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ABSTRACT 
Database systems based on ARIES [11] protocol rely on Write 
Ahead Logging (WAL) to recover the database in the event of a 
crash. WAL protocol requires changes to the database are 
recorded to the transaction log before updating the underlying 
database page. WAL also mandates that the log record 
corresponding to the change is persisted to disk before the updated 
page. While WAL allows updates to the databases using in-place 
updates or using shadow paging, database systems that perform 
in-place updates typically latch the page exclusively for the entire 
duration of log generation and the change on the page. The 
exclusive latch on the page prevents other threads from modifying 
the page at the same time, reducing the concurrency, and 
negatively impacting the throughput of the system. While 
approaches like Segment-Based recovery [16] attempt to solve the 
contention by pushing the burden of synchronization to the 
application along with a proposal for recovering parts of pages, 
this paper takes a different approach by providing a mechanism to 
support concurrent updates to certain kinds of pages under a 
shared latch using lock-free algorithms. The pages are recovered 
using existing ARIES protocol with a few modifications. This 
approach significantly boosts the throughput of an ARIES based 
database system, without any application changes. The paper 
describes in detail the challenges of implementing the mechanism 
and how the ARIES concepts like page LSN, logging and 
checkpoint are handled to support concurrent updates on space 
maintenance pages in Microsoft SQL Server. The paper also 
presents the experimental results showcasing the impact of the 
work. 
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1. INTRODUCTION 
ARIES based database systems like System R, DB2, Sybase ASE, 

PostgreSQL and Microsoft SQL Server contain dedicated set of 
pages for space management. Some of the notable examples of the 
pages are - the free space inventory pages (FSIPs) in System R 
and Space Map Pages (SMPs) in DB2 [10] that track the space 
management in the data pages, Free Space Map (FSM) [14] in 
PostgreSQL that tracks free space, PageFreeSpace (PFS) [3][8] 
pages in Sybase ASE and SQL Server that track the free space in 
system. These pages track the space utilization of the individual 
data pages and are essential for optimizations like avoiding 
reading of empty pages [10], identifying pages that can be used 
for new inserts without scanning the entire object (table or index). 
The space management pages increase the level of concurrency in 
the system; however, frequent updates to those pages becomes the 
source of latch contention in the system. There are optimizations 
for updating the free space only when the free space on the page 
moves across thresholds like 50%. Even with such optimizations 
in place, the space management pages run into contention. IBM 
seems to have solved the contention problem on FSIPs/SMPs by 
avoiding latching/locking to provide higher concurrency as 
mentioned in footnotes in [10], but the details of the 
implementation are not mentioned in the paper.  

Customers of SQL Server have faced similar contention on space 
management pages like PFS for decades. There is a PFS page for 
every 64 MB chunk of data in SQL Server. Customers that run 
into the PFS contention have workloads that perform lots of page 
allocations, which update the state of the pages in PFS. Spreading 
the allocations across different 64MB chunks or spreading the 
allocation across different files can help alleviate the contention, 
but customers do not have the ability to force allocations to a 
specific 64MB chunk of a file or specify a file among set of 
available files. They sometimes work around the contention 
problem by adding additional files to the database in their 
installations. The presence of multiple files acts as a hint to the 
allocation algorithm in SQL Server to select a different file for 
every set of allocations. While this doesn’t necessarily eliminate 
the PFS contention entirely, it does help alleviate the problem to 
some extent. However, as more and more databases are moving to 
the cloud, customers may not have the configuration knobs to add 
more files due to the restrictions imposed by the cloud provider. 
Such customers would end up settling for lower transaction 
throughput. The mechanism described in this paper helps 
eliminate the page latch contention on pages like the PFS pages. 
With this solution, customers no longer have to provision multiple 
database files as workarounds or settle for lower throughput.  

This paper describes the overall design of “Concurrent updates to 
a page with fixed size rows using lock-free mechanisms” concept 
which is applicable to a wide range of pages, whose updates have 
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a higher level lock to guarantee that no two threads in the system 
are updating the same location concurrently. Even though the idea 
is applicable to a broader set of pages, the paper uses PFS page as 
an example to help explain what it takes to update a given ARIES 
based recovery system to support concurrent updates to a page. 
The team implemented concurrent updates to PFS pages and 
enabled by default in the box release of SQL Server - SQL Server 
2019, and enabled the feature in the cloud counterpart – Azure 
SQL Database for over a year. Section 2 begins with the 
background of the database pages in SQL Server and the 
mechanism used to manage PFS pages in memory to adhere to 
WAL. Section 3 outlines the design and the architecture of 
supporting concurrent updates on PFS pages using lock-free 
mechanisms under shared page latch, while still adhering to most 
WAL semantics. Section 4 presents the experimental results 
showing the performance impact on certain workloads. Section 5 
describes the future work and the other areas of databases to 
which this idea can be extended to. Section 6 explains the 
applicability of the work in other systems. Section 7 discusses the 
related work. Finally, Section 8 presents the conclusions. 

2. BACKGROUND ON SQL SERVER 
This section provides a summary of the system pages in SQL 
Server that keep track of space-related information, the 
mechanisms used to track the dirty page lists and the source of the 
contention on these pages.  

