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ABSTRACT
Classification techniques are increasingly adopted for qual-
ity control in manufacturing, e. g., to help domain experts
identify the cause of quality issues of defective products.
However, real-world data often imply a set of analytical
challenges, which lead to a reduced classification perfor-
mance. Major challenges are a high degree of multi-class
imbalance within data and a heterogeneous feature space
that arises from the variety of underlying products. This
paper considers such a challenging use case in the area of
End-of-Line testing, i. e., the final functional test of com-
plex products. Existing solutions to classification or data
pre-processing only address individual analytical challenges
in isolation. We propose a novel classification system that
explicitly addresses both challenges of multi-class imbalance
and a heterogeneous feature space together. As main contri-
bution, this system exploits domain knowledge to systemat-
ically prepare the training data. Based on an experimental
evaluation on real-world data, we show that our classifica-
tion system outperforms any other classification technique in
terms of accuracy. Furthermore, we can reduce the amount
of rework required to solve a quality issue of a product.
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1. INTRODUCTION
Manufacturing companies increasingly apply data-driven

classification techniques to enhance tasks for product qual-
ity control [23, 38]. However, the characteristics of many
real-world manufacturing data imply several analytical chal-
lenges that have a negative effect on the classification per-
formance. For instance, real-world data usually contain a
multiplicity of class labels that occur in an imbalanced way
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(multi-class imbalance) [16, 22, 36, 41]. Many learning algo-
rithms tend to ignore the class labels that occur less fre-
quently. In addition, underlying data often represents het-
erogeneous product variants with different physical proper-
ties [17, 38]. This increases the heterogeneity in the feature
space, e. g., the value ranges representing certain class pat-
terns differ among individual product variants. This finally
makes it hard to detect clearly distinguishable patterns [18].

These challenges may be exemplified by a real-world use
case we have developed at Daimler Truck AG. The use case
comes from the area of End-of-Line (EoL) testing of assem-
bled powertrain aggregates, e. g., engines. EoL testing con-
stitutes the final functional check of such products after as-
sembly. Thereby, product characteristics are tested based
on sensor signals, e. g., the oil consumption of an engine.
If sensor signals do not meet pre-defined tolerance limits, a
quality issue is assumed. Then, quality engineers manually
evaluate the sensor signals from the test bench and try to
identify the faulty product component that causes the qual-
ity issue, e. g., a turbo charger. This task is referred to as
fault isolation [21]. Operators replace the assumed faulty
component, and the product is tested again. However, even
experienced quality engineers need on average four attempts
to identify the correct faulty component [17].

By considering the faulty components as classes and the
sensor signals as features, we can transform fault isolation
into a classification problem. This may help quality en-
gineers and operators to determine the cause of a quality
issue in a faster way by automatically recommending the
most likely faulty product components. Assembled power-
train aggregates are composed of numerous individual com-
ponents. Each of these components corresponds to one par-
ticular class label in the data. The majority of these class la-
bels occur in only a small number of data samples, leading to
a high degree of multi-class imbalance. Furthermore, pow-
ertrain aggregates come in diverse product variants. This
product variety leads to a heterogeneous feature space.

Various research communities work on the design and op-
timization of algorithms for machine learning and data en-
gineering. In a previous study, we have evaluated several
common algorithms to see if they are suitable to meet the
analytical challenges of our use case [18]. This mainly in-
cluded algorithms for sampling, feature selection, binariza-
tion, and classification. The main conclusion of this study
is that most of these algorithms are suitable to mitigate the
negative effects of one particular analytical challenge. How-
ever, they worsen the effects of other challenges. Finally,
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the application of these algorithms that are tailored to sin-
gle challenges even reduces prediction performance. Thus,
we argue that a classification system has to consider different
analytical challenges and their mutual influences together.

In this paper, we propose a novel classification system that
addresses both a multi-class imbalance and a heterogeneous
product and feature space. In contrast to related work, we
do not optimize or enhance any sophisticated algorithms.
Instead, we make explicit use of knowledge that is available
in the domain at hand to systematically prepare the training
data and to mitigate the effects of the addressed challenges.
Thereby, we make the following main contributions:

• We advance the understanding of classification tasks
for quality control and fault isolation in manufactur-
ing by providing insights into real-world data charac-
teristics that represent obstacles for classification algo-
rithms.We thereby bring attention back to analytical
challenges of small data in the current big data era.

• We propose a design alternative for a classification sys-
tem that effectively addresses these analytical chal-
lenges. The major contribution is that we explicitly
use domain knowledge from a product hierarchy to seg-
ment the training data set into several sample subsets.
Thereby, each subset corresponds to one product group
with technically similar product variants. Hence, the
sensor signals and thus the feature space within one
sample subset are much more homogeneous. Further-
more, we discuss metrics to obtain information about
the class distribution within the resulting sample sub-
sets. Our system uses these metrics to come up with
informed decisions how to further partition the sub-
sets, thereby addressing multi-class imbalance.

• We discuss results of an evaluation of our classification
system based on its application to the data of the EoL
testing use case. The major outcome is that our system
outperforms any baseline solution. It shows a higher
prediction performance in terms of accuracy. Further-
more, it reduces the number of rework attempts that
are required to solve a quality issue. In addition, we
discuss generality issues, i. e., how our approach may
be applied to other use cases than EoL testing.

The remainder of this paper is structured as follows: In
Section 2, we detail the analytical challenges that are preva-
lent in real-world manufacturing data. In Section 3, we dis-
cuss related work. Section 4 describes our novel classifica-
tion system. Section 5 discusses the results of our evaluation.
Finally, we conclude and list future work in Section 6.

2. ANALYTICAL CHALLENGES
Fault isolation in manufacturing may typically be mapped

to a single-label multi-class classification. Each observation,
i. e., quality issue, is associated with exactly one of C > 2
class labels ci ∈ C = {c1, . . . , cC} that correspond to the
possibly faulty product components [18]. We train a classi-
fier M on a historical data set X with N samples (xt, yt).
Each xt is an element of an M -dimensional feature space
F = {f1, . . . , fM}. The sensor signals sk ∈ S = {s1, . . . , sS}
from the EoL test bench are part of F , i. e., S ⊂ F . yt rep-
resents the target class label ci associated with xt.

In our previous study, we derived analytical challenges
for manufacturing data [18]. The first challenge is that the
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Figure 1: Class distribution for sample set X . The
grey boxes represent the histogram and the red line
the density function of the class distribution.

sample set X is of small size (C1), i. e., it only contains
N = 1.050 samples with 84 classes ci and 115 features fm.
Further challenges are a multi-class imbalance (C2) and the
heterogeneous product portfolio that increases the hetero-
geneity in the feature space F (C3). Our previous study
reveals that many existing algorithms for sampling, bina-
rization, feature selection, and classification can cope with a
small amount of data (C1). However, they still struggle es-
pecially with the combination of multi-class imbalance (C2)
and heterogeneous product portfolio (C3) [18]. This is the
reason why the approach we propose in this paper addresses
challenges C2 and C3. In the following, we analyze these two
challenges in more detail compared to our previous study.

2.1 Multi-Class Imbalance
Figure 1 shows the distribution of all 84 classes (y-axis)

with the amount of corresponding samples (x-axis). Most
classes have fewer than 10 samples (cf. peak on the left),
while only a few classes have more than 40 samples (cf. right
side). The top 5 classes together are contained in 29% of all
samples in X , where each individual class has a compara-
tively high share of at least 4%. We denote such top classes
as majority classes c+i and their samples as majority sam-
ples X+. Each of the remaining 79 classes individually has a
rather low share of samples, but all together are represented
by 71% of the samples. We denote them as minority classes
c−i that are represented by minority samples X−.

