
Oracle AutoML: A Fast and Predictive AutoML Pipeline

Anatoly Yakovlev, Hesam Fathi Moghadam, Ali Moharrer, Jingxiao Cai,
Nikan Chavoshi, Venkatanathan Varadarajan, Sandeep R. Agrawal,

Sam Idicula∗, Tomas Karnagel, Sanjay Jinturkar, Nipun Agarwal
{anatoly.y.yakovlev,hesam.fathi.moghadam,ali.m.moharrer,jingxiao.cai,nikan.chavoshi,venkatanathan.varadarajan,

sandeep.r.agrawal,tomas.karnagel,sanjay.jinturkar,nipun.agarwal}@oracle.com,*sam idicula@hotmail.com

Oracle Labs

ABSTRACT
Machine learning (ML) is at the forefront of the rising pop-
ularity of data-driven software applications. The resulting
rapid proliferation of ML technology, explosive data growth,
and shortage of data science expertise have caused the indus-
try to face increasingly challenging demands to keep up with
fast-paced develop-and-deploy model lifecycles. Recent aca-
demic and industrial research efforts have started to address
this problem through automated machine learning (AutoML)
pipelines and have focused on model performance as the
first-order design objective. We present Oracle AutoML, a
novel iteration-free AutoML pipeline designed to not only
provide accurate models, but also in a shorter runtime. We
are able to achieve these objectives by eliminating the need
to continuously iterate over various pipeline configurations.
In our feed-forward approach, each pipeline stage makes
decisions based on metalearned proxy models that can pre-
dict candidate pipeline configuration performances before
building the full final model. Our approach, which builds
and tunes only the best candidate pipeline, achieves better
scores at a fraction of the time compared to state-of-the-art
open source AutoML tools, such as H2O and Auto-sklearn.
This makes Oracle AutoML a prime candidate for addressing
current industry challenges.

PVLDB Reference Format:
Anatoly Yakovlev, Hesam Fathi Moghadam, Ali Moharrer, Jingx-
iao Cai, Nikan Chavoshi, Venkatanathan Varadarajan, Sandeep
R. Agrawal, Sam Idicula, Tomas Karnagel, Sanjay Jinturkar, and
Nipun Agarwal. Oracle AutoML: A Fast and Predictive AutoML
Pipeline. PVLDB, 13(12): 3166-3180, 2020.
DOI: https://doi.org/10.14778/3415478.3415542

∗This work was done when the author was an employee at
Oracle Labs

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415542

1. INTRODUCTION
By 2025, IDC [47] predicts increasing data generation rates

will usher in the age of applications with rapid model1 build-
to-use cycles. Deployed models will need fast automated re-
tuning on fresh datasets [60] to manage drifts between trained
and inference data. Such rapid model development cycles
require an efficient ML pipeline, which we define as obtaining
an accurate model in a short period of time. Additionally,
an automated pipeline is necessary, as the usecase spans
from enabling a novice user with no data science background
to use machine learning, to bootstrapping a data scientist
with a near optimal solution for a given dataset. Both ends
of the spectrum require an AutoML pipeline to accurately
generate predictions akin to a manually generated model. In
an industrial setting, the ability to get results fast is crucial
to jump start a new machine learning project and minimize
the build-to-use time of updating an existing model.

Identifying the right model for a given dataset, which
in this work we restrict to tabular classification datasets,
involves selecting the best algorithm2, the best set of rows and
features, and the best algorithm hyperparameters. There are
hundreds or thousands of potential combinations. Given this
large search space, conventional wisdom is to have optimizers
explore various pipeline configuration parameters together
to effectively capture dependency among such parameters.
For instance, choice of feature subsets can affect the model
performance on different algorithms and vice versa. Hence,
many state-of-the-art AutoML optimizers [13, 14, 20, 25,
38, 57] are iterative and need to evaluate a large number
of pipeline permutations. However, this takes a long time
as we will show in Section 5.1, making iterative pipelines
impractical for large datasets with short time budgets.

In this work, we demonstrate how an unconventional
iteration-free AutoML pipeline can significantly speed up the
optimization process, while achieving competitive model per-
formance relative to state-of-the-art AutoML pipelines. We
take a radically new approach of rapidly narrowing the search
space by doing one-pass preprocessing, algorithm selection,
algorithm-specific adaptive data reduction, i.e., row- and
feature-wise dataset sampling, and hyperparameter tuning,
as shown in Figure 1.

One potential drawback of a non-iterative approach can be
loss of accuracy due to omission of trials of certain pipeline
configuration combinations, as will be discussed in Section 5.

1Throughout this paper, model refers to the end result of applying
an ML algorithm to a dataset, with given hyperparameters.
2Neural architecture search and ensembles of different models are
complementary to our work and are not in the scope of this paper.

3166



A*, λ* Dtrain Algorithm
Selection

Hyperparamter
OptimizationPreprocessing

Adaptive 
Data 

Reduction

D’train D’train

A*

D*train

A*

Figure 1: Oracle AutoML: a non-iterative AutoML pipeline.

This can be more pronounced for longer time budgets. We
minimize such risks by metalearning a proxy model per
algorithm that accurately predict relative ranking between
different pipeline configurations.
We make the following novel research contributions:

Iteration-free optimizer. Our iteration-free sequence
of ML pipeline stages, consisting of algorithm selection, adap-
tive data reduction, and hyperparameter optimization, is first
of its kind. Each pipeline stage optimization outcome is final
and only affects the downstream stages.

Proxy Models. A metalearned set of proxy models that
are predictive of relative performance of algorithms and
data subsets.

Adaptive Data Reduction. Selects a representative
sample of a dataset, along both the row and feature dimen-
sions, optimized for a selected algorithm. Adaptive data
reduction speeds up hyperparameter optimization with min-
imal impact on predictive performance of models.

HyperGD. Highly parallel gradient-based hyperparame-
ter optimizer that performs asynchronous optimization across
different hyperparameter dimensions in parallel.

These novel aspects of Oracle AutoML allow it to be signif-
icantly faster and, in most cases, more predictive than state-
of-the-art AutoML approaches (Section 5.1). Our pipeline
has recently been commercially released and is globally avail-
able to all Oracle customers as part of Oracle Cloud Data
Science Platform [39].

In the following sections, we first provide an overview of
related work in Section 2. We then follow with a high-level
overview of the our pipeline in Section 3. Section 3.1 de-
scribes the process of configuring hyperparameters of our
proxy model. We describe algorithm selection, adaptive
data reduction, and hyperparameter optimization in Sec-
tions 3.2, 3.3, and 3.4, respectively. Section 4 describes our
experiment methodology, and Section 5 provides the results
and comparison of Oracle AutoML’s performance relative
to state-of-the-art pipelines. We share lessons we learned in
Section 6 and conclude the paper in Section 7.

Commonly used abbreviations in this paper are: Adaptive
Data Reduction (ADR), cross-validation (CV), our hyperpa-
rameter optimizer module (HyperGD), and Gradient-based
Search Space Reduction (GrSSR).

2. RELATED WORK
End-to-end automation of machine learning has been the

subject of many recent works [1, 2, 13, 16, 20, 29, 37, 38,
56, 63]. Researchers have tackled this optimization problem
using several different approaches. The first approach primar-
ily relies on Bayesian Optimization [5, 25, 57], which uses
a probabilistic model to capture different hyperparameter
configurations and their performance. Auto-sklearn [13], one
of the most notable works relying on this approach, adopted
a random-forest-based sequential model-based optimization
technique [22] for general algorithm configuration. It uses
metalearning to identify a previously optimized dataset clos-
est to the given dataset and uses the known dataset’s config-
uration to bootstrap the iterative optimization process.

A second class of solutions frame the AutoML problem as
a Recommender System [16, 37, 56], where the system main-
tains a record of the best configuration found for each dataset
it has previously encountered. Given a new dataset and the
results of several initial trials, the system uses similarity to
known datasets and configurations to suggest the next con-
figurations to evaluate. Probabilistic Matrix Factorization
is, typically, at the core of recommender systems [16].

A third approach relies on genetic evolutionary algorithms .
One notable example is the Tree-based Pipeline Optimization
Tool (TPOT) [38], which automatically optimizes a machine
learning pipeline built around Scikit-Learn.

All three approaches listed above are iterative in nature,
requiring multiple iterations to produce a model. Instead,
we use a non-iterative approach to predict relative algorithm
performance throughout the pipeline, improving efficiency
compared to sequential and iterative approaches.

Additionally, these three approaches have a known issue
called the cold-start problem - inability to predict how a
pipeline configuration will perform on a new dataset. This is
avoided by leveraging metalearning, where different pipeline
configurations’ behavior is learned on a wide variety of
datasets [14, 18, 46, 67]. Other uses of metalearning uti-
lize a known set of dataset metafeatures, such as statistical
descriptions of dataset features along with some generic land-
marks, such as 1NN, Naive Bayes, and PCA [43]. In Oracle
AutoML, we rely on metalearning to obtain hyperparameter
configurations for our proxy models. We use these proxy
models in our pipeline to estimate relative performance of
every algorithm and make decisions based on these estimates.
This unique use of metalearned proxy models enables our
highly efficient non-iterative pipeline architecture.

Several commercial AutoML products are also available for
customer use. Microsoft Azure [2] uses matrix factorization
and Bayesian optimization to automate selection and tuning
of ML algorithms. Google’s AutoML [63] exploits deep
reinforcement learning and neural architecture search to find
the best model. It also transfers learned knowledge to the new
task. Amazon SageMaker Autopilot [1] is another AutoML
platform which has components such as data preprocessing,
algorithm selection, and hyperparameter tuning. Given a
dataset, it picks the optimal combination of these components
and uses it to train a pipeline.

