

Concurrent Updates to Pages with Fixed-Size Rows Using
Lock-Free Algorithms

Raghavendra Thallam
Kodandaramaih

Microsoft
One Microsoft Way

Redmond, WA-98052

raghavt@microsoft.com

Hanuma Kodavalla

Microsoft
One Microsoft Way

Redmond, WA-98052

hanumak@microsoft.com

Girish Mittur
Venkataramanappa

Microsoft
One Microsoft Way

Redmond, WA-98052

girishmv@microsoft.com

ABSTRACT
Database systems based on ARIES [11] protocol rely on Write
Ahead Logging (WAL) to recover the database in the event of a
crash. WAL protocol requires changes to the database are
recorded to the transaction log before updating the underlying
database page. WAL also mandates that the log record
corresponding to the change is persisted to disk before the updated
page. While WAL allows updates to the databases using in-place
updates or using shadow paging, database systems that perform
in-place updates typically latch the page exclusively for the entire
duration of log generation and the change on the page. The
exclusive latch on the page prevents other threads from modifying
the page at the same time, reducing the concurrency, and
negatively impacting the throughput of the system. While
approaches like Segment-Based recovery [16] attempt to solve the
contention by pushing the burden of synchronization to the
application along with a proposal for recovering parts of pages,
this paper takes a different approach by providing a mechanism to
support concurrent updates to certain kinds of pages under a
shared latch using lock-free algorithms. The pages are recovered
using existing ARIES protocol with a few modifications. This
approach significantly boosts the throughput of an ARIES based
database system, without any application changes. The paper
describes in detail the challenges of implementing the mechanism
and how the ARIES concepts like page LSN, logging and
checkpoint are handled to support concurrent updates on space
maintenance pages in Microsoft SQL Server. The paper also
presents the experimental results showcasing the impact of the
work.

PVLDB Reference Format:
Raghavendra Thallam Kodandaramaih, Hanuma Kodavalla,
Girish Mittur Venkataramanappa. Concurrent Updates to Pages
with Fixed-Size Rows Using Lock-Free Algorithms. PVLDB,
13(12) : 3195-3203, 2020.
DOI: https://doi.org/10.14778/3415478.3415544

1. INTRODUCTION
ARIES based database systems like System R, DB2, Sybase ASE,

PostgreSQL and Microsoft SQL Server contain dedicated set of
pages for space management. Some of the notable examples of the
pages are - the free space inventory pages (FSIPs) in System R
and Space Map Pages (SMPs) in DB2 [10] that track the space
management in the data pages, Free Space Map (FSM) [14] in
PostgreSQL that tracks free space, PageFreeSpace (PFS) [3][8]
pages in Sybase ASE and SQL Server that track the free space in
system. These pages track the space utilization of the individual
data pages and are essential for optimizations like avoiding
reading of empty pages [10], identifying pages that can be used
for new inserts without scanning the entire object (table or index).
The space management pages increase the level of concurrency in
the system; however, frequent updates to those pages becomes the
source of latch contention in the system. There are optimizations
for updating the free space only when the free space on the page
moves across thresholds like 50%. Even with such optimizations
in place, the space management pages run into contention. IBM
seems to have solved the contention problem on FSIPs/SMPs by
avoiding latching/locking to provide higher concurrency as
mentioned in footnotes in [10], but the details of the
implementation are not mentioned in the paper.

Customers of SQL Server have faced similar contention on space
management pages like PFS for decades. There is a PFS page for
every 64 MB chunk of data in SQL Server. Customers that run
into the PFS contention have workloads that perform lots of page
allocations, which update the state of the pages in PFS. Spreading
the allocations across different 64MB chunks or spreading the
allocation across different files can help alleviate the contention,
but customers do not have the ability to force allocations to a
specific 64MB chunk of a file or specify a file among set of
available files. They sometimes work around the contention
problem by adding additional files to the database in their
installations. The presence of multiple files acts as a hint to the
allocation algorithm in SQL Server to select a different file for
every set of allocations. While this doesn’t necessarily eliminate
the PFS contention entirely, it does help alleviate the problem to
some extent. However, as more and more databases are moving to
the cloud, customers may not have the configuration knobs to add
more files due to the restrictions imposed by the cloud provider.
Such customers would end up settling for lower transaction
throughput. The mechanism described in this paper helps
eliminate the page latch contention on pages like the PFS pages.
With this solution, customers no longer have to provision multiple
database files as workarounds or settle for lower throughput.

This paper describes the overall design of “Concurrent updates to
a page with fixed size rows using lock-free mechanisms” concept
which is applicable to a wide range of pages, whose updates have

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any
use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415544

3195

a higher level lock to guarantee that no two threads in the system
are updating the same location concurrently. Even though the idea
is applicable to a broader set of pages, the paper uses PFS page as
an example to help explain what it takes to update a given ARIES
based recovery system to support concurrent updates to a page.
The team implemented concurrent updates to PFS pages and
enabled by default in the box release of SQL Server - SQL Server
2019, and enabled the feature in the cloud counterpart – Azure
SQL Database for over a year. Section 2 begins with the
background of the database pages in SQL Server and the
mechanism used to manage PFS pages in memory to adhere to
WAL. Section 3 outlines the design and the architecture of
supporting concurrent updates on PFS pages using lock-free
mechanisms under shared page latch, while still adhering to most
WAL semantics. Section 4 presents the experimental results
showing the performance impact on certain workloads. Section 5
describes the future work and the other areas of databases to
which this idea can be extended to. Section 6 explains the
applicability of the work in other systems. Section 7 discusses the
related work. Finally, Section 8 presents the conclusions.