2.1 System Pages in SQL Server 

2.1.1 Page Free Space (PFS) Page 
Space in SQL Server is managed in units called extents consisting 
of eight logically contiguous 8KB pages. Each PFS page contains 
one byte for every page in an 8088-page range of a file. 

 

i 

Figure 1 shows the structure of a byte on a PFS page: 

 Bit 0 indicates if the page has potentially stale versions 
that need cleanup when the Constant Time Recovery 
(CTR) [13] feature is enabled.  

 Bit 1 indicates whether the page is allocated or not.  

 Bit 2 indicates whether the page is from a mixed extent 
(pages belong to different objects) or not.  

 Bit 3 indicates if the page is an Index Allocation Map 
(IAM) page.  

 Bit 4 indicates if the page contains ghost records.  

 Bits 5 through 7 are taken as a three-bit value indicating 
the page fullness in pages belonging to heaps (non-
index objects):  

o 0: empty  

o 1: less than 50% full 

o 2: 50% to 80% full  

o 3: 80 to 95% full  

o 4: 100% full.  

While some of the information in the PFS Pages can be derived 
from the content on the page, the PFS pages are quite useful in the 
system. SQL Server has a couple of background threads - ghost 
cleanup and version cleanup that leverage the bits in the PFS 
pages to identify the pages containing the older versions of the 
data that are no longer necessary in the system. Without the 
tracking bits, the cleanup threads would have to perform a scan of 
the entire database. 

2.1.2 Index Allocation Map (IAM) Page 
IAM pages keep track of the extents in a 4-GB section of the 
database file that are allocated to an allocation unit. An allocation 
unit is a set of pages belonging to a single partition in a table or an 
index. 

2.1.3 Global Allocation Map (GAM) Page 
The GAM pages record the allocated extents using one bit per 
extent. There is one GAM page for every 64000 extents or 4GB of 
the file. 

2.2 Log Sequence Number (LSN) 
SQL Server transaction log records track the changes made to the 
database pages. It stores enough information to allow SQL Server 
to recover the database in the event of crash. The log is 
maintained in one or more log files associated with the database. 
Each log record is labeled with a unique Log Sequence Number 
(LSN). Just like other ARIES [11] databases, SQL Server adheres 
to write-ahead logging (WAL) – the changes to the pages are 
written to the transaction log before the changes are written to the 
database pages. Each page contains the LSN of the last log record 
that contains the change to the page. Maintaining the LSN on the 
page is an essential aspect of ARIES; all three phases of ARIES 
recovery – analysis, redo and undo rely on it. 

2.3 Buffer Pool 
The buffer pool is the main memory component of SQL Server. It 
manages the I/O functions for bringing the pages into memory and 
flushing them to disk. Every buffer in the buffer pool has a header 
that contains status and other information that is used to manage 
the lifetime of the buffer from the time a page is read from disk to 
the time the page is evicted. SQL Server employs LRU-k [4] as 
the page replacement policy. 

2.4 Checkpoint 
SQL Server checkpoint process scans the buffer pool periodically 
to write out any dirty pages to disk thus ensuring that the number 

BIT:     0      1       2     3       4      5      6      7 

Space Used 

Page has ghosted rows 

Page is an IAM page Mixed allocation page 

Page is allocated 

Page has versions 

Figure 1. Structure of a byte on a PFS Page 
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of such pages is low in the system. This reduces the database 
recovery time in the event of crash.  

2.5 Dirty Page Manager 
The dirty page manager tracks the dirty buffers for a database in 
two lists. One list has the buffers for pages that have been 
prepared to dirty but do not have any changes yet and another has 
the buffers for pages that have been dirtied. 

2.6 Dirty Page Context (DPC) 
The Dirty Page Context is a structure that is maintained in every 
buffer. It tracks the checkpoint ID that the buffer corresponds to. 
A checkpoint is deemed complete only if all the buffers 
corresponding to the checkpoint ID are successfully flushed to 
disk. The DPC also tracks the first LSN that dirtied the buffer in 
this checkpoint, which is used to determine the oldest page LSN 
for the checkpoint. 

2.7 Latch Modes in SQL Server 
SQL Server supports the following latch modes used to perform 
read/write operations on database pages. 

2.7.1 Shared (SH) Latch 
Multiple threads can acquire SH latch on the page at the same 
time. Original intention was to support concurrent threads reading 
the same page. 

2.7.2 Update (UP) Latch 
Only one thread can acquire the UP latch on a page and is used to 
perform updates on a page. UP latch is compatible with SH latch 
but not with UP or EX latch. The UP latch is mostly used for the 
system pages like the PFS/GAM/IAM pages where the updates 
modify the fixed-size rows in-place. Such updates do not cause 
the page content to shift. Concurrent reads using SH latch on the 
page may read a stale value in the presence of concurrent updates 
but not a bogus value. 

2.7.3 Exclusive (EX) Latch 
Only one thread in the system can acquire the EX latch on a page 
at a time. Most pages, other than the PFS/GAM/IAM pages are 
updated using EX latch. EX latch is not compatible with UP or 
SH latches. 