This uneven class distribution poses a multi-class imbal-
ance problem. Most classification algorithms tend to ignore
minority samples X−. This is because they try to maximize
accuracy by predicting everything to be one of the major-
ity classes c+i . Hence, the resulting classifier M is biased
towards the majority classes c+i [14]. We however require
a classifier M that provides a balanced degree of accuracy
for both the minority and majority classes. In a worst-case
scenario, we are otherwise only able to predict 5 majority
classes c+i , while the 79 minority classes c−i are ignored.

2.2 Heterogeneous Product Portfolio
The samples in our set X describe a variety of prod-

uct variants, which differ in their technical specification.
The manufacturing domain groups products with technically
similar characteristics into product groups and organizes
them in a product hierarchy. Figure 2 shows the product
hierarchy for the engines of our use case. The first hier-
archy level differentiates engines according to their series,
i. e., whether they are heavy-duty or medium-duty engines
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Figure 2: Product hierarchy and respective num-
bers of samples N , classes C and sensor signals S for
different product groups in the sample set X .

(HDE, MDE). Level 2 divides these two groups into differ-
ent engine types, e. g., group OM934 comprises four-cylinder
MDEs, while OM936 comprises six-cylinder MDEs. The
bottom level describes engine models that further specify
the components of an engine. For example, to measure the
oil level, group 936980 has a digital component, while group
936910 has an analog oil dipstick. The inherent product
variety leads to the following three issues for classification.

(C3.1) Missing features: Some sensor signals sk are
only measured for certain variants. For example, each cylin-
der of an engine delivers one particular sensor signal sk. So,
product variants in group OM934 comprise four sensor sig-
nals for cylinders, while six-cylinder variants in the group
OM936 comprise two additional signals. The data structure
of the sample set X contains a column for each of the over-
all 72 sensor signals. So, a sample of a four-cylinder variant
has six columns for cylinders, whereas two of these columns
do not contain any value (i. e., “NA”). This issue leads to
several missing feature values in the whole sample set X . In
our use case, about 17% of all values in X are “NA” values.
To train a classifierM, the missing values must be imputed
or removed. However, we then either create artificial values
for some features fm that have no technical causality to a
particular product variant, or we remove features that may
characterize a specific class ci. For the group OM934 with
four cylinders, imputing values would mean that we generate
artificial sensor signals sk for the cylinders No.5 and No.6
that are however physically not available. By removing the
sensor signals sk for cylinders No.5 and No.6, we lose infor-
mation for the group OM936 with six cylinders. Without
these two sensor signals, it is likely that no error patterns
for the cylinders No.5 and No.6 exist anymore in the data.
(C3.2) Sub-concepts: For different product variants,

the same class ci may be defined by the same features, but
with different value ranges. Hence, a classifierM may have
to learn multiple concepts for a single class. This even re-
duces the number of samples that is covered by each concept.
This challenge is called sub-concepts in literature [16, 36].
Figure 3 shows an artificial data set with two example fea-
tures and two classes. For example, the figure shows concept
B for product group OM936 with six-cylinder variants and
sub-concept B′ for product group OM934 with four-cylinder
variants. Both B and B′ describe patterns for class star with
the same features f1 and f2. However, B is characterized by
low f1 and medium f2 values, while samples of B′ have high
f1 and low f2 values. While there is a sufficient number of
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Figure 3: Illustration of analytical challenge C3.2
with two classes circle and star. Rectangles define
the actual concepts, i. e., the decision rules.

samples for concept B, sub-concept B′ is only represented
by three minority samples of class star. This lack of repre-
sentative samples in B′ may cause a learning algorithm to
neglect the three minority samples and thus the whole sub-
concept B′. The feature ranges for B′ are then assigned to
the wrong concepts A or A′ characterizing class circle.
(C3.3) Class membership: Not all product components

are used throughout all product variants. For instance,
cylinders No.5 and No.6 are only available in six-cylinder
engines, but not in four-cylinder variants. Therefore, not
all classes ci are relevant for all product variants. We refer
to this as class membership problem. A classifier M might
recommend a faulty component that is not part of the rele-
vant product. This leads to useless recommendations, which
even reduces user acceptance of the classification system.

3. RELATED WORK
The first group of related work is associated to imbal-

anced learning, where numerous methods are summarized
in review articles [11, 14–16, 26, 36]. However, the reviews
show that most techniques from imbalanced learning are
designed for two-class problems and are hence less effective
for multi-class tasks [46]. Most solutions firstly use class de-
composition schemes such as One-vs-All (OvA) to convert a
multi-class problem into several two-class problems. Then,
they work with two-class imbalance techniques to balance
each binary sub-problem [43]. However, our previous study
shows that such decomposition schemes reduce prediction
performance, because they even increase issues with imbal-
ance and with sub-concepts (C2 and C3.2) [18].

The few exceptions that explicitly deal with multi-class
imbalance are cost-sensitive techniques that consider costs
as penalty of different types of misclassification [11,16,36,43]
[11, 16, 43]. One difficulty with such techniques is that the
real costs are often unknown or hard to calculate for a given
problem [15, 36]. In addition, cost-sensitive techniques are
often limited to avoiding misclassification of minority classes
c−i . This is because literature assumes that misclassification
of minority classes is more costly. In applications such as
detecting the type of cancer, this is welcome. In manu-
facturing, the misclassification costs are based on monetary
costs of materials and the time taken by humans to complete
a task. However, there is no clear dependency between mon-
etary costs and the number of samples per class. In a worst
case, majority classes c+i may have higher monetary costs
than minority classes c−i . Thus, cost-sensitive techniques
would focus on majority classes and ignore minority classes.
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The second group of related work considers the missing
feature problem (C3.1). One approach uses ensembles that
employ random subspace selection [28,30]. The essence is to
generate a large number of base learners Lj , while each Lj

is trained with a random subset of features from the feature
space F . To classify a new sample xt with missing features,
only those base learners Lj trained with the features that
are available in xt are used. However, Polikar et al. [30]
show that this paradigm has two assumptions: First, the
set of features in F is partly redundant, so that the classifi-
cation problem is solvable with a real subset of the features.
Second, this redundancy is distributed randomly over the
features in F . Our previous study shows that the concepts
in our sample set X are rather complex, since only 10 out
of 115 features were rated as redundant by feature selection
techniques [18]. So, the assumptions for these approaches
to random subspace selection do not hold for our case.

The next group uses hierarchical classification to ensure
class membership (C3.3) [33]. The assumption is that multi-
ple classes have shared characteristics and relationships that
may be used to organize the classes in a tree-like class hi-
erarchy. We can now train a classifier Ml for each level l.
Based on the prediction of the classifier Ml, we apply the
next classifierMl+1 one level lower. We can repeat this un-
til we recognize our faulty components, i.e., classes ci, on the
leaf nodes. However, in our scenario, there are relationships
between classes ci and product groups in the sense that a
product group restricts the subset of classes, i.e., the com-
ponents that may be part of certain products. However, the
classes themselves do not have relationships between each
other. Hence, we cannot build a class hierarchy that may
be used for classification as described above.

In summary, numerous techniques exist that address sin-
gle challenges in isolation. However, these techniques imply
other negative effects to classification. Our key statement is
that a classification system has to consider all relevant chal-
lenges as well as their mutual influences. Here, we opt for
an approach that explicitly uses available domain knowledge
to systematically prepare the training data. Related ap-
proaches use domain knowledge to build logical rules or se-
mantic descriptions of causal dependencies between several
features or between features and class labels (e. g., [35,40]).
These rules may be used for feature engineering or directly
for classification. However, no appropriate knowledge about
causalities among features or between features and classes
exists in the domain of EoL testing. In contrast, any man-
ufacturing company possesses domain knowledge in terms
of a documentation of a company’s product family, e. g.,
a product hierarchy [1]. A product hierarchy is not suit-
able to transform the feature space or to build classifica-
tion rules. Instead, we may use the clearly distinguishable
product groups described by the hierarchy to partition the
sample set X into several sample subsets. In the following
section, we describe how this and further steps to prepare
the data helps to address both challenges C2 and C3 at once.