2. BACKGROUND ON SQL SERVER
This section provides a summary of the system pages in SQL
Server that keep track of space-related information, the
mechanisms used to track the dirty page lists and the source of the
contention on these pages.

2.1 System Pages in SQL Server

2.1.1 Page Free Space (PFS) Page
Space in SQL Server is managed in units called extents consisting
of eight logically contiguous 8KB pages. Each PFS page contains
one byte for every page in an 8088-page range of a file.

i

Figure 1 shows the structure of a byte on a PFS page:

 Bit 0 indicates if the page has potentially stale versions
that need cleanup when the Constant Time Recovery
(CTR) [13] feature is enabled.

 Bit 1 indicates whether the page is allocated or not.

 Bit 2 indicates whether the page is from a mixed extent
(pages belong to different objects) or not.

 Bit 3 indicates if the page is an Index Allocation Map
(IAM) page.

 Bit 4 indicates if the page contains ghost records.

 Bits 5 through 7 are taken as a three-bit value indicating
the page fullness in pages belonging to heaps (non-
index objects):

o 0: empty

o 1: less than 50% full

o 2: 50% to 80% full

o 3: 80 to 95% full

o 4: 100% full.

While some of the information in the PFS Pages can be derived
from the content on the page, the PFS pages are quite useful in the
system. SQL Server has a couple of background threads - ghost
cleanup and version cleanup that leverage the bits in the PFS
pages to identify the pages containing the older versions of the
data that are no longer necessary in the system. Without the
tracking bits, the cleanup threads would have to perform a scan of
the entire database.

2.1.2 Index Allocation Map (IAM) Page
IAM pages keep track of the extents in a 4-GB section of the
database file that are allocated to an allocation unit. An allocation
unit is a set of pages belonging to a single partition in a table or an
index.

2.1.3 Global Allocation Map (GAM) Page
The GAM pages record the allocated extents using one bit per
extent. There is one GAM page for every 64000 extents or 4GB of
the file.

2.2 Log Sequence Number (LSN)
SQL Server transaction log records track the changes made to the
database pages. It stores enough information to allow SQL Server
to recover the database in the event of crash. The log is
maintained in one or more log files associated with the database.
Each log record is labeled with a unique Log Sequence Number
(LSN). Just like other ARIES [11] databases, SQL Server adheres
to write-ahead logging (WAL) – the changes to the pages are
written to the transaction log before the changes are written to the
database pages. Each page contains the LSN of the last log record
that contains the change to the page. Maintaining the LSN on the
page is an essential aspect of ARIES; all three phases of ARIES
recovery – analysis, redo and undo rely on it.

2.3 Buffer Pool
The buffer pool is the main memory component of SQL Server. It
manages the I/O functions for bringing the pages into memory and
flushing them to disk. Every buffer in the buffer pool has a header
that contains status and other information that is used to manage
the lifetime of the buffer from the time a page is read from disk to
the time the page is evicted. SQL Server employs LRU-k [4] as
the page replacement policy.

2.4 Checkpoint
SQL Server checkpoint process scans the buffer pool periodically
to write out any dirty pages to disk thus ensuring that the number

BIT: 0 1 2 3 4 5 6 7

Space Used

Page has ghosted rows

Page is an IAM page Mixed allocation page

Page is allocated

Page has versions

Figure 1. Structure of a byte on a PFS Page

3196

of such pages is low in the system. This reduces the database
recovery time in the event of crash.

2.5 Dirty Page Manager
The dirty page manager tracks the dirty buffers for a database in
two lists. One list has the buffers for pages that have been
prepared to dirty but do not have any changes yet and another has
the buffers for pages that have been dirtied.

2.6 Dirty Page Context (DPC)
The Dirty Page Context is a structure that is maintained in every
buffer. It tracks the checkpoint ID that the buffer corresponds to.
A checkpoint is deemed complete only if all the buffers
corresponding to the checkpoint ID are successfully flushed to
disk. The DPC also tracks the first LSN that dirtied the buffer in
this checkpoint, which is used to determine the oldest page LSN
for the checkpoint.

2.7 Latch Modes in SQL Server
SQL Server supports the following latch modes used to perform
read/write operations on database pages.

2.7.1 Shared (SH) Latch
Multiple threads can acquire SH latch on the page at the same
time. Original intention was to support concurrent threads reading
the same page.

2.7.2 Update (UP) Latch
Only one thread can acquire the UP latch on a page and is used to
perform updates on a page. UP latch is compatible with SH latch
but not with UP or EX latch. The UP latch is mostly used for the
system pages like the PFS/GAM/IAM pages where the updates
modify the fixed-size rows in-place. Such updates do not cause
the page content to shift. Concurrent reads using SH latch on the
page may read a stale value in the presence of concurrent updates
but not a bogus value.

2.7.3 Exclusive (EX) Latch
Only one thread in the system can acquire the EX latch on a page
at a time. Most pages, other than the PFS/GAM/IAM pages are
updated using EX latch. EX latch is not compatible with UP or
SH latches.

2.8 Existing Algorithms for Updating a PFS
Page
The latch types mentioned above are available in other ARIES
based database systems too. We have already established that the
PFS page updates are derivative of the update to the underlying
data page. While we will continue to mention PFS as the example
in the following descriptions, many of the aspects are also
applicable to other space usage pages in other databases. Updates
to the PFS pages are always done under the scope of higher order
lock while doing physical data page updates like updates to rows
in those pages or logical data page updates like
allocation/deallocation. The order in which the data operation and
the PFS page operation are done within a transaction can vary. For
example, during the forward processing of update to a page that
results in updating the space utilization bits in PFS, the update to
the data page is done first and then the update to PFS page.

