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ABSTRACT
With the explosive growth of unstructured data (such as
images, videos, and audios), unstructured data analytics is
widespread in a rich vein of real-world applications. Many
database systems start to incorporate unstructured data
analysis to meet such demands. However, queries over un-
structured and structured data are often treated as disjoint
tasks in most systems, where hybrid queries (i.e., involving
both data types) are not yet fully supported.

In this paper, we present a hybrid analytic engine devel-
oped at Alibaba, named AnalyticDB-V (ADBV), to fulfill
such emerging demands. ADBV offers an interface that en-
ables users to express hybrid queries using SQL semantics
by converting unstructured data to high dimensional vec-
tors. ADBV adopts the lambda framework and leverages
the merits of approximate nearest neighbor search (ANNS)
techniques to support hybrid data analytics. Moreover, a
novel ANNS algorithm is proposed to improve the accuracy on
large-scale vectors representing massive unstructured data.
All ANNS algorithms are implemented as physical operators
in ADBV, meanwhile, accuracy-aware cost-based optimiza-
tion techniques are proposed to identify effective execution
plans. Experimental results on both public and in-house
datasets show the superior performance achieved by ADBV
and its effectiveness. ADBV has been successfully deployed
on Alibaba Cloud to provide hybrid query processing ser-
vices for various real-world applications.
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1. INTRODUCTION
Massive amounts of unstructured data, such as images,

videos, and audios, are generated each day due to the preva-
lence of smartphones, surveillance devices, and social media
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apps. For example, during the 2019 Singles’ Day Global
Shopping Festival, up to 500PB unstructured data are in-
gested into the core storage system at Alibaba. To facilitate
analytics on unstructured data, content-based retrieval sys-
tems [45] are usually leveraged. In these systems, each piece
of unstructured data (e.g., an image) is first converted into
a high dimensional feature vector, and subsequent retrievals
are conducted on these vectors. Such vector retrievals are
widespread in various domains, such as face recognition [47,
18], person/vehicle re-identification [56, 32], recommenda-
tion [49], and voiceprint recognition [42]. At Alibaba, we
also adopt this approach in our production systems.

Although content-based retrieval system supports unstruc-
tured data analytics, there are many scenarios where both
unstructured and structured data shall be jointly queried
(we call them hybrid queries) for various reasons. First,
a query over unstructured data may be inadequate to de-
scribe the desired objects, where a hybrid query helps im-
prove its expressiveness. For instance, on e-commerce plat-
form like Taobao, one potential customer may search for a
dress with conditions on price (less than $100), shipment
(free-shipping), rating (over 4.5), and style (visually simi-
lar to a dress worn by a movie star). Second, the accu-
racy of state-of-the-art feature vector extraction algorithms
is far from satisfactory, especially on large datasets, where
a hybrid query helps to improve the accuracy. For exam-
ple, the false-negative rate of face recognition increases by
40 times when the number of images scales from 0.64 mil-
lion to 12 million [14]. Therefore, imposing constraints on
structured attributes (such as gender, age, image captur-
ing locale, timestamp in this context) can narrow down the
vector search space and effectively improve the accuracy. In
summary, the hybrid query is of great value to a vast number
of emerging applications.

However, most existing systems do not provide native sup-
port for hybrid queries. Developers have to rely on two sep-
arate engines to conduct hybrid query processing: a vector
similarity search engine ([25, 8, 54]) for unstructured data
and a database system for structured data. This practice has
inherent limitations. First, we have to implement extra logic
and post-processing step atop two systems to ensure data
consistency and query correctness. Second, hybrid queries
cannot be jointly optimized as sub-queries are executed on
two engines independently.

To address this challenge, we design and implement a new
analytical engine, called AnalyticDB-V (ADBV) inside the
OLAP system AnalyticDB (ADB) [53] at Alibaba Cloud,
that manages massive feature vectors and structured data

3152



Looks like

Alice

I
prefer

red

Query with 
Image Only

Hybrid Query

Image Retrieval System

Hybrid Analytical Engine

Red color

SELECT *
FROM clothes
WHERE clothes.color = 
‘red’ 
ORDER BY 
DISTANCE(clothes.featur
e, query_feature) 
LIMIT k;                            

Unstructured Data

Feature Extraction

Structured Data

SQL Dialect

AnalyticDB-V(ADBV)

Feature Vector

Query

clothes.color = ‘red’ 
ORDER BY 
DISTANCE(clothes.feature,

query_feature) 

Figure 1: Hybrid query example.

and natively supports hybrid query . During the design and
development of this system, we have encountered and ad-
dressed several vital challenges:

Real-time management of high-dimensional vec-
tors. The extracted feature vectors from unstructured data
are usually of extremely high dimensions. For example, at
Alibaba, vectors for unstructured data can reach 500+ di-
mensions in many scenarios, such as online shopping applica-
tions. In addition, these vectors are being generated in real-
time. The real-time management (i.e., CRUD operations)
on such high-dimensional vectors is burdensome for existing
databases and vector search engines. On one hand, online
database systems with similarity search support (e.g., Post-
greSQL and MySQL) only works for vectors of up to tens
of dimensions. On the other hand, vector similarity search
engines (such as Faiss) adopt ANNS (Approximate Nearest
Neighbor Search) approaches [33, 23] to process and index
high-dimensional vectors in an offline manner, which fail to
handle real-time updates.

Hybrid query optimization. Hybrid query lends new
opportunities for joint execution and optimization consider-
ing both feature vectors and structured attributes. However,
the hybrid query optimization is inherently more complex
than existing optimizations. Classical optimizers that sup-
port top-k operations [29, 20, 19] do not have to consider
the accuracy issue, i.e., all query plans lead to identical ex-
ecution results. However, for hybrid queries, approximate
results are returned by ANNS (on the vectors) to avoid ex-
haustive search, and hence the accuracy of top-k operations
varies with the choice of ANNS methods and parameter set-
tings. There remains a non-trivial task to balance the qual-
ity of approximated results and the query processing speed.

High scalability and concurrency. In many of our
production environments, vectors are managed at extremely
large scales. For example, in a smart city transportation
scenario, we have to manage more than 11.7 billion roads
or vehicle snapshots with 100 million newly inserted records
each day. Moreover, at least 5 thousand queries need to be
processed per second, of which more than 90 percent are hy-
brid queries. In another application scenario of Freshippo

supermarket, a digitized retail store of Alibaba Group, 800
million 512-dimensional vectors are stored in ADBV. The
peak load is 4000 queries per second (QPS), and above 80%
of the queries are hybrid queries. A distributed architecture
is essential for such large-scale workloads. Besides, fast re-
trieval on massive vectors and fast indexing of new ingested
data must be sustained.

In ADBV, we address the above challenges and make ma-
jor contributions as follows:
• A real-time analytic engine for hybrid queries. We

present an analytical engine that natively supports hy-
brid query for fusion of structured and unstructured

data with real-time updates. To fulfill the real-time
requirement, we adopt the lambda framework with dif-
ferent ANNS indexes for the streaming layer and the
batching layer. The neighborhood-based ANNS meth-
ods in the streaming layer support real-time insertions
but consume a lot of memory. The encoding-based
ANNS methods in the batching layer consume much less
memory, but require offline training before construc-
tion. Lambda framework can periodically merge newly
ingested data from the streaming layer into the batch-
ing layer.

• A new ANNS algorithm. For the sake of improving the
accuracy on large-scale vectors representing massive
unstructured data, a novel ANNS index, called Voronoi
Graph Product Quantization (VGPQ), is proposed. This
algorithm could efficiently narrow down the search sco-
pe in the vector space compared to IVFPQ [23] with
margi-nal overhead. According to the empirical study,
VGPQ is more effective for fast indexing and queries on
massive vectors than IVFPQ.