2.8 Existing Algorithms for Updating a PFS 
Page 
The latch types mentioned above are available in other ARIES 
based database systems too. We have already established that the 
PFS page updates are derivative of the update to the underlying 
data page. While we will continue to mention PFS as the example 
in the following descriptions, many of the aspects are also 
applicable to other space usage pages in other databases. Updates 
to the PFS pages are always done under the scope of higher order 
lock while doing physical data page updates like updates to rows 
in those pages or logical data page updates like 
allocation/deallocation. The order in which the data operation and 
the PFS page operation are done within a transaction can vary. For 
example, during the forward processing of update to a page that 
results in updating the space utilization bits in PFS, the update to 
the data page is done first and then the update to PFS page. 

However, during rollback processing of the transaction that is 
undoing the effects of the transaction, the PFS state is updated 
first and then the data page modification. This is necessary to 
ensure that recovery works correctly, even in the presence of 
optimizations like PFS update log records being redo only log 
records in some cases as explained in [10]. Irrespective of the 
order of the data page update or PFS update, the key is that the 
PFS update is done within the scope of the exclusive latch of the 
data page. 

Figure 2 shows the sequence of steps in updating a data page in 
SQL Server, which is very similar to other ARIES based database 
systems. The data page is latched exclusively; under this scope, 
the log record for the page update is generated, page content is 
updated and PFS page is updated if necessary. In some cases like 
transaction rollback, the order of PFS update (again if necessary) 
and data page updates might be reversed but they are all done 
under the scope of the exclusive data page latch.  

Figure 3 provides the details of the original method to update the 
PFS page. Given the data page id whose PFS byte needs to be 
updated, the PFS page buffer hosting the information is identified 

Void UpdatePage() 

{ 

    Latch the data page exclusively. 

    { 

         Compute the necessary PFS update; 

         If the transaction is in rollback, update the PFS page; 

         Generate log record for the data page; 

         Update the data page; 

         If the transaction is not in rollback, update PFS page; 

    } 

    Release the latch on the data page; 

} 

Figure 2. Method to update a data page 

Void UpdatePFSPage() 

{ 

    Obtain PFS page corresponding to the data page; 

    Update latch the PFS page; 

    { 

        Prepare the PFS page to be dirtied; 

        Generate log record for the PFS update; 

        Update the byte on PFS page; 

        Set LSN on PFS page; 

        Mark PFS buffer as dirty; 

    } 

    Release the latch on the PFS page; 

} 

Figure 3. Original method to update a PFS page 
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and latched for update. Then the PFS buffer is prepared to track 
the page for the current checkpoint using the dirty page manager. 
As part of this tracking, if an element in the dirty page manager 
called the dirty page context (DPC) exists, it is used, if not a new 
entry is created. The DPC tracks the LSN of the first update that 
dirtied the buffer in the current checkpoint. For a checkpoint, the 
minimum of all the dirty page LSNs is used to compute the oldest 
dirty page LSN in the system, which is used to hold up the log 
truncation for the database. After the PFS page is prepared to 
dirty, the log record for the PFS page is generated. Next the PFS 
page is updated and the LSN of the log record is stored in the PFS 
page header. Then the PFS page buffer is marked as dirty in the 
DPC by setting the DIRTY_BIT in the buffer. The LSN of the log 
record generated is contributed to the DPC as well. At this point, 
all the actions on the PFS page are completed, and the update 
latch is released. 

To conclude, there are several buffer pool and log manager 
operations that are performed under the scope of the update latch 
on the PFS page. The update latch implies only one PFS update 
can be performed at a time, while other updates on the same PFS 
page get blocked. This serialized mode of updating PFS pages is 
the source of page latch contention. While we have described the 
problem in detail for the PFS page, this pattern repeats in other 
pages like GAM pages and IAM pages in SQL Server as well as 
the space maintenance pages in other database systems. This 
decades-old contention problem motivated us to find a solution.  

3. CONCURRENT UPDATES WITH ONLY 
SHARED LATCH 
This section covers the design and implementation details of the 
concurrent updates to a page with fixed format under shared latch. 
Concurrent updates to pages like PFS pages can be applied if they 
modify different bytes. In the case of PFS page update, there is 
either an exclusive page latch (for version/ghost/space PFS bit 
updates) or an exclusive page lock (in the case of allocation PFS 
bit updates) on the data page whose PFS byte is being updated. 
This provides the necessary guarantee that no two threads would 
be updating the same PFS byte concurrently. If a thread has an 
exclusive latch on the data page D and is in the process of 
updating its space usage in the corresponding PFS page P, then no 
other thread in the system can attempt to update other properties 
like version or ghost or allocation bit of page D as they would get 
blocked on the exclusive latch on D. This effectively blocks the 

update on same PFS byte for page D.  

Updating a PFS page involves several buffer pool maintenance 
operations described earlier. To support concurrent updates, each 
of the operations must be made thread safe to ensure the overall 
intent of each and continue to recover the page per ARIES 
recovery. This is achieved by using interlocked operations for in-
memory data structures and other lock-free algorithms for 
persisted structures. Figure 4 describes the pseudo-code to update 
the PFS under shared latch with the highlighted parts indicating 
the main differences from the old protocol in Figure 3. Note that 
there aren’t any changes around the way the data page is latched 
or locked for which the PFS update is being done. When the 
update on the data page triggers a corresponding PFS update, the 
PFS page is latched using SH latch instead of the traditional UP 
latch, which effectively allows other threads to read and write the 
PFS page. 