However, during rollback processing of the transaction that is
undoing the effects of the transaction, the PFS state is updated
first and then the data page modification. This is necessary to
ensure that recovery works correctly, even in the presence of
optimizations like PFS update log records being redo only log
records in some cases as explained in [10]. Irrespective of the
order of the data page update or PFS update, the key is that the
PFS update is done within the scope of the exclusive latch of the
data page.

Figure 2 shows the sequence of steps in updating a data page in
SQL Server, which is very similar to other ARIES based database
systems. The data page is latched exclusively; under this scope,
the log record for the page update is generated, page content is
updated and PFS page is updated if necessary. In some cases like
transaction rollback, the order of PFS update (again if necessary)
and data page updates might be reversed but they are all done
under the scope of the exclusive data page latch.

Figure 3 provides the details of the original method to update the
PFS page. Given the data page id whose PFS byte needs to be
updated, the PFS page buffer hosting the information is identified

Void UpdatePage()

{

 Latch the data page exclusively.

 {

 Compute the necessary PFS update;

 If the transaction is in rollback, update the PFS page;

 Generate log record for the data page;

 Update the data page;

 If the transaction is not in rollback, update PFS page;

 }

 Release the latch on the data page;

}

Figure 2. Method to update a data page

Void UpdatePFSPage()

{

 Obtain PFS page corresponding to the data page;

 Update latch the PFS page;

 {

 Prepare the PFS page to be dirtied;

 Generate log record for the PFS update;

 Update the byte on PFS page;

 Set LSN on PFS page;

 Mark PFS buffer as dirty;

 }

 Release the latch on the PFS page;

}

Figure 3. Original method to update a PFS page

3197

and latched for update. Then the PFS buffer is prepared to track
the page for the current checkpoint using the dirty page manager.
As part of this tracking, if an element in the dirty page manager
called the dirty page context (DPC) exists, it is used, if not a new
entry is created. The DPC tracks the LSN of the first update that
dirtied the buffer in the current checkpoint. For a checkpoint, the
minimum of all the dirty page LSNs is used to compute the oldest
dirty page LSN in the system, which is used to hold up the log
truncation for the database. After the PFS page is prepared to
dirty, the log record for the PFS page is generated. Next the PFS
page is updated and the LSN of the log record is stored in the PFS
page header. Then the PFS page buffer is marked as dirty in the
DPC by setting the DIRTY_BIT in the buffer. The LSN of the log
record generated is contributed to the DPC as well. At this point,
all the actions on the PFS page are completed, and the update
latch is released.

To conclude, there are several buffer pool and log manager
operations that are performed under the scope of the update latch
on the PFS page. The update latch implies only one PFS update
can be performed at a time, while other updates on the same PFS
page get blocked. This serialized mode of updating PFS pages is
the source of page latch contention. While we have described the
problem in detail for the PFS page, this pattern repeats in other
pages like GAM pages and IAM pages in SQL Server as well as
the space maintenance pages in other database systems. This
decades-old contention problem motivated us to find a solution.

3. CONCURRENT UPDATES WITH ONLY
SHARED LATCH
This section covers the design and implementation details of the
concurrent updates to a page with fixed format under shared latch.
Concurrent updates to pages like PFS pages can be applied if they
modify different bytes. In the case of PFS page update, there is
either an exclusive page latch (for version/ghost/space PFS bit
updates) or an exclusive page lock (in the case of allocation PFS
bit updates) on the data page whose PFS byte is being updated.
This provides the necessary guarantee that no two threads would
be updating the same PFS byte concurrently. If a thread has an
exclusive latch on the data page D and is in the process of
updating its space usage in the corresponding PFS page P, then no
other thread in the system can attempt to update other properties
like version or ghost or allocation bit of page D as they would get
blocked on the exclusive latch on D. This effectively blocks the

update on same PFS byte for page D.

Updating a PFS page involves several buffer pool maintenance
operations described earlier. To support concurrent updates, each
of the operations must be made thread safe to ensure the overall
intent of each and continue to recover the page per ARIES
recovery. This is achieved by using interlocked operations for in-
memory data structures and other lock-free algorithms for
persisted structures. Figure 4 describes the pseudo-code to update
the PFS under shared latch with the highlighted parts indicating
the main differences from the old protocol in Figure 3. Note that
there aren’t any changes around the way the data page is latched
or locked for which the PFS update is being done. When the
update on the data page triggers a corresponding PFS update, the
PFS page is latched using SH latch instead of the traditional UP
latch, which effectively allows other threads to read and write the
PFS page.

Let us look at how the other components get impacted to support
concurrent updates to certain sets of pages while maintaining
ARIES assumptions to help recover the page in the event of crash.

3.1 Buffer Management
Buffer manager is responsible for managing the buffers containing
the pages. Typically, buffer pool manages all buffers in the same
way assuming the updates to page buffers are done in an exclusive
fashion. To support the concurrent updates scheme, the buffer
manager is modified to be aware of pages that can be updated
under shared latches. For every buffer that is prepared to host a
page that can take concurrent updates, a bit in buffer header,
BUF_CAN_HAVE_SHARED_UPDATES, is set to true. This bit is
the signal to the buffer pool to use the version of the API that
supports concurrent threads.