4. CLASSIFICATION SYSTEM
Figure 5 shows our classification system that addresses

both analytical challenges C2 and C3 together. As men-
tioned before, the core idea is to exploit available domain
knowledge in a training set preparation phase (4.1). Thereby,
we partition the whole sample set X into several subsets in
which the negative effects of analytical challenges C2 and C3
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tation according to product hierarchy (SPH), and
(b) class partition according to imbalance (CPI).

are mitigated. Figure 4 depicts this decomposition strategy.
Afterwards, we describe how this strategy affects the predic-
tive modeling, where we train multiple classifiers M for the
sample subsets and combine the results of these classifiers
to obtain a final recommendation list Re (4.2).

4.1 Training Set Preparation
The main step of the training set preparation and thus the

major contribution of our classification system is the seg-
mentation according to the product hierarchy (SPH) (4.1.1).
Here, we use the knowledge from this hierarchy to divide our
sample set X according to individual product groups and to
obtain sample subsets with technically similar product vari-
ants. So, the sensor signals sk within each subset are more
homogeneous, i. e., SPH addresses challenge C3. The next
step is a class partitioning according to imbalance (CPI) ad-
dressing challenge C2 (4.1.2). Here, we discuss the kinds of
metrics that may be used to obtain relevant information on
the class distributions of the sample subsets resulting from
the preceding SPH. We use these metrics to make informed
decisions on whether and how the subsets should be divided
further among majority and minority classes. Finally, we
briefly describe how to further pre-process the resulting sam-
ple subsets (4.1.3) for the subsequent training phase.

4.1.1 Segmentation according to Product Hierarchy
The standard design principle for classification is that a

classifier M is trained on the entire sample set X , i. e., on
all samples available in the root “Engine” of the product
hierarchy shown in Figure 2. In our approach, we how-
ever divide the sample set X into several subsets according
to lower levels of the product hierarchy. For the hierarchy
level “Type” as example, we generate subsets X(l,j) for each
product group from OM470 to OM936, where j indexes the
product group on the hierarchy level l. For reasons of sim-
plification, we use the notation Xj for a product group j on
a certain level l if the level is obvious from the context.

By considering only technically similar product variants
in one sample subset Xj , we reduce the heterogeneity in
the sensor signals sk and hence mitigate the missing fea-
ture problem (C3.1). For example, by considering the four-
cylinder product group OM934 on its own, the samples in
the relevant subset Xj still have sensor signals for cylinders
No.1 to 4. However, Xj does not contain signals for cylin-
ders No.5 and 6, which actually do not exist in this product
group. As Xj now comprises samples from similar product
variants, we also reduce the variety in the value ranges of
sensor signals sk. This leads to a decreased number of sub-
concepts (C3.2). Furthermore, each subset Xj does not con-
tain any classes anymore that are irrelevant for its product
group, e. g., cylinders No.5 and 6 for group OM934 (C3.3).
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It is critical to select a proper hierarchy level l when per-
forming the segmentation into sample subsets for individual
groups j. The deeper we go into the product hierarchy, the
more we reduce the heterogeneity in the feature space. How-
ever, if the chosen level l is too deep, the number of samples
for a particular group j may be too small to train a classifier.
For example, the group 471902 at the level “Model” has only
twelve samples to characterize nine classes ci. Thus, almost
every class in the group 471902 is represented by only one
sample, so that no reasonable decision rules can be learned.
Other groups on the same hierarchy level may have enough
samples though. For example, the group 936980 has a suf-
ficient number of 309 samples for its 43 classes. To handle
these different product groups at a specific hierarchy level l,
we introduce primary and surrogate sample subsets.

Primary sets contain samples of product groups that are
located at a particular deeper level in the product hierarchy,
i. e., a level where the groups are technically similar as much
as possible. This way, we may mitigate the effects of chal-
lenge C3 in these primary sample sets to the greatest extent
possible. In our product hierarchy shown in Figure 2, this is
the third level “Model”. Here, we may use the 309 samples
of the group 936980 as a primary set. However, the sib-
ling group 471902 does not contain enough samples to train
a classifier. For such groups, we introduce surrogate sam-
ple sets that are located at least one hierarchy level higher.
As a result, a surrogate set is less specific, but it contains
more samples. For instance, we use group OM471 at level
“Type” as a surrogate to represent group 471902 one level
lower. Group OM471 contains 130 samples, which is enough
to train a reasonable classifier. We later use this classifier
for group OM471 as a surrogate to predict the class for new
samples that belong to group 471902 (cf. Section 4.2).

To create primary and surrogate sample sets, we traverse
the product hierarchy from the bottom to the top. We first
specify the maximum depth (maxd) of the hierarchy to be
examined. In our use case, we start the hierarchy traver-
sal at the third level “Model”, i. e., we set maxd to 3. We
then intend to create a primary sample set for each product
group j at the selected level maxd. Therefore, we check each
group j at this level l = maxd to see whether the primary
sample subset X(l,j) fulfills the requirements to train a clas-
sifier M(l,j). However, it may happen that X(l,j) exhibits

an unfavorable sample distribution after SPH. For example,
a certain class in X(l,j) may now be characterized by only
a few samples. Hence, we use a threshold for a minimum
number of samples for a class. If a class has fewer samples
than this threshold, we assume that no meaningful pattern
can be learned for this class. So, we remove this class and its
samples from the subset X(l,j). For our use case, we have set
the threshold to 2 to preserve as many classes as possible.
This is because many classes show a low number of samples.

Afterwards, we check with two criteria whether it is rea-
sonable or not to train a classifierM(l,j) for a subset X(l,j).
The first criterion ensures that X(l,j) contains at least two
classes. With the second criterion, we assure that the loss of
information due to the previous removal of classes with too
few samples is not higher than another threshold parame-
ter. We check that the removal of classes does not reduce the
number of samples in X(l,j) by more than, e. g., 25%-points.
Otherwise, the risk increases that the loss of information
overcompensates the positive effect of segmentation.

If a sample subset X(l,j) meets both criteria, it becomes
a primary set. If it does not meet at least one of these two
criteria, we first visit the parent node of group j one level
higher, i. e., l = maxd − 1, and check whether its sample
set meets both criteria. If this is the case, we consider the
sample set of this parent node as a surrogate set for the
group j. Otherwise, we further traverse the hierarchy along
the path to the root node. We do so until we are able to
represent each group j by either its primary sample set at
level maxd or by a surrogate set at a higher level.

