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ABSTRACT
Machine learning over graphs has been emerging as powerful
learning tools for graph data. However, it is challenging for
industrial communities to leverage the techniques, such as
graph neural networks (GNNs), and solve real-world prob-
lems at scale because of inherent data dependency in the
graphs. As such, we cannot simply train a GNN with clas-
sic learning systems, for instance, parameter server that as-
sumes data parallelism. Existing systems store the graph
data in-memory for fast accesses either in a single machine
or graph stores from remote. The major drawbacks are
three-fold. First, they cannot scale because of the limi-
tations on the volume of the memories, or the bandwidth
between graph stores and workers. Second, they require
extra development of graph stores without well exploiting
mature infrastructures such as MapReduce that guarantee
good system properties. Third, they focus on training but
ignore optimizing the performance of inference over graphs,
thus makes them an unintegrated system.

In this paper, we design AGL, a scalable and integrated
system, with fully-functional training and inference for
GNNs. Our system design follows the message passing
scheme underlying the computations of GNNs. We design to
generate the K-hop neighborhood, an information-complete
subgraph for each node, as well as do the inference simply by
merging values from in-edge neighbors and propagating val-
ues to out-edge neighbors via MapReduce. In addition, the
K-hop neighborhood contains information-complete sub-
graphs for each node, thus we simply do the training on
parameter servers due to data independence. Our system
AGL, implemented on mature infrastructures, can finish the
training of a 2-layer GNN on a graph with billions of nodes
and hundred billions of edges in 14 hours, and complete the
inference in 1.2 hours.
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1. INTRODUCTION
In recent years, both the industrial and academic commu-

nities have paid much more attention to machine learning
over graph structure data. The Graph Machine Learning
(abbreviated as GML) not only claims successes in tradi-
tional graph mining tasks (e.g., node classifications [11, 19,
8, 13], link property predictions [26] and graph property
predictions [2, 23]), but also brings great improvement to
the tasks of other domains (e.g., knowledge graph [7, 21],
NLP [28], Computer Vision [6, 16], etc.). Besides, more and
more Internet companies have applied the GML technique in
solving various industrial problems and achieved great suc-
cesses (e.g., recommendation [27, 25], marketing [15], fraud
detection [14, 9], loan default prediction [22], etc.).

To use graph machine learning techniques to solve real-
world problems by leveraging industrial-scale graphs, we are
required to build a learning system with scalability, fault tol-
erance, and integrality of the fully-functional training/infer-
ence workload. However, the computation graph of graph
machine learning tasks are fundamentally different from tra-
ditional learning tasks because of data dependency. That
is, the computation graph of each sample is independent
of other samples in existing classic parameter server frame-
works [29] assuming data parallelism, while the computation
graph of each node in graph learning tasks is dependent on
the K-hop neighbors of that node. The data dependency
in graph learning tasks makes that we can no longer store
the samples in disks and access them through pipelines [29].
Instead, we have to store the graph data in-memory for fast
data accesses. This makes us fail to simply build a learning
and inference system for graph learning tasks based on exist-
ing parameter server architectures that simply maintain the
model consistency in parameter servers and do the workload
in each worker parallelly.

However, the real industrial graph data could be huge.
The social graph in Facebook1 includes over two billion
nodes and over a trillion edges [12, 3]. The heterogenous
financial graph in Ant Financial2 contains billions of nodes

1https://en.wikipedia.org/wiki/Facebook,_Inc.
2https://en.wikipedia.org/wiki/Alipay
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and hundreds of billion edges with rich attribute informa-
tion, as well as the e-commerce graph in Alibaba3. The
graph data at this scale may result into 100 TB of data
by counting features associated with those nodes and edges.
Those data are infeasible to be stored in a single machine
like DGL. Furthermore, the communications between the
graph storage engine storing the graphs and features asso-
ciated with nodes and edges, and workers could be huge.
This requires a well-structured network with high enough
bandwidth.

To summarize, firstly, existing industrial designs of learn-
ing systems require the in-memory storage of graph data
either in a single monster machine that could not handle
real industrial-scale graph data, or in a customized graph
store that could lead to a huge amount of communications
between graph stores and workers. This makes them not
scale to larger graph data. Second, they do not well exploit
the classic infrastructures, such as MapReduce or parame-
ter servers, for fault tolerance purposes. In real production
environment, there could be thousands of graph learning
tasks running everyday, and the fault tolerence and failure
recovery of graph services are critical. Third, most of exist-
ing frameworks pay more attentions to the training of graph
learning models, but ignore the system integrality, for ex-
ample, optimizing the performance of inference tasks when
deploying graph machine learning models.

Take all those concerns into considerations, we build AGL
(Ant Graph machine Learning system), an integrated sys-
tem for industrial-purpose graph learning. The key insight
of our system design is based on the message passing (merg-
ing and propagation) scheme underlying the computation
graph of graph neural networks.

In the phase of training graph neural networks, we propose
to construct K-hop neighborhood that provides information-
complete subgraphs for computing each node’s K-hop em-
beddings based on message passing by merging neighbors
from in-edges and propagating merged information to neigh-
bors along out-edges. The benefit of decomposing the orig-
inal graph into tiny pieces of subgraphs, i.e. K-hop neigh-
borhood, is that the computation graph of each node is in-
dependent of other nodes again. That means we can still
enjoy the properties of fault tolerance, flexible model con-
sistency from classic parameter server frameworks without
extra efforts on maintaining the graph stores [24].

In the inference phase of graph neural networks, we pro-
pose to split a well trained k-layer graph neural networks
into k slices plus one slice related to the prediction model.
We do message passing by first merging the k-th layer em-
bedding from each node’s in-edge neighbors, then propagat-
ing embeddings to their out-edge neighbors, with k starts
from 1-st slice to k-th slice.
We abstract all the message passing schemes in training

and inference, and implement them simply using MapRe-
duce [4]. Since both MapReduce and parameter servers have
been developed as infrastructures commonly in industrial
companies, our system for graph machine learning tasks can
still benefit the properties like fault tolerance and scalibility
even with commodity machines which are cheap and widely
used. Moreover, compared with the inference based on ar-
chitectures like DGL and AliGraph, the implementation of
our inference maximally utilizes each nodes’ embeddings, so

3https://en.wikipedia.org/wiki/Alibaba_Group

as to significantly boost inference jobs. Besides, we propose
several techniques to accelerate the floating point calcula-
tions in training procedures from model level to operator
level. As a result, we successfully accelerate the training of
GNNs in a single machine compared with DGL/PyG, and
achieve a near-linear speedup with a CPU cluster in real
product scenarios.

It’s worth noting that, when working on a graph with
6.23× 109 nodes and 3.38× 1011 edges, AGL can finish the
training of a 2-layer GAT model with 1.2×108 target nodes
in 14 hours (7 epochs until convergence, 100 workers), and
completes the inference on the whole graph in only 1.2 hours.
To our best knowledge, this is the largest-ever application
of graph embeddings and proves the high scalability and
efficiency of our system in real industrial scenarios.

