
LedgerDB: A Centralized Ledger Database for Universal
Audit and Verification

Xinying Yang†, Yuan Zhang†, Sheng Wang§, Benquan Yu†, Feifei Li§, Yize Li†, Wenyuan Yan†

†Ant Financial Services Group §Alibaba Group

{xinying.yang,yuenzhang.zy,sh.wang,benquan.ybq,lifeifei,yize.lyz,daniel.ywy}@alibaba-inc.com

ABSTRACT
The emergence of Blockchain has attracted widespread at-
tention. However, we observe that in practice, many ap-
plications on permissioned blockchains do not benefit from
the decentralized architecture. When decentralized architec-
ture is used but not required, system performance is often
restricted, resulting in low throughput, high latency, and
significant storage overhead. Hence, we propose LedgerDB
on Alibaba Cloud, which is a centralized ledger database
with tamper-evidence and non-repudiation features similar
to blockchain, and provides strong auditability. LedgerDB
has much higher throughput compared to blockchains. It
offers stronger auditability by adopting a TSA two-way peg
protocol, which prevents malicious behaviors from both users
and service providers. LedgerDB supports verifiable data
removals demanded by many real-world applications, which
are able to remove obsolete records for storage saving and
hide records for regulatory purpose, without compromis-
ing its verifiability. Experimental evaluation shows that
LedgerDB’s throughput is 80× higher than state-of-the-art
permissioned blockchain (i.e., Hyperledger Fabric). Many
blockchain customers (e.g., IP protection and supply chain)
on Alibaba Cloud have switched to LedgerDB for its high
throughput, low latency, strong auditability, and ease of use.

PVLDB Reference Format:
Xinying Yang, Yuan Zhang, Sheng Wang, Benquan Yu, Feifei Li,
Yize Li, and Wenyuan Yan. LedgerDB: A Centralized Ledger
Database for Universal Audit and Verification. PVLDB, 13(12):
3138-3151, 2020.
DOI: https://doi.org/10.14778/3415478.3415540

1. INTRODUCTION
Since the launch of Bitcoin [32], blockchain has been in-

troduced to many applications as a new data collaboration
paradigm. It enables applications to be operated by mu-
tually distrusting participants. A blockchain system im-
plements hash-entangled data blocks to provide a tamper-
evident ledger with bulks of transactions committed by a

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415540

certain consensus protocol (e.g., PoW [32], PBFT [14], Hon-
eyBadgerBFT [28]). Decentralization is a fundamental basis
for blockchain systems, including both permissionless (e.g.,
Bitcoin, Ethereum [21]) and permissioned (e.g., Hyperledger
Fabric [6], Corda [11], Quorum [31]) systems.

A permissionless blockchain usually offers its cryptocur-
rency to incentivize participants, which benefits from the
decentralized ecosystem. However, in permissioned block-
chains, it has not been shown that the decentralized archi-
tecture is indispensable, although they have been adopted
in many scenarios (such as IP protection, supply chain, and
merchandise provenance). Interestingly, many applications
deploy all their blockchain nodes on a BaaS (Blockchain-
as-a-Service) environment maintained by a single service
provider (e.g., Microsoft Azure [8] and Alibaba Cloud [4]).
This instead leads to a centralized infrastructure. As there
is still no widespread of truly decentralized deployments in
permissioned blockchain use cases, many advocates are veer-
ing back to re-examine the necessity of its decentralization.
Gartner predicts that at least 20% of projects envisioned to
run on permissioned blockchains will instead run on central-
ized auditable ledgers by 2021 [23].

To reform decentralization in permissioned blockchains,
we propose LedgerDB – a ledger database that provides
tamper-evidence and non-repudiation features in a central-
ized manner, which realizes both strong auditability and
high performance. We call it a centralized ledger database
(CLD) system, which pertains to centralized ledger technol-
ogy (CLT) that is opposed to decentralized ledger technology
(DLT) in blockchain. LedgerDB is developed and widely
adopted at Ant Financial from Alibaba Group. Its major
designs are inspired by limitations in conventional permis-
sioned blockchains [6, 26, 11, 31, 18, 29, 30] and ledger
databases [7, 40].

First, we observe that many use cases of permissioned
blockchains (e.g., provenance and notarization) only seek for
the tamper resistance from cryptography-protected struc-
tures, such as hashed chains and Merkle trees [27]. Often-
times, none of the other features (e.g., decentralization and
smart contract) are utilized. In this case, a simplified au-
ditable ledger service from a credible central authority with
essential data manipulation support is sufficient. It tends
to be more appealing against blockchains, due to its high
throughput, low latency, and ease of use.

Second, the threat model of permissioned blockchain is
inadequate for real-world audit. For external (i.e., third-
party) auditors beyond its consortium, data replication guar-
ded by consensus protocols seems deceptive. For example,

3138

Table 1: Key comparisons between LedgerDB and other systems.

System
Throughput Auditability Removal Non-Repudiation Provenance
(max TPS) external third party peg capability purge occult server-side client-side native clue

LedgerDB 100K+ 3 TSA 3 strong 3 3 3 3 3
QLDB [7] 1K+ 7 7 7 weak 7 7 7 7 7

Hyperledger [6] 1K+ 7 7 7 weak 7 7 3 3 7
ProvenDB [40] 10K+ 7 Bitcoin 3 medium 7 3 7 7 7
Factom [43] 10+ 3 Bitcoin 3 strong 7 7 3 3 7

with the endorsement from all peers, they are able to fabri-
cate fake evidence (e.g., modify a transaction from ledger)
against external auditors without being noticed. What is
worse, the partial endorsement from a majority is already
sufficient to conduct above deception, if others fail to provide
original chain proofs to external auditor. As a consequence,
permissioned blockchains only retain limited auditability.

Third, though some centralized auditable ledger databases
emerge as alternatives to permissoned blockchains, they how-
ever excessively assume a trustful service provider. For ex-
ample, AWS discloses QLDB [7, 13] that leverages an im-
mutable and verifiable ledger; Oracle announces its blockcha-
in table [35]. These auditable ledgers require that the ledger
service provider (LSP) is fully trusted, such that historical
records can be archived and verified at the server side. It re-
mains unknown whether the returned records are tampered
by LSP, especially when it colludes with a certain user.

Fourth, the immutability1 provided by existing systems
implies that each piece of committed data is permanently
disclosed on the ledger as the tamper evidence, which indeed
causes prohibitive storage overhead and regulatory issues in
real-world applications. Many blockchain users wish to clean
up obsolete records for storage savings, since it will other-
wise become unaffordable as data volume grows. In terms
of regulatory issues, those records violating law or morality
(e.g., upload someone’s residential address without prior ap-
proval) cannot be erased once it has been committed, which
is undesirable in many applications.

To address these issues, LedgerDB adopts a centralized ar-
chitecture and a stateless journal storage model, rather than
tightly-coupled transaction state model in most blockchain
systems [21, 30], to achieve high system throughput. It
adopts multi-granularity verification and non-repudiation pr-
otocols, which prevents malicious behaviors from (colluded)
users and LSP, eliminating the trust assumption to LSP.
By integrating with digital certification and timestamp au-
thority (TSA) service [10, 37], LedgerDB service on Alibaba
Cloud [4] is capable of offering judicial level auditability.
It has already served many real-world customers for their
blockchain-like applications, such as supply chain, IP pro-
tection, RegTech (regulatory technology), and enterprise in-
ner audit. We compare LedgerDB with other systems in
Table 1 (detailed in § 2) and summarize our main contribu-
tions as follows:

• We investigate the gap between existing auditable systems
(i.e., blockchains and ledger databases) and real-world re-
quirements from the aspects of auditability, functionality
and performance.
• We develop LedgerDB, which, to the best of our knowl-

edge, is the first centralized ledger database that provides

1Here we mean that any piece of data, once committed into
the system, cannot be modified by subsequent operations
and becomes permanently available.

strong auditability, broad verification coverage, low stor-
age cost, as well as high throughput.
• To ensure strong auditability, we adopt non-repudiable

signings and a TSA peg protocol to prevent malicious be-
haviors (defined in § 2.2) from users and LSP.
• We provide verifiable data removal operators to resolve

storage overhead and regulatory issues. They help remove
obsolete records (purge) or hide record content (occult)
without compromising verifiability. We also provide na-
tive primitives (clue) to facilitate the tracking of applicati-
on-level data provenance.
• To sustain high throughput for write-intensive scenarios,

we enhance LedgerDB with tailored components, such as
an execute-commit-index transaction workflow, a batch
accumulated Merkle-tree (bAMT), and a clue index (cSL).
Our experimental result shows that LedgerDB achieves
excellent throughput (i.e., 300,000 TPS), which is 80×
and 30× higher than Hyperledger Fabric and QLDB re-
spectively.

The rest of this paper is organized as follows. We discuss
limitations in current solutions and our design goals in § 2.
We overview LedgerDB in § 3, and then present our detailed
designs (i.e., journal management, verification mechanism,
and provenance support) in § 4, § 5 and § 6 respectively.
Use cases and real-world practices are provided in § 7. We
provide experimental evaluation in § 8 and related work in
§ 9, before we conclude in § 10.

