management
Systems Using Modern Processor and Storage Architectures
(ADMS 2013), number CONF, 2013.

[33] R. Ramamurthy, D. J. DeWitt, and Q. Su. A case for fractured

mirrors. In Proceedings of the 28th International Conference on
Very Large Data Bases, page 430–441. VLDB Endowment,
2002.

[34] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk,

V. KulandaiSamy, J. Leenstra, S. Lightstone, S. Liu, G. M.

Lohman, et al. Db2 with blu acceleration: So much more than

just a column store. PVLDB, 6(11):1080–1091, 2013.
[35] M. Stonebraker and A. Weisberg.�e voltdb main memory

dbms. IEEE Data Eng. Bull., 36(2):21–27, 2013.
[36] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and

D. Ganguli. Druid: A real-time analytical data store. In

Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD 2014, New
York, NY, USA, 2014. Association for Computing Machinery.

[37] M. Zukowski and P. A. Boncz. Vectorwise: Beyond column

stores. IEEE Data Eng. Bull., 35:21–27, 2012.

3284