Below, we explore the prior art in the individual ML
pipeline stages and highlight the differences from ours.
Algorithm Selection. Past efforts on algorithm selection
have generally been done in combination with hyperparame-
ter optimization and have been based on iterative approaches
such as Bayesian optimization [22], Probabilistic Matrix Fac-
torization [16], or genetic evolutionary algorithms [38]. We
use proxy models to predict tuned performance of each algo-
rithm for the given new dataset. Their usage enables us to
achieve higher efficiency than iterative solutions (Section 5).
Adaptive Data Reduction. Sampling rows on large
datasets is a well-known method of speeding up ML pipelines.
The main challenge with sampling is the class imbalance
problem [8, 21], typically handled by doing over-, under-, or
hybrid-sampling [9, 58]. Some approaches modify a model
to inherently handle imbalance [11, 55]. Unlike prior
work that is independent of the target algorithm, our row
sampling minimizes score loss by greedily obtaining the
smallest possible sample for the algorithm identified by the
algorithm selection stage.

3167



Traditional feature selection methods [7, 26, 36] rely on
one of these three approaches: 1. filter methods, which make
selections based on intrinsic feature properties, such as cor-
relation to the target variable; 2. wrapper methods, which
make selections based on model performance, capturing in-
teractions between features; 3. embedded methods, which
rely on a target models’ own feature selection process (not all
models have this capability), such as RandomForest feature
importances. While each method has its own merits, no
single approach performs best on all datasets. We use a novel
combination of filter, wrapper, and embedded methods. This
makes our feature selection more resilient to the shortcom-
ings of a single approach across a broad spectrum of datasets.
We explore feature subset sizes based on exponential growth
and evaluate them using our proxy models.
Hyperparameter optimization. Among hyperparameter
optimization approaches, Bayesian [5, 6, 19, 22, 23, 52] and
random search based optimizers [4, 27, 54] are the most com-
mon. Bayesian optimizers usually use Gaussian Processes for
global optimization of unknown functions. Their complexity
is cubic with the number of trials, making them computation-
ally expensive. Random search optimizers perform well [4,
27] but require careful guidance using other optimizers in
order to be fast [12]. Gradient descent optimizers are pop-
ular and can take advantage of data-level parallelism [30,
31, 45, 66], but gradients for hyperparameters are not well
defined. Coordinate descent optimizes one dimension of hy-
perparameter search at a time and is parallelizable across the
dimensions [33, 41]. Our hyperparameter tuning algorithm
(HyperGD) is similar to coordinate descent because we tune
across different dimensions in parallel. However, we boot-
strap our search with multiple points across the dimensions,
and, more importantly, utilize rapid search space reduction
based on gradient intersections. Finally, we perform gradient
descent as the last step (Section 3.4).

3. ORACLE AUTOML
We formally define the AutoML pipeline optimization

problem similarly to the Combined Algorithm Selection and
Hyperparameter optimization [57], but include Adaptive
Data Reduction (ADR) as another dimension. Given a
dataset Dtrain with N samples and K features, the aim
is to find the combination of the best algorithm A?, data
sample D?

train and hyperparameter setting λ? by minimizing
the average loss function L, where L is any user-defined
misclassification rate, and is logloss in this paper, as explained
in Section 4,

D?
train, A

?, λ? ∈ argmin
n∈N,k∈K,
A(j)∈A,
λ∈Λ(j)

L
(
A

(j)
λ , D

(n,k)
train

)
(1)

We introduce several novel contributions in the design
of Oracle AutoML, which produce fast and accurate re-
sults. First, we implement the optimizer as a sequential
non-iterative architecture. This design choice significantly
speeds up the pipeline as every stage’s decision is made in a
feed-forward manner.

Our pipeline consists of a predefined set of stages
(Figure 1), starting with data preprocessing. We implement
commonly utilized preprocessing steps [24], including missing
value imputation, label encoding, and normalization.

The next stage consists of algorithm selection, which de-
termines the best algorithm (A?) for this dataset. Because
subsequent stages depend on an underlying algorithm, this
stage eliminates the need for iterative optimization. Since
algorithm selection is pivotal to the performance of the entire
pipeline, we rely on carefully crafted proxy models to select
the best algorithm for the dataset. These proxy models
act as indicators of how well a given algorithm will per-
form on the dataset of interest. Their highly predictive na-
ture (Section 5.2) helps us mitigate score degradation, which
would normally be associated with a non-iterative pipeline.

With knowledge of the best algorithm (A?), ADR aims
to reduce the number of dataset rows and select a subset of
features without compromising model performance (D?

train).
Both row sampling and feature selection rely on proxy models
to score samples and subsets.

HyperGD (hyperparameter optimization) is the final stage
of the pipeline and it aims to fine tune the selected algorithm’s
hyperparameters (λ?). It is the most time-consuming stage
of our pipeline and it benefits from ADR (Section 5.4). Ad-
ditionally, all stages of our pipeline are parallelized wherever
possible. For instance, all per-algorithm, per-feature, and
per-hyperparameter computations are executed in parallel.

To make Oracle AutoML more robust, we have also in-
troduced a time budget feature to prevent our optimizer
from terminating without producing a tuned model. We
accomplish this by respecting a time budget argument at
every stage of the pipeline. For very short time budgets or
large datasets, not all pipeline stages may have a chance to
fully execute. Therefore, we implement a fallback strategy
to ensure our pipeline produces a tuned model, regardless
of which pipeline stage the time budget is exhausted. First,
if the time budget is exhausted before algorithm selection
is completed, we default to NaiveBayes proxy model as the
tuned model. Second, if the budget is exhausted during
ADR, the dataset sample with the highest cross-validation
score will be used. Specifically, this has an effect on the
selected features, which will be used for the final model. If
the budget is exhausted before HyperGD stage is reached,
Oracle AutoML outputs a proxy model corresponding to
the selected algorithm as the tuned model. Finally, if time
budget is exhausted during the hyperparameter optimization
stage, we select the best tuned model so far, based on the
maximum cross-validation score.

3.1 Proxy Models
A key requirement for Oracle AutoML is to make fast accu-

rate decisions during algorithm selection, data reduction, and
hyperparameter optimization. A wrong decision, especially
at the algorithm selection stage, could severely affect the
downstream stages and the resulting pipeline configuration.

Proxy models are performance predictors that we use in
all stages to make our pipeline iteration-free. For the proxy
models to function this way, they need to satisfy the follow-
ing requirements: (a) be an instance of the ML algorithm,
whose best performance we want to predict; (b) have rela-
tive performance representative of the tuned model, without
requiring hyperparameter tuning; (c) be able to accurately
predict relative ranking of different dataset subsets.

Given such a proxy model, for example, we could pick the
best feature subset out of K different subsets by just ranking
their scores with the proxy model. The primary challenge
is to find a single proxy model per ML algorithm that is

3168



predictive for any never-before-seen dataset. We leverage
metalearning to identify these proxy models by observing
each algorithm’s behavior on a wide variety of datasets and
hyperparameters. This involves three steps: (a) generate
large number of representative hyperparameter variations
per algorithm (i.e., candidate proxy models), (b) evaluate
each model’s performance on a wide variety of datasets, and
(c) heuristically identify a proxy model per algorithm from
all candidates.
Generating candidate proxy models. We explore the
hyperparameter space for each ML algorithm using the fol-
lowing methodology:

1. For each hyperparameter we define a search range; nu-
merical parameters have generous upper and lower bounds,
and all values of categorical parameters are considered.

2. We generate R random hyperparameter choices, where
each hyperparameter value is obtained by uniformly sampling
at random from its range.

3. We generate an additional M hyperparameter choices by
fixing each hyperparameter to its default value (determined
by algorithm developers [40]), and randomly sample the other
hyperparameters uniformly from their respective ranges.

4. These R+M hyperparameter choices constitute a can-
didate proxy model pool. For each of these candidates, we
perform K -fold cross-validation (CV) and measure mean CV
score. This is repeated for D datasets.

The above approach results in an (R+M)×D metadataset
for each algorithm. Usually, algorithm developers and data
scientists pick defaults for their algorithms so that they
perform well on a variety of datasets. We pursue the same
goal with our proxy models. We use these defaults in our
search space, as well as random points around them to be
immune to any human error. This process is done only once
per new algorithm, when it is added to Oracle AutoML’s
search space. In this paper, we only consider datasets in our
separate training corpus to avoid data leakage during proxy
model search.
Heuristic to identify proxy models. We take a system-
atic approach to selecting proxy model hyperparameters,
consisting of the following steps for each algorithm:

1. For every dataset, identify the best hyperparameter con-
figuration based on the highest CV score.

2. For every dataset, subtract the highest CV score from the
CV score of every hyperparameter configuration to obtain
the corresponding configuration’s score difference value.

3. For every hyperparameter configuration, average the score
difference values across all datasets to obtain average score
difference value.

4. Pick the hyperparameter configuration with the lowest
average score difference.

Each stage of the Oracle AutoML pipeline uses these
proxy models to efficiently narrow down the search space.
Algorithm selection uses them to rank algorithms, ADR
uses them to identify the relevant segment of the dataset,
and HyperGD uses them to bootstrap optimization. Table
1 summarizes the explored hyperparameter ranges, total
number of configurations evaluated for every algorithm, and
the selected hyperparameters for each proxy model.

3.2 Algorithm Selection
Algorithm selection can have a significant impact on the

achieved score, and the only way to guarantee optimality is
to exhaustively train every algorithm on the given dataset

Table 1: Hyperparameter ranges, number of evaluations,
and selected proxy models per algorithm.