2. RELATED WORKS
In this section, we discuss related works that aim to design

graph learning systems.
Early efforts have been made to make full use of computa-

tion resources (CPU, GPU, Memory, and so on) on a single
machine to efficiently train a GNN model. Based on mes-
sage passing, Deep Graph Library (DGL) [20] and PyTorch
Geometric (PyG) [5] are designed to utilize both CPUs and
GPUs. However, they can hardly scale to industrial-scale
graphs, since those graphs are usually attributed with rich
features and can not fit in a single machine. Inspired by
GraphSage[8], PinSage[25] perform localized convolutions
by sampling the neighborhood around a node, and design a
MapReduce pipeline to efficiently run inference tasks. How-
ever, it has the same scalability limitations with DGL and
PyG, since PinSage is also deployed on a single machine.

Recently, there’s a trend to design GML systems in the
distributed manner. Facebook presents PyTorch-BigGraph
(PBG) [12], a large-scale network embedding system, which
aims to produce unsupervised node embedding from multi-
relation data. However, PBG is not suitable for plenty of
real-world scenarios, in which graphs have rich attributes
over nodes and edges (called attributed graph). AliGraph[24]
implements distributed in-memory graph storage engine,
and in training phase, workers will query subgraphs related
to a batch of nodes, and do the training workloads. How-
ever, the network bandwidth could be a bottleneck when
huge among of subgraphs are requested by lots of workers
in parallel. Moreover, in industrial scenarios, there could
have many graph learning tasks running everyday. It could
be expensive to store so many graph data in memory. As
a result, it is still challenging to build an an efficient and
scalable GML system for industrial GML purposes.

3. PRELIMINARIES
In this section, we introduce some notations, and highlight

the fundamental computation paradigm, i.e. message pass-
ing, in graph neural networks (GNN). Finally, we introduce
the concept of K-hop neighborhood to help realize the data
independency in graph learning tasks. Both of the abstrac-
tion of message passing scheme and K-hop neighborhood
play an important role in the design of our system.

3.1 Notations
A directed and weighted attributed graph can be defined as

G = {V, E ,A,X,E}, where V and E ∈ V×V are the node set
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and edge set of G, respectively. A ∈ R
|V|×|V| is the sparse

weighted adjacent matrix such that its element Av,u > 0
represents the weight of a directed edge from node u to node
v (i.e., (v, u) ∈ E), and Av,u = 0 represents there is no edge

(i.e., (v, u) /∈ E). X ∈ R
|V|×fn

is a matrix consisting of all

nodes’ fn-dimensional feature vectors, and E ∈ R
|V|×|V|×fe

is a sparse tensor consisting of all edges’ fe-dimensional fea-
ture vectors. Specifically, xv denotes the feature vector of
v, ev,u denotes the feature vector of edge (v, u) if (v, u) ∈ E ,
otherwise ev,u = 0. In our setting, an undirected graph
is treated as a special directed graph, in which each undi-
rected edge (v, u) is decomposed as two directed edges with
the same edge feature, i.e., (v, u) and (u, v). Moreover, we
use N+

v to denote the set of nodes directly pointing at v,
i.e., N+

v = {u : Av,u > 0}, N−
v to denote the set of nodes

directly pointed by v, i.e., N−
v = {u : Au,v > 0}, and

Nv = N+
v ∪ N−

v . In other words, N+
v denotes the set of in-

edge neighbors of v, while N−
v denotes the set of out-edge

neighbors of v. We call the edges pointing at a certain node
as its in-edges, while the edges pointed by this node as its
out-edges.

3.2 Graph Neural Networks
Most GML models aim to encode a graph structure (e.g.,

node, edge, subgraph or the entire graph) as a low dimen-
sional embedding, which is used as the input of the down-
stream machine learning tasks, in an end-to-end or decou-
pled manner. The proposed AGL mainly focuses on GNNs,
which is a category of GML models widely-used. Each layer
of GNNs generates the intermediate embedding by aggre-
gating the information of target node’s in-edge neighbors.
After stacking several GNN layers, we obtain the final em-
bedding, which integrate the entire receptive field of the
targeted node. Specifically, we abstract the computation
paradigm of the kth GNN layer as follows:

h(k+1)
v = φ(k)({h(k)

i }
i∈{v}∪N+

v
, {ev,u}Av,u>0;W

(k)
φ ), (1)

where h
(k)
v denotes node v’s intermediate embedding in the

kth layer and h
(0)
v = xv. The function φ(k) parameterized by

W
(k)
φ , takes the embeddings of v and its in-edge neighbors

N+
v , as well as the edge features associated with v’s in-edges

as inputs, and outputs the embedding for the next GNN
layer.

The above computations of GNNs can be formulated in
the message passing paradigm. That is, we collect keys (i.e.,
node ids) and their values (i.e., embeddings). We first merge
all the values from each node’s in-edge neighbors to have the
new values for the nodes. After that, we propagate the new
values to destination nodes via out-edges. After K times
of such merging and propagation, we complete the compu-
tation of GNNs. We will discuss in the following sections
that such a paradigm will be generalized to the training and
inference of GNNs.

3.3 K-hop Neighborhood

Definition 1. K-hop neighborhood. The K-hop neigh-
borhood w.r.t. a targeted node v, denoted as GK

v , is defined
as the induced attributed subgraph of G whose node set is
VK
v = {v} ∪ {u : d(v, u) ≤ K}, where d(v, u) denotes the

length of the shortest path from u to v. Its edge set consists
of the edges in E that have both endpoints in its node set,

i.e. EK
v = {(u, u′) : (u, u′) ∈ E ∧ u ∈ VK

v ∧ u′ ∈ VK
v }. More-

over, it contains the feature vectors of the nodes and edges
in the K-hop neighborhood, XK

v and EK
v . Without loss of

generality, we define the 0-hop neighborhood w.r.t. v as the
node v itself.

The following theorem shows the connection between the
computation of GNNs and the K-hop neighborhood.

Theorem 1. Let GK
v be the K-hop neighborhood w.r.t. the

target node v, then GK
v contains the sufficient and neces-

sary information for aK layers GNN model, which follows
the paradigm of Equation 1, to generate the embedding of
node v.

First, the 0th layer embedding is directly assigned by the

raw feature, i.e., h
(0)
v = xv, which is also the 0-hop neigh-

borhood. And then, from Equation 1, it’s easy to find that
the output embedding of v in each subsequent layer is gen-
erated only based on the embedding of the 1-hop in-edge
neighbors w.r.t. v from the previous layer. Therefore, by
applying mathematical induction, it’s easy to prove Theo-
rem 1. Moreover, we can extend the theorem to a batch of
nodes. That is, the intersection of the K-hop neighborhoods
w.r.t. a batch of nodes provides the sufficient and necessary
information for a K layers GNN model to generate all the
node embeddings in the batch. This simple theorem implies
that in a K layers GNN model the target node’s embedding
at the Kth layer only depends on its K-hop neighborhood,
rather than the entire graph.

4. SYSTEM
In this section, we first give an overview of our AGL

system. Then, we elaborate on three core modules, i.e.,
GraphFlat, GraphTrainer, and GraphInfer. At last, we give
a demo example on how to implement a simple GCN[11]
model with the proposed AGL system.