Let us look at how the other components get impacted to support 
concurrent updates to certain sets of pages while maintaining 
ARIES assumptions to help recover the page in the event of crash.  

3.1 Buffer Management 
Buffer manager is responsible for managing the buffers containing 
the pages. Typically, buffer pool manages all buffers in the same 
way assuming the updates to page buffers are done in an exclusive 
fashion. To support the concurrent updates scheme, the buffer 
manager is modified to be aware of pages that can be updated 
under shared latches. For every buffer that is prepared to host a 
page that can take concurrent updates, a bit in buffer header, 
BUF_CAN_HAVE_SHARED_UPDATES, is set to true. This bit is 
the signal to the buffer pool to use the version of the API that 
supports concurrent threads.  

3.2 Dirty Page Context (DPC) Creation and 
Setup 
Some of the APIs manipulating the DPC were not thread safe and 
had to be modified in various ways to allow concurrent updates. 
When the latch on a page is obtained for write operations, the first 
buffer operation is to prepare the buffer to be dirtied. On buffers 
that can support concurrent updates, this request was made thread 
safe. This step, PrepareToDirty, involves setting up DPC on the 
buffer. It is made thread safe using interlocked compare and 
exchange operator instead of the existing assignment operators. 
This ensures if two threads attempted to setup the DPC for the 
same PFS buffer, only one would succeed and the other would 
bail out and use the one whose setup was successful. 

3.3 Log Record and LSN Management 
One of the steps in updating the PFS page is generating log record 
and updating the LSN on the PFS page. The log manager in SQL 
Server supports generation of log records from concurrent threads 
irrespective of the page the log record is generated for. The inputs 
to the log manager are: page id, previous page LSN, previous 
value of the row and new value of the row. Given this payload, 
the log manager serializes and returns the LSN at which the 
payload was serialized to. 

In ARIES protocol as part of redo processing of log records, if the 
LSN on the page does not match the previous page LSN from the 
log record, it indicates a missed application of the log record and 
the redo processing fails with a high severity error. However, with 

Void UpdatePFSPageUsingSHLatch() 

{ 

    Obtain PFS page corresponding to the data page; 

    Share latch the PFS Page; 

    { 

        Prepare the PFS buffer to be dirtied; 

        Generate log record for the PFS update; 

        Update byte on PFS page using interlocked operations; 

        Set LSNon PFS page header using interlocked operations; 

        Mark PFS buffer as dirty; 

    } 

    Release the latch on the PFS page; 

} 

Figure 4: Update a PFS page using shared latch 
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concurrent updates on the PFS page, it is possible that two or 
more log records on the PFS page could be generated with the 
same previous page LSN. Since this violates the ARIES protocol 
[11], redo processing fails with an assert. This assert must be 
relaxed for PFS pages, which is as good as not utilizing the 
previous page LSN field in the log records for the redo operations 
on the PFS pages. This was deemed reasonable as the previous 
page LSN field on the log record was not used for correctness but 
used to detect stale pages on the disk (pages for which writes were 
issued to the I/O subsystem and a positive acknowledgement was 
received but the writes were missed). Stale pages in the database 
can be detected by other means like recording the LSN of the page 
at the time of flush/write in a separate data structure and 
validating the LSN of the page at read time against the value 
stored in the data structure.  

One of the main challenges was to update the PFS page LSN in an 
atomic way. The PFS page header typically tracks the largest LSN 
of the update on the page. In the presence of concurrent updates to 
PFS pages, the updates to the PFS page header LSN must be 
synchronized.  

The LSN on the page header is a 10-byte field that is not 16-byte 
aligned. Thus existing 16-byte interlocked operations could not be 
used to set the maximum value of LSNs by various threads. As 

shown in Figure 5, the 10-byte LSN value is comprised of three 
parts: 4 bytes for file sequence number, 4 bytes for block offset 
within the file and 2 bytes for the slot value. The most significant 
bit on the slot, SLOT_MASK, which is previously unused is now 
used to synchronize writes. Figure 7 provides the details of the 
SetPFSPageLsn API used to achieve this. Among the various 
threads attempting to update the PFS page LSN, the one to set the 
SLOT_MASK bit using interlocked API InterlockedBitTestAndSet 
gets to update the LSN in an atomic way while the other threads 
spin. Once done, the thread resets the SLOT_MASK to allow 
subsequent updates to go through. 

The counterpart of SetPFSPageLsn, GetPFSPageLSN, cannot 
update the fields on the page as the read API might be operating 
on read-only buffers. As such the read API, GetPFSPageLSN, 
cannot use the lock on the SLOT_MASK to synchronize with the 
writes. At the same time, simple read can result in a torn read of 
the 10-byte value or an invalid value due to the inflight update 
that sets the SLOT_MASK. To solve this problem, we came up 
with the lock-free algorithm described in Figure 6. The idea is to 
atomically read the first 8 bytes of the LSN, then atomically read 
the last 2 bytes of the LSN field and repeat the two reads once 
more with a memory barrier in between. If both the attempts 
provide the same valid value without the SLOT_MASK bit set, that 
value is returned; otherwise, the process is repeated. The double 
read ensures that only valid and consistent values are returned.  