• Accuracy-aware cost-based hybrid query optimization.
In ADBV, ANNS algorithms are wrapped as physical
operators. Hence, we can rely on query optimizer to
efficiently and effectively support hybrid query process-
ing. Physical operators in a relational database always
return exact results. However, these newly introduced
physical operators may not strictly follow relational
algebra, and output approximate results instead. Due
to the nature of approximation, we deliver new op-
timization rules to achieve the best query efficiency.
These rules are naturally embedded in the optimizer
of ADBV.

In the following sections, we will provide details of ADBV. §2
introduces the background of hybrid query and SQL dialects.
§3, §4, and §5 present our designs and implementations, i.e.,
overall system design, vector processing (ANNS) algorithms,
and accuracy-aware cost-based hybrid query optimization
respectively. Experimental evaluations are conducted in §6.
Related works are discussed in §7, and the conclusion is
drawn in §8.

2. BACKGROUND

2.1 Motivation
To accurately retrieve records of interest, a typical hy-

brid query consists of both similarity constraints on feature
vectors (extracted from unstructured data) and value con-
straints on structured data. Consider the example shown in
Figure 1, the target is to retrieve dresses that are visually
similar to the query image, but in red color. Conventionally,
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these two kinds of constraints are handled by two separate
systems. The developer needs to query for top-k images us-
ing a vector search engine (such as Faiss [25, 8], vearch [30]),
and at the same time retrieve the color information from a
database. After that, records obtained from both systems
are conjunctively merged to derive final results.

Such practice induces extra development efforts and com-
putational cost. It may happen that less than k records
(returned from a vector search engine) successfully pass the
color or style constraint expressed in the user query, and
thus a top-k result cannot be constructed to meet the quan-
tity requirement explicitly mentioned in user query. Hence,
the developer has to carefully set the number of records to
be retrieved by the vector search engine. Also, the execution
efficiency has vast potential to be optimized. For example,
if only a small percent of clothes fulfill the structured con-
straints (i.e., red color), it will be more efficient to retrieve
records with the structured constraints first, and then iden-
tify closest feature vectors from the retrieved set directly.
ADBV is therefore motivated to solve above problems.

ADBV allows users to express a hybrid query as a SQL
statement, and executes it efficiently without manual tun-
ing. Note that both unstructured and structured data can
be stored within one table. In particular, unstructured data
is transformed to vectors (via feature extraction functions)
at insertion stage and stored in a column.

2.2 SQL dialects
ADBV provides a flexible and easy-to-use SQL interface.

Developers can easily port their applications to ADBV with
minimal effort.

2.2.1 SQL statements
Create Table. Tables are created in a manner that

is similar to standard SQL, except for feature vector re-
lated operations. The feature columns are defined as fol-
lows: DistanceMeasure defines the distance function used
for ANNS, in which Squared Euclidean, Dot Product, and
Hamming distance are all supported. ExtractFrom defines
the way that a feature vector is extracted (see §2.2.3). Users
can specify the ANNS index on a feature vector, as shown be-
low:
1 ANN INDEX feature_index (column_feature)

Insert. The following statements illustrate the syntax of
the insert. If the ExtractFrom keyword is used previously
during table creation, the feature vector will be generated
automatically according to the definition. Alternatively, the
value of a feature vector can be inserted explicitly in the
format of an array.

1 --insert implicitly
2 INSERT INTO table_name(C1, C2,· · ·,Cn)
3 VALUES(v1, v2, · · ·,vn);
4 --insert explicitly
5 INSERT INTO table_name(C1, C2,· · ·,Cn,
6 column_feature)
7 VALUES(v1, v2, · · ·,vn,
8 array[e1,e2,e3 ,...,ek ]:: float []);

Select. The following SQL syntax illustrates the usage
of queries on unstructured data. unstructured data is the
original object (e.g., sentences of a text, URL of an image).
Usually, unstructured data is stored in an online storage
service (e.g., Object Storage Service, Azure Blob Storage)
and referred to as a URL. ADBV can read the object from
the URL and extract the corresponding feature vector using
FEATURE EXTRACT function. DISTANCE represents the vector
distance function defined at the table creation stage.

1 SELECT *
2 FROM table_name
3 WHERE table_name.C1 = ’v1’
4 ORDER BY DISTANCE(table_name.column_feature ,
5 FEATURE_EXTRACT(’unstructured data’))
6 LIMIT k;

Delete. The delete statement is the same as standard
SQL, except that feature vector similarity constraints can
also be applied as a filter.

2.2.2 A running example
Here we go through the entire process of issuing a hybrid

query using the example in Figure 1. We first create a table
that stores vector features and other attributes for clothes
via the following SQL:

1 CREATE TABLE clothes(
2 id int ,
3 color varchar ,
4 sleeve_t varchar ,
5 · · ·,
6 image_url varchar ,
7 feature float [512]
8 COLPROPERTIES (
9 DistanceMeasure = ’SquaredEuclidean ’,

10 ExtractFrom = ’CLOTH_FEATURE_EXTRACT(image_url)’))
11 PARTITION BY ClusterBasedPartition(feature );

ClusterBasedPartition is a partition function that maps the
feature vectors of the same cluster into the same partition
(detailed in §3.3). Then we insert one record into the table,
which represents a red dress:

1 --insert implicitly
2 INSERT INTO clothes(id,color ,sleeve_t ,· · ·,image_url)
3 VALUES (10001 ,’red’,’long’,· · ·,"protocal :// xxx.jpg");
4 --insert explicitly
5 INSERT INTO clothes(id,color ,sleeve_t ,· · ·,image_url)
6 VALUES (10001 ,’red’,’long’,· · ·,"protocal :// xxx.jpg",
7 array [1.1 ,3.2 ,2.4 ,... ,5.2]:: float []);

Finally, we retrieve the target dress (i.e., in red color and
similar to the query image) using the following SQL:

1 SELECT *
2 FROM clothes
3 WHERE clothes.color = ’red’
4 ORDER BY DISTANCE(clothes.feature ,
5 CLOTH_FEATURE_EXTRACT(’protocal :// xxx.jpg’))
6 LIMIT k;

2.2.3 Vector extraction UDF
ADBV currently supports feature extraction models for

a variety of data sources, including faces, clothes, vehicles,
documents, etc. The feature extraction models adopt the
state-of-the-art deep learning models trained on large-scale
datasets. Moreover, the user defined function (UDF) API
is also opened to users, which allows uploading their own
vector extraction models and vector extraction functions to
ADBV.

3. SYSTEM DESIGN
ADBV is built on top of a PB-scale OLAP database sys-

tem named AnalyticDB [53] from Alibaba, which relies on
two fundamental components, i.e., Pangu [2] for reliable and
permanent distributed storage, and Fuxi [55] for resource
management and computation job scheduling. ADBV en-
hances AnalyticDB to incorporate vectors and support hy-
brid queries. In this section, we present key system designs
that improve the functionality and effectiveness of vector
management and hybrid query processing.
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Figure 2: ADBV architecture

3.1 Architecture overview
The architecture of ADBV is presented in Figure 2, which

is mainly composed of three types of nodes: Coordinator,
Write Node, and Read Node. Coordinators accept, parse,
optimize SQL statements, and dispatch them to read/write
nodes. ADBV adopts a typical read/write decoupling ap-
proach [53], which trades consistency for low query latency
and high write throughput. Hence, write nodes are only re-
sponsible for write requests (i.e., INSERT, DELETE and UPDATE),
while read nodes are for SELECT queries. Newly ingested data
is flushed into Pangu [2] upon committed. ADBV adopts the
lambda framework in the storage layer (§3.2) to manage vec-
tors efficiently: the streaming layer deals with real-time data
insertion and modification; and the batching layer period-
ically compresses newly inserted vectors and rebuilds ANNS

indexes. Moreover, ADBV pushes down several expensive
predicates to the storage layer so as to fully utilize the com-
putation capability of those nodes.