4.1 System Overview
Our major motivation for building AGL is that the indus-

trial communities desiderate an integrated system of fully-
functional training/inference over graph data, with scalabil-
ity, and in the meanwhile has the properties of fault tolerance
based on mature industrial infrastructures like MapReduce,
parameter servers, etc. That is, instead of requiring a sin-
gle monster machine or customized graph stores with huge
memory and high bandwidth networks, which could be ex-
pensive for Internet companies to upgrade their infrastruc-
tures, we sought to give a solution based on mature and
classic infrastructures, which is ease-to-deploy while enjoy-
ing various properties like fault tolerance and so on. Second,
we need the solution based on mature infrastructures scale
to industrial-scale graph data. Third, besides the optimiza-
tion of training, we aim to boost the inference tasks over
graphs because labeled data are very limited (say ten mil-
lion) in practice compared with unlabeled data, typically
billions of nodes, to be inferred.

The principle of designing AGL is based on the message
passing scheme underlying the computations of GNNs. That
is, we first merge all the information from each node’s in-
edge neighbors, and then propagate the merged information
to the destination nodes via out-edges. We repeatedly apply
such a principle to the training and inference processes, and
develop GraphFlat and GraphInfer. Basically, GraphFlat is

3127



to generate independent K-hop neighborhoods in the train-
ing process, while GraphInfer is to infer nodes’ embeddings
given a well trained GNN model.

Based on the motivation and design principle, the pro-
posed AGL leverages several powerful parallel architectures,
such as MapReduce and Parameter Server, to build each of
its components with exquisitely-designed distributed imple-
mentations. As a result, even being deployed on the clus-
ters with machines that have relatively low computing ca-
pacity and limited memory, AGL gains comparable effec-
tiveness and higher efficiency against several state-of-the-
art systems. Moreover, it has the ability to perform fully-
functional graph machine learning over the industrial-scale
graph with billions of nodes and hundred billions of edges.

Figure 1 depicts the system architecture of AGL, which
consists of three modules:

(1) GraphFlat. GraphFlat is an efficient and distributed
generator, based on message passing, for generating K-hop
neighborhoods that contain information complete subgraphs
of each targeted nodes. Those tinyK-hop neighborhoods are
flattened to a protobuf strings4 and stored on a distributed
file system. Since the K-hop neighborhood contains suf-
ficient and necessary information for each targeted node,
we can load one or a batch of them rather than the en-
tire graph into memory, and do the training similar to any
other traditional learning methods. Besides, we propose a
re-indexing technique together with a sampling framework
to handle “hub” nodes in real-world applications. Our de-
sign is based on the observation that the amount of labeled
nodes is limited, and we can store those K-hop neighbor-
hoods associated with the labeled nodes in disk without too
much cost.

(2) GraphTrainer. Based on the data independency
guaranteed by GraphFlat, GraphTrainer leverages many
techniques, such as pipeline, pruning, and edge-partition,
to eliminate the overhead on I/O and optimize the floating
point calculations during the training of GNN models. As
a result, GraphTrainer gains a high near-linear speedup in
real industrial scenarios even on a generic CPU cluster with
commodity machines.

(3) GraphInfer. We develop GraphInfer, a distributed
inference module that splits K layer GNN models into K
slices, and applies the message passing K times based on
MapReduce. GraphInfer maximally utilizes the embedding
of each node because all the intermediate embedding at the
k-th layer will be propagated to next round of message pass-
ing. This significantly boosts the inference tasks.

Details about our system will be presented in the following
sections.

4.2 GraphFlat: Distributed Generator of k-
hop Neighborhood

The major issue of training graph neural networks is the
inherent data dependency among graph data. To do the
feedforward computation of each node, we have to read its
associated neighbors and neighbors’ neighbors, and so on
so forth. This makes us fail to deploy such network archi-
tecture simply based on existing parameter server learning
frameworks. Moreover, developing extra graph stores for
the query of each node’s subgraphs is expensive for most
of industrial companies. That is, such a design would not

4https://en.wikipedia.org/wiki/Protocol_Buffers
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Figure 1: System architecture of AGL.

benefit us with existing commonly deployed infrastructures
that are mature and guarantee various properties like fault
tolerance.

Fortunately, according to Theorem 1, the K-hop neigh-
borhood w.r.t. a target node provides sufficient and neces-
sary information to generate the Kth-layer node embedding.
Therefore, we can divide an industrial-scale graph into mas-
sive of tiny K-hop neighborhoods w.r.t. their target nodes
in advance, and load one or a batch of them rather than
the entire graph into memory in the training phase. Follow-
ing this idea, we develop GraphFlat, an efficient distributed
generator for the K-hop neighborhood. Moreover, we fur-
ther introduce a re-indexing strategy and design a sampling
framework to handle “hub” nodes and ensures the load bal-
ance of GraphFlat. The details are presented as follows.

4.2.1 Distributed pipeline to generate K-hop neigh-
borhood

In this section, we design a distributed pipeline to generate
K-hop neighborhoods in the spirit of message passing, and
implement it with MapReduce infrastructure.

Figure 2 illustrates the workflow of the proposed pipeline.
The key insight behind is that, for a certain node v, we first
receive and merge the information from the in-edge neigh-
bors N+

v pointing at v, then propagate the merged results to
the out-edge neighbors N−

v pointed by v. By repeating this
procedure k times, we finally get the K-hop neighborhoods.

Assume that we take a node table and an edge table as
input. Specifically, the node table consists of node ids and
node features, while the edge table consists of source node
ids, destination node ids, and the edge features. The overall
pipeline to generate the K-hop neighborhood can be sum-
marized as follows:

(1) Map. The Map phase runs only once at the beginning
of the pipeline. For a certain node, the Map phase
generates three kinds of information, i.e., the self in-
formation (i.e., node features), the in-edge information
(i.e., features of the in-edge, and the neighbor node)
and the out-edge information (i.e., features of the out-
edge). Note that we set the node id as the shuffle
key and the various information as the value for the
following Reduce phase.

(2) Reduce. The Reduce phase runs K times to generate
the K-hop neighborhood. In the kth round, a reducer
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Figure 2: The pipeline of GraphFlat.

first collects all values (i.e., three kinds of informa-
tion) with the same shuffle key (i.e., the same node
ids), then merges the self information and the in-edge
information as its new self information. Note that the
new self information become the node’s K-hop neigh-
borhood. Next, the new self information is propagated
to other destination nodes pointed along the out-edges,
and is used to construct the new in-edge information
w.r.t. the destination nodes. All of the out-edge infor-
mation remain unchanged for the next reduce phase.
At last, the reducer outputs the new data records, with
the node ids and the updated information as the new
shuffle key and value respectively, to the disk.

(3) Storing. After K Reduce phases, the final self infor-
mation becomes the K-hop neighborhood. We trans-
form the self information of all targeted nodes into the
protobuf strings and store them into the distributed
filesystem.

Throughout the MapReduce pipeline, the key operations
are merging and propagation. In each round, given a node v,
we merge its self information and in-edge information from
last round, and the merged results serve as the self infor-
mation of v. We then propagate the new self information
via out-edges to the destination nodes. At the end of this
pipeline, the K-hop neighborhood w.r.t. a certain targeted
node is flattened to a protobuf string. That’s why we call
this pipeline GraphFlat. Note that, since theK-hop neigh-
borhood w.r.t. to a node helps discriminate the node from
others, we also call it GraphFeature.