Note that already this SPH reduces the class imbalance to
a certain degree (C2). Figure 6 shows example distributions
of the most frequent classes ci (error codes A to G) after
the segmentation into the groups OM934 (X1) and OM470
(X2). Only error code A occurs in both groups OM934 and
OM470. If we consider both groups together, i. e., without
performing the segmentation, this leads to a significant im-
balance. Error code A is then the most common class with in
total 61 samples. All other classes comprise between 5 and
16 samples only. Our SPH allows us to consider the groups
OM934 and OM470 separately. Therefore, error code A has
only 10 samples in OM470 and is thus not a dominant class
anymore for this group. So, the segmentation positively in-
fluences the class imbalance for group OM470 (C2).
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4.1.2 Class Partitioning according to Imbalance
In the sample set of group OM934 shown in Figure 6

however, error code A remains a majority class c+i with 51
samples. In fact, about 46% of our primary and especially
surrogate sample subsets contain such very dominant major-
ity classes c+i . This still leads to a distinct class imbalance
(C2). We hence perform a class partitioning to create dis-
joint majority subsets X+

j and minority subsets X−j for each
subset Xj that shows a distinct degree of class imbalance (cf.
Figure 4(b)). For the group OM934 as example, we sepa-
rate error code A from the remaining codes, i. e., we create a
majority subset X+

1 with all samples belonging to error code
A and a minority subset X−1 with all other samples (cf. Fig-
ure 6). This way, we significantly reduce the class imbalance
in the subsets X+

1 and X−1 (C2). Thereby, we ensure that
learning algorithms can recognize the error codes B to D
within X−1 , which otherwise would possibly be ignored due
to the dominance of error code A in the subset X1.

Prior to a class partitioning for a product group j, we
first decide whether there is a distinct class imbalance in the
subset Xj . For example, the group OM470 in Figure 6 does
not have a dominant imbalance so that no further partition-
ing is required. The group OM934, however, may benefit
from partitioning. The detector sub-component shown in
Figure 5(b) uses a statistical metric to make an informed
decision whether a sample subset Xj has to be partitioned
further or not. Afterwards, the divisor sub-component pro-
vides the necessary formalism how to appropriately partition
Xj into majority and minority sample subsets X+

j and X−j .
Detector : There is no consensus on proper statistical

metrics to determine the degree of class imbalance within
data [11]. For our use case, the metric should have a normal-
ized interval between 0 and 1, where the boundaries repre-
sent a total balance (0) or a total imbalance (1). This allows
us to directly compare the results of the metric between all
subsets Xj . It also makes it easier to parameterize the detec-
tor component, because we can define one global threshold
instead of parameterizing each subset Xj individually.

Cowell discusses several inequality metrics that meet our
requirement [9]. The most prominent metrics are the Hoover,
Theil, and Gini indexes. For our use case, we have tested
these three indexes, each with seven threshold values from
0.1 to 0.7 in 0.1-steps to decide whether a subset Xj shall
be partitioned or not. Finally, we opted for the Gini index,
because we got the highest prediction performance in terms
of accuracy with it. In addition, the domain experts of our
use case have rated both the way to calculate the Gini index
and its visualization using the Lorenz curve [9] as intuitive.

The Gini index of the samples in Figure 6 is about 0.28
for group OM470 and about 0.48 for group OM934. With
a threshold value of 0.3, we detect a distinct class imbalance
for group OM934. We divide the subset X1 in the next step
into the disjoint subsets X+

1 and X−1 . For OM470 with a
Gini index below 0.3, we do not perform a class partitioning.
Our tests with different threshold values for our use case
showed the best accuracy with a threshold of 0.3. Hence, we
use this threshold as a global parameter for all subsets Xj .
This threshold is rather low, because we usually have only a
few dominant classes with numerous samples in a subset Xj ,
while most other classes are more balanced within Xj .

Divisor : Similar to the Detector, we may use various
metrics to determine the point of intersection to partition a
set Xj into a majority set X+

j and a minority set X−j . The
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Figure 6: Class distribution after SPH (X1 and X2)
and after CPI (X+

1 and X−1 ). Error codes A to G rep-
resent the individual classes ci in the sample subsets.

result of such a metric has to be a numerical number, which
then acts as a threshold. Classes with more samples than
the threshold are placed in the majority set X+

j , and the

remaining ones in the minority set X−j . Typical examples of
metrics are the arithmetic mean or standard deviation. For
our use case, we have chosen the p-quantile Q(p). The major
reason is that Q(p) is the only of these metrics that allows
for a parameterization with p to tune it for an improved
prediction performance. We have tested different values for
p, i. e., we started with 0.6 and increased p to 0.9 in 0.1-steps.
Finally, we achieved the best performance with p = 0.8.

The calculation of Q(p) is based on the empirical cumula-
tive distribution function F (x) = p. Thereby, x is a number
of samples and p is the relative share of classes in a subset
Xj that are represented by x or less samples. Figure 7 shows
the results of F (x) for group OM934. For instance, F (13)
is 0.75, because three of four classes in X1 are represented
by 13 or less samples. Q(p) is calculated using the inverse
function of F (x), i. e., Q(p) = F−1(x). This means that
those classes in Xj that are represented by Q(p) or less sam-
ples cover a share of p of the class distribution of Xj . With
p = 0.75 for group OM934, we get Q(0.75) = 13, because
the value of F (13) is exactly 0.75. The idea is that we set a
value for p, calculate Q(p) for each subset Xj with a distinct
class imbalance, and then place all classes with Q(p) or less
samples in the minority subset X−j and the remaining classes

in the majority subset X+
j . This way, all minority subsets

X−j cover a share of close to p of all classes in the original
subsets Xj . This again motivates our choice for using Q(p)
instead of other metrics, as we may influence the relative
portions of majority and minority classes via parameter p.

The classes in our subsets Xj are distributed discretely,
so that we are not able to calculate continuous distribution
functions F (x). For group OM934, we have only three val-
ues F (9) = 0.25, F (13) = 0.75 and F (51) = 1. As we do
not have any x with F (x) = 0.8 for this group, we are not
able to calculate the 0.8-quantile Q(0.8). For this reason,
we approximate the discrete distribution function F (x) us-
ing linear interpolation, so that we are able to estimate the
number of samples x for any p. We use linear interpolation,
because it is efficient and simple to apply. In addition, we
do not require an exact result for Q(p), but only an estimate
about the number of samples to define a class as a majority
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class. The reason is that we finally apply Q(p) to each sub-
set Xj and that the class distribution of each Xj is discrete
as well. For group OM934 as example, we only require a
value of Q(p) between 13 and 51 samples to separate the
majority class from the minority classes.

As shown in Figures 6 and 7, the interpolated 0.8-quantile
for group OM934 is about 28. Statistically speaking, all
classes ci having 28 or less samples represent in total 80%
of the class distribution of group OM934. As mentioned
before, we consider Q(0.8) = 28 as a threshold. So, error
code A, which has more than 28 samples, is the only major-
ity class c+i and its samples are majority samples X+

1 . Error
codes B, C and D are minority classes c−i and their samples
are minority samples X−1 . As shown in Figure 6, all result-
ing subsets X+

1 , X−1 and X2 are much more balanced. CPI
reduces the Gini index from 0.48 for the subset X1 of group
OM934 to a value of 0.19 for X+

1 and to 0.11 for X−1 .
For the rest of the paper, we denote the different subsets

we have for product group j as X±j . Thus, a subset X±j
includes either the subset Xj in case no class partitioning
has been performed or X+

j and X−j in the other case.

4.1.3 Pre-processing
All subsets X±j must satisfy technical criteria, so that we

can apply learning algorithms to them. We distinguish two
tasks here, which are depicted in Figure 5, 1c.
Feature engineering : We remove sparse, zero- and near-

zero-variance features fm, as these can cause a classifierM
to fail [18, 24]. Then, we normalize continuous values and
perform one-hot encoding for categorical features [4].
Structural manipulation: Standard classification algo-

rithms require at least two classes to train a classifier M.
However, some majority subsets X+

j , e. g., subset X+
1 shown

in Figure 6, contain only one class. We treat such cases us-
ing the OvA binarization technique [11, 13]. Here, we first
add the minority subset X−j to its majority subset X+

j again.

Then, we re-label all minority classes c−i and their samples
in X−j to one combined “negative” class, and the single ma-

jority class c+i in X+
j to a “positive” class. We then may use

standard classification algorithms to train a binary classifier
for this combined and re-labeled sample subset.