Baseline Data

Real-time Data

Merge Results

Serving Layer

Batching Layer

Streaming Layer

Data Pipeline
Queries

Figure 3: Lambda framework in ADBV.

3.2 Lambda framework
Since the complexity of searching over the entire vector

dataset is unacceptable, an index must be built to miti-
gate the cost. However, traditional index techniques like
KD-tree [6] and ball-tree [38] widely used in low dimensions
do not work well for high-dimensional vectors generated by
deep learning models. It has been empirically proved that
such solutions exhibit linear complexity for high-dimensional
vectors [51]. Therefore, algorithms such as HNSW (Hierarchi-
cal Navigable Small World) [34] and LSH (Locality-Sensitive
Hash) [12] are proposed for real-time index building1 on
vectors in an approximate manner. However, existing al-
gorithms fail to either handle large data volumes owing to
large memory consumption, or provide results with sufficient
accuracy. Taking HNSW as an example, it requires both the
index data and feature vectors stored persistently in mem-
ory to avoid disk I/O, otherwise its performance will signifi-
cantly degenerate. Beside the raw data, each record requires
around 400 bytes in memory for its index.

We adopt the lambda framework to solve the challenge of
supporting real-time inserts. Under this framework, ADBV

1Real-time index building here means the system can con-
tinually build index for newly-inserted vector data and be
queried subsequently.
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Figure 4: Baseline Data and Incremental Data in ADBV

uses HNSW to build index for newly-inserted vectors (i.e., in-
cremental data) in real time. Periodically, ADBV merges in-
cremental data with baseline data into a global index (§3.2.2)
according to the proposed VGPQ algorithm (§4.2) and dis-
cards the HNSW index.

3.2.1 Overview
Figure 3 depicts the lambda framework, which consists

of three layers: batching layer, streaming layer, and serv-
ing layer. These layers work jointly to process each incom-
ing query. The batching layer returns search results based
on baseline data (discussed in §3.2.2). For the streaming
layer, it performs two tasks: processing data modification
(i.e., INSERT, DELETE, and UPDATE), and producing search
results over incremental data. For SELECT statements, par-
tial results from batching and streaming layers are merged
by coordinators to derive final results. The serving layer is
responsible for issuing requests to both batching and stream-
ing layers and returning results to clients. Different layers
reside in different types of nodes, i.e., serving layer in coor-
dinators, batching layer in read nodes, and streaming layer
both read and write nodes.

3.2.2 Baseline and Incremental Data
To better support the lambda framework, ADBV contains

two types of data: baseline data and incremental data, as
shown in Figure 4. The incremental data contains newly-
written WALs (kept in Pangu), as well as vector data and its
indexes on read nodes. It also contains a data-status bitset
to track which vector data has been deleted. Incremental
raw data and indexes are much smaller in size compared to
baseline data, and can be entirely cached in memory. We use
HNSW to build the index for incremental data, so that index
building and search can be conducted at the same time.
The baseline data contains the entire set of historical raw
data and indexes, which are stored in Pangu. As baseline
data could be massive, we apply VGPQ (§4.2) to build index
asynchronously to sustain memory efficiency.

When new data continuously arrive, searching on incre-
mental data slows down due to the huge memory consump-
tion of HNSW. Hence, an asynchronous merging process is
launched to merge incremental data into baseline data peri-
odically, as shown in Figure 4. During this process, current
incremental data is marked as immutable (i.e., old-version),
and a new version of incremental data is created to handle
subsequent write requests. Then, the old-version incremen-
tal data and the baseline data are merged into a new version
of baseline data, in which the index is rebuilt using VGPQ to
replace the HNSW index.

Before the merge process completes, queries are served by
the old-version baseline data and both versions of incremen-
tal data. After it is done, we serve subsequent queries with
new-versions of baseline and incremental data, and safely
discard their old versions. Note that vectors marked as
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deleted in incremental data are removed from baseline data
during the merge.

3.2.3 Data Manipulation
Here we present how INSERT, UPDATE, DELETE, SELECT are

processed in the three layers of the lambda framework over
baseline and incremental data. For INSERT, the stream-
ing layer appends incoming data to the incremental data
and constructs the corresponding index. When DELETE ar-
rives, the streaming layer does not really remove the vector
data, but marks it as deleted in the data-status bitset. The
UPDATE operation is performed as a combination of DELETE

and INSERT: mark the original vector data as deleted in the
data-status bitset and append the updated record into the
incremental data. More details are discussed in [53].

For SELECT statements, they are first sent to both stream-
ing layer and batching layer, which search over their manged
data respectively (both using indexes). After that, the re-
sults returned from two layers are merged and further fil-
tered by the data-status bitset to get rid of deleted records.
Finally, the serving layer returns the records that have the
highest similarity to the query.

3.3 Clustering-based partitioning
As presented in Figure 5, ADBV provides the ability to

partition vector data across a number of nodes to achieve
high scalability. However, partition techniques for struc-
tured data, such as hash and list partition, are unsuitable
for vector data. It is because they rely on equivalence and
range assessment, while analytic on vector data is based on
similarity (e.g., Euclidean distance). A direct adoption of
these strategies will require queries to execute on all parti-
tions indiscriminately without pruning effect.

To solve this problem, we propose a clustering-based par-
tition approach. For the partitioned column, we apply k-
means [17] to calculate centroids according to the number
of partitions. For example, if we define 256 partitions, 256
centroids will be calculated. Each vector is clustered to
the centroid with the largest similarity (e.g., smallest Eu-
clidean distance), and hence each cluster forms a partition.
Index building and data manipulation (§3.2) are then con-
ducted on each individual partition. As for partition prun-
ing, ADBV dispatches the query to N partitions, which have
the largest similarity to the queried vector. N is a query hint
defined by users, which reflects the trade-off between query
performance and accuracy.

Note that the partitioning on vector data is disabled by
default, since the partitioning on structured data is the first
choice in ADBV. Users can enable it when query perfor-
mance are of high importance. When a partitioned column

is defined on vector data, ADBV will sample a portion of
records, calculate centroids, and re-cluster (re-distribute)
the entire set of records accordingly.

4. VECTOR PROCESSING ALGORITHMS
Hybrid query processing relies heavily on dedicated ap-

proximate nearest neighbor search algorithms. In ADBV,
efficient ANNS algorithms are implemented as physical op-
erators to handle top-k retrieval tasks. In this section, we
introduce how ANNS algorithms are used to process vector
queries, and propose a novel ANNS algorithm named VGPQ,
i.e., Voronoi Graph Product Quantization, to further im-
prove query efficiency (in the batching layer).