4.2.2 Sampling & Indexing
The distributed pipeline described in the previous sub-

section works well in most cases. However, the degree dis-
tribution of the graphs can be skewed due to the existence
of “hub” nodes, especially in the industrial scenario. This
makes some of the K-hop neighborhoods may cover almost
the entire graph. On the one hand, in the Reduce phase of
GraphFlat, reducers that process such “hub” nodes could
be much slower than others thus damage the load balances
of GraphFlat. On the other hand, the huge K-hop neigh-
borhoods w.r.t. those “hub” nodes may cause the Out Of
Memory (OOM) problem in both GraphFlat and the down-
stream model training. Moreover, the skewed data may also

lead to poor accuracy of the trained GNN model. Hence,
we employ the re-indexing strategy and design a sampling
framework for reducer in GraphFlat.

�

Figure 3: Workflow of sampling and indexing in
GraphFlat.

Figure 3 illustrates the reducer with re-indexing and sam-
pling strategies in GraphFlat. Three key components of
performing re-indexing and sampling are introduced as fol-
lows:

• Re-indexing. When the in-degree of a certain shuffle
key (i.e., node id) exceeds a pre-defined threshold (like
10k), we will update shuffle keys by appending random
suffixes, which is used to randomly partition the data
records with the original shuffle key into smaller pieces.

• Sampling framework. We build a distributed sam-
pling framework and implement a set of sampling
strategies (e.g., uniform sampling, weighted sampling),
to reduce the scale of the K-hop neighborhoods, espe-
cially for those “hub” nodes.

• Inverted indexing. This component is responsible
for replacing the reindexed shuffle key with the original
shuffle key. After that, the data records are outputted
to the disk waiting for the downstream task.
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Figure 4: Training workflow and optimization strategies.

Before sampling, the re-indexing component is to uni-
formly map data records associated with the same “hub”
node to a set of reducers. It helps alleviate the load bal-
ance problem that could be caused by those “hub” nodes.
Then the sampling framework samples a portion of the data
records w.r.t. a shuffle key. After that, the merging and
propagation operations are performed as the original Re-
ducer does. Next, the inverted indexing component will re-
cover the reindexed shuffle key as the original shuffle key
(i.e., node id) for the downstream task.

With re-indexing we make the process of “hub” nodes be-
ing partitioned over a set of reducers, thus well maintain the
load balances. With sampling, the scale of K-hop neighbor-
hoods is decreased to an acceptable size.

4.2.3 More Discussions on GrpahFlat
As we have discussed, we propose GraphFlat to store suffi-

cient and nesseary information for the computation of each
node in a K layers GNN model. In this part, we discuss
the variance of the sampling and space cost in GraphFlat.
Without loss of generality, typically we have the following
k-th GNN layer:

hk+1
v = φ(k)(

∑

i∈N+
v

avih
(k)
i ). (2)

where we simply assume the commonly used sum aggrega-
tor [11, 8], and aij as the weight. We can recast the eval-
uation of Eq.(2) in its expectation form, then approximate
the evaluation using Monte Carlo estimates:

hk+1
v = φ(k)(N(v)Epv [h

(k)
i ]) (3)

≈ φ(k)(N(v)
1

n

∑

is

h
(k)
is

), is ∼ pv, pvj ∝ avj

where we let N(v) =
∑

i∈N+
v
avi, and n as the sample size.

Let we denote N+
v as the in-degree of vertex v, and typ-

ically we have avi = 1

N+
v

for all i ∈ N+
v , i.e. the mean

aggregator in GraphSAGE [8]. Thus we have N(v) = 1 for
all vertex v ∈ V. Using Monte Carlo estimates, we have the

following variance of the estimate as: σ = 1
n
E[‖ 1

n

∑
is
h
(k)
is

−
1

N+
v

∑
i∈\+v h

(k)
i ‖2]. Since the embeddings will be normalized

in unit balls after the non-linear transformations at each
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. Note that the variance σ decreases linearly as
sample size n increases, and the deviation of μ̂ from the
ground truth decreases with rate O( 1

t2
). Empirically, we

found that with a moderate number of sample size, e.g.
n = 20, the sample can approximate the ground truth sum
aggregator well enough. As such, we simply maintain a sam-
pled K-hop neighborhood with a moderate sample size for
each node.

Assuming a K-hop neighborhood, and sparse node fea-
tures with the number of non-zero values as F . If we assume
the in-degree of the graph is upper bounded by the sample
size, i.e. n as discussed above. Then we have the worst space
cost for storing each node in disk as O(nk ×F ). Due to the
feature sparsity in practice, the value F is commonly a small
constant. The major bottleneck of our space cost comes
from the term O(nk). In practice we set k ≤ 3 since Deeper
GNNs cannot generalize much better [11], which is reason-
able because the diameter of real-world connected graphs
is small, typically upper bounded by the log of number of
nodes [1]. As such, the term O(nk) will be well bounded
with a moderate sample size.

4.3 GraphTrainer: Distributed Graph Train-
ing Framework

We implement GraphTrainer, an efficient distributed
graph training framework that is shown in Figure 4. The
overall architecture of GraphTrainer follows the designs of
parameter server, which consists of two sets of components:
the workers that perform the bulk of computation during
model training, and the servers that maintain the current
version of the graph model parameters. Since the K-hop
neighborhood contains sufficient and necessary information
to train the GNN model, the training workers of Graph-
Trainer become independent of each other. They just have
to process their own partitions of training data, and do not
need extra communications with other workers. Therefore,
the training of a GNN model becomes similar to the train-
ing of a conventional machine learning model, in which the
training data on each worker is self-contained. Moreover,
since most K-hop neighborhoods are tiny subgraphs taking
little memory footprints, training workers in GraphTrainer
only require to be deployed on the commodity machines with
limited computation resources (i.e., CPU, memory, network
bandwidth).

Considering the property of the K-hop neighborhood as
well as the characteristics of GNN training computation, we
propose several optimization strategies, including training
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pipeline, graph pruning, and edge partitioning, to improve
the training efficiency. The rest of this subsection first in-
troduce the overall training workflow, and then elaborate
several graph-specific optimization strategies.

4.3.1 Training workflow
As shown in Figure 4, the training workflow mainly in-

cludes two phases, i.e., subgraph vectorization and model
computation. We take the node classification task as an ex-
ample to illustrate the two phases. In the node classification
task, a batch of training examples can be formulated as a set
of triples B = {< TargetedNodeId, Label,GraphFeature >
}. Different from the training process of the conventional
machine learning models, which directly performs model
computation, the training process of GNNs has to merge the
subgraphs described by GraphFeatures together, and then
vectorize the merged subgraph as the following three matri-
ces.

• Adjacency matrix: AB. A sparse matrix with nodes
and edges of the merged subgraph. Edges in the sparse
matrix are sorted by their destination nodes.

• Node feature matrix: XB. A matrix to record the
features of all nodes in the merged subgraph.

• Edge feature matrix: EB. A matrix to record the
features of all edges in the merged subgraph.

Note that these three matrices contain all information of the
K-hop neighborhood w.r.t. all targeted nodes in B. They
will be fed to the model computation phase, together with
the node ids and labels. Based on the three matrices as well
as the ids and labels of targeted nodes, the model compu-
tation phase is responsible for performing the forward and
backward calculations.

4.3.2 Optimization strategies
In this subsection, we will elaborate three graph-specific

optimization strategies in different level, to boost the train-
ing efficiency. That is training pipeline (batch-level), graph
pruning (graph-level) and edge partitioning (edge-level).