2. PRELIMINARIES AND DESIGN GOALS
We work on the design of a ledger database that supports

blockchain-like (especially permissioned blockchain) applica-
tions using a centralized architecture. It records immutable
application transactions (from mutually distrusting partici-
pants) on the ledger with tamper-proofs, and provides uni-
versal audit and verification capabilities. In this section, we
introduce our design goals that make LedgerDB a more pow-
erful alternative to existing blockchain systems, from aspects
of auditability, threat model, functionality and performance.

2.1 Auditability
Auditability is the capability of observing user actions and

operation trails, which is an essential property for ledger
databases (and blockchain systems). A successful auditing
trail should guarantee the authenticity of all audited data.
For example, if a transaction is being audited, the auditor
should confirm that its content has not been tampered (i.e.,
integrity) and its issuer is authentic (i.e., non-repudiation).
Here we further divide this concept into two scenarios: inter-
nal audit and external audit. Internal audit ensures that an
internal user of the ledger can observe and verify the authen-
ticity of all actions (we call them transactions) conducted by
all other (distrusted) users. External audit ensures that an
external third-party entity (e.g., auditor) can observe and
verify the authenticity of all transactions conducted by all

3139

(distrusted) participants of that ledger, e.g., users and ledger
service provider (LSP). In other words, a participant can-
not maliciously tamper or repudiate own transactions when
they are to be audited.

Most existing ledger and blockchain systems support in-
ternal audit (with certain assumptions or constraints), but
few of them is able to provide external audit. We discuss
the auditability of several typical systems as follows (which
is also summarized in Table 1):

QLDB. It is a centralized ledger database developed at
AWS, where users submit their transactions into a shared
ledger. In this system, the LSP is fully trusted by all users,
and it adopts server-side verification mechanisms to detect
and alert user tampers. Users are not aware of whether the
LSP tampers their data. In summary, QLDB provides inter-
nal audit under the context that the LSP must be trusted.

Hyperledger Fabric. It is a popular permissioned blockcha-
in for mutually distrusted users to run collaborative appli-
cations among a consortium. A typical consortium in per-
missioned chain can forge timestamps and fork their ledger
when majority members collude (e.g., more than 2/3 of peers
in a PBFT-based consensus protocol). In summary, Hyper-
ledger provides internal audit under the context that major-
ity peers are honest.

ProvenDB. It is a centralized ledger database that lever-
ages Bitcoin-based anchors to validate timestamps on the
ledger. However, due to the inherent commitment latency
in Bitcoin (e.g., 10 minutes), there is a vulnerable time win-
dow issue, i.e., recent transactions might be compromised
during the time window they are to be committed. Besides,
it suffers from intentional submission delay issues due to its
one-way anchoring protocol. In summary, ProvenDB pro-
vides internal audit similar to QLDB and limited external
audit (from large vulnerable time window).

Factom. It is a permissionless blockchain for decentral-
ized data notarization, which forms the strongest auditable
model among conventional ledgers. Its permissionless decen-
tralization makes it a powerful source of credible timestamps
where applications can rely on. Along with non-reputable
transaction signings, Factom (as well as Bitcoin) supports
both internal and external audits, but suffers poor system
performance (from permissionless).

2.2 Threat Model
We formally provide the threat model considered in our

design, which inherently implies the full support of both
internal and external audits. For any user and the LSP,
we only assume that their identities are trusted (i.e., by
disclosing their public keys certified by a CA). In addi-
tion, a third-party timestamp authority (TSA) needs to be
trusted, which is able to attach true and verifiable times-
tamps (of current time) to a given piece of data. We assume
that cryptographic primitives (e.g., message authentication
code and signature) guarantee tamper resistance and non-
repudiation.

Except for trusted components above, any behavior from
a participant can be malicious, i.e., they might deliberately
try to tamper or repudiate existing transactions. In particu-
lar, we consider two typical attack scenarios: (a) server-side
malicious tampering and (b) LSP-user collusion tampering,
where three types of threats are involved (threat-A, threat-B ,
threat-C). For scenario (a), the adversary can be either an
outside attacker, an internal user or the LSP, who compro-

mises the entire database server. The adversary may access
any transaction on the ledger and tamper incoming trans-
actions when user requests arrive (threat-A). He/she may
tamper (e.g., update, delete, insert) historical transactions
on the ledger, so as to forge a fake ledger to cheat users
(threat-B). For scenario (b), one or more client(s) can col-
lude with the LSP as the adversary. The adversary may
tamper or remove any historical transaction to cheat an ex-
ternal auditor (threat-C). We guarantee that all above
threats can be detected by both internal participants
and external auditors.

2.3 Design Goals
Strong external auditability. Consider the threat mod-

el above, we observe that existing ledger databases and per-
missioned blockchains are vulnerable to some of mentioned
threats and inadequate for real-world auditability. For ex-
ample, QLDB is vulnerable to all three threats; ProvenDB
is vulnerable to threat-A and has partially prevented threat-
B and threat-C . The lack of external auditability makes
them unsuitable for real-world applications. In contrast,
LedgerDB works the assumption of honest majority and
provides strong external auditability, by leveraging a third-
party TSA. In short, it is impossible for an adversary to tam-
per earlier data once a TSA journal is anchored on ledger.

High write performance. The write performance in
permissioned blockchains is significantly limited by their de-
centralized architecture. However, such kind of decentral-
ization is not indispensable in many scenarios. For exam-
ple, some applications deploy all blockchain nodes in a con-
sortium on a BaaS (Blockchain-as-a-Service) environment
maintained by a single service provider, which instead leads
to a centralized infrastructure eventually. In this case, a
centralized ledger database (CLD) is more appealing, due
to its high throughput, low latency, and ease of use. More-
over, we observe that most customers concern more about
write performance compared to read and verification per-
formance. Hence, LedgerDB is a system mainly optimized
for high write performance, and at the same time sustains
acceptable read and verification performance.

Data removal support. Data immutability is inherent
in existing blockchain systems, which infers that all com-
mitted transactions must be permanently disclosed on the
ledger as tamper evidences in order to support verification
and audit. However, this causes prohibitive storage over-
head and regulatory issues in real-world applications. Note
that the mission of audit does not enforce the prerequisite
of immutability in real-world applications. Therefore, we
aim to allow the removal of obsolete or violating records,
without compromising the capabilities for verification and
audit. Hence, LedgerDB breaks immutability, but instead
provides two operations: purge removes obsolete records to
save storage cost and occult hides violating records to re-
solve regulatory issues (detailed in § 5.4). These operations
enhance the system with more flexible auditability that fa-
cilitates both customers and regulators.

Table 1 summarizes major differences between LedgerDB
and existing systems from all aspects discussed above.

3. LEDGERDB OVERVIEW
LedgerDB is a CLD system that conforms to the threat

model and design goals discussed above, i.e., strong exter-
nal auditability, high write performance, and data removal

3140

L-Stream KV MPT HDFS

Storage

Kernel

LedgerServer LedgerServer LedgerServer

LedgerProxy LedgerProxy LedgerProxy

LedgerMaster

......

......

LedgerMaster
LedgerMaster

LedgerDB

Platform

LedgerClient LedgerClient
TSA

Time Ledger
KEY Mgmt

Certification

LaaS &

LaaS+......

Data Flow

Control Flow

Figure 1: LedgerDB system architecture.

support. In this section, we introduce LedgerDB’s overall
architecture, as well as its data model and APIs. LedgerDB
can be either used as a standalone software or deployed as a
LaaS (Ledger-as-a-Service) on cloud, i.e., a CLD service. It
has been deployed on Alibaba Cloud, where digital certifica-
tion and TSA services are integrated to provide judicial-level
auditability. We call this deployment LaaS+.

3.1 Architecture
The architecture of LedgerDB is shown in Figure 1, which

contains three major components, i.e., ledger master, ledger
proxy, and ledger server. A ledger master manages the run-
time metadata of the entire cluster (e.g., status of servers
and ledgers) and coordinates cluster-level events (e.g., load
balance, failure recovery). A ledger proxy receives client re-
quests and preprocesses, and then dispatches them to the
corresponding ledger server. A ledger server completes the
final processing of requests, and interacts with the underly-
ing storage layer that stores ledger data. Different storage
engines are supported, such as file systems (e.g., HDFS, L-
Stream), KV stores (e.g., RocksDB), and MPT (Merkle Pa-
tricia Tree) [25]. In particular, L-Stream (LedgerDB stream)
is a linear-structured append-only file system tailored for
LedgerDB. It eliminates costly compaction (e.g., RocksDB)
and can be fast accessed via storage offsets. Note that ledger
proxy can communicate with the storage layer directly when
handling transaction payloads (§ 4.2).

LedgerDB provides high service availability and data re-
liability. It leverages end-to-end CRC (cyclic redundancy
check) to ensure data integrity during transmission and re-
trieval. The storage layer adopts a shared storage abstrac-
tion, where ledger data is replicated in multiple available
zones and regions following a raft protocol. Therefore, ledger
servers and ledger proxies are completely stateless, which
makes their failover and restart easy.