4.1 Vector query processing
The objective of vector query processing is to obtain top-k

nearest neighbor w.r.t. the input vector query q of dimen-
sion d. This can be viewed as a well-known nearest neighbor
search problem, where hundreds of algorithms have been
proposed in the literature. The baseline option is a brute-
force search on the entire dataset to get top-k vectors. It
returns exact results, and the time complexity acceptable
when n is relatively small. Many of tree-based algorithms
are proposed to divide the original search space into sub-
spaces recursively and build the corresponding index for
subspaces to reduce the time complexity greatly [16, 43].
However, these algorithms are no better than exhaustive
search on high dimensional features based on observations
of [51]. In order to perform fast retrieval on high dimen-
sional datasets, we need to trade off query accuracy for lower
running time. Many approaches have been proposed to find
approximate nearest neighbors , particularly for high dimen-
sional data in §7. Among them, ADBV primarily leverages
neighborhood-based and quantization-based algorithms to
do nearest neighbor search on data in the streaming layer
and batching layer respectively.

At the streaming layer, ADBV implements HNSW (as men-
tioned in §3.2). HNSW is a neighborhood-based ANNS algo-
rithm that utilizes the neighborhood information of each
vector point towards other points and relies on the small-
world navigation assumption [27]. It supports dynamic in-
sertion, but cannot scale to large datasets. Therefore, HNSW
is suitable to support querying on newly-inserted data.

At the batching layer, ADBV applies a quantization-based
algorithm PQ [23] to encode vectors. Its main idea is to rep-
resent raw vector data with a compact encoding, i.e., low
dimensional and lossy, to reduce the expensive pairwise dis-
tance calculation cost by a constant factor. However, the
encoding codebook of PQ should be trained offline. Hence,
we deploy this method to support querying on large-scale
accumulated baseline data. In order to avoid scanning all
vectors’ PQ codes for each incoming query point, IVFPQ [23]
uses k-means to cluster PQ codes into groups at index con-
struction stage, and only scans the most relevant groups at
query stage. Based on IVFPQ, we propose VGPQ to further
improve the efficiency (§4.2) and use it instead.

4.2 Voronoi graph product quantization
Main idea of VGPQ. Recall that IVFPQ clusters vectors

into groups via k-means and each then vector’s PQ code is
characterized by the corresponding centroid. An incoming
vector query is redirected to the most relevant groups, where
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relevant codes are scanned. In VGPQ, we build a voronoi di-
agram from these centroids in IVFPQ on the original space,
and partition each voronoi cell into several subcells based on
following heuristics. For the ease of explanation, we denote
C as a centroid, and refer to the centroid and the correspond-
ing voronoi cell interchangeably. Given the query vector q
in Figure 6(a), its top-3 neighbors (highlighted by the red
circle) should be returned as a result. Since no prior knowl-
edge is provided, IVFPQ traverses C0 (which contains two
target points) and all seven adjacent cells in order to find
the third target point in C2. To solve this problem, we draw
a line between centroid C0 (also called anchor centroid) and
all adjacent centroids, and then mark the midpoint of each
line segment implicitly, as shown in Figure 6(a). Now we
can divide the original cell C0 into seven subcells based the
distance to seven midpoints, respectively. Likewise, subcells
are generated in the same manner for all centroids. Here
we denote each subcell as Bi,j , where i, j indicates the an-
chor centroid Ci and neighbor centroid Cj . We denote the
distance between q and subcell Bi,j as d(q,Bi,j), which is
defined as the distance between q and the midpoint of line
segment between Ci and Cj . For the query vector q in Fig-
ure 6(b), among these subcells, q is closer to the midpoints of
line segments (C0, C2) and (C0, C3). That is to say, we only
need visit 6 subcells (i.e., B0,2,B2,0,B0,3,B3,0,B2,3,B3,2) to
obtain a sufficient number of ground-truth neighbors for q.
Preprocessing. As outlined in Algorithm 1, the VGPQ in-
dex is built through three steps. Firstly, k-means clustering
is applied to partition the vector space. Secondly, neigh-
bors are selected for each centroid and each cell is divided
into subcells accordingly. Finally, PQ codes for vectors are
inserted into associated inverted files (§4.3). In order to re-
duce the cost of voronoi graph construction, we choose top-b
nearest centroids to build corresponding subcells instead.

Algorithm 1: BUILD VGPQ(D, k, b)

Input: vector dataset D = {v0, v1, . . . , vn}, number
of centroids n clusters, number of subcells
n subcells

Output: VGPQ index
1 C ← find the n clusters centroids from D by

k-means, where C = {c0, c1, ·, ck};
2 for i← 0, 1, . . . , |C| - 1 do
3 nb(ci)← find n subcells closest centroids in C;
4 for i← 0, 1, . . . , |D| - 1 do
5 cp ← find the nearest centroid i-th vector point

from C;
6 Bp,q ←find the nearest subcell in nb(cp);
7 compute the product quantization code of vi;
8 append product quantization code into Bp,q

associated storage structure;

Query processing. After the VGPQ index is built, ANNS
queries can be answered following above main idea. First,
s anchor centroids are located, from each of which b closest
subcells are selected as candidates respectively. VGPQ fur-
ther filters s × b candidates according to their distances to
q. After that, distances between q and all vectors in candi-
date subcells are computed. VGPQ returns top-k vectors with
highest similarities to users, where k is the value defined by
the LIMIT keyword in the query statement.

C1

C0

C2

C4C5

C3

.

.
.
. .

.
.

.

.

.
.
.
.
.

...
.

.. .

.
.
.

.

C6

C7
.

.
.

.

..
.

Query q

(a) IVFPQ

B0,2

C0

C2

C4C5

C3

B3,0
B0,7 B0,3

.
.

..

.

.

..

.
.
.
.
.

...
.

..

.

.

.
.
.

.

C6

C7

C1

q

(b) VGPQ

Figure 6: Motivation of VGPQ

Subcell

.0

1

2

64

65

...

...

128

...

...

r

Direct map
Row id Position offset

Indexing data

Centroid1 Centroid2 ... Centroidn_clusters

...

PQ data

PQ Code
PQ Code
PQ Code

...

Page1Page0 Page2 ...Page3 Pagen

P0 Pn

Pagem...

SubcellSubcell
P2 Pm

.0

1

2

...

65

3

...

...

213

...

r

Figure 7: Storage of VGPQ index

Compared with IVFPQ, VGPQ divides a voronoi cell into
subcells by incorporating neighborhood information between
centroids, which reduces the search space by a constant fac-
tor. Empirical evaluation results are provided in §6 to vali-
date our design.

4.3 Storage design for VGPQ
From a system perspective, we design the in-memory stor-

age structure to facilitate VGPQ execution. It mainly consists
of three components: Indexing data, PQ data, and Direct

map (see Figure 7). PQ data is responsible for storing PQ

codes. It occupies a consecutive memory space divided into
pages. Each page is assigned with a unique pageid and con-
tains a fixed number of PQ codes belonging to a particular
subcell. In practice, the size of a page is often set as a mul-
tiple of the I/O block size to improve the data ingestion
efficiency as well as the disk data loading performance.
Indexing data stores an array of feature vectors, and

each tuple of it corresponds to one anchor centroid. In VGPQ,
we divide every anchor centroid’s space into b subregions. PQ
codes belonging to a subregion are organized into pages in PQ

data. Accordingly, each anchor centroid will be associated
with b subcells in Indexing data, and each subcell contains
a linked list of pageids pointing to pages in PQ data. Once
a page is filled during index construction stage, its pageid
will be attached to the tail of the corresponding linked list
in Indexing data. In ADBV, each vector point is given a
unique rowid as its identity, which helps to fuse query on
structured and unstructured data.