Training pipeline. During GNN model training, each
worker first read a batch of its training data from the disks,
then it performs subgraph vectorization and model computa-
tion. Performing these steps sequentially is time-consuming.
To address this problem, we build a pipeline that consists of
two stages: preprocessing stage including data reading and
subgraph vectorization, and model computation stage. The
two stages operate in a parallel manner. Since the time con-
sumed by the preprocessing stage is relatively shorter than
that of the model computation stage, after several rounds,
the total training time is nearly equal to that of performing
model computation only.

Graph pruning. Given the three matrices AB, XB, and
EB w.r.t. batch B, we revise Equation 1 w.r.t. B as follows:

H
(k+1)
B = Φ(k)(H

(k)
B ,AB,EB;W

(k)
Φ ), (4)

where H
(k)
B denotes the kth-layer intermediate embeddings

of all nodes that appear in the K-hop neighborhood w.r.t.
all targeted nodes in B, and Φ(k) denotes the aggregating
function of the kth layer. We assume that the final embed-

ding is the Kth-layer embedding, i.e., H
(K)
B .

However, Equation 4 contains many unnecessary compu-
tations. On one hand, only the targeted nodes of B are

labeled. Their embedding will be fed to the following part

of the model. That means other embeddings in H
(K)
B are

unnecessary to the following part of the model. On the
other hand, the three matrices AB, XB and EB can provide
sufficient and necessary information only for the targeted

nodes. Thus other embeddings in H
(K)
B could be generated

incorrectly due to the lack of sufficient information.
Tackling this problem, we propose a graph pruning strat-

egy to reduce the unnecessary computations mentioned
above. Given a targeted node v, for any node u, we use
d(v, u) to denote the number of edges in the shortest path
from u to v. Given a batch of targeted nodes VB, for any
node u, we define the distance between u and VB as
d(VB, u) = min({d(v, u)}v∈VB ). After going deep into the
computation paradigm of GNN models, we have the follow-
ing observation. Given the kth-layer embedding, the receptive
field of the next (k + 1)th-layer embedding become the 1-hop
neighborhood. This observation motivates us to prune un-
necessary nodes and edges from AB. Specifically, in the kth

layer, we prune every node u with d(VB, u) > K − k + 1, as
well as its associated edges, from AB to generate a pruned

adjacent matrix A
(k)
B . Therefore, Equation 4 is revised as

follows:

H
(k+1)
B = Φ(k)(H

(k)
B ,A

(k)
B ,EB;W

(k)
Φ ). (5)

Note that if we treat the adjacency matrix as a sparse
tensor, only non-zero values are involved in model compu-
tation. Essentially, the graph pruning strategy is to reduce
the non-zero values in the adjacency matrix of each layer.
Therefore, it truly helps reduce unnecessary computations

for most GNN algorithms. Moreover, each A
(k)
B can be pre-

computed in the subgraph vectorization phase. With the
help of the training pipeline strategy, it takes nearly no extra
time to perform graph pruning. The right part of Figure 4
gives a toy example to illustrate the graph pruning strategy
w.r.t. one targeted node (i.e., node A).

Edge partitioning. As shown in Equation 5, the ag-
gregator Φ(k) is responsible for aggregating information for

each node along its edges in the sparse adjacent matrix A
(k)
B .

Several aggregation operators, such as sparse matrix multi-
plication, will be applied very frequently during the model
computation phase, which makes the optimization of aggre-
gation become very essential for the GML system. How-
ever, the conventional deep learning frameworks (e.g., Ten-
sorFlow, PyTorch) seldom address this issue since they are
not specially designed for the GML technique.

Tackling this problem, we propose an edge partitioning
strategy to perform graph aggregation in parallel. The key
insight is that a node only aggregates information along the
edges pointing at it. If all edges with the same destination
node can be handle with the same thread, the multi-thread
aggregation could be very efficient since there will be no
conflicts between any two threads. To achieve this goal,
we partition the sparse adjacent matrix into t parts and
ensure that the edges with the same destination node (i.e.,
the entries in the same row) fall in the same partition. The
edge partitioning strategy is illustrated at the top of the
middle part of Figure 4.

After edge partitioning, each partition will be handle with
a thread to perform aggregation independently. On one
hand, the number of nodes in a batch of training examples
is usually much larger than the number of threads. On the
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other hand, the number of neighbors for each node (i.e., the
number of non-zero entries in each row) will not be too large
after applying sampling in GraphFlat. Therefore, the multi-
thread aggregation can achieve load balancing thus gains a
significant speedup when training GNN models.

Figure 5: The pipeline of GraphInfer.

4.4 GraphInfer: distributed framework for
GNN model inference

Performing the GNN model inference over industrial-scale
graphs could be an intractable problem. On one hand, the
data scale and use frequency of inference tasks could be
quite higher than that of training tasks in industrial scenar-
ios, which require a well-designed inference framework to
boost the efficiency of inference tasks. On the other hand,
since different K-hop neighborhoods described by Graph-
Features could overlap with each other, directly performing
inference on GraphFeatures could lead to redundant compu-
tations that are time-consuming.

Hence, we develop GraphInfer, a distributed framework
for GNN model inference over huge graphs by following
the message passing scheme. We first perform hierarchi-
cal model segmentation to split a well-trained K-layer GNN
model into K + 1 slices in terms of the model hierarchy.
Then, based on the message passing scheme, we develop a
MapReduce pipeline to infer with different slices in the or-
der from lower layers to higher layers. Specifically, the kth

Reduce phase loads the kth model slice, merges the embed-
dings of the last layer from in-edge neighbors to generate in-
termediate embeddings of the kth layer, and propagate those
intermediate embeddings via the out-edges to the destina-
tion nodes for the next Reduce phase. Figure 5 describes the
overall architecture of GraphInfer, which can be summarized
as follows:

1. Hierarchical model segmentation. A K layers
GNN model is split into K + 1 slices in terms of the
model hierarchy. Specifically, the kth slice (k ≤ K)
consists of all parameters of the kth GNN layer, while
the K +1th slice consists of all parameters of the final
prediction model.

2. Map. Similar to GraphFlat, the Map phase here also
runs only once at the beginning of the pipeline. For a
certain node, the Map phase also generates three kinds
of information, i.e., the self information, the in-edge in-
formation and the out-edge information, respectively.
Then, the node id is set as the “shuffle key” and the
various information as the “value” for the following
Reduce phase.

3. Reduce. The Reduce phase runs K+1 times in which
the former K rounds are to generate the Kth-layer
node embedding while the last round to perform the
final prediction. For the former K rounds, a reducer
acts similar to that in GraphFlat. In the merging

stage, instead of generating k-hop neighborhood, the
reducer here loads its model slice to infer the node
embedding based on the self information and in-edge
information, and set the result as the new self infor-
mation. The last Reduce phase is responsible to infer
the final predicted score and output it as the inference
results.

There is no redundant computation in the above pipeline,
which reduces the time cost to a great extent.

4.5 Demonstration
Figure 6 demonstrates how to use AGL to perform data

generation with GraphFlat, model training with Graph-
Trainer, and inference with GraphInfer. In addition, we also
give an example on how to implement a simple GCN model.