3.2 Data Model and APIs
In LedgerDB, a ledger manipulation operation (initiated

by either a user or the LSP) is modeled as a transaction,
which results in a journal entry (journal for short) appended
to the ledger. Multiple journals are further grouped as a
block on the ledger (analogous to the block in blockchain).
When a user executes an operation, he/she first initializes

the transaction at client and signs the content with his/her
own secret key. Then, this signed message is wrapped as a
request payload and sent to ledger proxy. Table 2 lists main
operators provided by LedgerDB. In these APIs, ledger uri

Table 2: Main operators and APIs in LedgerDB.
Operator Method

Create Create(ledger_uri, enum, op_metadata)

Append AppendTx(ledger_uri, tx_data, clue, set)
SetTrustedAnchor(ledger_uri, jsn, level)
GrantRole(ledger_uri, member_id, role)
GrantTime(ledger_uri, timestamp, proof)

Retrieve GetTx(ledger_uri, jsn)
ListTx(ledger_uri, ini_jsn, limit, clue)
GetTrustedAnchor(ledger_uri, jsn, level)
GetLastGrantTime(ledger_uri, timestamp)

Verify Verify(ledger_uri, jsn | clue, data, level)

Purge Purge(ledger_uri, block)

Occult Occult(ledger_uri, jsn | clue)
Recall Recall(ledger_uri, purged_point)

Delete Delete(ledger_uri, enum, op_metadata)

is the unique identifier of each ledger instance; journal se-
quence number (jsn) is the unique identifier of each journal
assigned by the ledger server using a monotonic counter. We
explain some categories of operator as follows:

• Append – append user transaction or system-generated
transaction to ledger. The user transaction can contain
any type of digital information representing application
semantics (such as transaction logs, audit trails, and op-
eration traces). There are four major operators in this
category: 1) AppendTx appends a user transaction, which
can be associated with a clue set to express application-
level data provenances (§ 6); 2) SetTrustedAnchor sets
up a trusted anchor of at a certain trust level to facili-
tate subsequent verification requests (§ 5.3); 3) GrantTime
records a TSA signed notary journal for universal time
endorsement (§ 5.2); 4) GrantRole assigns roles or per-
missions to a member of the ledger. A role is a logical
authority granted with predefined operating permissions
to the ledger (e.g., normal, DBA, regulator, verify-only,
read-only, etc).

• Retrieve – get qualified journals from ledger. We pro-
vide three retrieval types to fetch journals: 1) a single-
ton retrieval takes a jsn as input and returns the corre-
sponding journal (via GetTx); 2) a range retrieval takes a
jsn range as input and returns all journals in that range
(via ListTx with ini jsn and limit specified); 3) a clue
retrieval takes a clue as input and returns all journals
containing that clue (via ListTx with clue specified). In
addition, GetTrustedAnchor retrieves a trusted anchor,
while GetLastGrantTime retrieves a time notary (created
by GrantTime).

• Verify - verify integrity and authenticity of returned jour-
nals from journal proofs. A proof is a non-repudiable ev-
idence signed by an entity. In LedgerDB, user signs the
payload of a transaction request; LSP signs the receipt of
a transaction commitment; and TSA signs its generated
time notary. LedgerDB supports two types (levels) of ver-
ification (§ 5), i.e., server-side and client-side, suitable for
different scenarios. Verification can be accelerated using
trusted anchors (§ 5.3).

• Create – create a new ledger with initial roles and mem-
bers. The creation of a new ledger involves the initializa-
tion of many components, such as a unique ledger iden-
tifier, a genesis configuration, system-level journals, and
third-party registrations (e.g., TSA genesis timestamp).
A list of initial members shall be specified during creation,
each of which holds at least one role. Role and member
configurations are appended as journals in genesis block.

3141

• Purge – remove obsolete journals from ledger. A purge is
a bulk removal of contiguous journals starting from gen-
esis block (for storage savings). A pseudo genesis will be
generated after the purge. We detail it in § 5.4.1.

• Occult – hide journal(s) from ledger. An occult can re-
move any journal (for regulatory purpose) without com-
promising the integrity of the entire ledger. Since occulted
journals cannot be accessed anymore, only regulators are
allowed to execute it with care. It can be used in two
ways: 1) occult by sequence number hides a journal given
its jsn; 2) occult by clue hides all journals containing a
designated clue. We detail this operator in § 5.4.2.

There are also other operators, e.g.: Recall rollbacks the
effect of a purge (within a limited time window); Delete
removes entities in the system, such as a ledger, a role, a
member, or a clue. Once a clue is deleted, journals contain-
ing that clue will not be returned via clue retrievals, but
they can still be reached via range retrievals.

4. JOURNAL MANAGEMENT
In this section, we introduce our journal structure and

transaction processing, which ensure that committed trans-
actions are tamper-resistant, non-repudiable and persistent.

4.1 Non-repudiable Journal
At client side, a journal is initially packed as a payload,

which contains operator-related fields (e.g., ledger uri , trans-
action type, clues) and client-related fields (e.g., client se-
quence, timestamp and nonce). We call this payload journal-
data as shown in Figure 2(a). A request-hash digest is calcu-
lated based on the entire journal-data (e.g., using SHA256).
The user then signs the request for non-repudiation purpose,
which resolves threat-A (§ 2.2). Finally, the signed request
is submitted to the server.

Journal-Data
___- sign by client

Ledger:ID
Journal:Type
Journal:Payload
Clue:List
Client:Sequence
Timestamp
Nonce
Sender:List

Request:Hash
_______-SignList

Server-Journal

Journal:Hash

Journal-Receipt
___- sign by server

d

Request:Hash

(Whole Packed-Suite)

_______-LSP Sign

Server:Sequence
Server:Timestamp
ExecuteStatus
ExecuteResult

Journal:Hash

Block:Hash

d

Request:Hash

Server:Sequence
Server:Timestamp
ExecuteStatus
ExecuteResult
Status:RootHash

Stream:ID
Stream:Offset
Journal:Size

(a) (b) (c)

Figure 2: Non-repudiable journal structures.

At server side, a journal structure is called server-journal
as illustrated in Figure 2(b). Apart from the client pay-
load above, additional fields are attached to the journal by
server, such as jsn, stream location (§ 4.2), server times-
tamp, execution receipt, and membership status. The server
then calculates a journal-hash, which is the digest of the en-
tire server-side journal . The jsn (i.e., server sequence) is a
monotonically incremented integer assigned to each incom-
ing journal .

After a journal is committed, the server returns a journal-
receipt to the client, as shown in Figure 2(c). A block-hash
refers to the block that contains this journal . Besides three
digests (i.e., request-hash, journal-hash, block-hash), other
fields like jsn, timestamp and status are also included in
the final receipt. Server then signs the receipt for non-
repudiation purpose, before sending it back to the client.

The client can keep this receipt as a proof for subsequent
verification, which resolves threat-B .

4.2 Transaction Processing
In LedgerDB, a transaction represents an execution of an

operator (listed in Table 2), which may create a journal on
the ledger. Most blockchain systems adopt an order-and-
execute approach to execute transactions serially, leading to
extremely low throughput. Hyperledger Fabric [6] proposes
an execute-order-validate approach to support concurrent
execution of multiple transactions, which however declines
significantly when the conflict rate is high during validation.
To resolve above issues, LedgerDB adopts a novel execute-
commit-index transaction management approach. It com-
bines execution and validation where transaction progress
will be validated as early as possible before the completion
of its entire execution, which better utilizes centralized con-
currency control and distributed execution techniques to im-
prove throughput.

Figure 3 shows the overall transaction workflow. In a
nutshell, a transaction first enters the execute phase based
on its transaction type (e.g., append, retrieve). It runs on
ledger proxy for better scalability. Commit phase collects
multiple executed transactions, arranges them in a global
order, and persists them to the storage system. It runs
on ledger server. Note that the success of a transaction
only relies on whether it completes the commit phase. After
that, index phase starts on ledger server to build indexes for
subsequent data retrieval and verification. We explain each
phase in detail as follows:

Execute phase. At this phase, the ledger proxy first
verifies the validity of the submitted transaction, such as its
authentication, data integrity, and timeliness. It consults
the authorization module to check whether the sender has
permission to perform this operation. After that, the veri-
fied (non-read) transaction is stored to a Transaction Store
(at storage layer) to reduce communication and storage cost
in later commit phase. After that, actual operation logic is
performed based on its transaction type, which may involve
the modification of the world state (which contains meta-
data of ledger and members). Since the world state is small
in size, it is stored in a memory-based key-value store. A
transaction might fail at any moment, if it cannot pass any
round of the validation. After the execution completes (no
matter succeeds or fails), it will be sent to the ledger server
for commit phase.

Commit phase. At this phase, multiple journals are
collected from the previous phase and processed in batch.
Each journal is assigned with a unique serial number jsn
based on its server arrival sequence. The journal is then
committed sequentially to a JournalInfo Store (at storage
layer). This JournalInfo Store stores committed journals,
including Transaction Store location of the transaction (e.g.,
stream ID and offset in L-Stream), return code of the ex-
ecution, jsn, and the timestamp. To ensure data integrity,
the hash of the structure is also calculated and stored (i.e.,
journal-hash in § 4.1). For a failed transaction, it is not
stored in JournalInfo Store. However, we still return a re-
ceipt, where the jsn is assigned the same as the one from the
last succeeded transaction to inform user when it is failed.