Algo Hyperparam Range Evals Selected

AdaBoost
learning rate [1e-3, 2]

249
0.0513

n estimators [5, 500] 50

Decision

min samples leaf [1e-8, 0.5]

200

0.2527
max features [1e-8, 1] 0.9638
min samples split [1e-8, 1] 0.9638

Tree class weight [off, bal] off

Extra

min samples leaf [1e-8, 0.5]

232

5.96e-5
criterion [ent, gini] gini
min samples split [1e-8, 1] 0.0314

Trees max features [1e-8, 1] 0.4839
n estimators [5, 500] 66
class weight [off, bal] off

KNN
weights [uni, dis]

92
uniform

n neighbors [2, 32] 31

Lin. SVC
C [3e-2, 512]

87
13.78

class weight [off, bal] off

Logistic
solver [n-cg, lbfgs,

92

lbfgs
libl, sag]

Regres. C [3e-2, 512] 1.0
class weight [off, bal] off

LGBM

num leaves [3, 750]

234

509
boosting type [gbdt, dart,

goss]
dart

learning rate [1e-4, 1] 0.2711
min child weight [0, 20] 0.001
max depth [1, 10] 5
reg alpha [1e-10, 1] 0.7667
reg lambda [1e-10, 1] 0.9864
n estimators [5, 500] 294
class weight [off, bal] off

Random
max features [1e-8, 1]

220

0.3725
min samples split [1e-8, 1] 5.43e-5

Forest n estimators [5, 500] 283
class weight [off, bal] off

SVC

C [3e-2, 512]

135

305.97
gamma [3e-5, 8] 0.0077
class weight [off, bal] balanced

XGBoost

reg alpha [0, 4]

272

1.0581
reg lambda [0, 100] 17.57
booster [gbt, dart] gbtree
min child weight [0, 20] 1
learning rate [1e-4, 1] 0.3502
max depth [2, 10] 6
n estimators [50, 500] 95
class weight [off, bal] off

[48]. State-of-the-art approaches, such as Auto-sklearn [13]
and TPOT [38], treat an algorithm as another hyperparam-
eter in a large search space. This makes exploration costly
and increases the time to produce a reasonable solution,
negatively impacting user experience. We model automatic
algorithm selection as a score prediction problem. We use our
per-algorithm proxy models to rank algorithms for a given
dataset, narrowing down the search space for subsequent
stages of the pipeline to a single algorithm.

The proxy models provide an indication of the tuned score
of the dataset on each algorithm relative to other algorithms.
Figure 2 shows a block diagram of our approach. The proxy
models for all algorithms are executed in parallel and the
average cross-validation score is used to rank the available
algorithms A. The goal of algorithm selection is to identify
a relative ranking among algorithms and the actual scores
are unimportant. To further reduce the runtime of this stage
for large datasets, we sample D′train on a per class basis,
where each target class is limited to 50K samples. Based

3169



D’train
Proxy Model1 A*

Rank
Proxy Modeln

Score1

Scoren

… …Sample

Figure 2: Algorithm selection block diagram, consisting of
dataset sampling, proxy model evaluation, and ranking of
obtained CV scores, used to select the best algorithm A∗.

on train corpus evaluations, we have empirically found this
limit provides a reasonable tradeoff between runtime and
accuracy of ranking algorithms. The best algorithm (A∗),
corresponding to the proxy model that produces the highest
score, is passed onto the next stage.

3.3 Adaptive Data Reduction
Dataset reduction by means of sampling rows and columns

(commonly referred to as feature selection) can significantly
reduce the runtime of the following hyperparameter opti-
mization stage. Furthermore, a sample that is statistically
representative of the original dataset will have minimal ad-
verse impact on model score. We present a novel sampling
approach to generate the most efficient sample of the dataset,
for the algorithm (A∗) chosen by algorithm selection.

3.3.1 Row Sampling
The goal of this stage is to select a subset of dataset rows

that is representative of the original dataset. We do this by
climbing the dataset learning curve. The dataset is sampled
iteratively from a small subset to the full dataset size and
each sample is scored by the proxy model (P ∗), representing
the algorithm (A∗) selected by algorithm selection. The goal
is to find the smallest sample size of a dataset, for use in
subsequent pipeline stages, without sacrificing model quality.
Consecutive sample sizes, with increasing size, are tried until
a score tolerance threshold is met. Unsampled dataset is
used if all the sample sizes are exhausted without meeting
the threshold. Figure 3 shows the row sampling procedure.

In Oracle AutoML, we default the lower bound of the
sampling range to 1000 samples per class to generate a sample
with a distribution that is representative of the original
dataset (for binary classification ∼3% margin of error with
95% confidence) [10]. We sample each class independently
to avoid class imbalance and if any class has fewer samples
than the lower bound, we do not sample that class. The
upper bound of the sampling search range is limited to the
maximum number of samples in the majority class. Finally,
the sample sizes in-between the lower and upper bound are
determined by a combination of linearly and geometrically
spaced values between these bounds, resulting in more sample
sizes at the lower end of the range. This is preferable, as
we would like to look more aggressively for samples on the
lower end to optimize runtime. We cap the total trials to
10 sample sizes, comprising of the lower bound, four linearly
spaced, four geometrically spaced, and the upper bound,
sorted from smallest to largest. A larger number of samples
can lead to quicker convergence; however, it can also increase
the chances of getting stuck in a local minimum.

3.3.2 Feature Selection
The goal of feature selection is to find a subset of dataset

features that are representative of the original dataset. Our
approach is a combination of filter, wrapper, and embedded

D’train
Sample Size
Generator
[S1, ..., S10]

Sample P*

Threshold Met?
No Yes

Score

5 Different Rankings

(1) Rank
D*train

(2) Size 
Generator 
[S1, …, SK] (3) Subset Evaluation

SubsetK P*

Subset1 P*

… …
Score1

ScoreK

…

(4) Select

Row Sampling

Feature Selection

Figure 3: Adaptive data reduction performs row sampling
followed by feature selection on a given dataset. P ∗ refers
to the proxy model for the selected algorithm A∗.

methods [36]. In particular, we first rank features, then
evaluate subsets of these features on the provided proxy
model (P ∗). The number of evaluations performed by this
stage is typically much greater than the row sampling stage.
Hence, all subsets are evaluated in parallel, in contrast to
the sequential implementation in the row sampling scheme
described previously.

Feature selection can be split into 4 main steps as depicted
in Figure 3; (1) feature ranking, (2) subset size generation,
(3) subset evaluation, and (4) subset selection. Feature rank-
ing is the procedure by which features are ordered by their
importance. We use multiple ranking algorithms from [40] in
order to better generalize across a wide variety of datasets:
(a) mutual information between every feature and the tar-
get, (b) ANOVA F-value, (c) an ensemble based method
(feature importances from Random Forests model), (d) a
boosting based method (feature importances from AdaBoost
model), and (e) the average of the normalized values from
(a-d). Rankings (a-d) return values representing correlation
or importance of each feature with respect to the target,
where higher value means the feature is more important. To
obtain ranking (e), we first normalize the returned values for
rankings (a-d) and average the normalized values per feature
to obtain a new ranking that incorporates all four rankings.
These five rankings sufficiently capture the diversity across
a wide range of different algorithm types and datasets.

Subset size generation is the procedure by which we choose
the number of features that are selected for evaluation. The
subset exploration space can be vast, as there are 2K different
potential feature combinations (K is the total number of
features). In our approach, we reduce this search space by
ranking the features, and selecting only the top (k) number
of features for evaluation. If one were to incrementally add
one feature to the evaluation subset based on decreasing
rank priority, there would be a total of K subset sizes that
are evaluated. In order to speed up the process, we use an
exponential growth function with a growth factor of 20%.
This reduces the number of subset evaluations per ranking
algorithm to be proportional to ln(K). Furthermore, the
exponential growth biases the subset sizes towards the smaller
end. This outcome is desirable because smaller subsets are
faster to evaluate and the ultimate goal is to find the smallest
subset that does not degrade score.

Subset evaluation is the procedure by which the chosen
feature subsets are evaluated on the proxy model using the
row sampled dataset. As there are five rankings, the number

3170



of subsets that are evaluated is ∼5ln(K). As an optimization,
we keep track of all the evaluated subsets and do not repeat
evaluations. This is significant as different rankings may
produce overlapping ranking orders. These proxy model
evaluations are performed in parallel.

Subset selection is the procedure by which the feature
subset that produced the highest score on the proxy model
is selected. If desired, the user has the ability to trade-off
score for speed by selecting a smaller subset size. This is
implemented using a score tolerance threshold variable that
can be passed to this stage. The default threshold is zero to
minimize score degradation due to this stage.

3.4 HyperGD
Hyperparameter optimization is a well-studied problem.

However, existing approaches have little emphasis on opti-
mizing for both time and available resources together [28,
53], especially when tuning for medium to large datasets.
Note reducing the number of model evaluations (or trials)
only partly improves efficiency as the cost of these trials
may vary significantly. In the context of AutoML efficiency,
we define cost as time taken for model evaluation. Further,
many optimization algorithms [19, 22] perform best when
the search is done sequentially. Such an approach is often
prohibitively expensive in terms of runtime [42, 53]. Hyper-
parameter optimization is the most time-consuming stage
of Oracle AutoML, as shown in Section 5.1. Therefore, in
HyperGD, we optimized for efficient resource utilization via
parallelization without compromising model performance.

3.4.1 HyperGD: A Parallel, Gradient-based Hyper-
parameter Optimizer

A typical hyperparameter optimizer ([22]) selects and eval-
uates a batch of hyperparameters, waits for all the evaluations
to complete, before selecting the next batch of hyperparame-
ter values based on the results of the current batch. Each
of these evaluations is called a trial, and each trial takes
arbitrarily long, depending on the dataset and choice of hy-
perparameters. Figure 4a shows the process. The Rank &
Refine block typically uses a Bayesian algorithm [50].