3.2 Dirty Page Context (DPC) Creation and
Setup
Some of the APIs manipulating the DPC were not thread safe and
had to be modified in various ways to allow concurrent updates.
When the latch on a page is obtained for write operations, the first
buffer operation is to prepare the buffer to be dirtied. On buffers
that can support concurrent updates, this request was made thread
safe. This step, PrepareToDirty, involves setting up DPC on the
buffer. It is made thread safe using interlocked compare and
exchange operator instead of the existing assignment operators.
This ensures if two threads attempted to setup the DPC for the
same PFS buffer, only one would succeed and the other would
bail out and use the one whose setup was successful.

3.3 Log Record and LSN Management
One of the steps in updating the PFS page is generating log record
and updating the LSN on the PFS page. The log manager in SQL
Server supports generation of log records from concurrent threads
irrespective of the page the log record is generated for. The inputs
to the log manager are: page id, previous page LSN, previous
value of the row and new value of the row. Given this payload,
the log manager serializes and returns the LSN at which the
payload was serialized to.

In ARIES protocol as part of redo processing of log records, if the
LSN on the page does not match the previous page LSN from the
log record, it indicates a missed application of the log record and
the redo processing fails with a high severity error. However, with

Void UpdatePFSPageUsingSHLatch()

{

 Obtain PFS page corresponding to the data page;

 Share latch the PFS Page;

 {

 Prepare the PFS buffer to be dirtied;

 Generate log record for the PFS update;

 Update byte on PFS page using interlocked operations;

 Set LSNon PFS page header using interlocked operations;

 Mark PFS buffer as dirty;

 }

 Release the latch on the PFS page;

}

Figure 4: Update a PFS page using shared latch

3198

concurrent updates on the PFS page, it is possible that two or
more log records on the PFS page could be generated with the
same previous page LSN. Since this violates the ARIES protocol
[11], redo processing fails with an assert. This assert must be
relaxed for PFS pages, which is as good as not utilizing the
previous page LSN field in the log records for the redo operations
on the PFS pages. This was deemed reasonable as the previous
page LSN field on the log record was not used for correctness but
used to detect stale pages on the disk (pages for which writes were
issued to the I/O subsystem and a positive acknowledgement was
received but the writes were missed). Stale pages in the database
can be detected by other means like recording the LSN of the page
at the time of flush/write in a separate data structure and
validating the LSN of the page at read time against the value
stored in the data structure.

One of the main challenges was to update the PFS page LSN in an
atomic way. The PFS page header typically tracks the largest LSN
of the update on the page. In the presence of concurrent updates to
PFS pages, the updates to the PFS page header LSN must be
synchronized.

The LSN on the page header is a 10-byte field that is not 16-byte
aligned. Thus existing 16-byte interlocked operations could not be
used to set the maximum value of LSNs by various threads. As

shown in Figure 5, the 10-byte LSN value is comprised of three
parts: 4 bytes for file sequence number, 4 bytes for block offset
within the file and 2 bytes for the slot value. The most significant
bit on the slot, SLOT_MASK, which is previously unused is now
used to synchronize writes. Figure 7 provides the details of the
SetPFSPageLsn API used to achieve this. Among the various
threads attempting to update the PFS page LSN, the one to set the
SLOT_MASK bit using interlocked API InterlockedBitTestAndSet
gets to update the LSN in an atomic way while the other threads
spin. Once done, the thread resets the SLOT_MASK to allow
subsequent updates to go through.

The counterpart of SetPFSPageLsn, GetPFSPageLSN, cannot
update the fields on the page as the read API might be operating
on read-only buffers. As such the read API, GetPFSPageLSN,
cannot use the lock on the SLOT_MASK to synchronize with the
writes. At the same time, simple read can result in a torn read of
the 10-byte value or an invalid value due to the inflight update
that sets the SLOT_MASK. To solve this problem, we came up
with the lock-free algorithm described in Figure 6. The idea is to
atomically read the first 8 bytes of the LSN, then atomically read
the last 2 bytes of the LSN field and repeat the two reads once
more with a memory barrier in between. If both the attempts
provide the same valid value without the SLOT_MASK bit set, that
value is returned; otherwise, the process is repeated. The double
read ensures that only valid and consistent values are returned.

The update to the PFS page is done in an atomic way using
existing interlocked update API so as not to interfere with the
other threads. Apart from the LSN on the page, the LSN on the
structures like DPC need to be maintained and they were updated
using traditional interlocked operations too.

3.4 Checkpoint problem
The checkpoint process goes over all the DPC entries that have
been dirtied in this cycle, reads the LSN from every entry and
computes the minimum value as the Dirty Page LSN for the
current checkpoint. With concurrent updates to PFS pages using
shared latches, it is possible that thread T1 generated a lower LSN

struct LSN

{

 ULONG m_fSeqNo;

 ULONG m_blockOffset;

 USHORT m_slotId;

};

Void SetPFSPageLsn(LSN targetLSN)

{

 Get the current LSN value on the page;

 If the current LSN > targetLSN

 {

 return;

 }

 Else

 {

 Obtain the lock on m_slotId using interlocked operations;

 {

 Get the current LSN value on the page;

 If Current LSN on page < targetLSN

{

 Update the LSN value on the page;

}

 }

 Release the lock on the m_slotId;

 }

}

LSN GetPFSPageLsn()

{

 do

 {

 read1 = Atomic read of first 8 bytes of LSN;

 read_s1 =Atomic read of last 2 bytes of LSN;

 Memory barrier to prevent compiler reordering;

 read2= Atomic read of first 8 bytes of LSN;

 read_s2 = Atomic read of last 2 bytes of LSN;

 } while (read1 != read2 || read_s1 != read_s2 ||

 SLOT_MASK_set_in_read_s1 ||

 SLOT_MASK_set_in_read_s2);

 Double read succeeded, return the value;

}
Figure 5. LSN Structure

Figure 7. Set PFS Page LSN API

Figure 6. Get PFS Page LSN API

3199

for the PFS page while thread T2 generated a higher LSN for the
same PFS page. T2 can race ahead to contribute the LSN to the
DPC. Now, if checkpoint process inspects the dirty page LSN for
this buffer, before T1 has had a chance to contribute its LSN to
the DPC, it can result in the incorrect dirty page LSN computation
by checkpoint, leading to recovery failure or corruption.