4.2 Predictive Modeling
Predictive modeling includes a training and an application

phase. We first discuss how to train the classifiers Mj for
the sample subsets X±j (4.2.1). We then describe how to
classify new observations, i. e., new samples xt (4.2.2), and
show how to obtain a final recommendation list Re (4.2.3).

4.2.1 Create Ensembles Ej
We train an individual classifier Mj for each subset X±j .

Thereby, we are widely free in the choice of classification
algorithms. This is because we ensure that our subsets X±j
meet the requirements of standard algorithms, such as con-
taining a minimum number of classes. One restriction is
that an algorithm must be able to train probabilistic classi-
fiersMj . Probabilistic means that a classifier predicts a list
of classes with associated confidence values as probabilities
how sure the classifier is with its predictions. In addition,
the algorithms must be able to handle more than two classes,
since most of the subsets X±j contain multiple classes.

We recommend using ensemble procedures as classifica-
tion algorithms. The subsets X±j resulting after our prepara-
tion phase often contain many class labels, but a rather small
number of training samples and different kinds of noise. Our
previous study shows that Random Forest is useful to han-
dle such data characteristics [18]. This is because Random
Forest‘s integrated sampling method reduces the risk of over-
fitting despite the small number of training samples.

When training a classifier Mj for a product group j, we
have to distinguish between two cases: (1) sample subsets
that have been partitioned into majority and minority sub-
sets X+

j and X−j , as well as (2) subsets Xj that have not been
partitioned. In the first case, we train separate classifiers,
i. e., base learners, for each of the two subsets X+

j and X−j .

We denote L+
j as a majority base learner, which is trained

on a majority subset X+
j . Accordingly, we denote L−j as a

minority base learner being trained on X−j . Thus, the base

learners L+
j and L−j are independent of each other and re-

spectively tailored to predict either majority classes c+i or
minority classes c−i . By separately treating majority and
minority classes, we ensure that classification algorithms do
not ignore underrepresented minority classes.

For the group OM934 shown in Figure 6, we train a ma-
jority base learner L+

1 on the subset X+
1 , i. e., L+

1 is tailored
to predict error code A. Furthermore, we use X−1 to train
a minority base learner L−1 , which is able to predict error
codes B to D. The resulting classifier system has to be able
to predict all classes of a product group, e. g., all error codes
from A to D. Hence, we combine each pair of base learners
L+

j and L−j to an ensemble Ej . We store this ensemble Ej
in a model repository and tag it with the number j, so that
it is associated with product group j. Furthermore, we tag
Ej with the hierarchy level l of the sample subsets X±(l,j) to

indicate whether Ej is a primary or a surrogate ensemble.
In case l = maxd, it is a primary ensemble and we denote it
as E(maxd,j). If l = maxd − u, with u ≥ 1, we denote it as a
surrogate ensemble E(maxd−u,j). Other metadata stored for
ensembles in the model repository are, e. g., the number of
class labels and the Gini index of sample subsets X±(l,j).

In the second case, i. e., for sample subsets Xj that have
not been partitioned into majority or minority subsets, we
train one base learner Lj on the whole set Xj . For instance,
we train one base learner for group OM470 shown in Fig-
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ure 6 that is able to predict all four error codes A, E, F ,
and G. We also store such a base learner Lj as an ensemble
Ej in our model repository.

4.2.2 Classify New Samples xt

Given a new observation, we first determine the product
group j at the lowest hierarchy level maxd to which this
observation belongs. Then, we fetch the ensemble Ej from
the model repository. This ensemble is also tagged with its
hierarchy level l, indicating whether it is a primary ensemble
E(maxd,j) or surrogate ensemble E(maxd−u,j) for the group j.

We then pass the sample xt to the base learner(s) of the
fetched ensemble Ej . This way, we obtain a prediction for
each of the base learners in the form of a list Ye with the
length e. Ye contains the e most likely classes and ranks
them according to their confidence values. In case Ej is
composed of both a majority base learner L+

j and a minority

base learner L−j , we accordingly get two lists Y+
e and Y−e .

List Y+
e contains the predicted majority classes c+i , and Y−e

the predicted minority classes c−i . In case Ej has exactly one
base learner Lj , we obtain only one list Ye.

Figure 8 shows the application phase of our classification
system, i. e., the steps (e) and (f) shown in Figure 5 for an
example of a new failed EoL test xt. The underlying prod-
uct is a 934974 model at level maxd = 3 of our hierarchy.
Since no primary ensemble for 934974 is available in the
model repository at level 3, we fetch the surrogate ensemble
OM934 at level 2 (E2,1). We then pass the new sample xt as
input to both base learners L+

1 and L−1 . For L+
1 , we obtain

the list Y+
1 with one majority error code A and a confidence

value of 54.0%. The list Y−3 is the prediction of L−1 with the
three most likely minority error codes C, B, and D, whose
confidence values range between 13.8% and 55.0%.

4.2.3 Obtain Ranked List Re

In case of an ensemble that separately treats majority
and minority classes, we need to combine both lists Y+

e

and Y−e into one list Re. Several reviews discuss numer-
ous approaches to combine votes from different base learn-
ers [13,29,32,39,44]. However, all related approaches assume
that the base learners predict completely or partly the same

set of classes, i. e., the intersection of the sets of predicted
classes is not empty. In our approach, the two involved base
learners however predict disjoint sets of majority c+i and
minority classes c−i . Thus, our requirements differ from the
approaches discussed in literature, so that these combination
approaches are not applicable to our ensembles. Therefore,
we consider the combination of disjoint classes from different
base learners as an open research topic. For this reason, we
opt for a first naive approach that is easy to implement. In
most cases, the final recommendation list Re is a union of
the two lists Y+

e and Y−e with unchanged confidence values.
Nevertheless, we consider some special cases where we

scale a few of the original confidence values for certain classes.
In our use case, a minority class c−i within Y−e sometimes
has only a marginally higher confidence value than a ma-
jority class c+i within Y+

e . Figure 8 shows such an example
for the error codes A and B. Our interpretation is that the
whole system is indifferent between the involved minority
and majority classes. However, we typically assume a ma-
jority class to have higher confidence in probability values.
This is because samples of majority classes occur much more
often within the original sample set X . Thus, we place the
majority class above the minority class in the listRe. So, we
upscale the confidence value of the relevant majority class
and downscale the value of the minority class.

We consider only those cases where the difference in the
confidence values of relevant classes is less than 1.5%-points.
We use this low threshold, because we want to adjust the
original confidence values as little as possible. This ensures
that we do not distort the essential probabilistic statements
of the base learners. In Figure 8, this only applies to the
error codes A and B from the lists Y+

1 and Y−3 . In addition,
we only adjust the confidence values of classes whose values
are greater than the random probability of the respective
base learners. The random probability of a base learner is
one divided by the number of classes this base learner is
trained on. For example, the base learner L+

1 is trained on
two classes, i. e., one “positive” class for error code A and
one “negative” class for other error codes. So, the random
probability for error code A is 50%. The other base learner
L−1 is trained on the three error codes, B, C, and D, so that
the random probability for each error code is about 33%.
Thus, we adjust only the values for the error codes A and B,
because their confidence values are higher than their random
probability. This way, we only scale the confidence values
of the classes for which the base learner is more confident.
This further reduces the influence of our scaling.

We again opt for a straightforward approach to upscale
the confidence value of the majority class and downscale
the confidence value of the minority class. For error code
A, we increase the original confidence value of 54.0% by the
threshold value of 1.5%, i. e., by a factor of 1.015. So, we get
a scaled confidence value of about 54.8%. For the minority
class B, we reduce the confidence value by the same factor
of 1.015. So, we obtain an adjusted value of about 54.2%.
As a result, the adjusted confidence value of error code A is
greater than the one for B.