For each module stated in subsection 4.3, we provide a
well-encapsulated interface respectively. GraphFlat is to
transform raw inputs into K-hop neighborhoods. Users only
need to choose a sampling strategy and prepare a node table
together with an edge table, to generates K-hop neighbor-
hoods w.r.t. their target nodes. Those K-hop neighbor-
hoods are the inputs of GraphTrainer and are formulated
as B = {< TargetedNodeId, Label,GraphFeature >} as
stated in subsection 4.3. Then, by feeding GraphTrainer
a set of configurations like the model name, input, dis-
tributed training settings (the number of workers and pa-
rameter servers) and so on, a GNN model will be trained dis-
tributedly on the cluster. For a certain model, GraphTrainer
will perform the two-stage pipelines (i.e., subgraph vectoriza-
tion and model computation) in the “producer-consumer”
manner. After that, GraphInfer will load the well-trained
model together with the inference data to perform the infer-
ence procedure. In this way, developers only need to focus
on the implementation of the GNN model.

Here, we take GCN as an example to show how to develop
GNN models in AGL. In “GCNLayer”, by calling the aggre-
gator function, the information will be aggregated to target
nodes from their direct neighbors according to Equation 1.
Then, by stacking k “GCNLayer”s, we build a GCN model.
The GraphTrainer will call this model and feed it vectorized
subgraphs to train the model. It’s quite simple and just like
coding for a standalone application.

5. EXPERIMENT
In this section, we conduct extensive experiments to eval-

uate the proposed AGL system.

5.1 Experimental settings

5.1.1 Datasets.
We employ four datasets in our experiments, including

three public datasets (Cora[18], PPI[30], Ogbn product[10])
and an industrial-scale social graph provided by Alipay5

(called UUG, User-User Graph).

• Cora. Cora is a citation network with 2708 nodes and
5429 edges. Each node is associated with 1433 dimen-
sional features and belongs to one of seven classes.

• PPI. PPI is a protein-protein interaction dataset,
which consists of 24 independent graphs with 56944

5https://www.alipay.com/
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########### GraphFlat ###########

GraphFlat -n node_table -e edge_table -h hops -s sampling_strategy;

########### GraphTrainer ###########

GraphTrainer -m model_name -i input -c training_configs;

########### GraphInfer ###########

GraphInfer -m model -i input -c infer_configs;

########### Model File ###########

class GCNModel:

def __init__ (...)

# configuration and init weights

...

def call(adj_list , node_feature , ...):

# initial node_embedding with raw node_feature , like:

# node_embedding = node_feature

....

# multi -layers

for k in range(multi_layers):

node_embedding = GCNlayer(adj_list[k], node_embedding)

# other process like dropout

...

target_node_embedding = look_up(node_embedding , targetID)

return target_node_embedding

...

class GCNLayer:

def __init__ (...)

# configuration and init weights

...

def call(self , adj , node_embedding):

# some preprocess

...

# aggregator with edge_partition

node_embedding = aggregator(adj , node_embedding)

return node_embedding

Figure 6: A demo example of using AGL.

nodes and 818716 edges in total. Each node contains
50-dimensional features and belongs to several of 121
classes (multi-label problem).

• Ogbn-product. The dataset ogbn-products repre-
sens an Amazon product co-purchasing network. It
consists of 2,449,029 nodes and 61,859,140 edges.
Nodes represent products sold in Amazon, and edges
between two products indicate that the products are
purchased together. Note that, Each node in this
dataset is attributed with 100-dimensional features and
belongs to one of 47 classes.

• UUG. UUG6 consists of massive social relations col-
lected from various scenarios of Alipay, in which nodes
represent users and edges represent various kinds of
interactions between users. It contains as many as
6.23 × 109 nodes and 3.38 × 1011 edges. Nodes are
described with 656-dimensional features and alterna-
tively belong to two classes. To our best knowledge, it
is the largest attributed graph for GML tasks in the
literature.

Following the experimental settings in [11, 19, 8, 10],
Cora, PPI, and Ogbn-product are divided into three parts
as the training, validation, and test set, respectively. For
the UUG dataset, 1.2 × 108 nodes out of 1.5 × 108 labeled
nodes are set as the training set, while 5×106 and 1.5×107

are set as the validation and test set, respectively. Details
about those three datasets are summarized in Table 1.

6The data set does not contain any Personal Identifiable In-
formation (PII). The data set is desensitized and encrypted.
Adequate data protection was carried out during the exper-
iment to prevent the risk of data copy leakage, and the data
set was destroyed after the experiment. The data set is only
used for academic research, it does not represent any real
business situation.

Table 1: Summary of datasets and model configura-
tions

Indices Cora PPI Ogbn UUG

#Nodes 2,708 56,944 2,449,029 6.23× 109

#Edges 5,429 818,716 61,859,140 3.38× 1011

#feature 1,433 50 100 656
#Classes 7 121 47 2
#Train 140 44,906 196,615 1.2× 108

#Valid 500 6,514 39,323 5× 106

#Test 1,000 5,524 2,213,091 1.5× 107

#Layers 2 3 3 2
Embedding 16 64 256 8
#Epochs 200 200 20 10

5.1.2 Evaluation
We design a set of experiments to verify the effective-

ness, efficiency, and scalability of our system. Several fa-
mous open-source GML systems are used for comparison:

• DGL [20]. Deep Graph Library (DGL) is a package
that interfaces between existing tensor-oriented frame-
works (e.g., PyTorch and MXNet) and the graph struc-
tured data.

• PyG [5]. PyTorch Geometric (PyG) is a library for
deep learning on irregularly structured input data such
as graphs, point clouds and manifolds, built upon Py-
Torch[17].

• AliGraph [24]. AliGraph (also named Graph-Learn
now) is a framework designed to simplify the applica-
tion of graph neural networks(GNNs). It not only can
operate on a single machine, but also can be deployed
in distributed mode.

Configuration. We first evaluate three widely-used
GNNs (i.e., GCN[11], GAT[19], and GraphSAGE[8]) on two
public datasets (i.e., Cora and PPI) for AGL and those
three GML systems in standalone mode, respectively. Con-
figurations, such as the number of layers, embedding size,
and training epochs, are illustrated in Table 1. We record
average results after 10 runs for each experiment to mit-
igate variance. For a fair comparison, we tune hyperpa-
rameters (e.g., learning rate, dropout ratio, etc.) for those
GNNs by comprehensively referring to the details reported
in [20, 24, 5] together with official examples and guidelines
of DGL, PyG, and AliGraph. A container (Intel Xeon E5-
2682 v4@2.50GHz) is exclusively used for each system to
maintain the same running environment.

Then, we conduct a set of experiments on Ogbn-product
to test the distributed mode for AGL and AliGraph. Mean-
while, we use an industrial datatset, UUG, to verify the
scalability of our system. Configurations for models on those
two datasets also can be found in Table 1. We deploy AGL
and AliGraph on a CPU cluster consisting of more than one
thousand machines (each machine is powered by a 32-core
CPU with 64G memory and 200G HDD). In training phase,
we use 10 workers to train models on Ogbn-product, and
100 workers for UUG. Note that, the cluster used here is
not exclusively used, and different tasks may be running on
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Table 2: Effectiveness of different GNNs trained with
different systems

Datasets Methods Base PyG DGL AliGraph AGL

Cora GCN 0.813 0.818 0.811 0.802 0.811
(Accuracy) GAT 0.830 0.831 0.828 0.823 0.830

PPI GraphSage 0.598 0.632 0.636 − 0.635
(micro-F1) GAT 0.973 0.983 0.976 − 0.977

Ogbn GCN 0.757 − − 0.723 0.744
(Accuracy) GraphSage 0.780 − − 0.745 0.775

UUG GCN − − − − 0.681
(AUC) GraphSage − − − − 0.708

GAT − − − − 0.867

this cluster at the same time, which is common in industrial
environment.