In addition, we develop a bi-directional map between the
rowid and the position of its PQ code in PQ data. Given a
rowid, Direct map indicates where the PQ code is stored in
PQ data, and vice versa. On the one hand, we only need
store one copy of PQ code for each record in ADBV. Any
ANNS method works on PQ code could access it with the aid
of Direct map. On the other hand, it helps VGPQ to handle
hybrid queries, and we will discuss details in §5.1.
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5. HYBRID QUERY OPTIMIZATION
In this section, we discuss the design details of hybrid

query execution and optimization in ADBV. Firstly, ANNS

algorithms are conceptually treated as database indexes and
accessed by scan operators in physical plans. These newly
designed operators will be smoothly injected into existing
query execution plans. After that, the optimizer of ADBV
will enumerate multiple valid physical plans for each input
hybrid query , and the optimal one will be determined by
the usage of a cost model proposed in §5.2. At last, we dis-
cuss how to determine underlying hyperparameters closely
related to query accuracy. As mentioned in §3.2 ADBV only
retains a small quantity of (newly inserted) vector data in
the streaming layer, whose query processing time is negligi-
ble compared to it in the batching layer. Hence, we focus
on query execution and optimization for the batching layer.

To better elaborate our designs, two typical selection query
examples are used throughout this section: a simple vector
search query Q1 and a hybrid query Q2, where T = (id, c, f)
is a table containing structured columns id, c and a un-
structured column f . For hybrid queries like Q2, complex
structured predicates are naturally supported in ADBV. For
the sake of brevity, we only list two structured predicates
in where clause to show the main idea. Structured col-
umn related predicates are evaluated and processed in an
exact manner. Thus, corresponding physical operators will
not influence approximation quality of final results. In oth-
ers words, above mentioned hyper parameter tuning logic is
particularly designed for ANNS related operators. Addition-
ally, we assume the B-tree index is already built on c for
illustration purpose.

1 SELECT id, DISTANCE(f, FEATURE_EXTRACT(’img’))
2 as distance
3 FROM T
4 ORDER BY distance ,
5 -- return top -k closest tuples
6 LIMIT k;

Q1: vector query example

1 SELECT id, DISTANCE(f, FEATURE_EXTRACT(’img’))
2 as distance
3 FROM T
4 --structured predicates
5 WHERE T.c >= p1 and T.c <= p2

6 ORDER BY distance ,
7 -- return top -k closest tuples
8 LIMIT k;

Q2: hybrid query example

5.1 Hybrid query execution
ADBV follows the classical way to translate these two

queries into corresponding logical execution plans firstly, as
shown in Figure 8. Since each value in a high-dimensional
unstructured column f often takes over 2000 bytes at stor-
age, reducing the number of vector read operations from disk
could significantly improve the query processing efficiency.
Hence, we push down similarity search with regards to the
input img to storage nodes, in which only ‘neighbor’ vectors
need be popped.

The optimizer of ADBV analyzes the Abstract Syntax
Tree delivered by the query parser to detect a pattern repre-
senting the operation to return top-k unstructured column
related tuples (i.e., "order by DISTANCE() LIMIT k"). If
the corresponding pattern is found, the optimizer will trans-
late the logical plan to multiple physical execution plans that
perform nearest neighbor searches on unstructured columns.

Apart from the conventional brute-force search, ANNS algo-
rithm are wrapped into anns scan nodes, which can be di-
rectly injected into existing physical plans to obtain an ap-
proximate set of nearest neighbors w.r.t. the feature point
extracted from the query image. In this way, ANNS algo-
rithms help to reduce the expensive computation cost from
retrieving top-k neighbors in a large dataset. Given charac-
teristics of different nearest neighbor search algorithms, four
effective physical plans are proposed and discussed over the
query example Q2, as illustrated in Figure 9.

Plan A (brute-force search). Plan A is a basic and con-
servative solution for hybrid queries. As shown in Figure 9,
right after the B-Tree scan, all tuples that satisfy structured
predicates (i.e., c ≥ p1 and c ≤ p2) are popped from the
storage layer. Then, brute-force search will be conducted to
obtain exact top-k neighbors at the read node. This plan
only works well on small datasets (e.g., thousands of points).
Otherwise, it leads to unacceptable processing time due to
its linear complexity. It is also our conservative strategy by
default when other plans involving anns scan operators fail
to satisfy user’s accuracy requirements.

Plan B (PQ Knn Bitmap Scan). If approximate re-
sults satisfy the accuracy requirement and the number of
tuples returned by a structured index scan reaches a certain
level (e.g., ten thousands of points), ADBV tries to insert an
anns scan node into physical plans to speedup the nearest
neighbor search. Among these plans, Plan B is the cleanest
one. After performing a B-Tree Scan with regards to col-
umn c, a set of rowids referring to the qualified tuples are
collected. Then we build a bitmap over this tuple set. As
ADBV adopts a column store, remaining columns of a tuple
can be easily fetched given its rowid. PQ Knn Bitmap Scan
obtains the pre-computed PQ codes corresponding to rowids
one by one, and performs asymmetric distance computation
(ADC) [23] to estimate squared distances against the in-
put image feature. After that, a set of candidate nearest
neighbors are gathered and reported to the upper layer in
ascending order of calculated distances. Instead of reporting
exact k rowids, PQ Knn Bitmap Scan amplifies it to σ ∗ k
(σ > 1). The σ is a hyperparameter to improve the approxi-
mation quality of final results, and we will discuss its tuning
process in §5.3. Plan B leverages the succinct encoding and
the fast distance computation to reduce the cost of nearest
neighbor search. In practice, the compression ratio of PQ

encoding usually reaches 16:1.
Plan C (VGPQ Knn Bitmap Scan). When the number of

records satisfying structured predicates reach a higher level
(e.g., larger than one million), Plan B is incapable of return-
ing candidates within seconds. Instead, anns scan operator
based on VGPQ, i.e., VGPQ Knn Bitmap Scan, is considered
by the optimizer. It adds bitmap tests to the original VGPQ as
to remove the redundant computation between input image
feature and those PQ codes that fail to meet structured pred-
icates. Recall that in the storage of VGPQ, a bi-directional
map between rowid and corresponding addresses in PQ data

is maintained in Direct map. Given the address of one PQ

code, we can find its rowid in the Direct map. When its
rowid is not in the bitmap, we directly skip to the next one.
The entire execution process of Plan C is very similar to
Plan B : we first get a bitmap of rowids using B-Tree Scan;
and then perform VGPQ Knn Bitmap Scan to get an ap-
proximate nearest neighbors set with size σ ∗ k. Moreover,
in the execution of Plan C, we need not only tune the σ,
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but also the VGPQ related hyperparameters (e.g., the visited
subcell ratio).

Plan D (VGPG Knn Scan). In order to obtain exact
results, conventional optimizer that supports the top-k op-
eration [29, 20, 19] does not introduce any optimization rule
to change the execution order between Filter Operator with
Top-N Operator in the query execution. In other words, Fil-
ter Operator should be performed before Top-N Operator.
Nevertheless, the approximation nature of hybrid queries re-
lieves the rigorous constraint on the order of these two op-
erators. Plan D is formulated after this exchange rule is
applied. When most records in a large table meet struc-
tured predicates, the cost of filter operation in all above
plans will become a bottleneck. For example, fetching a
large number of qualified tuples from the B-Tree index be-
comes unexpectedly prohibitive. Hence, Plan D allows the
optimizer to exchange the execution order of Filter Opera-
tor and Top-N Operator. We apply the original VGPQ, imple-
mented as VGPQ Knn Scan, at the first step, and then verify
the approximate result set against the structured predicates
(i.e., c ≥ p1 and c ≤ p2). Since only σ ∗ k tuples are left,
the computation cost of predicate checking becomes trivial.
The execution speed of Plan D is also closely related to the
hyperparameters of VGPQ.