Finally, we rank the classes in descending order regarding
the scaled confidence values to generate the final recommen-
dation list Re. Then, we limit Re to the length e that is
appropriate for the given use case. In EoL testing, the list is
finally offered to operators. Thereby, they try to replace the
faulty components in the order as they are recommended in
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the list Re. It would overwhelm these operators if we offered
them a list with, e. g., 20 elements. So, we limit the list to
a reasonable number of elements, e. g., to at most 10.

In case an ensemble only uses one base learner and we
thus obtain only one list Ye, we may use this list as the final
output of the process shown in Figure 5.

5. EVALUATION
We have carried out an extensive evaluation of our clas-

sification system based on its application to the real-world
data of our use case. In the following, we discuss its potential
to mitigate the negative effects of the analytical challenges
illustrated in Section 2 (5.1). Afterwards, we report the
results of our experimental evaluation (5.2). Then, we illus-
trate the real business impact of the proposed approach and
how it improves the process of EoL testing (5.3). Finally,
we discuss issues regarding the generality of our approach
and ways to automate its parameterization (5.4).

5.1 Effects on Analytical Challenges
Table 1 summarizes how the two essential steps of our

classification system affect the analytical challenges. It de-
picts these effects on the challenges separately for (a) SPH
and (b) the subsequent CPI. To underpin these discussions,
Table 2 reports statistical metrics that exemplify the effects
on the challenges. We have collected these metrics by ap-
plying our approach to the real-world data of our use case.

SPH splits the original sample set X into 26 subsets Xj .
These are 21 primary subsets on level 3 of our product hi-
erarchy, and five surrogate subsets one level higher. Each
subset Xj contains on average 54 samples and eleven classes.
This reduces the mean number of samples per class from
about 12 samples in the original sample set X to now about
5 in each subset Xj . Thus, we reduce the already small
amount of representative samples in each subset (C1). This
usually increases the risk of overfitting when applying learn-
ing algorithms [16,18,25]. Thus, we rate the effect of SPH on
C1 as negative. As discussed in Section 4.2.1, this negative
effect may though be mitigated in the later training phase by
applying ensemble techniques for classification that are able
to deal with smaller data sets, e. g., Random Forest [7, 18].
In general, many methods exist that can cope with challenge
C1. However, only little is known how to tackle especially
the combined effects of challenges C2 and C3 (cf. Section 3).
This is the reason why our approach admits negative effects
on C1 to mitigate the effects on C2 and C3.

SPH reduces the Gini index from 55% in the original sam-
ple set X to an average of 28% among all sample subsets Xj .
This already constitutes a significant reduction of the class
imbalance. A detailed analysis reveals that SPH primarily
reduces the class imbalance of the 21 primary subsets to
this significant degree. The five surrogate subsets have Gini
indexes between 30% and 50%. This is less than the Gini
index of 55% of the original sample set X . However, a Gini
index between 30% and 50% for the five surrogate subsets
still represents a remarkable class imbalance. Hence, we rate
the influence of SPH on challenge C2 as partly positive.

The main advantage of SPH is apparent in its effect on
challenge C3. SPH reduces the heterogeneity in the sensor
signals sk, since each subset Xj contains technically similar
product variants. Firstly, we reduce the number of sensor
signals sk from 72 in the original sample set X to an av-
erage of about 41 in the subsets Xj . Thereby, we remove

Table 1: Effect of SPH and CPI on analytical chal-
lenges: ++ Positive; + partly positive; 0 none sig-
nificant; − partly negative; −− negative effect.

Meets Analytical Challenge
C1 C2 C3.1 C3.2 C3.3

(a) SPH −− + ++ ++ +
(b) CPI − + 0 0 0

Table 2: Numbers of samples xt, classes ci, sensor
signals sk, the portion of missing values (“NA”) in
these sk, and the Gini index for the original sample
set X , as well as for the subsets Xj and X±j after (a)
SPH and (b) the subsequent CPI.

Dimension Original X (a) SPH (b) SPH ∧ CPI

∅ of 26Xj ∅ of 14Xj ∧ 12X±j
Samples xt 1050 54 37
Classes ci 84 11 7
Sensor signals sk 72 41 41
“NA” in sk 17% 5% 5%
Gini index 55% 28% 21%

those sensor signals from a subset Xj that are not measured
for the product variants of group j. For example, reconsider
the four-cylinder variants in group OM934, where the sam-
ple set X originally contained sensor signals for six cylinders
(cf. Section 2.2). SPH removes the sensor signals for the two
cylinders that are not part of the four-cylinder variants in
group OM934. A detailed analysis shows that this signifi-
cantly reduces the number of missing sensor values. In our
use case, about 17% of the values in the original sample set
X were missing values, i. e., “NA”-values. SPH reduces this
to an average of about 5% in the subsets Xj . Thus, we rate
the effect of SPH on challenge C3.1 as positive.

Furthermore, we reduce the variety in the value ranges of
sensor signals within a subset Xj (C3.2). This reduces the
number of sub-concepts each classifierMj has to learn. For
example, reconsider the concepts and sub-concepts shown
for groups OM934 and OM936 in Figure 3. Originally, a
combined classifier being applicable to both product groups
had to learn all four concepts A, B, as well as A′ and B′.
Especially sub-concept B′ was only represented by three mi-
nority samples of all 60 samples. Hence, learning algorithms
would usually neglect these three minority samples and thus
the whole sub-concept B′. After SPH, we train two sepa-
rate classifiers on two separate sample subsets for the groups
OM934 and OM936. The subset for group OM936 only
contains the 47 samples to characterize concepts A and B.
The subset for group OM934 only contains the 13 samples
for sub-concepts A′ and B′. So, the relative share of the
three minority samples for sub-concept B′ increases within
this subset for group OM934. Thus, it is more likely that
learning algorithms do not neglect the three minority sam-
ples and are thus able to learn a pattern for sub-concept B′.
So, we rate the effect of SPH on challenge C3.2 as positive.

In a similar way, the subsets Xj do not contain error
codes that are irrelevant for the associated product groups j
(C3.3). For instance, the subset of group OM934 of four-
cylinder variants does not contain class labels for cylinders
No.5 and No.6 anymore. So, SPH ensures consistent pre-
dictions and thus increases user acceptance. However, SPH
may also eliminate a few error codes in the sample subsets
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Xj that are actually relevant for the product group j. In
particular, we have at least one error code in each subset
Xj that only occurs in one single sample in this subset. As
discussed in Section 4.1, we remove such error codes and
their single samples. SPH hence overreaches itself in solving
the class membership problem, i. e., it removes few relevant
classes from a sample subset Xj . So, we rate the effect of
SPH on challenge C3.3 as partly positive.

12 of the 26 sample subsets Xj resulting after SPH have
a Gini index higher than 30%. The subsequent CPI hence
partitions these 12 subsets into majority subsets X+

j and

minority subsets X−j . Afterwards, all sample subsets X±j
contain on average 37 samples and 7 classes, i. e., we again
have about 5 samples per class as before the CPI. Note that
Table 2 reports average numbers among both the 14 subsets
Xj that have not been partitioned and the 12 majority and
12 minority subsets. A more detailed analysis reveals that
the 12 majority subsets X+

j contain on average 54 samples
and 4 classes. The average values for the minority subsets
X−j are however 44 samples and 12 classes. For these mi-

nority subsets X−j , the number of representative samples for
each class gets further reduced. Nevertheless note that this
only affects 12 of the 26 previous subsets Xj . So, we rate
the effect of CPI on challenge C1 as partly negative.