Figure 8 describes the changes to buffer pool operations,
PrepareToDirty and Dirty, to find a solution. A bit, DIRTY_BIT,
is currently maintained in the DPC to indicate if the page
corresponding to the DPC has been dirtied in the current
checkpoint. This was traditionally set by the first thread that
successfully generated the LSN on the page and executed the
Dirty API on the DPC before releasing the latch on the page. To
solve the checkpoint problem, a new counter,
PENDING_COUNT, is added to the DPC structure. The
checkpoint thread uses the PENDING_COUNT value on the DPC
to determine if the LSN on the DPC is safe to consider or not. If
the PENDING_COUNT is greater than 0, then it implies that there
could be a thread in the system that has not yet contributed its
LSN to the DPC and hence the checkpoint thread cannot get an
accurate LSN value for the DPC yet. If that happens, the
checkpoint thread releases the locks on the DPC structures and
rechecks the DPC in a loop till PENDING_COUNT becomes 0,
basically ensuring all inflight concurrent updates to PFS that
started when DIRTY_BIT was 0 and have all contributed their
LSNs to the DPC. The PFS update that can potentially block the
oldest page LSN computation is expected to complete without
running into deadlatches and hence not block the checkpoint
process indefinitely.

PENDING_COUNT is maintained as follows: when a thread T1 is
attempting to generate a log record on the PFS page, if the
DIRTY_BIT is 0, it implies no other update has happened to the
page in the current checkpoint, T1 increments the
PENDING_COUNT value in an interlocked manner. T1 can
decrement the PENDING_COUNT value only after contributing
the LSN it generated to the DPC. Now, if T2 is attempting to
generate a log record on the PFS page and the DIRTY_BIT is 1, it
implies another thread T1 has already generated a log record, so
T2 doesn’t need to contribute to the dirty page LSN computation

at all, so it no longer needs to increment the PENDING_COUNT.
This helped resolve the checkpoint problem

3.5 Impact to Other Latch Protocols
The scheme to support concurrent updates using existing SH
latches posed one latch compatibility issue. Section 2.7 mentioned
that the UP latches are compatible with SH latches. With the
scheme, updates on PFS pages are performed under SH latch. This
violates the contract for requests in the system that need an UP
latch, like the ones that update the PFS page header after scanning
the entire contents of the PFS page. Such PFS updates may not
necessarily have any other locks or latches held on other pages. In
order to continue to support such operations, any UP latch request
for PFS page in the system is automatically elevated to EX type to
serialize with an update being performed using SH latch. This
auto-elevation was made transparent to all UP latch consumers of
PFS pages to prevent accidental misuse of UP latch on PFS pages.

3.6 Benefits of the Scheme
To summarize, the scheme involved updating existing algorithms
to support concurrent updates under shared latches. This helped
improve the throughput of PFS operations in the system and
solved the decades-old PFS contention issues customers faced.
Another major beneficiary of the scheme was the Constant Time
Recovery (CTR) [13] feature in SQL Server. CTR is a novel
recovery algorithm that depends on ARIES [11] but leverages row
versions generated for MVCC for transaction rollbacks. CTR uses
PFS pages for tracking stale versions: any database page modified
by an active transaction is marked as having versions in PFS page.
Then a background thread uses this information to identify pages
that potentially have rows that need to be rolled back. Without the
tracking in PFS, the background cleaner would have to perform an
entire database scan to clean up the older versions of the rows in
the database, which can lead to slow cleanup and inefficient space
utilization in the system. This design choice increased the PFS
usage and thus contention on PFS pages. Addressing this was
necessary for shipping CTR.

4. EXPERIMENTAL RESULTS
Our experimental studies can be classified into four major
categories – TPCC benchmarks, features like CTR, simulated
allocation-intensive workloads and customer workloads. Let us
look at the scheme’s impact on each of these.

4.1 Impact on TPCC Benchmarks
Concurrent PFS updates mechanism eliminates exclusive latches
on PFS pages but at the same time it introduces interlocked
operations. We wanted to understand the impact of these changes
on TPCC workload that doesn’t necessarily experience PFS
contention. The experiments were carried out on a workstation
with 4 sockets, 40 cores (Intel® Xeon® Processor E7-4850,
2.00GHz) and 512GB of RAM. External storage consists of two
1.5TB SSDs, one for data and one for log. The TPCC workload
running with concurrent PFS update feature did not degrade
compared to running without. The variation between the runs was
within the usual TPCC run-to-run variance of 1% or less. This
showed that the new mechanism to update the PFS pages does not
penalize the workload. Lock-free algorithms can potentially
consume more CPU due to retries, interlocked operations and long
chains in hash maps. The TPCC results prove that our lock-free
scheme doesn’t necessarily add any CPU overhead to the system.