5.2 Cost model for optimization
In order to identify the optimal plan (among four plans

above) for different scenes, we propose a accuracy-aware cost
model for hybrid query optimization. All Notations used by
the cost model are listed in Table 1.

Table 1: Notations used by hybrid query optimization

Notation Meaning

n the total number of tuples in database

α the ratio between n and the number of records
satisfying structured predicate

β the visited subcells ratio during VGPQ index search-
ing process in VGPQ Knn Bitmap Scan

γ the visited subcells ratio during VGPQ index search-
ing process in VGPQ Knn Scan

σ{B,C,D} amplification factors of ANNS Scan operators in
Plan{B,C,D}

c1 the total time cost to fetch a vector and compute
pairwise distance

c2 the total time cost to fetch a PQ code and run ADC

Plan A starts from a structured index scan with cost T0,
and α× n records are supposed to be qualified. Then, sim-
ilarities between the query vector and qualified vectors are
computed via DISTANCE function. The total cost of plan A
is formulated in Equation 1:

costA = T0 + α× n× c1 (1)
Plan B first performs the structured index scan, and then

the approximate squared distances between the query vector
and each vector’s PQ code are estimated with ADC respec-
tively. This step finds σB × k records to narrow down the
brute-force search scope. The total cost of plan B is formu-
lated in Equation 2:

costB = T0 + α× n× c2 + σB × k × c1 (2)
In Plan C, VGPQ Knn Bitmap Scan is executed after the

structured index scan. The total cost of Plan C is formu-
lated in Equation 3.

costC = T0 + β × n× α× c2 + σC × k × c1 (3)
In Plan D, we switch the execution order of predicate filter

and vector index scan in contrast with Plan C. The input size
is significantly trimmed for predicate filter, whose running
time becomes negligible. The total time cost of Plan D is
formulated in Equation 4:

costD = γ × n× c2 + σD × k × c1 (4)
Given a hybrid query , plan execution costs can be calcu-

lated with above equations, and then the optimizer chooses
the one with minimal cost as the final plan. In addition,
the optimizer also needs to tune the choice of β, γ, and σ,
which directly affect the query accuracy. This tuning pro-
cess is discussed in the following section.

5.3 Accuracy-aware hyperparameter tuning
Given the user-defined accuracy requirement and k, we

need to find appropriate hyperparameters (i.e., β, γ, and
σ) for each possible physical plan under different structured
predicates (i.e., α). Otherwise, the optimizer is not able to
compute the cost using above presented cost models. How-
ever, we can hardly provide a formula with theoretical guar-
antees to derive the optimal setting. Several heuristic meth-
ods are used instead for the hyperparameter tuning. The
hyperparameter tuning process consists of two steps, i.e.,
pre-process step and execution step.

At the pre-process step, we divide the range of α into
many disjoint segments, each of which is treated as a bin
and recognized by its lowest value. For each plan, we use
a grid search method (similar to auto tune in Faiss [25]) to
enumerate all combinations of hyperparameters for all bins.
Among them, we only consider combinations that could re-
turn results satisfying the accuracy requirement. Then the
combination of the lowest running time will be recorded
as the final setting of the corresponding plan and bin. In
ADBV, the pre-process step is carried out after the newly
ingested data is merged into the batching layer in lambda
framework.

At the execution step, for each ad-hoc query, we could
estimate the value of α′ with sophisticated selectivity esti-
mation techniques [40]. These algorithms are already devel-
oped in the query optimizer of modern database systems [48,
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39, 53]. Since ADBV is built on top of AnalyticDB, we cal-
ibrate it in virtue of its query optimizer. Then, we select
the pre-tuned combination of hyperparameters belonging to
the corresponding bin for each plan. Finally, we identify the
most efficient plan for execution by computing correspond-
ing cost models with selected hyperparameter combinations.
In practice, these combination candidates work well for most
user queries. For a certain plan, if the optimizer fails to pick
a candidate that achieves satisfied accuracy from pre-tuned
combinations, it will simply ignore this plan in later decision-
making phase. In the worst case, when Plan B,C,D all fail,
the optimizer can still pick Plan A for execution.

6. EXPERIMENTS
In this section, we evaluate ADBV on both public and

in-house datasets to verify the effectiveness of proposed de-
signs, as well as its performance improvement over existing
solutions.

6.1 Experimental setup
Testbed. We conduct the experiments with a 16-node

cluster on Alibaba Cloud; each node has 32 logical cores,
150GB DRAM and 1TB SSD. The host machines are all
equipped with one Intel Xeon Platinum 8163 CPU (2.50GHz),
and hyperthreading is triggered. Machines are connected via
a 10Gbps Ethernet network.

Datasets. We use two public datesets and one in-house
dataset to evaluate our system, as listed below:
• Deep1B [5] is a public dataset consists of image vectors

extracted from a deep neural network. It contains one
billion 96-dimensional vectors.
• SIFT1B [24] is a public dataset consists of handcrafted

SIFT features. It contains one billion 128-dimensional
vectors.
• AliCommodity consists of 830 million 512-dimensional

vectors extracted from commodity images used at Al-
ibaba. It also contains 21 structured columns including
color, sleeve type, style, create time, etc.

These datasets differ in data sources (two public image datasets
and one in-house commodity image dataset), feature extrac-
tion methods (SIFT and deep neural networks) and vector
dimension (96, 128 and 512). Moreover, so far, there is
no publicly available dataset that contains both structured
data and unstructured data. The in-house hybrid dataset
AliCommodity is adopted to evaluate hybrid query process-
ing techniques.

In the distributed experiments, these datasets are split
into a number of partitions. The subscript of a dataset
mentioned below denotes the corresponding partition num-
ber (e.g., SIFT1B 8p means SIFT1B is split into eight par-
titions). By default, we first shuffle vectors in a dataset,
and then evenly distribute them across a number of nodes
to build partitions. Otherwise, the partition scheme will be
explicitly presented.

Query types. We reuse the two query templates (Q1
and Q2) provided in §5.1 for evaluation. According to our
observations in production environments, most of queries
processed by ADBV follow these patterns.

Implementation. AnalyticDB [53], an OLAP database
system developed in Java, is adopted as the backbone of
ADBV. ANNS algorithms, along with the storage, are pri-
marily written in C to obtain optimal performance from ad-
vanced optimization techniques (e.g., vectorized processing).

These key components of ADBV are accessed through Java
Native Interface. In §6.2, we adopt the C++ implementation
of IVFPQ provided by Faiss [25].

Metrics. We use the recall to measure the accuracy of
a result set returned by an ANNS algorithm (or a system).
Suppose the exact result set is S, the recall is defined as

recall = |S∩S′|
|S| , where S′ is the result set returned by a ANNS

algorithm (or a system) and | · | computes the carnality of a
set. We also use the recall in Top-N results (recall@TopN ) to
evaluate the system performance, which means |S| = |S′| =
N .

At each test, we issue 10,000 SQL requests (from all two
types in a round-robin manner) to calculate the average re-
call and response time. For each query, the query image img
is sampled from the original dataset uniformly at random.
The default value of k is set to 50. We vary the values of p1
and p2 on column c to generate test queries with different
selectivity, which is defined as

s = 1− number of tuples pass the predicates

total the number of tuples
. (5)

Let cmax and cmin be the maximum and minimum value of
c, if we assume the values are uniformly distributed between
cmax and cmin, the selectivity could be calculated by s =
1 − p2−p1

cmax−cmin
. In order to generate a sample query with

the specified selectivity s, we coarsely follow this formula to
approach the selectivity at first, then we manually tweak p1
or p2 to finally get the a query with desired selectivity.