The update to the PFS page is done in an atomic way using 
existing interlocked update API so as not to interfere with the 
other threads. Apart from the LSN on the page, the LSN on the 
structures like DPC need to be maintained and they were updated 
using traditional interlocked operations too. 

3.4 Checkpoint problem 
The checkpoint process goes over all the DPC entries that have 
been dirtied in this cycle, reads the LSN from every entry and 
computes the minimum value as the Dirty Page LSN for the 
current checkpoint. With concurrent updates to PFS pages using 
shared latches, it is possible that thread T1 generated a lower LSN 

struct LSN 

{ 

    ULONG m_fSeqNo; 

    ULONG m_blockOffset; 

    USHORT m_slotId; 

}; 

Void SetPFSPageLsn(LSN targetLSN) 

{ 

    Get the current LSN value on the page; 

    If the current LSN > targetLSN 

    {     

        return;    

    } 

    Else 

    { 

        Obtain the lock on m_slotId using interlocked operations; 

        { 

                Get the current LSN value on the page; 

                If Current LSN on page < targetLSN 

{ 

    Update the LSN value on the page; 

} 

        } 

        Release the lock on the m_slotId; 

    } 

} 

 

LSN GetPFSPageLsn() 

{ 

    do 

    { 

          read1 = Atomic read of first 8 bytes of LSN; 

          read_s1 =Atomic read of last 2 bytes of LSN; 

          Memory barrier to prevent compiler reordering; 

          read2= Atomic read of first 8 bytes of LSN; 

          read_s2 = Atomic read of last 2 bytes of LSN; 

    } while (read1 != read2 || read_s1 != read_s2 || 

       SLOT_MASK_set_in_read_s1 ||  

       SLOT_MASK_set_in_read_s2); 

 

    Double read succeeded, return the value; 

} 
Figure 5.  LSN Structure 

Figure 7. Set PFS Page LSN API 

Figure 6. Get PFS Page LSN API 
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for the PFS page while thread T2 generated a higher LSN for the 
same PFS page. T2 can race ahead to contribute the LSN to the 
DPC. Now, if checkpoint process inspects the dirty page LSN for 
this buffer, before T1 has had a chance to contribute its LSN to 
the DPC, it can result in the incorrect dirty page LSN computation 
by checkpoint, leading to recovery failure or corruption. 

Figure 8 describes the changes to buffer pool operations, 
PrepareToDirty and Dirty, to find a solution. A bit, DIRTY_BIT, 
is currently maintained in the DPC to indicate if the page 
corresponding to the DPC has been dirtied in the current 
checkpoint. This was traditionally set by the first thread that 
successfully generated the LSN on the page and executed the 
Dirty API on the DPC before releasing the latch on the page. To 
solve the checkpoint problem, a new counter, 
PENDING_COUNT, is added to the DPC structure. The 
checkpoint thread uses the PENDING_COUNT value on the DPC 
to determine if the LSN on the DPC is safe to consider or not. If 
the PENDING_COUNT is greater than 0, then it implies that there 
could be a thread in the system that has not yet contributed its 
LSN to the DPC and hence the checkpoint thread cannot get an 
accurate LSN value for the DPC yet. If that happens, the 
checkpoint thread releases the locks on the DPC structures and 
rechecks the DPC in a loop till PENDING_COUNT becomes 0, 
basically ensuring all inflight concurrent updates to PFS that 
started when DIRTY_BIT was 0 and have all contributed their 
LSNs to the DPC. The PFS update that can potentially block the 
oldest page LSN computation is expected to complete without 
running into deadlatches and hence not block the checkpoint 
process indefinitely.  

PENDING_COUNT is maintained as follows: when a thread T1 is 
attempting to generate a log record on the PFS page, if the 
DIRTY_BIT is 0, it implies no other update has happened to the 
page in the current checkpoint, T1 increments the 
PENDING_COUNT value in an interlocked manner. T1 can 
decrement the PENDING_COUNT value only after contributing 
the LSN it generated to the DPC. Now, if T2 is attempting to 
generate a log record on the PFS page and the DIRTY_BIT is 1, it 
implies another thread T1 has already generated a log record, so 
T2 doesn’t need to contribute to the dirty page LSN computation 

at all, so it no longer needs to increment the PENDING_COUNT. 
This helped resolve the checkpoint problem 

3.5 Impact to Other Latch Protocols 
The scheme to support concurrent updates using existing SH 
latches posed one latch compatibility issue. Section 2.7 mentioned 
that the UP latches are compatible with SH latches. With the 
scheme, updates on PFS pages are performed under SH latch. This 
violates the contract for requests in the system that need an UP 
latch, like the ones that update the PFS page header after scanning 
the entire contents of the PFS page. Such PFS updates may not 
necessarily have any other locks or latches held on other pages. In 
order to continue to support such operations, any UP latch request 
for PFS page in the system is automatically elevated to EX type to 
serialize with an update being performed using SH latch. This 
auto-elevation was made transparent to all UP latch consumers of 
PFS pages to prevent accidental misuse of UP latch on PFS pages. 