Void PrepareToDirty()

{

 If the page does not already have DPC, create one;

 Increment PENDING_COUNT in DPC in interlocked way;

 Other prepare to dirty aspects;

}

Void Dirty()

{

 Perform other Dirty tracking;

 Set the Dirty bit;

 Decrement PENDING_COUNT on DPC if needed;

}

Figure 8. API changes to solve checkpoint problem

3200

In terms of memory overhead in the system, the scheme
introduced additional fields in existing data structures. The
additional fields (less than 100 bytes) are only created for the
BUFs that correspond to PFS pages. For a 100GB database, if all
the PFS pages are in buffer pool, then the additional memory
overhead would amount to 156KB (approx. 100 bytes for each
PFS page). The memory overhead is insignificant compared to the
size of the database.

4.2 Impact on Constant Time Recovery
(CTR)
On a database that has Constant Time Recovery (also known as
Accelerated Database Recovery [7]) enabled, any
insert/update/delete in the system needs to track the version bit in
the PFS page. This significantly increases the number of PFS trips
and thus the PFS contention in the system. We ran TPCC
workload on a CTR enabled database with and without concurrent
PFS update feature on the 4-socket machine. Table 1 summarizes
the results of the experiments.

Table 1. Performance results of TPCC with CTR

Concurrent PFS
update
configuration

Transaction
Throughput in
TPMC

CPU Utilization

Enabled 787099.73 98.50%

Disabled 475423.40 45.30%

The throughput in TPCC increased nearly 65% when concurrent
PFS scheme was enabled. The huge increase in throughput can be
attributed to the increase in CPU usage from 45% to 98.5%. In the
runs without Concurrent PFS Update, the PFS contention prevents
the TPCC workload to utilize the CPU. From the performance
numbers, it became clear that CTR feature benefits tremendously
from the concurrent PFS update scheme. The PFS contention
problem existed in SQL Server for over a decade. When CTR
took a dependency on tracking versioning in the PFS pages, the
bottleneck became more prominent, forcing us to think about a
practical solution for the problem. While the PFS contention was
fixed to address CTR performance issues, it solved the decades-
old PFS contention problem that existed even without CTR.

4.3 Impact on Allocation-intensive Workloads
We ran various workloads, some comprising of temp tables, some
with table variables and some with logon triggers. Each of them is
known to run into PFS contention as reported by several SQL
Server customers over decades. While these workloads are not
strict benchmarks, they correspond to real workloads that
customers have in production. With concurrent PFS update
changes, we noticed a 5x to 20x increase in the throughput of
some of these workloads. Let us look at one of the experiments in
detail. Figure 9 describes the stored procedure that inserts top
system messages into a temporary table. This stored procedure
creates a temporary table into which the results are sent. Creation
of the temporary tables involves allocation and when there are
concurrent allocation requests, the workload runs into PFS
contention. We leveraged OStress framework [12] that provides
capabilities to run SQL workloads such as the above stored
procedure.

Figure 10 shows the command line parameters used to generate
the workload. The workload was essentially 300 iterations of the
above stored procedure being executed by 400 concurrent threads.
The workload was run with and without the feature on a 2-socket
Intel Xeon 2.4Ghz machine with 256 GB RAM and database files
on SSDs. On a run without the concurrent update feature, the wait
statistics showed that there were several requests waiting for
update latch on the same PFS page.

Table 2. Performance results on 2-socket machine

Concurrent PFS
update configuration

Average CPU
utilization

Elapsed time
(HH:MM:SS)

Disabled 10% 00:10:01

Enabled 32% 00:01:56

Table 2 summarizes the results of the experiments. With the
feature, the throughput of the workload increased 5x, as it
completed in under 2 minutes compared to 10 minutes without the
feature. The throughput increased as the CPU utilization went up
from 10% to 32%. Throughout the run, queries were run to
identify the contenting latches and results were as expected.
Without the feature, at any point in time, there were more than 25
UP latch requests on the PFS page, while with the feature enabled,
PFS latches did not show up in the wait statistics at all. The
workload was also run on 8-socket Intel Xeon CPU E7-8890
@2.2Ghz with 6TB RAM and database files on SSDs.

Table 3. Performance results on 8-socket machine

Concurrent PFS
update configuration

Average CPU
utilization

Elapsed time
(HH:MM:SS)

Disabled 1% 00:11:28

Enabled 83% 00:04:57

Table 3 summarizes the results of the experiments. With the
feature, the throughput of the workload increased 2x, as it
completed in under 5 minutes compared to 12 minutes without the
feature. The throughput increased as the average CPU utilization
went up from 1% to 83%. Throughout the run, queries were run to
identify the contenting latches and results were as expected.
Without the feature, at any point in time, there were several UP
latch requests on the PFS page, while with the feature enabled,

CREATE PROCEDURE usp_WorkLoad

AS

BEGIN

 Select TOP 500 * into #TMP from master.sys.messages

 WAITFOR DELAY '0:0:0.20'

END

Figure 9. Stored procedure to repro PFS contention

ostress.exe -E -d"tempdb" -Q"exec usp_WorkLoad" -n400 -
r300 -b -q

Figure 10. Stress workload commands

3201

PFS latches did not show up in the wait statistics at all. The results
from the 8-socket machine confirm that the algorithms scale up
too.

4.4 Impact on Customer Workload
We had a customer willing to test out a workload that constantly
ran into PFS latch contention. Due to the restrictions imposed by
the customer, we cannot reveal the details of the workload.
However, the workload essentially ran into PFS contention due to
amount of allocations in the system. We obtained the workload
from the customer and ran it with and without the concurrent PFS
update feature. The workload was run on a 2-socket Intel Xeon
2.4Ghz machine with 256 GB RAM and database files on SSDs.