Index phase. At this phase, we build indexes for newly
committed transactions to support fast data retrieval and
verification. In particular, three types of indexes are built,

3142

Check & Store
Transaction

Execute
Transaction

Order & Commit
Journal

Build
Accumulator

Build
BlockInfo

D0 D2

D1 D3

T0 T1 T2 T4T3

B0 B1 B2 B3

D4

0 1 2 3

3 410

2 5

6

7

JournalInfo

Build
Clue Index

Transaction Store

JournalInfo Store

bAMT
Accumulator

BlockInfo Store

StreamId
Offset
Size

Sequence
ServerTimestamp
ExecuteStatus

TxHash

B4

4 5 6 7

Execute

Commit

Index

A0 B0 A1 B1A2

Clue Index

World State

Figure 3: LedgerDB transaction workflow.

i.e., clue index (§ 6.2), bAMT accumulator (§ 5.1), and block
information. The clue index links all historical journals
through their clues. The clue index serves all singleton,
range and clue retrievals (§ 3.2). The bAMT accumulator
contains all journals and provides proofs of journal exis-
tence. The block information is different from the block in
traditional blockchain. It is a summary of the entire ledger,
rather than the digest of a single block. With this sum-
mary, all ledger information created at a certain time can
be globally verified, such as historical journals, clues, and
states. After index phase completes, the journal receipt is
then signed and replied to client.

4.3 Failure Recovery
LedgerDB handles a variety of failure scenarios, such as

ledger server and ledger proxy crashes. In general, a failure
recovery requires to handle three components: JournalInfo
Store, world state, and indexes. Ledger server needs to re-
cover all these components, while ledger proxy only recovers
the world state. The recovery is based on the list of jour-
nals committed in the JournalInfo store. For world state,
it loads the latest checkpoint into memory and then replays
subsequent journals. Since indexes are stored on L-Stream,
they only need to read the last indexed journal and replay
subsequent journals.

5. VERIFICATION AND AUDIT
Data verification is essential in ledger databases and block-

chains, where it is used to validate data integrity and oper-
ation proofs (based on predefined protocols). In LedgerDB,
verification can be conducted by different roles in two ways:

T0 T1 T2 T3 T4 T5 T6 T7 T8

H2H1H0

A2

H2 H3 H4 H5H1H0

A5

A0

PreBlockHash

LastSequence

AccHash

H0

PreBlockHash

LastSequence

AccHash

PreBlockHash

LastSequence

AccHash

Block 0 Block 1 Block 2

Figure 4: Accumulated Merkle root across blocks.

1) users who demand high efficiency can conduct verifica-
tion at server side, where LSP must be fully trusted. 2)
any users and external auditors who have the access to the
ledger can conduct verification at client side, where LSP is
distrusted and external auditability is guaranteed. In this
section, we present our major mechanisms designed for vari-
ous verifications: how to verify the existence of transactions
(§ 5.1); how to support universal time notary that can be
verified (§ 5.2); how to accelerate verification with trusted
anchors (§ 5.3); how to support data removal (i.e., purge
and occult) that can also be verified (§ 5.4).

5.1 Batch Accumulated Merkle Tree
To verify the existence of specified transactions, there are

two typical entanglement models used in blockchain-like sys-
tems. One is block-intensive model (bim), where a block is
associated with the hash of its previous block to ensure all
previous blocks are immutable [17, 43, 32, 12]. Transactions
within a same block are kept in a Merkle tree [27] to reduce
verification cost to O(logn) (where n is total transactions in
the block). The other is transaction-intensive model (tim)
adopted by QLDB [7, 13] and Libra [16, 5]. In Libra, each
transaction is directly associated with its parent transaction
in a Merkle tree, which limits the insertion and verification
throughput as the tree keeps growing. To benefit from both
models above, we propose an advanced batch-accumulated
Merkle tree (bAMT) that optimized for high transaction-
write throughput.

Algorithm 1: Batch calculation of Merkle tree

Data: Merkle-tree T , hash set of new journals H
Result: new Merkle-tree roothash r

1 S ← ∅
2 for all h in H do
3 n← Create a new leaf node of T whose hash is h
4 Push node n to S

5 end
6 while S 6= ∅ do
7 Pop node n from S
8 p← n’s parent node
9 if node p is valid and never been calculated then

10 Calculate the hash of node p
11 Push node p to S

12 end

13 end
14 return roothash(T)

The structure of bAMT is shown in Figure 4. In bAMT ,
a block contains the hash of its previous block (like in bim),
as well as a transaction-batch accumulated root hash of a
Merkle tree that contains all historical transactions (like
in tim). This model makes journal insertion fast with-
out decreasing verification efficiency. More specifically, for

3143

Merkle trees in tim, the computation cost for an insertion
is O(d), where d is the tree height. For a batch of m
transaction insertions in tim, the cost of its root calcula-
tion is O(m × d). As transactions accumulate, the tree
becomes deeper, which severely limits overall throughput.
In contrast, bAMT adopts a coarse-grained batch accumu-
lation approach, instead of a per-transaction accumulation
approach, to improve the write throughput. Algorithm 1
shows the procedure of bAMT construction. The input takes
a batch of transaction hashes. It adds these hashes to the
leaf nodes of the original Merkle tree and put the new leaf
nodes into a set S (lines 1-5). Then, it takes each node out
of S (line 7), calculates the hash of its parent, and adds it
back into S (lines 9-12). This process continues iteratively
until we reach the root node (lines 6, 13).

In terms of time complexity, a batch of m transactions,
the node hash calculation relates to the number of involved
non-leaf nodes. The first non-leaf layer has approximately
1
2
m nodes, whose upper layer contains approximately 1

4
m

nodes, until halving to the top layer. Hence, it requires∑d
n=1 m(1

2
)
n ≈ m hash calculation. Along with the root

hash calculation of the d-height tree path, the total compu-
tation cost of bAMT is O(m + d), which is much smaller
than that in tim. Compared with bim, since the batch size
is comparatively smaller than the number of transactions in
bim’s block, the insertion latency is also lower.

5.2 Universal Time Notary Anchors
Recall that the auditability in existing blockchains and

ledger databases are very limited, especially for external au-
dit (§ 2.2). In order to resolve threat-C , we introduce a
special type of journal , called TSA journal , endorsed by
TSA [10]. TSA is a time notary authority, which can prove
that a piece of data exists before a certain time point. A
TSA journal contains a ledger snapshot (i.e., a ledger digest)
and a timestamp, signed by TSA in entirety. These journals
are mutually entangled between ledger and TSA as time no-
taries, which provide external auditability for timestamps.
Figure 5 depicts this two-way peg TSA entanglement, where
a ledger digest is first signed by TSA and then recorded back
on ledger as a TSA journal . The very first TSA anchor is
stored in the genesis block, while latter notary anchors are
placed one after another by referencing the hash of its pre-
vious TSA journal . Compared with one-way peg protocol
in ProvenDB (§ 2.1), this two-way protocol can reduce the
vulnerable time window to a marginal constant (but not
completely eliminated).

GENESIS

BLK1548648383
HDR

Journal Body

TSAPure Time
Entangled

Genesis Roothash

BLK1516698046
HDR

Journal Body

tangled

tangled

...

Figure 5: TSA time entangling journals.

Note that a TSA journal is generated after the commit
of multiple consecutive blocks (we call it anchor frequency),
which renders a trade-off between cost and security. Fre-
quent TSA anchors reduce the vulnerable time window but
require more resources. To further reduce interactions with
TSA, a Time Ledger (T-Ledger) can be maintained by the

LSP as a shared time notary anchor service for all other
ledgers. It accepts digests submitted from different ledgers
and interacts with TSA for TSA journals, acting as an agent
between ledgers and TSA. A ledger can request for a time
anchor from T-Ledger by sending its ledger digest, and then
append the receipt from T-Ledger as a TSA journal on its
own ledger. Compared to TSA, T-Ledger can sustain much
higher throughput, where ledgers can request for time an-
chors at millisecond frequency. This defenses threat-C in
practice with negligible vulnerable time windows. We offer
T-Ledger service on our LaaS+, and anyone can download
the entire T-Ledger , leading to strong external auditability.

5.3 Multi-layer Trusted Anchors
In LedgerDB, a trusted anchor is a ledger position, at

which its digest has been successfully verified and hence can
be exempt from future verification. It is regarded as a cred-
ible marker that can accelerate a various number of oper-
ators (involving verification). When auditing to a journal ,
we only need to conduct incremental verification from the
closest anchor (before the journal) to it. We provide two
major types of trusted anchors for different usage: server-
side anchor (ξs) is used when LSP is assumed fully trusted
(e.g., when a user prefers efficiency over security); client-
side anchor (ξc) is used when LSP cannot be trusted, (e.g.,
when an external auditor fulfill his duty). The choice of
verification type and trusted anchor can be specified when
calling Verify (with parameter server or client in § 3.2).
Note that users can set anchors on their own demands via
SetTrustedAnchor. In each ledger, its ξs is shared with all
members, while each member can set her/his own ξcs.

5.4 Verifiable Data Removals
LedgerDB supports several data removal operators de-

manded by real-world applications. It breaks the immutabil-
ity in most blockchain and ledger databases but still pre-
serves data verifiability. In particular, purge removes obso-
lete records to save storage cost (§ 5.4.1) and occult hides
violating records to resolve regulatory issues (§ 5.4.2).