In addition, CPI further reduces the average value of the
Gini index for all resulting sample subsets X±j to about 21%.
This additional reduction demonstrates a positive effect on
challenge C2 of a class imbalance. Nevertheless, the reduc-
tion from 28% after SPH to now 21% is rather moderate,
since CPI only partitions 12 of the 26 subsets Xj . So, we
rate this effect on C2 as partly positive. Note that CPI does
not affect the number and nature of sensor signals. Hence,
there is no effect on challenges C3.1 to C3.3.

5.2 Experimental Evaluation
Now we report the evaluation results for our classifica-

tion system. We describe the experimental set-up (5.2.1),
discuss how our classification system increases classification
accuracy (5.2.2) and to what extend it reduces the number
of ineffective rework attempts in EoL testing (5.2.3).

5.2.1 Experimental Set-Up
We use R 3.5.0 as a development environment for data

pre-processing and for training the classifiers Mj [31]. For
details about the hardware and software set-up, we refer to
our previous study [18]. Here, we focus on a description of
methodological aspects regarding the evaluation.

Training and test set: We split the sample set X into a
training set with 750 samples and a test set with 300 sam-
ples. We have made sure that both sets contain all 84 classes
and resemble the class distribution of the overall 1050 sam-
ples. We apply the training set preparation, i. e., steps a,
b and c in Figure 5, on the 750 samples of the training set
to get the corresponding sample subsets X±j . Afterwards,

we apply the training phase (step d) for each subset X±j to
create the respective ensembles Ej . We then carry out the
application phase, i. e., steps e and f , for each of the 300
samples in our test set to evaluate the ensembles Ej .

Parameterization: We parameterize our classification
system as described throughout Section 4. For instance, we
use a 0.8-quantile to split a sample subset into majority and
minority subsets. We then apply Random Forest on each
subset X±j using the same hyper-parameters as described

in our previous study [18]. This allows us to compare the
effects of our new approach with the previous results.

Evaluation: To evaluate the prediction performance, we
report two performance scores. The first score represents
accuracies for lists Re of different lengths e. We classify
the test samples to obtain a list Re for each sample. A
correct classification means that the real class label yt of a
test sample is contained at any of the first e positions of the
associated list Re. Accuracy at e (A@e) then measures the
relative portion of such correct classifications among all test
samples. Thus, we have a dedicated accuracy value A@e
for each length e of the list Re. In our use case of EoL
testing, operators may work through the list Re, i. e., they
try to repair the faulty components in the order as they are
listed in Re. Hence, A@e measures how likely it is that an
operator can solve a quality issue by solely using the list
Re, i. e., without consulting the quality engineer. Note that
a large list Re would usually overwhelm operators. Hence,
we limit the list Re to ten error codes, i. e., e ∈ {1, . . . , 10}.

The second score represents the number of rework at-
tempts (RA) that operators need on average to solve a qual-
ity issue by working solely through the list Re. To calculate
this score, we individually consider the number of correctly
predicted faulty components for each position in the list Re.
A hit at the first position means that the operator is able
to solve the quality issue after one rework attempt. A hit
at the second position means that s/he needs two attempts
and so on. So, we respectively multiply the number of hits
at a position with the ranking number. We then sum up the
products and divide it by the number of all hits in Re.
Baseline: We compare the results of our proposed ap-

proach with the results of the best approach from our pre-
vious study [18]. This best previous approach is applying
Random Forest in combination with the feature selection
technique Boruta [25] (RF+B). In addition to our previ-
ous study, we experimentally evaluated a further baseline
approach from the area of sequential data analysis. Here,
we opt for an ensemble of several neural networks, since
ensembles usually perform better than single classifiers [2].
Each neural network is trained using different random seeds.
For a new observation, the ensemble averages the prediction
scores of individual neural networks to obtain the final class
prediction. So, we refer to this baseline as averaged Neu-
ral Network (avNN). Figure 9 compares the results of our
approach with those of the baselines RF+B and avNN.

5.2.2 Increased Accuracy
In this subsection, we discuss the score A@e on the left

y-axis of Figure 9. A comparison of the two baselines shows
that RF+B has a higher A@e than avNN for all lengths of
the list Re. The major reason is that sequential data analy-
sis techniques such as neural networks usually require time
series data with a high resolution. However, our sample set
X contains only one static value for each sensor signal that
is aggregated over time. Here, we see that conventional clas-
sification techniques such as RF achieve higher accuracies.
Hence, we compare our approach only with RF+B.

Our approach dominates the baseline RF+B for all A@e
scores for different lengths e of the list Re. This means that
the list Re of our approach contains the correct faulty com-
ponent more frequently compared to the list generated by
RF+B. Thus, operators are able to solve a quality issue more
often by solely working through the list Re of our approach.
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Figure 9: Evaluation results: A@1 to A@10 and RA@1
to RA@10 for lists Re, with different lengths e.

This also means that a quality engineer has to be consulted
less often. The performance gains of our approach vary for
individual lengths of the list Re. The lowest absolute gain is
1%-point for R6. Our approach especially outperforms the
baseline for shorter lists. For instance, the highest perfor-
mance gain is about 13%-points for R3. The average gain
in accuracy among all lists is about 6.3%-points.

The scores A@e reported in Figure 9 for our approach
result from a combined application of SPH and CPI. Never-
theless, we have also evaluated both steps in isolation. This
means that we divided our sample set X once only by SPH
and once only by CPI. Then, we trained separate ensem-
ble classifiers for each step and compared the results. We
found that SPH has a higher contribution to increasing A@e
than CPI. The ten A@e scores for applying only SPH exceed
RF+B by an average of 2.9%-points. However, the scores
for CPI are on average 2.7%-points below that baseline.

Nevertheless, applying CPI after SPH even adds 3.4%-
points to the 2.9%-points accuracy gain of SPH, yielding
the overall average of 6.3%-points mentioned above. This
fact that CPI in isolation reduces accuracy, but increases
it even further when applied after SPH supports our key
statement. An approach focusing on either challenge C2 or
challenge C3 in isolation is not sufficient. This especially
holds for approaches that focus only on C2. Instead, it is
much more beneficial to addresses both challenges at once,
i. e., by applying SPH and CPI in a combined way.

5.2.3 Reduced Number of Rework Attempts
As mentioned before, we compare our approach with the

best baseline RF+B, so we have excluded the RA@e scores
for avNN in Figure 9. While we want to increase A@e,
now the goal is to reduce the scores RA@e, i. e., the average
number of rework attempts operators need to solve a quality
issue with the list Re. As shown on the right y-axis in Fig-
ure 9, our approach leads to a high reduction of the RA@e
scores for the lists with five and six elements. Here, opera-
tors need on average 0.4 less rework attempts. Nevertheless,
the A@e scores for our approach and the baseline are very
close to each other for these lists R5 and R6. So, operators
using our approach may solve the quality issue roughly as
often as for the baseline, but they need a less number of re-
work attempts. The reason for this are the significant higher
A@e scores for lower lengths e, e. g., the performance gain of
13%-points for A@3. A high score A@e on the first positions
entails that the correct faulty component is contained more

often at these first positions. Hence, it is more likely that
operators solve a quality issue with fewer rework attempts.

For the lists with two, three, and eight elements, the
RA@2, RA@3, RA@8 values of our approach are about
0.1 higher than those of the baseline RF+B. If the correct
faulty component is part of the lists R2, R3, or R8, oper-
ators need on average only 0.1 additional rework attempts
using the lists generated by our approach. Note again that
our approach outperforms the baseline RF+B with a gain
in A@e between 9%-points and 13%-points with these three
lists R2, R3, and R8. Here, the 0.1 additional rework at-
tempts of the operator constitute a rather negligible price to
pay, compared to this increase in accuracy. This is because
a higher A@e means that operators are much more likely to
solve a quality issue without consulting the quality engineer.