6.2 VGPQ
In this section, we compare VGPQ and IVFPQ from three

aspects, i.e., accuracy, index construction time, and the size
of index files. Since the setting of underlying PQ encoding
affects the size of index files, same settings are always de-
ployed for both algorithms. Note that each method can be
built with different parameters, and we indicate used param-
eters in a bracket after the method name: the first denotes
the number of centroids; and the second denotes the number
of subcells (is only applicable for VGPQ). For example, VGPQ
(4096, 64) denotes that, in VGPQ, 4096 clusters are built and
each cluster is subsequently divided into 32 subcells.

Table 2: The construction time and index size comparison
between VGPQ and IVFPQ on AliCommodity.

method time (min) size (GB)

IVFPQ(4096) 155 112

IVFPQ(8192) 199 112

VGPQ(4096,64) 144 112

VGPQ(8192,64) 178 112

VGPQ(8192,128) 182 112

Table 2 lists the construction time and the size of the index
file with different parameter settings on AliCommodity. It
exhibits that the size of the index file generated by VGPQ and
IVFPQ are very close. Their index construction time mainly
depend on the number of centroids in k-means (n clusters
in Algorithm 1). With the same the number of centroids,
the construction time of VGPQ is 10% lower that of IVFPQ.
The performance of VGPQ is also affected by the number of
subcells (n subcells in Algorithm 1). However, we observe
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Figure 10: Recall comparison between VGPQ and IVFPQ.

that adjusting n subcells does not significantly affect the
construction time of VGPQ.

We issue queries of type Q1 to both indexes. Figure 10
shows the recall and response time on three datasets (SIFT1B,
Deep1B, and AliCommodity). The recall of IVFPQ can be im-
proved by increasing n clusters, but the construction time
will markedly rise. Under the same n clusters, we can al-
ternatively increase n subcells for VGPQ, in which the recall
will be improved without a sacrifice of construction time.
Furthermore, VGPQ consistently performs better than IVFPQ

on various datasets. Overall, VGPQ is a practical method for
large-scale vector analysis, in terms of accuracy, build speed
and index size.

6.3 Clustering-based partition pruning
Here we demonstrate the clustering-based partition prun-

ing effect on the query throughput in ADBV. Two distributed
data tables with 512 clustering-based partitions are created
for SIFT1B and Deep1B respectively. During the data inges-
tion, records are distributed based on the similarity to the
centroids of respective clusters. When querying these ta-
bles, we can specify the number of most relevant partitions
(i.e., having closest centroids to the query vector) to trade
accuracy for search efficiency.
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Figure 11: Performance analysis for clustering-based parti-
tion pruning.

As shown in Figure 11, the recall with respect to different
top-k settings will improve as the number of searched par-
titions increases. However, more partitions to search also
means lower query throughput. We observe that this prun-
ing is more effective for queries with relatively small k. With
the help of clustering-based partition pruning, we can reduce
the number of searched partitions from 512 to 3 without vi-
olating 95% recall on SIFT1B 512p (Figure 11(a)). In this
case, the total QPS can be improved by 100+ times, as
multiple queries can be concurrently handled by different
partitions (i.e., read nodes). Likewise, QPS on Deep1B 512p

also improves by 10+ times ideally. According to our em-
pirical experience, clustering-based partition pruning helps
ADBV to achieve orders of magnitude throughput improve-
ment (i.e., 10× to 100×) on large-scale datasets (with 1000+
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Figure 12: Performance study of different physical plans.

storage nodes) for queries with relatively small k, which is
common in real applications.

6.4 Hybrid query optimization
In this section, we evaluate the accuracy-aware cost-based

optimization for hybrid query execution (§5). We demon-
strate that the proposed approach is able to guarantee the
accuracy of query results while find the optimal physical
plan in a large variety of scenarios. Since two public datasets
do not contain structured columns, we only conduct follow-
ing tests on AliCommodity. In addition, we only sample one
percent tuples from the original dataset (about 8 million tu-
ples) and construct a single-partition table. We force ADBV
to perform Q2 (i.e., hybrid query) with four different physi-
cal plans, for each of which we collect the average execution
time and recall respectively.

In business scenarios, users have diverse requirements on
the value of k and query accuracy. For example, the value
of k in the face recognition scene is fairly small (i.e., only
a few results are required), but the accuracy is stringent
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(e.g., recall > 0.99). However, in some other scenes like
the E-commerce example presented in Figure 1, larger k is
needed (e.g., several hundreds), and the accuracy require-
ment is relaxed (e.g., recall > 0.9). In order to cover diver-
gent scenarios, we select three representative settings in this
experiment:

(a) k = 50, recall >= 0.95, and s varies from 0.2 to 0.9999;
results are showed in Figure 12(a) and 12(b).

(b) k = 250, recall >= 0.9, and s varies from 0.2 to 0.9999;
results are showed in Figure 12(c) and 12(d).

(c) k = 500, recall >= 0.85, and s varies from 0.2 to
0.9999; results are showed in Figure 12(e) and 12(f).

As illustrated in Figure 12 (left column), most of these plans
can provide results satisfying the recall under different se-
lectivity. It implies that our accuracy-aware cost-based op-
timizer(CBO) is able to find proper hyperparameters for each
physical plan. Meanwhile, in all three representative cases,
the optimizer can always choose the optimal plan among
four physical plans, as shown in Figure 12 (right column).
It confirms that proposed cost models are helpful in most
scenarios.

6.5 Two-step solution vs. ADBV
In this section, we compare the hybrid query process-

ing capability of ADBV with existing two-step solutions.
To the best of our knowledge, there is no publicly avail-
able system that have native support for hybrid query so
far. Therefore, we compare with a solution following the
standard practice in the industry. It combines a relational
database for structured data and an ANNS engine for un-
structured data to obtain tuples of interest. Two systems
run separately and the intersection of results collected from
both systems are processed afterward. To make a fair com-
parison, we first use AnalyticDB to retrieve tuples that sat-
isfy the structured filter conditions. Then, nearest neigh-
bors are computed with different ANNS methods (i.e., IVFPQ
and VGPQ). Finally, we merge result sets from above two
steps to collect the tuples that pass both structured and
unstructured filter conditions. The results of these two dis-
tinct two-step solutions are denoted as AnalyticDB+IVFPQ

and AnalyticDB+VGPQ respectively. Since the data trans-
fer time between systems is subjected to development en-
vironment, we ignore the time cost of data transfer in this
test. In other words, the underlying execution process of
AnalyticDB+IVFPQ and AnalyticDB+VGPQ conceptually fol-
low Plan D (Section 5.1). We also implement IVFPQ in
ADBV to verify the effectiveness of hybrid query optimiza-
tion techniques (Section 5.2) to other existing ANNS algo-
rithms. Here, AnalyticDB-V(IVFPQ)(or AnalyticDB-V(VGPQ
)) represents the uniform solution developed with IVFPQ (or
VGPQ).

We use query template Q2 to generate queries, where c
is instantiated with column create time that manifests the
create time of each tuple. We fix p1 and vary the value
of p2 in the structured predicate to generate three types of
queries. These queries are to fetch top-50 records similar
to the query image within last one month(p2 = 1), three
months(p2 = 3), and nine months (p2 = 9) respectively.
Experimental results are provided in Table 3.