The primary problem with such a synchronous parallel al-
gorithm is poor resource utilization. Trial-to-trial evaluation
time can differ by orders of magnitude as shown in Figure 5.
This results in stragglers that poorly utilize multiple compute
units (cores or nodes) as well as block progress to the next
iteration. Hyperparameter optimizers, by design, evaluate
different hyperparameters within a batch, making stragglers
unavoidable. The stragglers need to be mitigated in order
to efficiently utilize all available resources.

In contrast, HyperGD is a highly parallel and asynchronous
algorithm that parallelizes trials during search of a given
hyperparameter as well as trials across other hyperparame-
ters as shown in Figure 4b. We achieve this high-degree of
parallelism by asynchronously gathering and using the best
hyperparameters from all completed trials whenever launch-
ing any new trial. Further, we do not wait for all the results to
complete from a batch of model evaluations. Both of these op-
timizations are possible because of the novel Gradient-based
Search Space Reduction (GrSSR) in HyperGD.

3.4.2 Gradient-based Search Space Reduction
The goal of the GrSSR algorithm is to rapidly narrow

the search space for each hyperparameter, given a wide

<hp1:v1
P, hp2:v2

P, …>
Eval model Rank &

Refine

Synchronous

Pick P HP sets
𝐴⋆, 𝜆⋆𝐷&'()*⋆

𝐴⋆

Para
lle

l

Eval model<hp1:v1
2, hp2:v2

2, …>
<hp1:v1

1, hp2:v2
1, …>

Eval model

(a) A typical synchronous optimizer

Eval model

Rank & 
Refine

Asynchronous

Pick P values for hp1

𝐴⋆ ,𝜆⋆
𝐷&'()*⋆

𝐴⋆

Eval modelEval model

Para
lle

l

Para
lle

l

Search for hp2

Search for hpH

<hp1:v1
P, hp2:vbest, …>

<hp1:v1
2, hp2:vbest, …>

<hp1:v1
1, hp2:vbest, …>

Store and update best hyperparameters <hp1:vbest, hp2:vbest, … hpH:vbest>

(b) Asynchronous parallel HyperGD optimizer

Figure 4: Synchronous versus asynchronous hyperparame-
ter optimizer block diagram. Key advantage of asynchronous
optimizer is the ability to update best value for each hyper-
parameter without waiting for the entire batch to complete,
resulting in significant speedup.

search range (see ranges in Table 1). For example, with
only 10 choices per numerical hyperparameter, a grid search
for SVC and XGBoost would result in 400 and 4M choices,
respectively. A sample visualization of the optimization
process, while tuning the gamma hyperparameter on SVC,
is shown in Figure 6. For ease of explanation, let us assume
a simple 1-D search space, where x-axis is the value for a
given hyperparameter, and y-axis is the objective error metric
(lower is better). With the goal of narrowing the initial search
range towards the minimum of the error curve, we pick P
point-pairs to estimate the gradients at these points. So, if we
selected P points v1

i , v
2
i , ..., v

P
i per hyperparameter hpi, each

point is matched with another point in its εi neighborhood.
For each hyperparameter, εi is selected relative to the initial
range of search space.

Next, the direction of the minimum is estimated by finding
the intersection point of the top two pairs’ gradients. Here,
the best two pairs must contain at least the top three trials
(lowest error) in the batch. We, then, narrow the search
range by picking the next P point-pairs in the vicinity of the
intersection of the two gradients. The points are chosen to
be logarithmically spaced, with points more densely spaced
around the intersection.

0 25 50 75 100
Hyperparameter Setting

0

10

20

30

R
un

tim
e 

R
at

io

32
40497
41005

Figure 5: SVC fit time across the same set of ∼ 100 hyper-
parameter settings for three different datasets from our train
corpus. The fit time for each setting is normalized to the fit
time with default hyperparameter settings. We can see up
to ∼ 40× variation in fit time.

3171



In this algorithm, we make two approximations that are
vital to parallelize and speed up the hyperparameter opti-
mization process.

1. We assume hyperparameters can be optimized indepen-
dently of each other. There are dependencies among some
hyperparameters, whose values depend on other hyperpa-
rameters’ values [34]. However, this is a well understood
and accepted optimization technique [33, 41]. This sim-
plifying assumption allows us to completely parallelize the
search across all hyperparameter dimensions without any
synchronization. Each search eagerly updates the other hy-
perparameter searches with its best hyperparameter value
found so far, asynchronously. This phase of the algorithm
mimics the behavior of coordinate descent algorithm [64]
with asynchronous updates to individual hyperparameters.

2. In addition, we also eagerly reduce the search space
where we only wait for Pmin < P point-pairs out of all trials
in the current batch. Theoretically, we need a minimum
of two point pairs to compute the point of intersection. In
our search, we wait for 3 point pairs from the current batch
in order to identify the best two pairs (so far) for GrSSR
algorithm. The pending trials help refine the search space
further when they complete.

Note GrSSR algorithm handles few corner cases that are
not addressed here. For instance, two gradients under consid-
eration may be parallel (non-intersecting) and hence would
fail to point to the direction of the potential minimum. In
such cases, we either wait for more trials, or select the cur-
rent best value and give up the search on that particular
hyperparameter. This is because a lack of gradient indicates
the algorithm is insensitive to variations of this particular
hyperparameter or the search space is too narrow.

Finally, when the search space cannot be further narrowed,
we use gradient descent to fine-tune the hyperparameter
values. As gradient descent is generally slow and sequential,
we perform a short five-epoch descent with a learning rate of
0.1 to descend on the last-mile of the error score curve. We
do gradient descent independently for every hyperparame-
ter. This two stage process of GrSSR and gradient descent
constitutes our novel HyperGD algorithm.

Apart from the highly parallel and asynchronous nature
of the algorithm, there are a few other optimizations respon-
sible for HyperGD’s efficiency.
Bootstrapping Search. Initial choices of hyperparame-
ters are critical to efficiently bootstrap the search for any
black-box optimizer. For our HyperGD algorithm, we vary
each hyperparameter 2× P ways (P point-pairs). In order
to limit the chances of getting stuck in a local-minimum,
we pick P points v1

i , v
2
i , ..., v

P
i per hyperparameter hpi that

are linearly-spaced within the predefined search range. As
discussed above, each point has a matching pair within its
εi neighborhood. We repeat this for H hyperparameters. To
fix other hyperparameter values, while varying one, we use
predefined defaults for other hyperparameters, called boot-
strap defaults < hp1 : g1, hp2 : g2, ..., hpH : gH >. Hence,
we arrive at 2 × P ×H hyperparameter sets by using pre-
defined bootstrap defaults as constants for the non-varying
hyperparameters. For instance, for hyperparameter hp1, the
2× P hyperparameter sets to be tried are: < hp1 : v1

1 , hp2 :
g2, ..., hpH : gH >, < hp1 : v1

1 + ε1, hp2 : g2, ..., hpH : gH >
< hp1 : v2

1 , hp2 : g2, ..., hpH : gH >, < hp1 : v2
1 + ε1, hp2 :

g2, ..., hpH : gH >, ..., < hp1 : vP1 , hp2 : g2, ..., hpH : gH >, ,
< hp1 : vP1 + ε1, hp2 : g2, ..., hpH : gH >.

Figure 6: Sample visualization of gradient-based search
space reduction algorithm in action, while tuning the gamma

hyperparameter of an SVC model on a real-world dataset.
Logloss error is plotted on the y-axis.

We use two bootstrap defaults: (a) our novel algorithm
specific proxy model hyperparameters (P ∗) and (b) the low-
est edge of the search space range. The first hyperparameter
set ensures we explore a wider search space around informed
defaults. The second hyperparameter set selects points in the
lower end of each hyperparameter plane, so that our search
includes points on either side of the potential minimum. In
addition, we also found exploring this part of the search
space to be faster for most algorithms. Overall, we bootstrap
the search with all 2× P ×H trials in parallel.
Handling Categorical Hyperparameters. Until now,
we have described how HyperGD handles continuous and
discrete hyperparameters, for which gradients can be com-
puted. This is not possible for categorical hyperparameters,
for which there are no relative ordering between individual
hyperparameter choices. An example of such a hyperparam-
eter is the type of solver to be used in Logistic Regression,
which can take values like lbfgs, liblinear, etc. (Table 1).
For such hyperparameters, instead of our GrSSR algorithm,
we try all variations at intervals, when values for any other
numerical hyperparameters vary by more than a threshold
(5%). This threshold aims to strike a balance between the
cost of re-exploring different values for the categorical hy-
perparameters versus missing better models in the newly
narrowed search space of the numerical hyperparameters.
Runtime cost awareness. In order to mitigate the impact
of stragglers caused by wide variations in runtimes of each
trial, we use a simple linear cost-model for each hyperpa-
rameter to pick more points toward the least-expensive side
of the range. This helps reduce stragglers by limiting the
variation in time taken by trials for a given batch.