5.4.1 Purge
A purge operation deletes a set of contiguous (obsolete)

journals starting from genesis to a designated journal on
ledger, and then generates a pseudo genesis block. The rel-
evant status of the designated point (such as memberships,
clue counts) will be recorded to the pseudo genesis block. In
addition, original system metadata in genesis (such as cre-
ator, initial members, timestamp and block hash) are also
migrated. A purge operation can be illustrated2 as follows
(where pur jsn is the target purging point):

01 | DELETE FROM ledger_uri
02 | WHERE jsn < pur_jsn;

After a purge, a pseudo genesis will be (logically) stored at
the purging tail, replacing the last purged block. A purge
request also appends a purge journal on ledger, which is
double-linked with the pseudo genesis as illustrated in Fig-
ure 6. This two-way peg enhances their mutual proofs, and
provides fast lookups. The purge operation also utilizes the
server-side trusted anchor ξs. An incremental verification

2SQL statements are used to help readers to understand the logic
more easily. They can be expressed in our APIs otherwise.

3144

BLK1516698046
HDR

PURGE

Time

Journal Body

GENESIS
pseudo

GENESIS

Status Snapshot

implicit chasing

doubly tangled

origin

Figure 6: Purge operation with pseudo genesis.

between the closest ξs and the purging point will be exe-
cuted before the purge, which is also sketched in Figure 6.
Besides, we also allow the recall of unintentionally purged
journals within a recent time window. These journals will
be finally erased if no recall is issued.

As purge is a powerful operator, it is only accepted when
multi-signatures from the ledger creator (or DBA) and all
related members (i.e., whose historical journals are involved
in the purge) are gathered. This guarantees the agreement
and non-repudiation from all members.

5.4.2 Occult

Seq TS RC Lgr-
ID

Tx-
type

Clue
-list nonce ... cps-

hash
Sign-

list

Journal TX Client Payload Suite (cps)

Seq na RC link-
seqX

journal-
hash OCCULT seqX

doubly tangled

...

Figure 7: Occult relevant data structure.

We propose the occult operation to hide anti-regulatory
journals. An occult converts the original journal to a new
one that only keeps its metadata (such as jsn, timestamp
and return code). The occulted journal hash (journal-hash)
and relevant jsn (seqX) overwrites original payload’s start-
ing offset, and the remaining payload body is formatted as
shown in Figure 7. In the figure, the upper and lower por-
tions represent journals before and after occult respectively.
The left portion represents the journal’s metadata fields,
while the right portion represents the cps (client payload
suite) for payload data. We use a timestamp earlier than
the ledger born time to represent unavailable (as an occult
indicator). The occulted journal sets its occult flag and
then overwrites with jsn of the occulting proposer, i.e., re-
quester of seqX, at the original cps as well as the cps digest
for proof and future verification. An occult operation can
be illustrated as follows (where Seq is the target jsn to hide,
and seqX relates to the occulting requester’s jsn):

01 | UPDATE ledger_uri
02 | SET TS = na , cps = CONCAT(
03 | seqX , journal_hash , blanks)
04 | WHERE jsn = Seq
05 | OR cid = des_cid;

When occulted journals are involved during verification,
the protocol is refined as follows: when an occulted flag is
detected (from the occulting indicator), we lookup its re-
tained hash digest at cps; otherwise, we calculate journal
hash as normal. To improve lookup efficiency, an occult
bitmap index is used to filter out unnecessary checks on
normal blocks.

Since the main purpose for occult operator is regulation,
we only expect to hide violated or illegal journals, instead of

normal ones. Hence, it needs dual signatures from DBA and
regulator role holders (e.g., an Internet court) to execute,
regardless of its original transaction owner.

6. NATIVE PROVENANCE
Data provenance is important in many blockchain appli-

cations, where lineage-orientated retrievals are required to
track relationships between different items or actions. To
support high-performance lineage management, LedgerDB
proposes a native primitive called clue that bridges business
semantics and stateless ledger databases. It offers a friendly
interface to capture lineages in application logic (i.e., clue-
based insertion, retrieval and verification).

6.1 Clue Primitive
Existing provenance solutions either suffer from low sys-

tem performance, i.e., in permissionless blockchains like Ev-
erledger [22] (smart contract) and Bitcoin (UTXO), or lack
of external auditability, i.e., in permissioned blockchains and
ledger databases. For example, UTXO in Bitcoin requires
recursive searches that cannot be parallelized; the authen-
ticity of lineage information in QLDB cannot be essentially
verified. In LedgerDB, a clue is a user-specified label (key)
that carries on business logic for data lineage. Together with
our centralized architecture and TSA two-way peg protocol,
clue realizes provenance management with both high per-
formance and external auditability.

Taking the supply chain as an example, we can specify a
clue for a certain merchandise by its unique id. All relevant
phase traces (e.g., journals for packaging, transportation,
logistic, stack) are all linked by a same clue defined by the
application. Unlike in key-value models where each record
has only one key, we can specify multiple clues in AppendTx,
which allows a single journal to be correlated with different
application logic. For example:

AppendTx(lgid,data,‘g0’,{‘rock’,‘blues’,‘reggae’})

represents a certain music g0 with a mixed style of rock,
blues and reggae. A more sophisticated use case is provided
in § 7.3.

6.2 Clue Index
Clue-based operators include clue insertion, retrieval and

verification. As we target write-intensive scenarios, clue
write has to cope with high throughput. We design a write-
optimized index structure for clues as shown in Figure 8.
For each clue, all related journals are organized in a re-
versed clue Skip List (cSL). A cell (or node) in cSL records
its own jsn and points to its previous cell. All cells are ap-
pended to a linear-structured storage when they are created,
in which we can locate them using storage offsets directly.
Note that cells from a same cSL are unnecessary to be adja-
cent to each other. Hence, we use a fixed number of linear-
structured storage instances for clue indexes, where multiple
cSLs may share an instance. Since the cardinality of clue
is usually small, we keep the mapping between clueid and
corresponding cSL in memory. To support fast failover, cSL
is check-pointed to disk periodically.

Clue Index Write. For a clue insertion, its input is a
[clueid, jsn] pair. First, we locate corresponding cSL and
create a cell to record jsn (as well as linkages to other cells
when needed). The cell is then appended to the storage.
This entire process is ofO(1) complexity. Given its small size

3145

Memory

Stream Storage

cSL-X

ClueX

0 1 2 3 4 5 6

0 1 2 3 4 5 6

7 ClueY

...

cSL-Y

......

Figure 8: Structure of clue index.

(e.g., tens of bytes) and storage bandwidth (e.g., 100MBps),
the write throughout can easily reach one million per second.

Clue Index Read. A clue point retrieval reads the latest
jsn that shares a specified clue with a given jsn. Since all
jsns are linked in cSL, the lookup process is straightforward.
For a clue with n journals, both the computation and stor-
age costs are O(logn). A clue range retrieval reads a set of
jsns for a specified clue with a given jsn. First, we perform
a point retrieval is to locate the starting cell. For a range
size m, we iterate until m cells are obtained. Its total com-
plexity is O((logn) + m). A range retrieval can be further
accelerated by reading subsequent m− 1 cells concurrently.

6.3 Clue-Oriented Verification
Clue verification is a discrete batch verification process on

all related journals, which is different from sequential linked-
block transaction verification [32] and world-state verifica-
tion [21]. We apply a dedicated verification protocol for this
case. A clue-counter MPT (ccMPT) is proposed to trace
the current count (i.e., value) of a certain clue (i.e., key)
and anchor its root hash into the latest block header. Given
a ledger L whose bAMT is Λ and a specified clue σ: the
clue-count trusted anchor for σ is m (where m is 1 for most
cases, and will be the latest count before last purge other-
wise); L’s ccMPT is ∆. A function S (search) takes as input
the clue data σ, a tree identifier ∆, and outputs a journal
amount n. A function V (validate) takes as input a clue σ, a
tree roothash r∆ or rΛ, a tree identifier ∆ or Λ, and outputs
a boolean proof π. The clue verification process is defined
as follows:

1. n = S(σ,∆), which retrieves journal amount for clue σ;

2. πc = V(σ, r∆,∆), where n is verified from ∆ by its current
roothash r∆ from the latest block, and a proof of σ’s
count n is provided by πc;

3. Get σ relevant journals by clue index and ledger data
Jσ = {Jm+1, Jm+2, ..., Jn}

4. Validate each journal in Jσ to check if Ji∈(m,n] ∈ L by
πi = V(hi∈(m,n], rΛ,Λ)

5. π = πm+1∧πm+2∧ ...∧πn, where the whole clue verifica-
tion proof is calculated by π, and σ is only proved when
all πi∈(m,n] are proved.

Proof π is only true when the clue count n and all the
corresponding n journals are proved. Any unproved status
(such as incorrect count, broken journal) during the verifi-
cation process will lead to a false π.

7. LEDGERDB IN PRODUCTION
In real applications, CLD (e.g., LedgerDB) can be lever-

aged in three styles of user scenarios, and we refer them as
mono ledger, federated ledger, and delegated ledger. Mono

Ledger Service Provider (LSP)

LSP SIGN

P1 SIGN

PEER1 PEER2 PEER3 PEER4

P2 SIGN P3 SIGN P4 SIGN

NODE4NODE3

NODE2NODE1

PEER1 PEER2

PEER3 PEER4

(a) (b)

Batch
&

Interval

TSA Sig
&

Time

T-Ledger

Figure 9: Permissioned chain and federated ledger.

ledger is the simplest style, in which only one peer whose role
is administrator exists. An example is the private memo
ledger where everyone keeps his/her own private journals
without intersection with others. Federated and delegated
ledgers are more sophisticated, and we discuss them in § 7.1
and § 7.2 respectively. Some of our customer scenes like
supply chain and RegTech (regulatory technology) solutions
belong to federated ledger, while other scenes like federated
learning and bank auditing suit for delegated ledger.