Metrics. We conduct experimental evaluations from sev-
eral different aspects.

We demonstrate the effectiveness of AGL by reporting ac-
curacy and micro-F1 score on Cora and PPI in standalone
mode, while illustrate the accuracy on Ogbn-product in dis-
tributed mode, compared with other GML systems.

Meanwhile, we report the average time cost per epoch in
the training phase on PPI to show the training efficiency of
those systems. Specially, we present the convergence curves
on Ogbn-product to analyze the training efficiency in dis-
tributed mode.

We use UUG to verify the scalability of our system. We
train a node classification model with the UUG dataset, and
perform the inference task over the whole UUG dataset. By
reporting the time cost of both the training and inference
phases, we demonstrate the superior efficiency of our pro-
posal in the industrial scenario. Moreover, we illustrate the
convergence curves and the speedup ratio analyze the scala-
bility of our system.

5.2 Results and Analysis
In this section, we present experimental results together

with some analysis following the evaluation protocol in sub-
section 5.1.

5.2.1 Evaluation on public datasets.
We present and analyze results on Cora, PPI, Ogbn prod-

uct compared with DGL, PyG, and AliGraph, to demon-
strate the effectiveness and the efficiency of AGL.

Effectiveness. Table 2 illustrates the performance com-
parisons between AGL and other GML systems.

We report results of GCN, GraphSage, GAT in different
GML systems (i.e., AGL, DGL, PyG, AliGraph) on Cora
and PPI to analyze the performance of AGL in standalone
mode. In most case, the bias of performance is less than
0.01 for all those three algorithms in different systems. This
demonstrates that all those systems achieve comparable re-
sults on those two datasets, which are the basic benchmarks
in this field. Note that, since the multi-label task is not well
supported by AliGraph, results on PPI for AliGraph (v0.1)
are not include in this table.

Furthermore, we also present results on Ogbn-product to
analyze the performance of AGL in distributed mode. It’s
obvious that AGL achieves better results compared with Ali-
Graph. Note that, the result of GraphSage in AGL is at

the same level with the best result7 reported in [10], which
proves the effectiveness of AGL.

Efficiency. We present time cost on PPI in standalone
mode, and show results of AGL with different optimization
strategies stated in subsection 4.3 (i.e., graph pruning and
edge partitioning) to analyze the effect of those strategies.
Furthermore, we draw convergence curves and report train-
ing speeds on Ogbn-product to verify the efficiency of AGL
in distributed mode.

Table 3 reports the average time cost per epoch in train-
ing phase and demonstrates a gifted speed of AGL in stan-
dalone mode. Generally, in the training phase, our system
(AGL+pruning&partition) achieves a 5× ∼ 13× speedup com-
pared with PyG, and a 1.2× ∼ 3.5× speedup compared
with DGL. For all three GNN models at different depths,
the performance of our system is superior to the other two
systems to varying degrees. Specially, compared with PyG,
our system achieves the biggest improvement, i.e., a 7× ∼
13× speedup, when training GraphSAGE models. Com-
pared with DGL, when training 1-layer GNN models, our
system also gains significant improvement, i.e., a 2.5× ∼
3.5× speedup.
Moreover, we verify the superiority of the proposed op-

timization strategies, i.e., graph pruning and edge parti-
tioning, in Table 3. AGLBase means training only with
the pipeline strategy, while AGL+pruning, AGL+partition, and
AGL+pruning&partition represent training with graph pruning
strategy, edge partition strategy, and both of them, respec-
tively. Results can be summarized as follows: First, ei-
ther the graph pruning strategy or the edge partitioning
strategy works consistently well on different GNN models,
which is proved by comparing the result of AGL+pruning or
AGL+patition with that of AGL+base. Furthermore, when
comparing the result of AGL+pruning or AGL+patition with
that of AGL+pruning&partition, we observe that a significant
improvement is achieved by combining these two optimiza-
tion strategies together. Second, these two strategies in-
dividually lead to different results in different situations.
The edge partitioning strategy achieves better speedup when
applied in GCN and GraphSAGE than in GAT, while the
graph pruning strategy doesn’t work in training 1-layer GNN
model but demonstrates its power when training deeper
GNN models.

These observations are benefit with two strategies. The
graph pruning strategy aims to mitigate unnecessary com-
putations by reducing edges that won’t be used to propagate
information to target nodes. Meanwhile, the edge partition-
ing strategy is to speed up the aggregation step in parallel.
Since those two strategies optimize some key steps of train-
ing GNN models, their advantages benefit the training of
GNN models in general, but may fail in some special cases.
For example, if we train a 1-layer GNN model, it’s reason-
able that the pruning strategy won’t work, as every edge
plays a role in propagating information to target nodes and
there is no unnecessary computation. Moreover, if a model
consists of more dense computations (like computing atten-
tions) than aggregating information via edges, those strate-
gies will be weakened, since the dense computation takes the
most of the total time cost.

Furthermore, we also illustrate convergence curves and
training speed to demonstrate the efficiency in distributed

7trained in full batch mode (each batch contains the full
training set) rather than in mini-batch mode
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Table 3: Time cost(s) per epoch on PPI in Standalone mode

GCN GraphSAGE GAT
1-layer 2-layer 3-layer 1-layer 2-layer 3-layer 1-layer 2-layer 3-layer

PyG 3.49 6.43 9.62 4.47 6.98 10.15 44.29 65.32 85.21
DGL 1.09 1.35 1.62 1.14 1.39 1.64 16.14 21.47 26.03

AGLbase 0.48 2.75 4.10 0.46 2.47 3.94 4.75 25.72 36.86
AGL+pruning 0.48 1.93 3.23 0.46 1.67 2.99 4.75 13.88 20.01
AGL+partition 0.42 1.22 1.60 0.34 0.97 1.39 4.63 22.65 33.45

AGL+pruning&partition 0.42 1.13 1.52 0.34 0.88 1.35 4.63 13.73 18.63

Table 4: Inference efficiency on User-User Graph.

Methods Phase Time cost (s) CPU cost (core*min) Memory cost (GB*min)

GraphFlat 13,454 436,016 654,024
Original Forward propagation 5,760 93,240 1,053,150

Total 18,214 529,256 1,707,174

GraphInfer Total 4,423 267,764 401,646

mode. Taking GraphSage on Ogbn-product as an example,
the left part in Figure 7 shows convergence curves compared
with AliGraph, while the right part illustrates the training
speed of them. We train the model with 10 workers and 10
parameters servers and for each GraphSage layer, we sample
20 neighbors for a certain node. With the sample configu-
ration, it’s clear that AGL achieves a better convergence
with fewer training epochs. With GraphFlat, the surround-
ing environments of nodes (K-hops neighborhood) are fixed
in AGL, no matter in training, validation, or testing phase.
However, in AliGraph, the surrounding environment for a
certain node may vary due to runtime sampling. We think
that’s why AGL converges better with training epochs com-
pared with AliGraph.