4. EXPERIMENT METHODOLOGY
We outline our experiment methodology by providing de-

tails on the train and test corpora, model evaluation, scoring
metric, setup, ML algorithms considered, AutoML compar-
isons, random states evaluated, and result visualizations.
Train Corpus. We have used a set of 130 datasets from
publicly available OpenML datasets [61]. The shape distri-
bution of these datasets is shown in Figure 7. Our proxy
models are learned using only these datasets.
Test Corpus. We believe it is critical to evaluate AutoML
pipelines with a diverse set of datasets with varying shapes.
We randomly select 30 new OpenML datasets, that do not
overlap with the train corpus. The distribution of dataset
shapes is shown in Figure 7. We categorize these datasets
into small, medium, and large, based on the number of

3172



102 103 104 105 106

Number of Rows

100

102

104

106

N
um

be
r 

of
 F

ea
tu

re
s Train Corpus

Test Corpus

Figure 7: Diversity in dataset shapes in the training and
leave-out test datasets.

data points (samples× features), as shown in Table 2. In
the table, Missing column indicates if the dataset has any
missing values in its features. We emphasize that none of
the datasets in our test corpus overlap with the train corpus,
to avoid data leakage. Hence, the test corpus datasets are
strictly used for evaluation only.
Model Evaluation. We perform an 80-20 train-test split
on every dataset in the test corpus and use the same 80%
train set for training and 20% leave-out test set for final
evaluations in all experiments and AutoML comparisons in
Section 5. Five-fold CV is used in all pipeline optimizations.
Scoring Metric. We use the log-likelihood of the true labels
for a given probabilistic classifiers predictions as the scoring
metric for evaluation. In other words, logloss [49], is the
objective function used for all model evaluations, where lower
logloss is better. This metric is used in many benchmarking
studies[17, 44] for comparing AutoML pipelines on a wide
variety of datasets, and is a good metric [15, 62] as it punishes
highly confident wrong predictions.
Setup. Experiments are run on Oracle Cloud Infrastructure
using a homogeneous set of 2-socket Intel Xeon E5-2699v3
Haswell machines (36 total cores). Python 3.6.8, scikit-learn
v0.20.2, numpy v1.16.2, and scipy v1.2.1 were used.
Machine Learning Algorithms. In this paper, Oracle
AutoML supports the following algorithms: AdaBoost, De-
cisionTree, ExtraTrees, KNeighbors, LinearSVM, Logisti-
cRegression, RandomForest, SVM, GaussianNB from scikit-
learn [51], XGBoost (XGB) v0.81 from [65], and LightGBM
(LGBM) v2.2.3 from [32].
AutoML Comparisons. We compare our pipeline with
recent versions of Auto-sklearn(0.6.0) and H2O (3.26.0.10)
because they are commonly cited, state-of-the-art [3, 59],
and have readily available open-source implementations. We
use the same test corpus (Table 2) for all pipelines, with
the exact same train and leave-out test sets of each dataset.
Of note, H2O includes neural network algorithms and Auto-
sklearn builds ensembles for their final models. We do not
change any of the default settings during our evaluation to
prevent any negative effects on these two pipelines.
Random State. AutoML pipeline comparison experiments
(Section 5.1) are based on 5 different random states, with
seeds 7, 11, 13, 17, and 19. Thus, the results and visualiza-
tions include 5 ∗ 30 = 150 total runs per pipeline. For all
other results, a single run with seed 7 is presented.
Visualizations. In order to visualize experiment results, we
have elected to use box and whisker plots to summarize the
result statistics. The whisker reach, which sets the length of
the whiskers above and below the upper quartile and lower

Table 2: OpenML classification leaveout test datasets.

ID Name Rows Cols. Class Missing

S
m

a
ll

3 kr-vs-kp 2556 36 2 No
23 cmc 1178 9 3 No
53 heart-statlog 216 13 2 No
188 eucalyptus 588 19 5 Yes
1067 kc1 1687 21 2 No
1467 climate-mdl 432 20 2 No
1489 phoneme 4323 5 2 No
1528 volcanoes-a2 1298 3 5 No
1533 volcanoes-b3 8308 3 5 No
1537 volcanoes-c1 22900 3 5 No

M
e
d
iu

m

28 optdigits 4496 64 10 No
151 electricity 36249 8 2 No
1069 pc2 4471 36 2 No
1468 cnae-9 864 856 9 No
1481 kr-vs-k 22444 6 18 No
1483 ldpa 131888 7 11 No
1497 wall-rbt-nav 4364 24 4 No
1501 semeion 1274 256 10 No
1514 micro-mass 288 1300 10 No
41027 jungle-chess 35855 6 3 No

L
a
rg

e

351 codrna 390852 8 2 No
383 tr45.wc 552 8261 10 No
393 la2s.wc 2460 12432 6 No
398 wap.wc 1248 8460 20 No
554 mnist-784 56000 784 10 No
1088 varCancers 306 54675 9 No
1111 KDDCup09 40000 230 2 Yes
1503 spoken-arabic 210604 14 10 No
1597 creditcard 227845 29 2 No
40923 Devnagari 73600 1024 46 No

quartile, is kept at the default value of 1.5 times the inter-
quartile range [35]. We use ratios of scores and runtimes per
dataset when comparing contributions of individual Oracle
AutoML stages. Intuitively, score and runtime ratios provide
relative score improvement and speedup, respectively, while
removing any skew introduced by averaging absolute values.

5. EVALUATION OF ORACLE AUTOML
We evaluate an AutoML optimizer using two main metrics:

efficiency and robustness. The goal of our evaluation is to
answer the following questions:
Comparison with state-of-the-art. How competitive is
Oracle AutoML compared to existing state-of-the-art Au-
toML, in terms of model score and speed?
Proxy model effectiveness. Do the proxy models justify
iteration-free architecture without loss in score?
Benefits of each stage in Oracle AutoML. What is the
contribution of each pipeline stage to overall performance,
based on score and speed tradeoff?

First, we present a quantitative comparison of Oracle Au-
toML with several state-of-the-art open-source alternatives.
Second, we look at proxy models and evaluate our methodol-
ogy of identifying good proxy models for different algorithms.
Finally, given the fully decomposable nature of our pipeline,
we systematically disable its different stages and evaluate
their impact on score and speed.

5.1 Comparison with AutoML Alternatives
We compare Oracle AutoML pipeline against two state-of-

the-art open-source packages: Auto-sklearn[13] and H2O [20].
We use logloss metric to measure model performance, where
lower logloss is better. Section 4 describes the methodology
in greater detail.

3173



Specifically, our comparison criteria are efficiency and
robustness. For efficiency, we compare the test scores of each
pipeline for a given time constraint. Each optimizer can
choose to utilize their entire time budget (Auto-sklearn), or
converge on a solution earlier (H2O, Oracle AutoML). For
robustness, we compare the number of times each pipeline
fails to produce a model for a given time constraint.
Efficiency. To compare efficiency across the AutoML
pipelines, we measure the average ranking of the three
pipelines with 11 different time budgets of 1, 3, 5, 7, 10, 15,
20, 25, 30, 45, 60 minutes and five different seeds over the 30
dataset test corpus. We rank each AutoML system per run
(given time budget and seed) based on the leave-out test set
score of each dataset, and average the ranks across datasets
per run similar to [13]. Incomplete runs are assigned the
worst rank of three. The result is shown in Figure 8, where
rank one is the best. H2O performs significantly better than
Auto-sklearn across all the runs, and Oracle AutoML is the
most efficient out of all three. The fluctuations in rankings
within the first 10 minutes are mainly due to Auto-sklearn
and H2O not producing a model for some datasets (Table 3)
within those time budgets.

These ranking plots only show the efficiency part of the
story. We look at the raw performance of the pipelines by
plotting the distribution of tuned model performance given
a full hour to optimize (shown in Figure 9). Overall, Oracle
AutoML has a very tight distribution of logloss with an
average logloss (depicted by × in the figure) of 0.338, that is
much better than the other two, corroborating the ranking
plot. Interestingly, when comparing Auto-sklearn and H2O,
the distribution is only marginally different from each other.
But in fact, the average logloss for H2O is 1.882, which
is much worse than the 1.014 that Auto-sklearn achieves.
This is primarily because H2O seems to perform very poorly
for multiple datasets (shown by the many outliers), while
performing significantly better on other datasets.

Even with the maximum time budget of one hour, H2O
and Auto-sklearn are not able to achieve better results for
most datasets. On the other hand, our pipeline is able to
quickly converge on a solution, finishing far ahead of the
allotted time budget in most cases, as can be seen from
the runtime breakdown across all test datasets in Figure 10.
In the figure, only 5 out of 30 datasets need the full time
budget of 60 minutes. Our pipeline completes optimization
for majority of datasets within 500 seconds. This gives
Oracle AutoML a speedup of 3.57× over H2O and 4.11×
over Auto-sklearn, when aggregating runtimes across the test

10 20 30 40 50 60
Time Budget (min)

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e 

R
an

ki
ng

Oracle AutoML H2O Auto-sklearn

Figure 8: Average ranking across 30 datasets and 5 random
seeds for Auto-sklearn, H2O, and Oracle AutoML plotted
versus varying time budget. Rank 1 is the best.

Table 3: The number of evaluation trials that each AutoML
framework completed for a given time budget. The expected
completion is 150 because there are 30 datasets and 5 different
random seeds.

Pipelines
Time budget (minutes)

1 5 10 30 60

Oracle AutoML 100% 100% 100% 100% 100%
Auto-sklearn 100% 93.3% 92% 100% 100%
H2O 78% 94.7% 96.7% 96.7% 100%

Oracle AutoML H2O Auto-sklearn

1

2

3

lo
gl

os
s

10
20
30

Figure 9: Comparing Oracle AutoML to H2O and Auto-
sklearn with 60-minute time budget on 30 datasets. Reported
numbers are average of 5 runs each with different random
seed. The y-axis shows the logloss error (lower is better).

corpus. On average, across test datasets, algorithm selection,
ADR, and HyperGD stages take 21%, 34%, and 45% of
our pipeline’s runtime, respectively. Even when iteration
free, each stage adapts and optimizes to the given dataset
differently, taking different times.