Table 4. Performance results of customer workload

Concurrent
PFS update

configuration

Throughput
(batch req/

sec)

%CPU Top wait types % (of total
wait time)

Disabled 350 35% PAGELATCH_UP - 38.52%

SOS_WORK_DISPATCHER
- 59.33%

Enabled 1035 63% ASYNC_NETWORK_IO -
59.15%

SOS_WORK_DISPATCHER
- 39.95%

Table 4 summarizes the results of the customer workload. The
customer workload benefited from the feature in the same way as
the temp table workload. The throughput of the customer
workload increased 3x due to the increased CPU utilization. The
top wait types were captured during the workload execution. As
expected, in the run without the feature, the top wait was the
update page latch, PAGELATCH_UP, which typically appears for
PFS/GAM pages. In the run with the feature enabled, the update
page latch disappeared.

We did not perform any micro benchmarks on the lock-free
algorithms used in the various buffer pool management and
checkpoint management aspects as these are not structured as unit
testable components. It was very hard to tease them apart and test
them in isolation to see if the lock-free algorithms have an
inflection point or not.

5. FUTURE WORK
The work has been currently implemented for PFS pages and
enabled by default in both Azure SQL DB and SQL Server 2019.
More than five million databases in Azure SQL DB are running
with this feature. With this in place, PFS pages are no longer the
source of contention in SQL Server. Some of the allocation
workloads that ran into PFS contention earlier, now run into GAM
(Global Allocation Map) and occasionally IAM (Index Allocation
Map) page contention. The next step is to extend the work to
GAM and IAM pages. This would eliminate the system page latch
contention as part of the allocation and speed up other workloads.

6. APPLICABILITY OF THE WORK
While the paper talks about how the contention on PFS pages in
SQL Server was solved, the approach can be applied to other
database systems that have metadata pages with fixed size rows,
whose updates are derived updates of the actual rows. PostgreSQL
[6] uses metadata pages called Free Space Map (FSM) [14] to
track free space in the system. If the space usage on the database

pages increases with workload, then the free space map needs to
be updated. If the space on the database pages is reclaimed due to
cleanup of older versions by the process called vacuum [15], then
the free space map needs to be updated as well. The information
stored in FSM is derived from the operations on the data pages,
just like in SQL Server. It is important to store the information in
FSM as it reduces the amount of time spent to identify pages that
have free space. FSM pages can run into contention when
concurrent threads in the system attempt to update the same FSM
page. We believe updates to the FSM pages can benefit from the
scheme and help improve the throughput of certain workloads in
the PostgreSQL database as well.

7. RELATED WORK
We investigated if other databases or storage systems encountered
similar problems and how they addressed the issues. [10]
describes some of the flexible space management optimizations in
database systems like System R [1] and DB2 [9]. A few system
pages per file called the free space inventory pages (FSIPs) in
System R and space map pages (SMPs) in DB2, track the space
management in the data pages.

These system pages are essential to improving the storage
utilization and increasing the levels of concurrency in the system.
The FSIP/SMP pages are frequently updated due to the updates to
the data pages that they are responsible for. While there are
optimizations to not update the FSIPs/SMPs for every data
operation, the latching of these pages causes contention. [10]
mentions that FSIPs/SMPs are normally the hot spots and to
alleviate latch contention, they used atomic update instructions to
update the relevant FSIP entry, basically supporting concurrent
updates to such pages. They updated the page_LSN fields in the
FSIPs/SMPs to maintain the highest LSN too. To achieve
recoverability of FSIP/SMP pages, the updates were redo only log
records without any undo semantics. This was possible with
special logic around the order of the log records generated –
forward processing of transactions generated the log records for
the pages corresponding to FSIPs first and then generated the
update to the FSIP, undo processing of transactions generated the
FSIP log record if needed prior to generating the undo log record
of the data pages. The fact that the data page is latched
exclusively when the corresponding FSIP is being updated both
during forward processing and undo processing helped avoid
latching or locking FSIPs to provide higher concurrency.

DB2 page-level locking led to contention on index leaf pages.
Before solving that using record-locking, DB2 implemented mini-
page locking [11] by dividing the index leaf page into smaller
pages. Each mini-page had its own LSN besides the LSN for the
whole leaf page. The page LSN is set to the max LSN of the mini-
page LSNs. This approach has the disadvantage of taking up
extra space for mini-page LSNs. We could not necessarily adopt a
similar scheme for PFS pages as the PFS page format is fixed with
no additional space for LSNs for different sections of the page.

There are other studies in the literature that work around the
latency issues of write-ahead-logging protocol of ARIES using a
different approach. Segment-Based recovery [16] addresses the
latency among components in write-ahead-logging by removing
the two core assumptions – pages are the unit of recovery and
maintenance of the LSN on each page. They achieve the above by
using segments as the units of recovery. The segment can be
within a single page or span multiple pages. They delegate the
locking of the segments to the application layer and thus avoid