Meanwhile, AGL also demonstrate a superior training
speed in Figure 7. Since AGL supports both dense and
sparse modes, we test them in the comparisons with Ali-
Graph (only dense feature supported). Also, taking Graph-
Sage on Ogbn-product as an example, with 100-dimensional
dense feature, it’s obvious that AGL takes less time cost
(per batch) compared with AliGraph. When training the
Ogbn-product with 100-dimensional dense feature in sparse
mode, AGL is only slightly slower than AliGraph. Further-
more, when we expand 100-dimensional dense feature to
1000-dimensional sparse feature by appending zeros, AGL
shows significantly superiority in training speed. Figure 7
further proves the efficiency of AGL.

5.2.2 Evaluation on Industrial Dataset
We implement the proposed system using MapReduce and

parameter server framework, and deploy it on a CPU cluster
consisting of more than one thousand machines (each ma-
chine is powered by a 32-core CPU with 64G memory and
200G HDD). Then, we conduct experiments on the indus-
trial dataset, i.e., UUG dataset, to demonstrate the scal-
ability and efficiency of the proposed system in industrial
scenarios.

Performance. Performance always matters most. Ta-
ble 2 describes results of three different GNN models (i.e.,

Figure 7: Convergence curves and time cost (per
batch) on Ogbn-product dataset in distributed
mode.

GCN, GraphSage, GAT) on UUG. We get comparable re-
sults for GCN and GraphSAGE, but witness a significant
improvement for GAT. We think it is reasonable, since the
GAT model learns different weights for neighbors, which
may play different roles (i.e., friend, colleague, and so on)
w.r.t. their targeted node and have different influences on
it. To our best effort, we failed to deploy other systems on
UUG (OOM or other problems). Therefore, their results are
not included.

Industrial training. Scalability is one of the most im-
portant criterion for industrial GML systems. In this sub-
section, we focus on evaluating the training scalability of
AGL on two aspects, i.e., convergence and speedup. To do
that, we train a GAT model on the industrial UUG dataset
with different number of workers and report the results of
convergence and speedup in Figure 8 and Figure 9, respec-
tively. Moreover, we also illustrate time cost per batch by
varying batch size and the number of neighbors in Figure 10.

Convergence. Figure 8 demonstrates the training scalabil-
ity of our system in terms of convergence. Its y-axis denotes
the AUC of GNN model, while the x-axis denotes the num-
ber of training epochs. In general, our system eventually
converges to the same level of AUC regardless of the num-
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ber of training workers. As shown in Figure 8, though more
training epochs are required in the distributed mode, the
convergence curves finally reach the same level of AUC as
that trained with a single worker. Hence, the model effec-
tiveness is guaranteed under distributed training, which ver-
ifies that our system can scale to industrial graphs without
considering convergence.

Speedup. We also demonstrate the training scalability in
terms of speedup ratio. As shown in Figure 9, our system
achieves a near-linear speedup with slope ratio of 0.8, which
means that if you double the number of training workers,
you will get 1.8× faster. In the experiment, we scale the
number of training workers form 1 to 100 with 10 intervals.
As a result, our system achieves a constantly high speedup
and the slope ratio hardly decreases. For example, when
the number of training workers reaches 100, we have 78×
faster, which is only slightly lower than the expected value
80. Note that, all these experiments are conducted on a
cluster in the real production environment. There may ex-
ist different tasks operating on the same physical machine.
The overhead in network communication may slightly in-
crease as the number of training workers increases, causing
perturbations in the slope ratio of the speedup curve. That
again proves the robustness of our system in the industrial
scenario.

We also analyze the training speed by varying batch sizes
and the number of neighbors in a 2-hop GAT model. Fig-
ure 10 demonstrates a linear increasing of time cost when en-
larging a training batch, while shows an exponential growth
as the number of neighbors increases. Theoretically, the
scale of K-hops neighbors is expanded exponentially with
the average number of neighbors as the base while k as
the exponent. Therefore, the total computations and time
cost follows an exponential growth along with the number of
neighbors. However, when enlarging the batch size in train-
ing time, different K-hops neighborhoods will be merged,
which reduces some computations for overlapping parts. As
a result, though we witness a near-linear increasing of time
cost (for a batch), the ratio is smaller than that of batch size,
which eventually helps speed up the full training phase.

It’s worth noting that, it only takes about 14 hours to
train a 2-layer GAT model on UUG until it converges to
a stable state. Specifically, in our experiment, the Graph-
Flat takes about 3.7 hours with 1000 workers to generate
GraphFeature, while the GraphTrainer takes about 10 hours
with only 100 workers on the CPU clusters to train a GAT
model. The total pipeline can be finished in 14 hours, which
is remarkable for industrial applications. Furthermore, dur-
ing the training phase, the training task only needs 5.5 GB
memory for each worker (550 GB in total), which is far less
than the memory cost for storing the entire graph (35.5 TB).

In summary, thanks to its ingenious architectural design,
the proposed AGL meets the industrial scalability require-
ments for training GNN models over industrial graphs.

Industrial inference. We evaluate the efficiency of
GraphInfer over the entire User-User Graph, which consists
of 6.23 × 109 nodes and 3.38 × 1011 edges. In Table 4, we
report the time and resource consumed by such an inference
task. Since no GML system can handle such a large scale
graph, we compare GraphInfer with the original inference
module based on GraphFeature. Note that, all these exper-
iments are operated with the same concurrency, i.e., 1000
workers.

Figure 8: Convergence Figure 9: Speedup

Figure 10: Time cost per batch by varying batch size
and neighbors

From Table 4, we can observe that GraphInfer consis-
tently outperforms the original inference module in both
time cost and resource cost. GraphInfer takes about 1.2
hours to infer the predicted scores of 6.23 billion nodes with
a 2-layer GAT model generating 8-dimensional embedding,
which is just about 1

4
of the time spent by the original in-

ference module. Moreover, GraphInfer also saves 50% CPU
cost and 76% memory cost, respectively. Compared with the
original inference module based on GraphFeature, GraphIn-
fer avoids repeated computing by employing the message
passing scheme, which is the reason why it outperforms the
original inference module.

6. CONCLUSION
In this paper, we present AGL, an integrated system de-

signed for industrial-scale graph learning tasks. Our sys-
tem design follows the message passing scheme underlying
the computation of GNNs, where we simply merge values
from in-edge neighbors and propagate merged values to out-
edge neighbors. With this programming principle, we design
to implement the construction of K-hop neighborhood, an
information-complete subgraph for each node, and the infer-
ence in MapReduce. In addition, the K-hop neighborhood
ensures the independency among nodes in the graph, thus
makes us simply train the model with parameter servers.
AGL maximally utilizes the calculation of each embedding
at inference, while optimizes the training from model level
to operator level. As a result, AGL successfully achieves a
nearly linear speedup in training with 100 workers. AGL
can finish the training of a 2-layer graph attention network
on a graph with billions of nodes and hundreds of billions
of edges in 14 hours, and complete the inference in only 1.2
hour. We have all these achievements based only on mature
infrastructures such as parameter server and MapReduce.
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