Oracle AutoML’s efficiency benefits, primarily, stem from
the performance on large datasets for which other AutoML
pipelines struggle to optimize under the same time budget.
The primary contributor is our quick and accurate algorithm
selection using proxy models. The distribution of selected al-
gorithms across all the evaluated runs is shown in Figure 11,
where the top three selected algorithms are XGBoost, Light-
GBM, and LogisticRegression. As can be seen from the
figure, algorithm selection is an essential stage in our Au-
toML pipeline, based on the diverse variety of algorithms
that were selected across all trials. The non-iterative nature
of Oracle AutoML and reliance on proxy models to accu-
rately select the best algorithm for every new dataset, at
the first pipeline stage, is what enables us to significantly
outperform iterative optimizers.

3 23 53 18
8

10
67

14
67

14
89

15
28

15
33

15
37 28 15
1

10
69

14
68

14
81

14
83

14
97

15
01

15
14

41
02

7
35

1
38

3
39

3
39

8
55

4
10

88
11

11
15

03
15

97
40

92
3

Datasets

0

1000

2000

3000

4000

E
la

ps
ed

 T
im

e 
(s

) Algorithm Selection
ADR
HyperGD

Figure 10: Runtime breakdown of stages in Oracle AutoML
across our test corpus for the 60 minute time budget case.

3174



AdaBoost
1%

DecisionTree
2%
ExtraTrees

7%

GaussianNB
2%

KNeighbors
5%

LGBM
22%

LogisticRegression
18%

NaiveBayes
0%

RandomForest
9%

XGB
34%

Figure 11: Distribution of selected algorithms across a
total of 1650 Oracle AutoML runs corresponding to our test
corpus of 30 datasets, 5 random seeds, and 11 time budgets.

Almost all algorithms are picked for some runs, and no
one algorithm is best for all scenarios. It is worth noting,
our proxy model-based algorithm selection may trade off
accuracy for speed for some datasets. For instance, Oracle
AutoML selects XGBoost for dataset 383 and achieves a
logloss score of 0.17 losing out to H2O’s 0.08. However, a
score of 0.06 could have been achieved with LightGBM model.
Therefore, iterative approaches can, at times, achieve better
scores at the cost of longer runtime.

The second contribution to efficiency in our pipeline is
the ADR stage that provides runtime reduction by rapidly
selecting a small and representative sample of the dataset
for HyperGD. Specifically, ADR resulted in an average of
61% reduction in dataset size (i.e., rows and features) across
all datasets within a 60-minute time budget.
Robustness. We find that not all AutoML pipelines
produce a tuned model within the provided time budget.
Table 3 shows a subset of time budgets and, understandably,
not all are optimized for smaller time budgets. For example,
H2O does not complete for very small time budgets, whereas
Auto-sklearn handles even one minute time budgets well. But
there are cases, when even a reasonably long time budgets
of 10-30 minutes result in fewer completions. For fairness to
other pipelines, the results presented here are taken after our
team has spent several weeks resolving any simple failures.
In contrast, Oracle AutoML always terminates with a useful
model given any time budget. Note that all these pipelines
do not strictly adhere to the time budget and we observe, in
some cases, they exceed by a few minutes, at most.

5.2 Proxy Models
In this section, we evaluate the performance of our proxy

models by comparing it to model performance achieved by
extensive random search of hyperparameters, default scikit-
learn models [40], and by evaluating its sensitivity to the
number of train corpus datasets used to learn their hyperpa-
rameters. The extensive search in Figure 12 finds the best
hyperparameters by exploring 87 to 272 configurations for
each dataset, depending on the algorithm. As expected,
proxy models are not a replacement for hyperparameter tun-
ing. They perform worse than extensive search on most
algorithms, especially for tree-based algorithms. However,
the proxy model scores are still within 25% of scores achieved
by the extensive search. This justifies the need to select a

AdaBoost

Decisio
nTree

ExtraTrees

KNeighbors
LGBM

LinearSVC

Logistic
Regressio

n

RandomForest SVC XGB

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Sc
or

e 
R

at
io

Figure 12: Logloss score of proxy models normalized to cor-
responding extensive search best model, for 30 test datasets
across all algorithms. Normalized score ratio >1 is better.

proxy model capable of accurately predicting how well a cor-
responding tuned algorithm will perform on a given dataset.

Selecting hyperparameters for proxy models is a challeng-
ing task. For instance, Figure 13 compares the performance
of running our pipeline with our proxy models versus mod-
els with scikit-learn default hyperparameters across our test
corpus, with HyperGD disabled. The proxy models mostly
outperform their default scikit-learn counterparts. In par-
ticular, using proxy models gives an average score ratio
improvement of 2.75×, while keeping the average runtime
almost the same.

Figure 14 shows the sensitivity of our proxy model scores
to the number of datasets used to metalearn their hyperpa-
rameters. The y-axis shows the ratio of our proxy model
score to respective default scikit-learn model score, averaged
across all models and test corpus datasets. Our proxy models,
on average, outperform the scikit-learn defaults. Further-
more, as expected, with more datasets, our proxy models
improve. We see that even 75% of the train corpus (98 out
of 130 datasets) is sufficient to metalearn our proxy models.

5.3 Algorithm Selection
We evaluate the accuracy of our algorithm selection ap-

proach in our pipeline by comparing it against an exhaustive
algorithm selection scenario, where the pipeline tries all al-
gorithms on a given dataset. We do this by specifying every
algorithm in our pipeline, running the pipeline for every

1

2

3

Sc
or

e 
R

at
io

0.8

1.0

1.2

1.4

R
un

tim
e 

R
at

io10
20
30

Figure 13: Oracle AutoML score and runtime with proxy
models normalized to scikit-learn default models. HyperGD
is disabled for this experiment. Score/runtime ratios >1
mean proxy models are better/faster than defaults.

3175



20 40 60 80 100
Amount of Train Corpus Used (%)

2.5

2.6

2.7

2.8
Sc

or
e 

R
at

io

Figure 14: Sensitivity of proxy models to the number of
datasets from train corpus used to select their hyperparam-
eters. Score ratio is relative to default scikit-learn models.
Ratio >1 means proxy models are better.

one of those algorithms, and picking the algorithm with the
highest cross-validation score. We then compare the exhaus-
tive algorithm selection test scores and runtimes against the
Oracle AutoML experiments with algorithm selection en-
abled. Figure 15 shows the score and runtime for the Oracle
AutoML normalized to the exhaustive algorithm selection
runs across all test datasets. We see that enabling algorithm
selection in our pipeline results in an average score loss of
just 4.77% while giving a runtime advantage of ∼ 4.5× over
exhaustive algorithm selection.

0.5

1.0

1.5

Sc
or

e 
R

at
io

0

5

10

15

R
un

tim
e 

R
at

io

Figure 15: Evaluation of algorithm selection. The y-
axis shows the score achieved by Oracle AutoML normal-
ized to the scores achieved by exhaustive algorithm selec-
tion. Score/runtime ratios >1 mean Oracle AutoML is bet-
ter/faster than exhaustive algorithm selection.

5.4 Adaptive Data Reduction
The main goal of ADR is to provide speedup for subsequent

pipeline stages with minimal test score loss. To demonstrate
ADR in action, we show the details of score versus sample size
(Figure 16-top) and feature length (Figure 16-bottom) for
one dataset (1503). ADR selects ∼ 30k rows out of the total
of ∼ 148k rows and 13 out of 14 features as a representative
sample of the full dataset. This results in ∼ 4× pipeline
speedup for this dataset with negligible score loss.

To further show the benefits of ADR, we disable it in our
pipeline and measure the relative score loss over the full
pipeline runs across our test datasets (Figure 17). Enabling
ADR reduces our pipeline’s average runtime by more than
8.73%, while providing an average score improvement of
1.80%. As expected, this score improvement and speedup
are much more pronounced for large datasets from Table 2,
with 35.98% speedup and 3.65% score improvement.

5.5 HyperGD
HyperGD design aims to achieve fast hyperparameter tun-

ing without compromising on model performance. We eval-
uate HyperGD on its ability to tune our proxy models for
the respective algorithm chosen by algorithm selection on
the data sample returned by ADR. Figure 18 shows the

25 50 75 100 125 150
Number of Included Samples (x1000)

2.295

2.300

2.305

2.310

lo
gl

os
s

Evaluated
Not Evaluated

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of Included Features

2.300

2.305

2.310

2.315

2.320

lo
gl

os
s

AdaBoost
F
MI
RandomForest
Average
Best

Figure 16: ADR on dataset 1503. Row sampling illustrates
cross-validation score convergence on a sample size of ∼ 30k
samples. Feature selection settles on 13 out of 14 features.

0.95

1.00

1.05

Sc
or

e 
R

at
io

0.5

1.0

R
un

tim
e 

R
at

io

1.5
2.0

0.50
0.75

2
4

0.3
0.4

Figure 17: Evaluation of ADR. Score and runtime achieved
by Oracle AutoML with ADR enabled, normalized to Or-
acle AutoML with ADR disabled. Ratios >1 mean Oracle
AutoML with ADR enabled is better/faster.

benefits of HyperGD in Oracle AutoML. The plots on the
left and right, respectively, show the improvements in cross-
validation and test scores (across test corpus) gained by
running HyperGD. As expected, HyperGD always improves
the cross-validation score, given that the proxy model hy-
perparameters are a part of the bootstrap default set. The
test score improves by 5.8% on average over the proxy mod-
els. There is only one dataset (53) for which the test score
degrades by ∼ 32% over the proxy model. Dataset 53 is a
very small dataset (216 rows) and this level of generalization
error is possible even with five-fold cross-validation.