As showed in Table 3, VGPQ consistently outperforms IVFPQ
in both two-step solutions. When p2 = 1 and p2 = 3, we
need amplify the number of nearest neighbor to be fetched
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to s × k (s > 1) instead. The reason is that tuples are re-
jected by the corresponding selective structured predicates.
Once p2 is set to 9, more tuples could pass the time con-
straint, and thus the running time is reduced by decreasing
the value of s. For highly selective queries (e.g. p2 = 1 and
p2 = 3), ADBV picks Plan A or Plan B for execution, while
Plan D is chosen until p2 = 9. The differences in running
time between ADBV and two-step solutions also indicate
that hybrid query optimization techniques enable ADBV to
automatically select the optimal execution plan for different
queries.

Table 3: Two-step solution vs. ADBV

p2 = 1 p2 = 3 p2 = 9

AnalyticDB+IVFPQ 241 ms 77 ms 47 ms

AnalyticDB+VGPQ 181 ms 55 ms 33 ms

AnalyticDB-V(IVFPQ) 19 ms 35 ms 47 ms

AnalyticDB-V(VGPQ) 19 ms 35 ms 33 ms

6.6 Scalability and mixed read & write
Scalability. We evaluate the peak QPS in vary-sized

clusters (with 4, 8, 12, and 16 nodes) for SIFT1B and Deep1B.
As shown in Figure 13, QPS increases linearly with the num-
ber of nodes.

Mixed read-write throughput. This test is conducted
on SIFT1B with 8:2 and 6:4 read-write workload ratio. We
observe that ADBV achieves high throughput (˜4400 QPS)
under different scenarios. As the stress test continues, Fig-
ure 14 shows that the throughput only drops mildly. It
confirms that the influence of high-rate data ingestion to
the query performance is marginal under our lambda frame-
work.

6.7 Use case study
ADBV has been successfully deployed at Alibaba to pro-

vide hybrid query processing services for various real-world
applications. As known, Smart City Transportation signifi-
cantly improves citizens’ daily life by reducing traffic conges-
tion and optimizing the traffic flow [36]. There is one impor-
tant system in it, called vehicle peccancy detection system,
which helps to identify peccancy vehicles from snapshots
collected by road-junction cameras.

In this large-scale production system, ADBV is adopted as
a key module to support hybrid query analysis over 20,000
video streams. For each video stream, images containing
vehicles are extracted through key-frame-detection [50] al-
gorithms at the first step. Then, each image is processed via
image detection algorithms [41, 31] to locate the sub-region
of pixels representing vehicles, and these sub-regions are
transformed into vector points with the usage of trained deep
neural network models. Meanwhile, other important struc-
tured attributes, like timestamp, location, camera id, vehicle
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color, are recorded as well. Vector points along with such
structured information are organized into batches. Before
inserted through issuing INSERT statements (Section 2.2),
each batch of data is properly cleaned. After the comple-
tion of data ingestion, practitioners could directly rely on
ADBV to manage data without concerning the underlying
implementation. Until now, the volume of raw data reaches
about 30TB2 and the total number of tuples is over 13 bil-
lions. The entire process is illustrated in Figure 15.

If one user decides to retrieve one-day trajectories of a
black peccany vehicle ADBV in a given area with ADBV,
she/he simply prompts a SQL query by providing the time
and position constraints as well as one snapshot of this vehi-
cle. Upper layers of the system collect the results returned
by ADBV, and provide the trajectory information at the
user interface as showed in Figure 15 (where the red line
denotes the desired trajectory). By virtue of the overall sys-
tem design, VGPQ and hybrid query optimization techniques,
ADBV significantly reduces the total running time of such
queries from hundreds of seconds to milliseconds to satisfy
the real-time requirement.

Structured 
attributes

Key frame 
detection

Feature 
extraction

Hybrid 
query

AnalyticDB-V
Merge & Insert

Vector 
points

+ last 24 hours”
+ region A

System interface

Figure 15: Use case study.

Moreover, we collect a set of 24-hour statistics from a
customer’s 70-node cluster to demonstrate the effectiveness
and efficiency of ADBV in this production environment. As
illustrated in Figure 16, ADBV consistently provides sta-
ble service either for insertions or for selections. Though
the number of requests wildly fluctuates in a 24-hour time
window due to business nature, the response time remains
in a particular range. Even when confronting the burst of
data ingestion at mid-night (i.e., 1am), no noticeable per-
formance jitters is observed. After all, not only does ADBV
reduces the maintenance efforts significantly over a large-
scale dataset, but also it provides reliable and efficient data
analytics services.
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Figure 16: Performance in production environment.

7. RELATED WORK
ADBV is designed and implemented from the system per-

spective to support hybrid queries for structured and un-
structured data with real-time updates. We survey related
work in this section.
2The size of raw images stored is not counted, we only cal-
culate the quantity of vector data.

OLAP system. Most OLAP systems like OLAP databa-
ses (Vertica [28], Greenplum [1], etc.), batch processing sys-
tems (Spark-SQL [3]), analytical cloud services (Amazon
Redshift [15], Google BigQuery [46] and Alibaba Analyt-
icDB [53]) have been used in a wide range of fields and pro-
vided excellent analytic ability for users in practice. How-
ever, these systems only work on traditional structured data-
sets and do not support hybrid queries containing unstruc-
tured data.

Solutions for searching unstructured data. Face-
book publishes a famous vector similarity search library
(also called Faiss [25]) that supports several existing ANNS

algorithms. Jegou et al. implement the extension on Elastic-
search [9] to support ANNS over vector data. Microsoft devel-
ops GRIP [54], a vector search solution that adopts HNSW to
reduce the expensive centroid searching cost of encoding-
based algorithms and supports different kinds of vector in-
dexes [23, 10]. Recently, unstructured data processing arise
a lot of interests [30, 37, 57].

Nearest neighbor search. To reduce the running time
of the brute force solution, several tree-based algorithms
have been proposed with theoretical guarantees [16, 43].
Due to the curse of dimensionality [22], these algorithms
are no better than exhaustive search on high dimensional
features [51]. Consequently, ANNS becomes one promising di-
rection to address this problem without loss of too much per-
formance [22, 21, 23, 4, 33, 10]. Encoding-based approach
is an alternative way to reduce the distance computation
cost [13] by compressing the original vector with a succinct
encoding. PQ and its subsequent works [11, 26] still pro-
ceed in an exhaustive search fashion, and the searching cost
on large scale datasets are not well treated. Then, several
fine-grained design algorithms are introduced, especially for
immense scale datasets [4, 23]. To fulfill the high accuracy
requirement, the neighborhood-based approach [33, 35, 10]
is a compelling option. However, the entire index structure
should be maintained in the internal memory, which will fall
over when it cannot be fitted into memory.

Moreover, hybrid query processing is a common term which
is also adopted in the information retrieval (IR) commu-
nity [44, 7] as well. IR methods usually rest on statistical
models to smoothly combine keyword-based search and pure
semantic search into one on structured data (e.g., RDF data)
and unstructured data (e.g., Textual documents). Such so-
lutions for ranking tasks could not be manipulated in the
design of an analytical engine so far [52].

8. CONCLUSION
In order to accommodate this strongly forecast future de-

mand, this paper introduces a new analytic engine ADBV.
With the aid of ADBV, practitioners are able to manage
massive high-dimensional vectors and structured attributes
by driving a single system. The proposed VGPQ algorithm
could further improve the performance of hybrid query pro-
cessing on a large volume of baseline data. Moreover, hybrid
query is natively optimized by the design of accuracy-aware
cost-based optimization. ADBV has been successfully de-
ployed in Alibaba Group and on Alibaba Cloud to support
various complex business scenarios. An interesting future
and ongoing work is to support complex ETL processing
with hybrid query semantics in the same engine for online
interactive query processing.
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