3202

concurrent updates to the same segment. The scheme assumes
sector writes to be atomic and handle torn pages by blind writes.
Segment-Based recovery eliminates the need to maintain the
LSNs on the pages by employing a write-back-caching
mechanism – updates to a page only affect the cached copy while
the write is performed when the higher level object the page
represents is evicted from the cache. This allows the updates to
the same page to be re-ordered, enabling higher concurrency in
the system. With the need for page latches eliminated, the scheme
allows for calls to buffer manager and log manager to be
asynchronous and increases the throughput of the system. The
paper describes changes to the allocation algorithms to support
safe rollback of the transactions by avoiding unrecoverable states.
The paper also proves the correctness of the algorithms and
demonstrates achieving 20x speed up in some cases compared to
page-based approach. While Segment-Based recovery addresses
the latency concerns and helps improve the throughput of the
application workload on ARIES based system, it requires
significant re-write of the underlying system to support the high
level of concurrency. It also pushes the responsibility of locking
to the application layer, which can potentially lead to bad
performance in some cases. Our approach is similar to the
concepts used in Segment-Based recovery, in that we attempt to
leverage the write back mechanisms to lazily update the LSN on
the pages and leverage the higher level locking of the PFS bytes to
support concurrent updates to the PFS pages. We achieved this
without having to substantially re-write the mature storage engine.

To summarize, we believe that concurrency of pages with fixed-
size rows can be significantly improved by adopting lock-free
algorithms for such pages.

8. CONCLUSIONS
Based on the experimental results, the concurrent PFS update
protocol did not add any performance overhead to the system. It
significantly improved the throughput in certain workloads. It’s
on by default in Azure SQL DB and is also supported in SQL
Server 2019 product. Even though the concurrent PFS changes
were mainly scoped to buffer pool management aspects and PFS
page update API, identifying all the steps that needed to be made
lock-free, implementing them and proving correctness was a long
journey for the team. Coding lock-free algorithms is hard but
rewarding too. The work showed that taking a closer look at a
particular subsystem that is based on lock-based algorithms and
changing them to be lock-free can help in significantly boosting
the performance of the entire system. Contrary to claims in [5],
this work proved that it is possible to leverage lock-free
algorithms and improve the performance of certain class of
operations for some important class of pages in disk-based
database systems. While techniques like transactional memory
described in [2] could potentially be used in some cases, we
haven’t explored the option yet and might consider them in the
future.

9. ACKNOWLEDGMENTS
We thank Peter Byrne, George Reynya, Wayne Chen, Cristian
Diaconu, Chaitanya Ravella, Zhuan Chen and other colleagues for
their invaluable advice and help in converting some of the lock-
based algorithms in buffer pool page management protocol to
lock-free algorithms. We also thank the reviewers for providing
critical feedback that helped us improve the paper in many ways.
We appreciate C. Mohan meeting with us virtually to inform us of

similar work done in System R and DB2 to handle contention on
FSIPs. We thank our leadership team for sponsoring such a risky
and novel approach.

10. REFERENCES
[1] Astrahan, M., et al. System R: Relational approach to Data

Base Management, ACM Transactions on Database Systems,
Vol. 1, No. 2, June 1976.

[2] David T, Guerraoui R, Trigonakis V. Everything you always
wanted to know about synchronization but were afraid to ask.
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. November 2013. Pages 33–48.

[3] Delaney, K., Randal, P. S., Tripp, K. L., Cunningham, C.,
Machanic, A. Microsoft SQL Server 2008 Internals.
Microsoft Press, Redmond, WA, USA, 2009.

[4] Elizabeth J. O’Neil, Patrick E. O’Neil and Gerhard Weikum.
The LRU–K Page Replacement Algorithm for Database Disk
Buffering. Proceedings of the 1993 ACM SIGMOD
Conference. Pages 297-306.

[5] Jose, M. F, Daniel, J. A. Latch-free Synchronization in
Database Systems: Silver Bullet or Fool’s Gold. CIDR 2017.

[6] Internals of Postgre SQL.
http://www.interdb.jp/pg/pgsql01.html.

[7] Microsoft, Accelerated Database Recovery.
https://docs.microsoft.com/en-us/azure/sql-
database/sqldatabase-accelerated-database-recovery.

[8] Microsoft, Under the covers: GAM, SGAM, and PFS pages.
https://techcommunity.microsoft.com/t5/SQL-Server/Under-
the-covers-GAM-SGAM-and-PFS-pages/ba-p/383125.

[9] Mohan, C. IBM's Relational DBMS Products: Features and
Technologies, Proc. SIGMOD International Conference on
Management of Data, Washington, May 1993.

[10] Mohan, C., Haderle, D.J. Algorithms for flexible space
management in transaction systems supporting fine-
granularity locking. In: Jarke M., Bubenko J., Jeffery K.
(eds) Advances in Database Technology — EDBT '94.
EDBT 1994. Lecture Notes in Computer Science, vol 779.
Springer, Berlin, Heidelberg.

[11] Mohan, C., Haderle, D. J., Lindsay, B. G., Pirahesh, H.,
Schwarz, P. M. ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partial Rollbacks
Using Write-Ahead Logging. ACM TODS, 17(1):94–162,
1992.

[12] OStress framework. https://support.microsoft.com/en-
us/help/944837/description-of-the-replay-markup-language-
rml-utilities-for-sql-server.

[13] P. Antonopoulos, et al. Constant Time Recovery in Azure
SQL Database. PVLDB, 12(12): 2143-2154, 2019. DOI:
https://doi.org/10.14778/3352063.3352131.

[14] PostgreSQL, Free Space Map.
https://www.postgresql.org/docs/9.2/storage-fsm.html.

[15] PostgreSQL, Vacuum.
https://www.postgresql.org/docs/9.1/sql-vacuum.html.

[16] R. Sears and E. Brewer. Segment-Based Recovery: Write-
ahead logging revisited. PVLDB, 2(1):490–501, Aug. 2009.

3203