To demonstrate the highly-parallel and asynchronous na-
ture of HyperGD, we perform a detailed analysis of one
dataset in the test corpus. Figure 19 shows the timeline
for HyperGD for dataset 351 running in both synchronous
(implemented for this experiment) and asynchronous modes.
Our asynchronous optimization improves HyperGD runtime
by more than 34%, while obtaining a similar score as the
synchronous optimizer. As it can be seen from Figure 19,
synchronization between batches (best values of individual
hyperparameters) is done much more frequently in the asyn-

3176



0.6

0.8

1.0

1.2

1.4

1.6
Tr

ai
n 

Sc
or

e 
R

at
io

0.6

0.8

1.0

1.2

1.4

1.6

Te
st

 S
co

re
 R

at
io

Figure 18: Oracle AutoML train and test scores with
HyperGD enabled normalized to HyperGD disabled. Score
ratios >1 mean HyperGD improves the score.

chronous version. This eliminates long tails due to stragglers,
resulting in speedup compared to the synchronous version.
In the figure, in synchronous mode, the second batch of trials
is not queued until all the results from the first batch are
evaluated. This results in a delay of ∼ 100 seconds to start
queuing the second batch of trials. This delay can worsen if
there is at least one straggler in a batch, which can be seen
in the last three batches of Figure 19(left), where a single
straggler more than triples the batch’s runtime. Conversely,
in the asynchronous version, the second batch delay is only
∼ 30 seconds, as we only wait for a minimum number of eval-
uations from the current batch to complete before queuing
the next batch.

0 100 200 300 400 500
Time (sec)

Tr
ia

ls

Queue Delay
Trial Runtime

0 100 200 300 400 500
Time (sec)

Tr
ia

ls

Queue Delay
Trial Runtime

Figure 19: Synchronous (left) versus asynchronous (right)
hyperparameter optimization. Different batches of trials
showing queue and completion times.

6. LESSONS LEARNED
In the process of research and development of Oracle Au-

toML, we made a few important observations that are often
overlooked but are critical to making an AutoML tool practi-
cal. Some, like the need for mitigating stragglers throughout
the pipeline, are apparent from our design. In this section,
we discuss some less known, subtle issues that we faced
repeatedly during this research in an industrial setting:
Continual optimization versus convergence. Practical
work cycle of a data scientist or ML application developer
often involves repeatedly iterating over a model-build-test-
repeat cycle with a human in the loop. Optimizing for the
last mile during each iteration is often unnecessary. The
onus is on the tool to figure out when to stop (convergence)
and make the data analyst more productive.

Inter- versus intra-model parallelism. Utilizing the
available cores or nodes efficiently is critical, especially in
a pay-per-use cloud compute setting. Parallelizing multiple
model evaluations (inter-) across all available compute is of-
ten reasonable but may not be optimal for all ML algorithms.
For instance, linear algorithms, like LogisticRegression, may
not benefit much from intra-model parallelism. However, an
XGBoost model achieves ∼ 4× improvement when balancing
available compute between inter- and intra-model parallelism.
Thus, achieving a good balance in parallelism can have a
significant impact on overall AutoML speed.
Repeatability is challenging. Given the large search
space in the AutoML problem, highly parallelized random
search can result in acceptable optimization outcome. How-
ever, from a practical standpoint in an industrial setting, re-
peatability of AutoML output given the same set of inputs is
often critical for global compliance and explainability. Hence,
optimizing the pipeline without relying on randomness, even
when theoretically necessary (e.g., random perturbation to
get out of a local maxima), is challenging.
Metalearning is tedious but rewarding. Offline learn-
ing on wide-variety of datasets and algorithms can be very
rewarding as demonstrated by Oracle AutoML. However,
this comes at the cost of repeating tedious experiments when
there is any significant change to the underlying system,
like changes to ML algorithm implementation, or platform
upgrades (e.g., Python 2 to 3). Generalizing learning beyond
such disruptive changes is an open research problem.

7. CONCLUSION
We have shown that model performance does not need to

be compromised to achieve speed in an AutoML pipeline.
We presented novel techniques for algorithm selection, adap-
tive data reduction, and hyperparameter tuning. By using
metalearning in a targeted manner to define our proxy mod-
els, we showed Oracle AutoML is able to make accurate
algorithm and data reduction choices, enabling iteration-free
optimization. This, in turn, resulted in an efficient pipeline.

We are working on several exciting frontiers to further im-
prove our pipeline. In particular, we are working on making
Oracle AutoML cloud-native, to further take advantage of
the Oracle Cloud. The latter entails enhanced runtime cost
models, further leveraging our proxy model approach. We
are also working on more complex metalearned models for
domain specific tasks to improve fault tolerance and provide
additional visibility into the AutoML process to consumers,
thereby enhancing user experience.

8. REFERENCES

[1] Amazon. Sagemaker. https://aws.amazon.com/blogs/
aws/amazon-sagemaker-autopilot-fully-managed-

automatic-machine-learning/, 2019.

[2] K. Anumalasetty. New automated machine learning
capabilities in azure machine learning service.
https://azure.microsoft.com/en-us/blog/new-
automated-machine-learning-capabilities-in-

azure-machine-learning-service/, 2018.

[3] A. Balaji and A. Allen. Benchmarking automatic
machine learning frameworks. arXiv preprint
arXiv:1808.06492, 2018.

3177

https://aws.amazon.com/blogs/aws/amazon-sagemaker-autopilot-fully-managed-automatic-machine-learning/
https://aws.amazon.com/blogs/aws/amazon-sagemaker-autopilot-fully-managed-automatic-machine-learning/
https://aws.amazon.com/blogs/aws/amazon-sagemaker-autopilot-fully-managed-automatic-machine-learning/
https://azure.microsoft.com/en-us/blog/new-automated-machine-learning-capabilities-in-azure-machine-learning-service/
https://azure.microsoft.com/en-us/blog/new-automated-machine-learning-capabilities-in-azure-machine-learning-service/
https://azure.microsoft.com/en-us/blog/new-automated-machine-learning-capabilities-in-azure-machine-learning-service/


[4] J. Bergstra and Y. Bengio. Random search for
hyper-parameter optimization. J. Mach. Learn. Res.,
13:281–305, Feb. 2012.

[5] J. Bergstra, D. Yamins, and D. Cox. Hyperopt: a
python library for optimizing the hyperparameters of
machine learning algorithms. Proc. SciPy 2013,
page 13, 2013.

[6] J. Bergstra, D. Yamins, and D. D. Cox. Making a
science of model search: Hyperparameter optimization
in hundreds of dimensions for vision architectures. In
Proceedings of the 30th International Conference on
International Conference on Machine Learning -
Volume 28, ICML’13, pages I–115–I–123. JMLR.org,
2013.

[7] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján.
Conditional likelihood maximisation: A unifying
framework for information theoretic feature selection. J.
Mach. Learn. Res., 13(1):27–66, Jan. 2012.

[8] N. V. Chawla. Data mining for imbalanced datasets:
An overview. In Data mining and knowledge discovery
handbook, pages 875–886. Springer, 2009.

[9] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer. Smote: synthetic minority over-sampling
technique. Journal of artificial intelligence research,
16:321–357, 2002.

[10] W. G. Cochran. Sampling techniques-3. 1977.

[11] S. Ertekin, J. Huang, L. Bottou, and L. Giles. Learning
on the border: active learning in imbalanced data
classification. In Proceedings of the sixteenth ACM
conference on Conference on information and
knowledge management, pages 127–136. ACM, 2007.

[12] S. Falkner, A. Klein, and F. Hutter. Bohb: Robust and
efficient hyperparameter optimization at scale. In
International Conference on Machine Learning, pages
1437–1446, 2018.

[13] M. Feurer, A. Klein, K. Eggensperger, J. T.
Springenberg, M. Blum, and F. Hutter. Efficient and
robust automated machine learning. In Proceedings of
the 28th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’15,
pages 2755–2763, Cambridge, MA, USA, 2015. MIT
Press.

[14] M. Feurer, J. T. Springenberg, and F. Hutter.
Initializing bayesian hyperparameter optimization via
meta-learning. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, AAAI’15,
pages 1128–1135. AAAI Press, 2015.

[15] Y. Fogel and M. Feder. On the problem of on-line
learning with log-loss. In 2017 IEEE International
Symposium on Information Theory (ISIT), pages
2995–2999. IEEE, 2017.

[16] N. Fusi, R. Sheth, and M. Elibol. Probabilistic matrix
factorization for automated machine learning. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages
3348–3357. Curran Associates, Inc., 2018.

[17] P. Gijsbers, E. LeDell, J. Thomas, S. Poirier, B. Bischl,
and J. Vanschoren. An open source automl benchmark.
arXiv preprint arXiv:1907.00909, 2019.

[18] T. A. F. Gomes, R. B. C. Prudêncio, C. Soares, A. L. D.
Rossi, and A. Carvalho. Combining meta-learning and

search techniques to select parameters for support
vector machines. Neurocomput., 75(1):3–13, Jan. 2012.

[19] J. González, Z. Dai, P. Hennig, and N. D. Lawrence.
Batch Bayesian Optimization via Local Penalization.
ArXiv e-prints, May 2015.

[20] P. Hall, M. Kurka, and A. Bartz. Using H2O Driverless
AI, January 2018.

[21] H. He and E. A. Garcia. Learning from imbalanced
data. IEEE Transactions on Knowledge & Data
Engineering, (9):1263–1284, 2008.

[22] F. Hutter, H. H. Hoos, and K. Leyton-Brown.
Sequential model-based optimization for general
algorithm configuration. In Proceedings of the 5th
International Conference on Learning and Intelligent
Optimization, LION’05, pages 507–523, Berlin,
Heidelberg, 2011. Springer-Verlag.