3.6 Benefits of the Scheme 
To summarize, the scheme involved updating existing algorithms 
to support concurrent updates under shared latches. This helped 
improve the throughput of PFS operations in the system and 
solved the decades-old PFS contention issues customers faced. 
Another major beneficiary of the scheme was the Constant Time 
Recovery (CTR) [13] feature in SQL Server. CTR is a novel 
recovery algorithm that depends on ARIES [11] but leverages row 
versions generated for MVCC for transaction rollbacks. CTR uses 
PFS pages for tracking stale versions: any database page modified 
by an active transaction is marked as having versions in PFS page. 
Then a background thread uses this information to identify pages 
that potentially have rows that need to be rolled back. Without the 
tracking in PFS, the background cleaner would have to perform an 
entire database scan to clean up the older versions of the rows in 
the database, which can lead to slow cleanup and inefficient space 
utilization in the system. This design choice increased the PFS 
usage and thus contention on PFS pages. Addressing this was 
necessary for shipping CTR. 

4. EXPERIMENTAL RESULTS 
Our experimental studies can be classified into four major 
categories – TPCC benchmarks, features like CTR, simulated 
allocation-intensive workloads and customer workloads. Let us 
look at the scheme’s impact on each of these. 

4.1 Impact on TPCC Benchmarks 
Concurrent PFS updates mechanism eliminates exclusive latches 
on PFS pages but at the same time it introduces interlocked 
operations. We wanted to understand the impact of these changes 
on TPCC workload that doesn’t necessarily experience PFS 
contention. The experiments were carried out on a workstation 
with 4 sockets, 40 cores (Intel® Xeon® Processor E7-4850, 
2.00GHz) and 512GB of RAM. External storage consists of two 
1.5TB SSDs, one for data and one for log. The TPCC workload 
running with concurrent PFS update feature did not degrade 
compared to running without. The variation between the runs was 
within the usual TPCC run-to-run variance of 1% or less. This 
showed that the new mechanism to update the PFS pages does not 
penalize the workload. Lock-free algorithms can potentially 
consume more CPU due to retries, interlocked operations and long 
chains in hash maps. The TPCC results prove that our lock-free 
scheme doesn’t necessarily add any CPU overhead to the system. 

Void PrepareToDirty() 

{ 

    If the page does not already have DPC, create one; 

    Increment PENDING_COUNT in DPC in interlocked way; 

    Other prepare to dirty aspects; 

} 

 

Void Dirty() 

{ 

    Perform other Dirty tracking; 

    Set the Dirty bit; 

    Decrement PENDING_COUNT on DPC if needed; 

} 

 
Figure 8. API changes to solve checkpoint problem 
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In terms of memory overhead in the system, the scheme 
introduced additional fields in existing data structures. The 
additional fields (less than 100 bytes) are only created for the 
BUFs that correspond to PFS pages. For a 100GB database, if all 
the PFS pages are in buffer pool, then the additional memory 
overhead would amount to 156KB (approx. 100 bytes for each 
PFS page). The memory overhead is insignificant compared to the 
size of the database. 

4.2 Impact on Constant Time Recovery 
(CTR) 
On a database that has Constant Time Recovery (also known as 
Accelerated Database Recovery [7]) enabled, any 
insert/update/delete in the system needs to track the version bit in 
the PFS page. This significantly increases the number of PFS trips 
and thus the PFS contention in the system. We ran TPCC 
workload on a CTR enabled database with and without concurrent 
PFS update feature on the 4-socket machine. Table 1 summarizes 
the results of the experiments. 

Table 1. Performance results of TPCC with CTR 

Concurrent PFS 
update 
configuration 

Transaction 
Throughput in 
TPMC 

CPU Utilization 

Enabled 787099.73 98.50% 

Disabled 475423.40 45.30% 

The throughput in TPCC increased nearly 65% when concurrent 
PFS scheme was enabled. The huge increase in throughput can be 
attributed to the increase in CPU usage from 45% to 98.5%. In the 
runs without Concurrent PFS Update, the PFS contention prevents 
the TPCC workload to utilize the CPU. From the performance 
numbers, it became clear that CTR feature benefits tremendously 
from the concurrent PFS update scheme. The PFS contention 
problem existed in SQL Server for over a decade. When CTR 
took a dependency on tracking versioning in the PFS pages, the 
bottleneck became more prominent, forcing us to think about a 
practical solution for the problem. While the PFS contention was 
fixed to address CTR performance issues, it solved the decades-
old PFS contention problem that existed even without CTR. 

4.3 Impact on Allocation-intensive Workloads 
We ran various workloads, some comprising of temp tables, some 
with table variables and some with logon triggers. Each of them is 
known to run into PFS contention as reported by several SQL 
Server customers over decades. While these workloads are not 
strict benchmarks, they correspond to real workloads that 
customers have in production. With concurrent PFS update 
changes, we noticed a 5x to 20x increase in the throughput of 
some of these workloads. Let us look at one of the experiments in 
detail. Figure 9 describes the stored procedure that inserts top 
system messages into a temporary table. This stored procedure 
creates a temporary table into which the results are sent. Creation 
of the temporary tables involves allocation and when there are 
concurrent allocation requests, the workload runs into PFS 
contention. We leveraged OStress framework [12] that provides 
capabilities to run SQL workloads such as the above stored 
procedure. 