7.1 Federated Ledger
Definition 1. Federated ledger has more than one partic-

ipants, who have the demand of mutual audit.

Recall that LedgerDB offers external auditability (§ 2),
which is not reliant on the trust to LSP. In contrast, permis-
sioned chain is lack of external auditability. Their mutually
distrusting participants account the ledger by a delegated
consensus, which just offers internal auditability within its
consortium. Figure 9 compares major differences between
federated ledger (Figure 9(a)) and permissioned blockchain
(Figure 9(b)) in terms of architecture. For many use cases
of permissioned blockchain, like lineage and notarization,
what they want is the stateless tamper-evidence with ex-
ternal auditability, where none of blockchain’s decentralized
architecture or distributed consensus really matters in these
contexts. We believe that such scenarios better fit for a
CLD system, on which each permissioned chain node is su-
perseded by a CLD’s federated peer, as shown in Figure 9(a).

Here we introduce a typical use case of federated ledger. A
certain bank (Bank-A) uses LedgerDB for national Grain-
Cotton-Oil (GCO) supply chain to provide tamper resis-
tance and mutual non-repudiation. As one of the national
policy banks with Central bank’s bonds, Bank-A will never
hold an equal blockchain node same as corporations under
its regulation. Hence, permissioned blockchain doesn’t work
here. Bank-A holds a centralized GCO ledger on LedgerDB.
All regulated corporations, such as oil manufacturers, cot-
ton retailers, suppliers and grain warehouses, are all certi-
fied as GCO ledger members who can append their IOUs,
manuscripts, invoice copies, receipts as journals on ledger.
To achieve external auditability, the batch of GCO ledger
digests are submitted to T-Ledger publicly, and then TSA
journals with credible timestamp and signature are recorded
back on GCO ledger. GCO ledger helps Bank-A manage all
its regulated agricultural transactions in a credible, trace-
able and transparent manner, which greatly benefits its pol-
icy loan, risk control, and macroscopic regulation.

7.2 Delegated Ledger
Definition 2. Delegated ledger only interacts with a cen-

tralized agent, who further manages other participants with
the demand of mutual audit.

Delegated ledger is more like an initiative meta-framework
rather than a deployment style. Most of real customer cases

3146

have their existing centralized system for their businesses,
and would like to further enhance their solution with rigor-
ous auditability. Delegated ledger leverages the centralized
system itself and TEE (Trusted Execution Environment) to
offer a low-intrusive solution. In particular, we propose a
separation of (four) powers, i.e., journal recording (client),
journal keeping (LSP), universal timing (TSA) and dele-
gated signing (TEE) on delegated ledger:

• Journal recording. Terminal public key holders (i.e.,
client or called peer) only communicate with the central-
ized system (CS). Peer’s public key is previously mapped,
deployed and stored in a TEE enclave by CS’s open logic.
The ledger is transparent to peers, who do not explicitly
make a signing action.
• Delegated signing. After CS generates journal from

peer and submits the delegated process to TEE, TEE then
signs the journal transaction using the corresponding se-
cret key as delegation, which is homologous to the public
key of the peer. The delegated signature is credible be-
cause of the endorsement of hardware vendor’s authority.
• Universal timing. To prevent the potential hazard that

LSP forges local timestamps (and conspires with users),
the two-way peg TSA journal is endorsed on ledger. This
ensures a judicial level auditability for trusted universal
timestamps.
• Journal keeping. Once a journal is flushed on ledger

upon user submission, it will be immutable afterwards.
LSP then responds its own signature together within the
transaction receipt. This finalizes LSP’s non-repudiation
as discussed in § 4.1.

LedgerDB’s use cases in Alibaba MPC (Secure Multi-
Party Computation) represent a typical paradigm of dele-
gated ledger. The multi-party mutual data exchange and
SQL manipulation are all tracked and stored on a single
ledger maintained by CS. It manages requests from all the
league members and sends delegated signature tasks to TEE.
In this case, both record tamper-proof and league’s mutual
non-repudiation are guaranteed.

7.3 Provenance in Action
Here we discuss how LedgerDB clue (native provenance)

is used in real applications. An example use case is from the
authorship and royalty copyrights ledger of National Copy-
rights Administration of China (NCAC) [34]. NCAC uses
LedgerDB to record authorship and royalty copyrights in-
formation for all cyber literatures and national papery pub-
lications from 400+ publishing houses.

Roya
lty:

 5(com2)

Artwork1 - Clue--> "gene1"
Artwork2 - Clue--> "gene2"

BLK1548648383
HDR

Journal Body

Clue Index

gene1+jsn1

gene1+jsn2

gene1+jsn6

gene2+jsn3

gene2+jsn4

gene2+jsn5

...

...
BLK1516698093

HDR

Journal Body

BLK1516698046
HDR

Journal Body
...... ...

jsn1(Authorship)

jsn2

Royalty: 3(com1)

jsn6

Royalty: 0jsn3(Authorship)

jsn4

jsn5 Royalty: 4(com2)

...

Figure 10: Copyrights ledger with clue.

Figure 10 illustrates the clue on NCAC copyrights ledger
for two pieces of artwork. Artwork1’s unique clue is gene1,
and artwork2’s unique clue is gene2. The first journal for a
certain artwork is always an authorship right’s claim. Here
we can see that both artwork1 and artwork2’s first relevant

journals are the authorship journals. For artwork1, roy-
alty have a reassignment at blk1516698093 with 30% per-
centage royalty (arrows illustrate this trade detail) sold to
com1 (recorded in jsn2). The jsn6 is an invalidation jour-
nal , from which the entire royalty returns to the author
again. Artwork2 follows a similar logic. Via ListTx, taking
clueid gene1 as input, corresponding journals (artwork1’s
jsn1, jsn2, jsn6) are then fetched as clue provenance details.

8. EVALUATION
We deploy LedgerDB on Alibaba Cloud and evaluate its

performance under different workload configurations (e.g.,
payload size, job number, access pattern). In particular,
we compare bAMT with Libra’s transaction accumulator,
and compare cSL with RocksDB for different clue opera-
tions. An application-level evaluation is provided that com-
pares with a state-of-the-art permissioned blockchain, i.e.,
Hyperledger Fabric. All experiments were conducted in a
2-node cluster, where each node runs CentOS 7.2.1511 and
is equipped with Intel(R) Xeon(R) Platinum 2.5GHz CPU,
32GB RAM, and 1TB ESSD storage (with throughput at
632MBps and 53K IOPS) from a public storage service on
Alibaba Cloud. All nodes are connected via 25Gb Ethernet.

8.1 Transaction Throughput
We first evaluate the overall transaction throughput of

LedgerDB. Four typical different access patterns are used,
which are derived from common business scenarios: append-
only writes, sequential reads, random reads, and random
reads on recent data. In real applications, the size of jour-
nal payload is usually limited: small items (e.g., operation
log, audit trail) or digests of large items (e.g., audio and
video notarization). Hence, we evaluate with KB-level jour-
nal sizes. We vary the number of client jobs up to 128 to
demonstrate the end-to-end throughput and the trends. Fig-
ure 11(a) shows the throughput for append-only writes. For
1KB-length journal writes, a single client can reach 6K tps.
As the job number increases, the throughput rises almost
linearly until the number reaches 64. After that, the server
is saturated and the throughput converges to 280K tps. We
can observe that the throughputs for writing 128B and 1KB
journals do not differ much. It is because the network and
disk cost (which is proportional to the journal size) is not
the bottleneck, while the CPU cost (which varies little for
different journal sizes) dominates. However, for 4KB jour-
nals, the throughput is dominated by the disk bandwidth
and can only reach 153K tps as shown in Figure 11(a).

Figure 11(b) shows the throughput for sequential reads.
Its throughput is higher than append-only writes (with the
same payload) as shown in Figure 11(b). Due to smaller
process overhead, read throughput (for 1KB journals) can
exceed 300K tps. For 4KB and 16KB journals, the through-
put is also limited by the disk bandwidth as in append-only
writes, which can only reach 155K and 40K tps. We observe
that the sequential read throughput is not significantly bet-
ter compared to the write throughput in Figure 11(a), which
is because writes in L-Stream are extremely lightweight that
avoid data compaction.

Figure 11(c) shows the throughput for random reads. Be-
cause of low hit ratio in buffer pool, random reads dramat-
ically increase I/O cost. The overall performance is limited
by disk random-read capability, and can only reach 54K tps.
Random reads on recent data is also a typical user workload.