[23] A. Klein, S. Falkner, S. Bartels, P. Hennig, and
F. Hutter. Fast bayesian optimization of machine
learning hyperparameters on large datasets. In
Artificial Intelligence and Statistics, pages 528–536,
2017.

[24] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas. Data
preprocessing for supervised leaning. International
Journal of Computer Science, 1(2):111–117, 2006.

[25] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and
K. Leyton-Brown. Auto-weka 2.0: Automatic model
selection and hyperparameter optimization in weka. J.
Mach. Learn. Res., 18(1):826–830, Jan. 2017.

[26] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino,
J. Tang, and H. Liu. Feature selection: A data
perspective. ACM Comput. Surv., 50(6):94:1–94:45,
Dec. 2017.

[27] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and
A. Talwalkar. Hyperband: A novel bandit-based
approach to hyperparameter optimization. J. Mach.
Learn. Res., 18(1):6765–6816, Jan. 2017.

[28] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina,
M. Hardt, B. Recht, and A. Talwalkar. A system for
massively parallel hyperparameter tuning.
arXiv:1810.05934v5, 2018.

[29] T. Li, J. Zhong, J. Liu, W. Wu, and C. Zhang. Ease.
ml: Towards multi-tenant resource sharing for machine
learning workloads. PVLDB, 11(5):607–620, 2018.

[30] X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous
parallel stochastic gradient for nonconvex optimization.
In Advances in Neural Information Processing Systems,
pages 2737–2745, 2015.

[31] X. Lian, W. Zhang, C. Zhang, and J. Liu.
Asynchronous decentralized parallel stochastic gradient
descent. arXiv preprint arXiv:1710.06952, 2017.

[32] Lightgbm. Lightgbm v2.2.3 python package
documentation. https://github.com/microsoft/
LightGBM/blob/v2.2.3/docs/Features.rst, 2018.

[33] J. Liu, S. Wright, C. Ré, V. Bittorf, and S. Sridhar. An
asynchronous parallel stochastic coordinate descent
algorithm. In International Conference on Machine
Learning, pages 469–477, 2014.

[34] G. Luo. A review of automatic selection methods for
machine learning algorithms and hyper-parameter
values. Network Modeling Analysis in Health
Informatics and Bioinformatics, 5(1):18, 2016.

[35] matplotlib. Auto-sklearn git repository.

3178

https://github.com/microsoft/LightGBM/blob/v2.2.3/docs/Features.rst
https://github.com/microsoft/LightGBM/blob/v2.2.3/docs/Features.rst


https://matplotlib.org/api/ as gen/

matplotlib.pyplot.boxplot.html, 2019.

[36] L. C. Molina, L. Belanche, and A. Nebot. Feature
selection algorithms: a survey and experimental
evaluation. In 2002 IEEE International Conference on
Data Mining, 2002. Proceedings., pages 306–313, 2002.

[37] M. Msr and M. Sebag. Alors: An algorithm
recommender system. Artificial Intelligence, 244, 12
2016.

[38] R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H.
Moore. Evaluation of a tree-based pipeline optimization
tool for automating data science. In Proceedings of the
Genetic and Evolutionary Computation Conference
2016, GECCO ’16, pages 485–492, New York, NY,
USA, 2016. ACM.

[39] Oracle, Inc. The Oracle AutoML Pipeline.
https://docs.cloud.oracle.com/en-us/iaas/tools/
ads-sdk/1.0.0/user guide/automl/overview.html,
2020.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in python.
J. Mach. Learn. Res., 12:2825–2830, Nov. 2011.

[41] Z. Peng, Y. Xu, M. Yan, and W. Yin. Arock: an
algorithmic framework for asynchronous parallel
coordinate updates. SIAM Journal on Scientific
Computing, 38(5):A2851–A2879, 2016.

[42] V. Perrone, R. Jenatton, M. W. Seeger, and
C. Archambeau. Scalable hyperparameter transfer
learning. In Advances in Neural Information Processing
Systems, pages 6845–6855, 2018.

[43] B. Pfahringer, H. Bensusan, and C. G. Giraud-Carrier.
Meta-learning by landmarking various learning
algorithms. In Proceedings of the Seventeenth
International Conference on Machine Learning, ICML
’00, pages 743–750, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc.

[44] P. Poski. Automl comparison.
https://mljar.com/blog/automl-comparison/, 2017.

[45] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In Advances in neural information processing
systems, pages 693–701, 2011.

[46] M. Reif, F. Shafait, and A. Dengel. Meta-learning for
evolutionary parameter optimization of classifiers.
Machine Learning, 87(3):357–380, Jun 2012.

[47] D. Reinsel, J. Gantz, and J. Rydning. Data age 2025:
The evolution of data to life-critical dont focus on big
data. Focus on the Data Thats Big Sponsored by
Seagate The Evolution of Data to Life-Critical Dont
Focus on Big Data, 2017.

[48] J. R. Rice et al. The algorithm selection problem.
Advances in computers, 15(65-118):5, 1976.

[49] scikit-learn. Definition of sklearn metrics log loss score.
https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.log loss.html, 2019.

[50] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and
N. De Freitas. Taking the human out of the loop: A
review of bayesian optimization. Proceedings of the
IEEE, 104(1):148–175, 2015.

[51] sklearn. Sklearn v0.20 home page.
https://scikit-learn.org/0.20/, 2018.

[52] J. Snoek, H. Larochelle, and R. P. Adams. Practical
bayesian optimization of machine learning algorithms.
In Proceedings of the 25th International Conference on
Neural Information Processing Systems - Volume 2,
NIPS’12, pages 2951–2959, USA, 2012. Curran
Associates Inc.

[53] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish,
N. Sundaram, M. M. A. Patwary, P. Prabhat, and R. P.
Adams. Scalable bayesian optimization using deep
neural networks. In Proceedings of the 32Nd
International Conference on International Conference
on Machine Learning - Volume 37, ICML’15, pages
2171–2180. JMLR.org, 2015.

[54] E. R. Sparks, A. Talwalkar, D. Haas, M. J. Franklin,
M. I. Jordan, and T. Kraska. Automating model search
for large scale machine learning. In Proceedings of the
Sixth ACM Symposium on Cloud Computing, SoCC ’15,
pages 368–380, New York, NY, USA, 2015. ACM.

[55] Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang.
Cost-sensitive boosting for classification of imbalanced
data. Pattern Recognition, 40(12):3358–3378, 2007.

[56] L. Sun-Hosoya, I. Guyon, and M. Sebag. Activmetal:
Algorithm recommendation with active meta learning.
In IAL@PKDD/ECML, 2018.

[57] C. Thornton, F. Hutter, H. H. Hoos, and
K. Leyton-Brown. Auto-weka: Combined selection and
hyperparameter optimization of classification
algorithms. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’13, pages 847–855, New York, NY,
USA, 2013. ACM.

[58] I. Tomek. Two modifications of cnn. IEEE Trans.
Systems, Man and Cybernetics, 6:769–772, 1976.

[59] A. Truong, A. Walters, J. Goodsitt, K. Hines, B. Bruss,
and R. Farivar. Towards automated machine learning:
Evaluation and comparison of automl approaches and
tools. arXiv preprint arXiv:1908.05557, 2019.

[60] A. Tsymbal. The problem of concept drift: definitions
and related work. Computer Science Department,
Trinity College Dublin, 106(2):58, 2004.

[61] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo.
OpenML: Networked Science in Machine Learning.
SIGKDD Explorations, 15(2):49–60, 2013.

[62] V. Vovk. The fundamental nature of the log loss
function. In Fields of Logic and Computation II, pages
307–318. Springer, 2015.

[63] C. Wong, N. Houlsby, Y. Lu, and A. Gesmundo.
Transfer learning with neural automl. In Advances in
Neural Information Processing Systems, pages
8356–8365, 2018.

[64] S. J. Wright. Coordinate descent algorithms.
Mathematical Programming, 151(1):3–34, 2015.

[65] XGBoost. Xgboost v0.18 python package
documentation.
https://xgboost.readthedocs.io/en/release 0.81/,
2018.

[66] Y. Xu, C. Sutcher-Shepard, Y. Xu, and J. Chen.
Asynchronous parallel adaptive stochastic gradient
methods. arXiv preprint arXiv:2002.09095, 2020.

[67] D. Yogatama and G. Mann. Efficient Transfer Learning

3179

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html
https://docs.cloud.oracle.com/en-us/iaas/tools/ads-sdk/1.0.0/user_guide/automl/overview.html
https://docs.cloud.oracle.com/en-us/iaas/tools/ads-sdk/1.0.0/user_guide/automl/overview.html
https://mljar.com/blog/automl-comparison/
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html
https://scikit-learn.org/0.20/
https://xgboost.readthedocs.io/en/release_0.81/


Method for Automatic Hyperparameter Tuning. In
S. Kaski and J. Corander, editors, Proceedings of the
Seventeenth International Conference on Artificial

Intelligence and Statistics, volume 33 of Proceedings of
Machine Learning Research, pages 1077–1085,
Reykjavik, Iceland, 22–25 Apr 2014. PMLR.

3180


	Introduction
	Related Work
	ORACLE AUTOML
	Proxy Models
	Algorithm Selection
	Adaptive Data Reduction
	Row Sampling
	Feature Selection

	HyperGD
	HyperGD: A Parallel, Gradient-based Hyperparameter Optimizer
	Gradient-based Search Space Reduction


	Experiment Methodology
	Evaluation of ORACLE AUTOML 
	Comparison with AutoML Alternatives
	Proxy Models
	Algorithm Selection
	Adaptive Data Reduction
	HyperGD

	Lessons Learned
	Conclusion
	References