Figure 10 shows the command line parameters used to generate 
the workload. The workload was essentially 300 iterations of the 
above stored procedure being executed by 400 concurrent threads. 
The workload was run with and without the feature on a 2-socket 
Intel Xeon 2.4Ghz machine with 256 GB RAM and database files 
on SSDs. On a run without the concurrent update feature, the wait 
statistics showed that there were several requests waiting for 
update latch on the same PFS page. 

Table 2. Performance results on 2-socket machine 

Concurrent PFS 
update configuration 

Average CPU 
utilization 

Elapsed time 
(HH:MM:SS) 

Disabled 10% 00:10:01 

Enabled 32% 00:01:56 

Table 2 summarizes the results of the experiments. With the 
feature, the throughput of the workload increased 5x, as it 
completed in under 2 minutes compared to 10 minutes without the 
feature. The throughput increased as the CPU utilization went up 
from 10% to 32%. Throughout the run, queries were run to 
identify the contenting latches and results were as expected. 
Without the feature, at any point in time, there were more than 25 
UP latch requests on the PFS page, while with the feature enabled, 
PFS latches did not show up in the wait statistics at all. The 
workload was also run on 8-socket Intel Xeon CPU E7-8890 
@2.2Ghz with 6TB RAM and database files on SSDs.  

Table 3. Performance results on 8-socket machine 

Concurrent PFS 
update configuration 

Average CPU 
utilization 

Elapsed time 
(HH:MM:SS) 

Disabled 1% 00:11:28 

Enabled 83% 00:04:57 

Table 3 summarizes the results of the experiments. With the 
feature, the throughput of the workload increased 2x, as it 
completed in under 5 minutes compared to 12 minutes without the 
feature. The throughput increased as the average CPU utilization 
went up from 1% to 83%. Throughout the run, queries were run to 
identify the contenting latches and results were as expected. 
Without the feature, at any point in time, there were several UP 
latch requests on the PFS page, while with the feature enabled, 

CREATE PROCEDURE usp_WorkLoad 

AS 

BEGIN 

  Select TOP 500 * into #TMP from master.sys.messages 

  WAITFOR DELAY '0:0:0.20' 

END 

 
Figure 9. Stored procedure to repro PFS contention 

ostress.exe -E -d"tempdb" -Q"exec usp_WorkLoad" -n400 -
r300 -b -q 

Figure 10. Stress workload commands 
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PFS latches did not show up in the wait statistics at all. The results 
from the 8-socket machine confirm that the algorithms scale up 
too. 

4.4 Impact on Customer Workload 
We had a customer willing to test out a workload that constantly 
ran into PFS latch contention. Due to the restrictions imposed by 
the customer, we cannot reveal the details of the workload. 
However, the workload essentially ran into PFS contention due to 
amount of allocations in the system. We obtained the workload 
from the customer and ran it with and without the concurrent PFS 
update feature. The workload was run on a 2-socket Intel Xeon 
2.4Ghz machine with 256 GB RAM and database files on SSDs. 

Table 4. Performance results of customer workload 

Concurrent 
PFS update 

configuration 

Throughput 
(batch req/ 

sec) 

%CPU Top wait types % (of total 
wait time) 

Disabled 350 35% PAGELATCH_UP - 38.52%  

SOS_WORK_DISPATCHER 
- 59.33% 

Enabled 1035 63% ASYNC_NETWORK_IO - 
59.15% 

SOS_WORK_DISPATCHER 
- 39.95% 

Table 4 summarizes the results of the customer workload. The 
customer workload benefited from the feature in the same way as 
the temp table workload. The throughput of the customer 
workload increased 3x due to the increased CPU utilization. The 
top wait types were captured during the workload execution. As 
expected, in the run without the feature, the top wait was the 
update page latch, PAGELATCH_UP, which typically appears for 
PFS/GAM pages. In the run with the feature enabled, the update 
page latch disappeared.  

We did not perform any micro benchmarks on the lock-free 
algorithms used in the various buffer pool management and 
checkpoint management aspects as these are not structured as unit 
testable components. It was very hard to tease them apart and test 
them in isolation to see if the lock-free algorithms have an 
inflection point or not. 

5. FUTURE WORK 
The work has been currently implemented for PFS pages and 
enabled by default in both Azure SQL DB and SQL Server 2019. 
More than five million databases in Azure SQL DB are running 
with this feature. With this in place, PFS pages are no longer the 
source of contention in SQL Server. Some of the allocation 
workloads that ran into PFS contention earlier, now run into GAM 
(Global Allocation Map) and occasionally IAM (Index Allocation 
Map) page contention. The next step is to extend the work to 
GAM and IAM pages. This would eliminate the system page latch 
contention as part of the allocation and speed up other workloads.  

6. APPLICABILITY OF THE WORK 
While the paper talks about how the contention on PFS pages in 
SQL Server was solved, the approach can be applied to other 
database systems that have metadata pages with fixed size rows, 
whose updates are derived updates of the actual rows. PostgreSQL 
[6] uses metadata pages called Free Space Map (FSM) [14] to 
track free space in the system. If the space usage on the database 

pages increases with workload, then the free space map needs to 
be updated. If the space on the database pages is reclaimed due to 
cleanup of older versions by the process called vacuum [15], then 
the free space map needs to be updated as well. The information 
stored in FSM is derived from the operations on the data pages, 
just like in SQL Server. It is important to store the information in 
FSM as it reduces the amount of time spent to identify pages that 
have free space. FSM pages can run into contention when 
concurrent threads in the system attempt to update the same FSM 
page. We believe updates to the FSM pages can benefit from the 
scheme and help improve the throughput of certain workloads in 
the PostgreSQL database as well. 