3147

16 64 128

100

200

300

Jobs Number

T
h
ro

u
g
h
p
u
t
(K

tp
s)

(a) Write

128B 1K

4K 16K

16 64 128

100

200

300

Jobs Number

T
h
ro

u
g
h
p
u
t
(K

tp
s)

(b) Sequential Read

128B 1K

4K 16K

16 64 128
0

20

40

60

Jobs Number

T
h
ro

u
g
h
p
u
t
(K

tp
s)

(c) Random Read

128B 1K

4K 16K

16 64 128
0

50

100

150

Jobs Number

T
h
ro

u
g
h
p
u
t
(K

tp
s)

(d) Latest Random Read

128B 1K

4K 16K

16 64 128
0

1000

2000

3000

Jobs Number

L
a
te
n
c
y
(u

s)

(e) Write

128B 1K

4K 16K

16 64 128
0

1000

2000

3000

Jobs Number

L
a
te
n
c
y
(u

s)

(f) Random Read

128B 1K

4K 16K

Figure 11: End-to-end throughput and average la-
tency with different request sizes under different ac-
cess patterns in LedgerDB.

Due to the relatively small amount of accessed transactions,
the hit ratio in buffer pool is much higher. Hence, its per-
formance is better than random reads and can reach 100K
tps as shown in Figure 11(d). The smaller the transaction
data, the higher the hit ratio in buffer pool can be.

Figure 11(e) shows the overall end-to-end write latency.
The latency of transactions is similar to the throughput,
which is affected by the degree of concurrency and transac-
tion data size. As can be seen, the latency is less than 1ms
for any payload size under 4KB. Figure 11(f) measures the
latency for random read, which is 2ms to 3ms for transaction
size between 128B and 4KB.

8.2 Performance of Clue
Clue is our subtle design to support native provenance in

LedgerDB. We evaluate the performance of cSL using the
same experimental environment as above. The performance
of clue-related operations mainly depends on the total num-
bers of journals. Hence, we evaluate it with journal num-
ber varying from 104 to 109, as shown in Figure 12(a, b).
Three typical operation types are used: clue write, point
retrieval, and range retrieval. Due to the cSL structure, the
time complexity of each write is stable (regardless of its cSL
size). We can observe that the write throughput is almost
flat at about 1.5M ops. This high performance of clue in-
dex insertion makes the bottleneck of clue writing reside on
ledger recording process itself. For point retrieval, due to the
cost of cSL lookup, the time complexity is directly related
to the size of cSL. As cSL size grows, both read throughput
and latency degrade logarithmically. When journal num-
ber increases from 104 to 109, cSL throughput decreases
from around 180K to 75K ops and all latencies are within
1ms. The main bottleneck is disk read bandwidth for ran-
dom read. Though range retrieval is also related to cSL
size, it is more sensitive to the size of the reading range, as
each journal in the range needs to be fetched from storage.
A range retrieval of 100 journals reaches around 1500 ops
with 100ms latency.

We also evaluate the performance for using RocksDB as
the clue index. To obtain the best performance of RocksDB,
we turn off its WAL, non-sync write and multi-thread read-

104 106 108
103

104

105

106

Journal Volume

T
h
ro

u
g
h
p
u
t
(o

p
s)

(a) cSL Throughput

Write

Point Read

Range Read

104 106 108
100
101
102
103
104
105

Journal Volume

L
a
te
n
c
y
(u

s)

(b) cSL Latency

Write

Point Read

Range Read

Write Point Range

103

104

105

106

T
h
ro

u
g
h
p
u
t
(o

p
s)

(c) Throughput comparison

cSL

RocksDB

Write Point Range100
101
102
103
104
105
106

L
a
te
n
c
y
(u

s)

(d) Latency comparison

cSL

RocksDB

Figure 12: Comparison of performance between cSL
and RocksDB clue index in different access modes
(fixed journal volume of 108).

/write. Compared to RocksDB, cSL gets up to 1/50 write
latency and 10× write throughput, as well as 2.5× point
read throughput, as shown in Figure 12(c, d). For index
writes, cSL only needs to append the new cell at its tail with
O(1) cost. In contrast, RocksDB has to search and insert
a new cell in memtable with O(logn) complexity. In addi-
tion, cSL also eliminates costly compaction process that re-
sults in significant write amplification in RocksDB. For point
reads, cSL only needs a binary search on one skip list, while
RocksDB needs to search among multiple SST files. For
range reads, RocksDB’s throughput is more than 10K ops
and up to 14× of cSL. It is because that the range retrieval
of related journals requires random I/O in cSL, but sequen-
tial I/O in RocksDB. In summary, cSL is a write-optimized
structure as expected, and friendly to random reads.

8.3 Performance of bAMT
Recall that the time complexity of bAMT is discussed in

§ 5.1. We use SHA256 hash as a primitive in this evalua-
tion. Figure 13(a) shows the throughput of a fixed 40-height
bAMT with different sizes. As can be seen, the throughput
peak appears when the batch size reaches 1000. After that,
the throughput converges due to the cost of frequent hash
calculation. In our test environment, SHA256 has around
1000K ops. Figure 13(b) shows the throughput comparison
between Merkle accumulator in Libra and bAMT with two
sizes, i.e., 16 and 128. The throughput of bAMT-16 is 10×
of that in Libra on average, because of its batch aggregation
of root calculation. From a closer look, it is 7× for 10-height
trees, and 12× for 60-height trees. bAMT-128 gets an aver-
age 20× of that in Libra (and 36× for 60-height trees).

The choice of bAMT size is a trade-off between perfor-
mance and proof granularity. Large-sized bAMT gains a
high insertion throughput with coarse-grained proofs for the
journals. In contrast, small-sized bAMT sustains lower per-
formance, but supports fine-grained proofs. LedgerDB pro-
vides the interface of bAMT size configuration for users to
tune for their specific scenarios. Users can specify their in-
terval parameter to enforce the proof finalization, which en-
ables their own trade-off.

3148

16 32 64 128 256 512 1024 4096
400

600

800

1,000

1,200

Batch Size

T
h
ro
u
gh

p
u
t
(K

tp
s)

(a) bAMT root calculation

10 20 40 60

200

400

600

800

1,000

1,200

Merkle tree Depth

T
h
ro
u
gh

p
u
t
(K

tp
s)

(b) bAMT vs. Libra

Libra

bAMT-16

bAMT-128

Figure 13: bAMT performance evaluation and com-
parison with Libra Merkle tree accumulator.

Write-128B Write-4K Read-128B Read-4K
103

104

105

T
h
ro
u
gh

p
u
t
(t
p
s)

(a) Throughput comparison

Hyperledger

LedgerDB

Write-128B Write-4K Read-128B Read-4K
102

103

104

105

106

L
at
en
cy

(u
s)

(b) Latency comparison

Hyperledger

LedgerDB

Figure 14: Sytem performance comparison between
LedgerDB and Hyperledger Fabric in the same no-
tarization application.

8.4 Application Evaluation
Data notarization is a typical application for both ledger

database and blockchain. We hence compare the perfor-
mance in this application between LedgerDB and Hyper-
ledger Fabric. Data notarization system stores various kinds
of evidentiary records (proofs), and each piece of record is
identified by an id. A new record is inserted via a put op-
eration (AppendTx in LedgerDB), and can be later retrieved
using its id. In LedgerDB, we implement this with clues. In
Fabric, we conduct it within a smart contract using PutState
and GetState.

Hyperledger Fabric is deployed on the same experimental
environments as mentioned. A single-channel ordering ser-
vice runs a typical Kafka orderer setup: 3 ZooKeeper nodes,
4 Kafka brokers, 5 peers as endorsers and 3 Fabric order-
ers (all on distinct VMs). We randomly generate a large
amount of evidences (more than 20 million), and implement
two benchmark tools PutBench and GetBench for both sys-
tems to evaluate their write and read throughput. The ex-
perimental results are shown in Figure 14. Fabric gets 2700
write tps and 2900 read tps on average, with 365ms write
latency and 490ms read latency. LedgerDB reaches around
83×, 17× for write and read throughput compared to Fabric,
with 1/600, 1/200 write and read latency respectively. In
summary, LedgerDB significantly outperforms permissioned
blockchains in all aspects due to its centralized architecture
and various optimizations.

9. RELATED WORK
In database community, there are a wide range of related

functionalities such as temporal table [24, 39, 3, 9], audit ta-
ble [1, 2, 45], time series database [41, 33, 19, 44], and tense
database [38]. Both temporal and audit table have a cer-
tain level of auditability. However, they are lack of integrity

guarantee and non-repudiation, where malicious operations
can be done easily. Oracle introduces the blockchain table in
DBMSes to prevent such user and administrator fraud be-
haviors in a trust-but-verify way [35], but it still lacks exter-
nal auditability and verifiable lineage. Time series database
optimizes temporal data manipulation but lacks data au-
ditability. Tense database claims the importance of univer-
sal time with the consideration of history slots, transitional
and current states [15]. Its intrinsic design is still the usage
of temporal tables.

Among those products and researches that blur blockchain
and database boundaries [42, 46, 20], QLDB [7, 13] aims
for immutable and verifiable ledger applications, who brings
DLT back to a centralized architecture. However, it has
own limitations: the LSP can tamper data in the backend;
and the ledger user can also collude with LSP to forge new
ledgers to deceive a third-party. That is to say, it lacks au-
ditability in practice. In addition, its ledger-level verification
without trusted anchors and purging functionality also in-
herits blockchain’s heavy CPU and storage costs. Last but
not least, its built-in transaction support complicates the
system and limits its throughput. Similar CLT idea also ap-
pears in ProvenDB [40], which is compatible with MongoDB
and keeps database changes by maintaining logical versions
whose proofs are tangled with public blockchain evidence.
Libra [16, 5] uses transaction-granularity ethics whose world
states is at the transaction level, i.e., each transaction has
its own path to the digest of Merkle root. BigchainDB [26]
and OrbitDB [36] have certain levels of database capacities,
but still belong to the DLT category.