5.3 Business Impact
The results reported for A@e in Figure 9 with up to 85%

are still less than typical results presented by the research
community for other applications, e. g., see [27, 37, 42, 43].
Thereby, the research community usually employs synthetic
or public data sets [3, 10] to design, optimize, and evaluate
their approaches and algorithms. However, these data sets
do not show all characteristics of real-world manufacturing
data. In fact, real-world data characteristics and resulting
analytical challenges make it hard to achieve similar lev-
els of accuracy. We already show this in our previous study,
where we tested a diverse set of methods with numerous con-
figuration parameters [18]. The best combination of these
methods with an accuracy of up to 78% is Random Forest
with Boruta, which is used as baseline RF+B in this paper.

We also show in the previous study that even this base-
line with its accuracy of up to 78% has a positive impact
on the real business of EoL testing [18]. In particular, it
reduces the overall costs for reworking on defective engines.
More precisely, the personal costs for a quality engineer are
usually 60% higher than for an operator. These quality engi-
neers are now only involved in cases when the correct faulty
component causing the quality issue was not part of the list
Re. In all other cases, only the less expensive operators are
involved in the process of EoL testing and reworking.

Compared to the baseline R+B, our approach leads to an
even further reduction of the costs for reworking on defec-
tive engines. This is mainly because our approach results in
higher A@e scores for any list Re. The average gain in ac-
curacy of 6.3%-points means that the operator can solve the
quality issue without involving the more expensive quality
engineer in 6.3%-points more cases. Furthermore, most of
the lists Re have a lower RA@e score, so that our approach
reduces the number of rework attempts an operator needs
to solve a quality issue. The overall annual cost savings
for a company such as Daimler Truck AG accumulates to
a magnitude of up to a few millions of EURO. This shows
that even small process improvements in the assembly of
powertrain aggregates result in considerable cost savings.

5.4 Generality Issues and Parameterization
Our experiments show that our approach yields big per-

formance gains for multi-class classification tasks that suf-
fer from the two analytical challenges of multi-class imbal-
ance (C2) and heterogeneous product portfolio and feature
space (C3). In fact, these challenges are common in the
whole manufacturing domain, which is mainly due to the
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increasing complexity and variety of production processes
and products [20]. This statement is confirmed by review
articles of Koeksal et al., Wüst et al., and Cheng et al. that
examine literature describing several applications of machine
learning to real-world manufacturing use cases [8, 23,45].

To further confirm the generality of challenges C2 and
C3, we have additionally examined several real-world use
cases that are not covered by the mentioned reviews. For
instance, Kassner et al. use machine learning, especially
text analytics, to identify the root causes of quality prob-
lems related to customer warranty claims [22]. Thalmann et
al. discuss analytical challenges for three use cases for fault
detection, fault diagnosis, and predictive maintenance [38].
All these authors support our argumentation regarding an-
alytical challenges in manufacturing. They all mention that
a large number of possible error types in both production
processes and product quality control leads to a multiplic-
ity of imbalanced class labels for classification (C2). Fur-
thermore, they discuss that machine learning suffers from
the fact that underlying data often represent diverse prod-
uct variants with different physical properties and technical
specifications (C3).

The individual steps in the pipeline presented in Figure 5
are completely independent of the domain. Thus, the ap-
proach is generic. The only domain-specific aspect is the
knowledge that is used as input for the first step. Here, our
approach requires domain knowledge that allows for seg-
menting a sample set X into sample subsets that are more
homogeneous regarding the feature space. In manufactur-
ing, this domain knowledge is provided by documentations
of product families, e. g., a product hierarchy as shown in
Figure 2. As mentioned in Section 3, any manufacturing
company has a documentation of its own product family [1].
So, SPH may be applied to machine learning applications
across the whole manufacturing domain. In general, the do-
main knowledge that is necessary for SPH may be offered by
a domain-specific concept model that organizes relevant do-
main concepts and entities into homogeneous groups. Such
concept models are common in various domains, e. g., in
chemistry or biology [34].

The next step CPI of our approach requires metrics to
identify and quantify distinct imbalances between classes
in sample sets. Here, we apply the Gini index and the p-
quantile to the underlying class distributions of sample sub-
sets Xj . These two metrics are generic enough to be appli-
cable to any kind of discrete class distribution. So, we may
employ CPI regardless of the given use case or its domain.

SPH and especially CPI require to set or tune some pa-
rameters that influence classification performance (cf. Sec-
tion 4.1). The first parameter of SPH a threshold for a
minimum number of samples for a class. If a class has fewer
samples than this threshold, SPH removes this class and its
samples from the subset Xj . The next parameter of SPH
is another threshold to limit the loss of information due to
the previous removal of some classes with too few samples.
The first parameter of CPI is the threshold of the Gini index
to identify a distinct class imbalance in a Xj . CPI’s second
parameter is p of the p-quantile to differentiate minority
and majority classes. For our use case of EoL testing, we
have tuned these parameters and the resulting accuracy via
a brute-force parameter search. However, a manual brute-
force search is obviously too time-consuming when applying
our approach to further use cases. To increase the general-

ity by ease of use, we hence need an optimization algorithm
that automates parameter tuning for SPH and CPI [12].

However, finding the best parameter setting for both SPH
and CPI is a complex multi-criteria optimization problem.
In fact, the individual parameters highly influence each other,
so that it is hard to find parameter combinations that are
close to the optimum. Furthermore, it is a multi-objective
optimization problem. Besides increasing accuracy (A@e)
and reducing the number of rework attempts (RA@e), the
most important goal is to reduce monetary costs of EoL test-
ing (Section 5.3). These different objectives usually compete
with each other. For instance, a recent study shows that
increasing accuracy does not necessarily reduce costs [19].
Altogether, these multi-criteria and multi-objective proper-
ties make optimization a very hard problem. An approach
is needed that (1) finds a parameter setting that is close to
the theoretical optimum of all competing objectives and that
(2) achieves this with a minimum amount of computational
effort. This calls for further research on and evaluation of
optimization algorithms that are especially tailored to our
approach and its two essential steps SPH and CPI.

A first good candidate for a tailored optimization method
to be evaluated is the stochastic gradient descent [5]. This
method is commonly used in machine learning, especially
for backpropagation to train neural networks. We consider
it especially suitable for our approach, because it reduces
computational effort via faster optimization iterations, while
it still finds a good parameter setting that is close to the
optimum [6]. To further reduce computational effort of this
optimization, we suggest to explore and apply heuristics to
limit the search space for the parameters. The general idea
is to heuristically identify proper initial parameter values,
as well as lower and upper bounds within parameter spaces.
For instance, initial values and bounds for p of the p-quantile
may be obtained by analyzing the gradient of the density
function of a class distribution (cf. red line in Figure 1).

6. CONCLUSION
The main contribution of this paper is an approach that

exploits domain knowledge from a product hierarchy to mit-
igate negative effects of heterogeneous product and feature
spaces to classification performance. Furthermore, we apply
proper metrics to make an informed decision about the class
distribution to address multi-class imbalance. Thereby, we
show that related approaches focusing on only one of these
two challenges are not sufficient. This statement is con-
firmed by our evaluation, where we applied our approach
on real-world manufacturing data. Our approach dominates
the baseline solutions in terms of accuracy. In most cases,
we are also able to reduce the number of rework attempts
an operator needs to solve a quality issue. In addition, we
discussed generality issues, i. e., how our approach may be
applied to increase performance in other use cases.

For ease of use, future work will concentrate on ways to
automatically find proper parameterizations. Furthermore,
extending the classification system to other use cases and
domains will be interesting as well.
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