7. RELATED WORK 
We investigated if other databases or storage systems encountered 
similar problems and how they addressed the issues. [10] 
describes some of the flexible space management optimizations in 
database systems like System R [1]  and DB2 [9]. A few system 
pages per file called the free space inventory pages (FSIPs) in 
System R and space map pages (SMPs) in DB2, track the space 
management in the data pages.  

These system pages are essential to improving the storage 
utilization and increasing the levels of concurrency in the system. 
The FSIP/SMP pages are frequently updated due to the updates to 
the data pages that they are responsible for. While there are 
optimizations to not update the FSIPs/SMPs for every data 
operation, the latching of these pages causes contention. [10] 
mentions that FSIPs/SMPs are normally the hot spots and to 
alleviate latch contention, they used atomic update instructions to 
update the relevant FSIP entry, basically supporting concurrent 
updates to such pages. They updated the page_LSN fields in the 
FSIPs/SMPs to maintain the highest LSN too. To achieve 
recoverability of FSIP/SMP pages, the updates were redo only log 
records without any undo semantics. This was possible with 
special logic around the order of the log records generated – 
forward processing of transactions generated the log records for 
the pages corresponding to FSIPs first and then generated the 
update to the FSIP, undo processing of transactions generated the 
FSIP log record if needed prior to generating the undo log record 
of the data pages. The fact that the data page is latched 
exclusively when the corresponding FSIP is being updated both 
during forward processing and undo processing helped avoid 
latching or locking FSIPs to provide higher concurrency.  

DB2 page-level locking led to contention on index leaf pages. 
Before solving that using record-locking, DB2 implemented mini-
page locking [11] by dividing the index leaf page into smaller 
pages. Each mini-page had its own LSN besides the LSN for the 
whole leaf page. The page LSN is set to the max LSN of the mini-
page LSNs.  This approach has the disadvantage of taking up 
extra space for mini-page LSNs. We could not necessarily adopt a 
similar scheme for PFS pages as the PFS page format is fixed with 
no additional space for LSNs for different sections of the page.  

There are other studies in the literature that work around the 
latency issues of write-ahead-logging protocol of ARIES using a 
different approach. Segment-Based recovery [16] addresses the 
latency among components in write-ahead-logging by removing 
the two core assumptions – pages are the unit of recovery and 
maintenance of the LSN on each page. They achieve the above by 
using segments as the units of recovery. The segment can be 
within a single page or span multiple pages. They delegate the 
locking of the segments to the application layer and thus avoid 
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concurrent updates to the same segment. The scheme assumes 
sector writes to be atomic and handle torn pages by blind writes. 
Segment-Based recovery eliminates the need to maintain the 
LSNs on the pages by employing a write-back-caching 
mechanism – updates to a page only affect the cached copy while 
the write is performed when the higher level object the page 
represents is evicted from the cache. This allows the updates to 
the same page to be re-ordered, enabling higher concurrency in 
the system. With the need for page latches eliminated, the scheme 
allows for calls to buffer manager and log manager to be 
asynchronous and increases the throughput of the system. The 
paper describes changes to the allocation algorithms to support 
safe rollback of the transactions by avoiding unrecoverable states. 
The paper also proves the correctness of the algorithms and 
demonstrates achieving 20x speed up in some cases compared to 
page-based approach. While Segment-Based recovery addresses 
the latency concerns and helps improve the throughput of the 
application workload on ARIES based system, it requires 
significant re-write of the underlying system to support the high 
level of concurrency. It also pushes the responsibility of locking 
to the application layer, which can potentially lead to bad 
performance in some cases. Our approach is similar to the 
concepts used in Segment-Based recovery, in that we attempt to 
leverage the write back mechanisms to lazily update the LSN on 
the pages and leverage the higher level locking of the PFS bytes to 
support concurrent updates to the PFS pages. We achieved this 
without having to substantially re-write the mature storage engine. 

To summarize, we believe that concurrency of pages with fixed-
size rows can be significantly improved by adopting lock-free 
algorithms for such pages.  

8. CONCLUSIONS 
Based on the experimental results, the concurrent PFS update 
protocol did not add any performance overhead to the system. It 
significantly improved the throughput in certain workloads. It’s 
on by default in Azure SQL DB and is also supported in SQL 
Server 2019 product. Even though the concurrent PFS changes 
were mainly scoped to buffer pool management aspects and PFS 
page update API, identifying all the steps that needed to be made 
lock-free, implementing them and proving correctness was a long 
journey for the team. Coding lock-free algorithms is hard but 
rewarding too. The work showed that taking a closer look at a 
particular subsystem that is based on lock-based algorithms and 
changing them to be lock-free can help in significantly boosting 
the performance of the entire system. Contrary to claims in [5], 
this work proved that it is possible to leverage lock-free 
algorithms and improve the performance of certain class of 
operations for some important class of pages in disk-based 
database systems. While techniques like transactional memory 
described in [2] could potentially be used in some cases, we 
haven’t explored the option yet and might consider them in the 
future. 
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