10. CONCLUSION
In this paper, we introduce LedgerDB, a centralized ledger

database that supports universal audit and verification for
applications from mutually distrusting parties. It provides
strong auditability with the help of TSA time notary anchors
generated by a two-way peg protocol. LedgerDB offers ex-
cellent system performance, including high write throughput
optimized by a bAMT model, and high verification efficiency
optimized by trusted anchors. It supports verifiable data
removals, i.e., purge and occult, to meet real-world require-
ments, which break immutability in blockchains but still pre-
serve data verifiability. In addition, native provenance prim-
itives are provided to ease the application development. The
experimental results demonstrate that LedgerDB achieves
superior throughput (i.e., 300K TPS), which is more than
80× higher than that in the state-of-the-art permissioned
blockchain (i.e., Hyperledger Fabric). LedgerDB has been
widely used in real customer businesses on Alibaba Cloud,
such as copyrights (with clue) and supply chain (with fed-
erated ledger), and it becomes a fascinating alternative to
permissioned blockchains.

11. ACKNOWLEDGMENTS
We thank reviewers for their insightful feedback. We ap-

preciate Haizhen Zhuo, Zhonghao Lu and Shikun Tian for
their development on LedgerDB storage kernel, and Tianyi
Ma, Zhenhua Dong, Zhihui Zhu and Kan Chen for their de-
velopment on Alibaba LaaS platform. We also express our
gratitude to Yayang Guan and Zhengsheng Ye who offered
significant help during LedgerDB’s productization process
on Alibaba Cloud.

3149

12. REFERENCES
[1] R. Agrawal, R. Bayardo, C. Faloutsos, J. Kiernan,

R. Rantzau, and R. Srikant. Auditing compliance with
a hippocratic database. In Proceedings of the Thirtieth
international conference on Very large data
bases-Volume 30, pages 516–527. VLDB Endowment,
2004.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu.
Hippocratic databases. In VLDB’02: Proceedings of
the 28th International Conference on Very Large
Databases, pages 143–154. Elsevier, 2002.

[3] M. Al-Kateb, A. Ghazal, A. Crolotte, R. Bhashyam,
J. Chimanchode, and S. P. Pakala. Temporal query
processing in teradata. In Proceedings of the 16th
International Conference on Extending Database
Technology, pages 573–578. ACM, 2013.

[4] Alibaba. Alibaba cloud baas(blockchain as a service).
https://www.aliyun.com/product/baas, 2018.

[5] Z. Amsden et al. The libra blockchain. White Paper,
From the Libra Association members, 2019.

[6] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin,
K. Christidis, A. De Caro, D. Enyeart, C. Ferris,
G. Laventman, Y. Manevich, et al. Hyperledger fabric:
a distributed operating system for permissioned
blockchains. In Proceedings of the Thirteenth EuroSys
Conference, page 30. ACM, 2018.

[7] AWS. Amazon quantum ledger database (qldb).
https://aws.amazon.com/qldb, 2018.

[8] M. Azure. Microsoft azure blockchain service. https:
//azure.microsoft.com/services/blockchain-service,
2018.

[9] M. H. Böhlen. Temporal database system
implementations. ACM Sigmod Record, 24(4):53–60,
1995.

[10] T. Bouchard and G. Benson. Electronically verified
digital signature and document delivery system and
method, July 25 2006. US Patent 7,082,538.

[11] R. G. Brown, J. Carlyle, I. Grigg, and M. Hearn.
Corda: an introduction. R3 CEV, August, 1:15, 2016.

[12] V. Buterin et al. A next-generation smart contract
and decentralized application platform. white paper,
3:37, 2014.

[13] A. C. C. D. Kadt. Introduction to amazon quantum
ledger database (qldb).
https://www.youtube.com/watch?v=7G9epn3BfqE,
2018.

[14] M. Castro, B. Liskov, et al. Practical byzantine fault
tolerance. In OSDI, volume 99, pages 173–186, 1999.

[15] T. Cloud. A survey for historical data computing and
management of aws qldb and tencent tdsql.
https://cloud.tencent.com/developer/article/1374068,
2018.

[16] L. Consortium. An introduction to libra. White Paper,
From the Libra Association members, 2019.

[17] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi,
and J. Wang. Untangling blockchain: A data
processing view of blockchain systems. IEEE
Transactions on Knowledge and Data Engineering,
30(7):1366–1385, 2018.

[18] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi,
and K.-L. Tan. Blockbench: A framework for

analyzing private blockchains. In Proceedings of the
2017 ACM International Conference on Management
of Data, pages 1085–1100. ACM, 2017.

[19] T. Dunning and E. Friedman. Time series databases
new ways to store and access data, volume 1st edit.
Oreilly and Associates, 2014.

[20] M. El-Hindi, M. Heyden, C. Binnig, R. Ramamurthy,
A. Arasu, and D. Kossmann. Blockchaindb-towards a
shared database on blockchains. In Proceedings of the
2019 International Conference on Management of
Data, pages 1905–1908. ACM, 2019.

[21] Ethereum. https://www.ethereum.org, 2014.

[22] Everledger. https://www.everledger.io/, 2018.

[23] Gartner. Amazon qldb challenges permissioned
blockchains.
https://www.gartner.com/en/documents/3898488/
amazon-qldb-challenges-permissioned-blockchains,
2019.

[24] K. Kulkarni and J.-E. Michels. Temporal features in
sql: 2011. ACM Sigmod Record, 41(3):34–43, 2012.

[25] S. Matthew. Merkle patricia trie specification.
Ethereum, October, 2017.

[26] T. McConaghy, R. Marques, A. Müller, D. De Jonghe,
T. McConaghy, G. McMullen, R. Henderson,
S. Bellemare, and A. Granzotto. Bigchaindb: a
scalable blockchain database. white paper,
BigChainDB, 2016.

[27] R. C. Merkle. Protocols for public key cryptosystems.
In 1980 IEEE Symposium on Security and Privacy,
pages 122–122. IEEE, 1980.

[28] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song.
The honey badger of bft protocols. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 31–42, 2016.

[29] C. Mohan. Tutorial: blockchains and databases.
PVLDB, 10(12):2000–2001, 2017.

[30] C. Mohan. State of public and private blockchains:
Myths and reality. In Proceedings of the 2019
International Conference on Management of Data,
pages 404–411. ACM, 2019.

[31] J. Morgan. Quorum whitepaper. New York: JP
Morgan Chase, 2016.

[32] S. Nakamoto et al. Bitcoin: A peer-to-peer electronic
cash system. 2008.

[33] S. N. Z. Naqvi, S. Yfantidou, and E. Zimányi. Time
series databases and influxdb. Studienarbeit,
Université Libre de Bruxelles, 2017.

[34] NCAC. National copyrights administration of the
people’s republic of china. http://en.ncac.gov.cn, 2020.

[35] Oracle. Oracle blockchain table.
https://blogs.oracle.com/blockchain/, 2019.

[36] OrbitDB. Orbit db. https://orbitdb.org, 2018.

[37] M. C. Osborne, J. W. Sweeny, and T. Visegrady.
Timestamp systems and methods, Dec. 29 2015. US
Patent 9,225,746.

[38] A. Pan, X. Wang, and H. Li. Conceptual modeling on
tencent’s distributed database systems. In
International Conference on Conceptual Modeling,
pages 12–24. Springer, 2018.

[39] D. Petkovic. Temporal data in relational database
systems: a comparison. In New Advances in

3150

Information Systems and Technologies, pages 13–23.
Springer, 2016.

[40] ProvenDB. Provendb: A blockchain enabled database
service. https://provendb.com/litepaper/, 2019.

[41] S. Rhea, E. Wang, E. Wong, E. Atkins, and N. Storer.
Littletable: A time-series database and its uses. In
Proceedings of the 2017 ACM International
Conference on Management of Data, pages 125–138.
ACM, 2017.

[42] A. Sharma, F. M. Schuhknecht, D. Agrawal, and
J. Dittrich. Blurring the lines between blockchains and
database systems: the case of hyperledger fabric. In
Proceedings of the 2019 International Conference on
Management of Data, pages 105–122. ACM, 2019.

[43] P. Snow, B. Deery, J. Lu, D. Johnston, and P. Kirby.

Factom: Business processes secured by immutable
audit trails on the blockchain. Whitepaper, Factom,
November, 2014.

[44] Timescale. Timescale db.
https://docs.timescale.com/latest/main, 2018.

[45] N. Waraporn. Database auditing design on historical
data. In Proceedings of the Second International
Symposium on Networking and Network Security
(ISNNS’10). Jinggangshan, China, pages 275–281,
2010.

[46] C. Xu, C. Zhang, and J. Xu. vchain: Enabling
verifiable boolean range queries over blockchain
databases. In Proceedings of the 2019 International
Conference on Management of Data, pages 141–158.
ACM, 2019.

3151

