
Asymmetric-Partition Replication for Highly Scalable
Distributed Transaction Processing in Practice

Juchang Lee
SAP Labs Korea

juc.lee@sap.com

Hyejeong Lee
SAP Labs Korea

hyejeong.lee@sap.com

Seongyun Ko
POSTECH

syko@dblab.postech.ac.kr
Kyu Hwan Kim
SAP Labs Korea

kyu.hwan.kim@sap.com

Mihnea Andrei
SAP Labs France

mihnea.andrei@sap.com

Friedrich Keller
SAP SE

friedrich.keller@sap.com

Wook-Shin Han
∗

POSTECH
wshan@dblab.postech.ac.kr

ABSTRACT
Database replication is widely known and used for high
availability or load balancing in many practical database
systems. In this paper, we show how a replication engine
can be used for three important practical cases that have
not previously been studied very well. The three practi-
cal use cases include: 1) scaling out OLTP/OLAP-mixed
workloads with partitioned replicas, 2) efficiently maintain-
ing a distributed secondary index for a partitioned table, and
3) efficiently implementing an online re-partitioning opera-
tion. All three use cases are crucial for enabling a high-
performance shared-nothing distributed database system.
To support the three use cases more efficiently, we pro-
pose the concept of asymmetric-partition replication, so that
replicas of a table can be independently partitioned regard-
less of whether or how its primary copy is partitioned. In ad-
dition, we propose the optimistic synchronous commit pro-
tocol which avoids the expensive two-phase commit without
sacrificing transactional consistency. The proposed asym-
metric-partition replication and its optimized commit pro-
tocol are incorporated in the production versions of the SAP
HANA in-memory database system. Through extensive ex-
periments, we demonstrate the significant benefits that the
proposed replication engine brings to the three use cases.

PVLDB Reference Format:
Juchang Lee, Hyejeong Lee, Seongyun Ko, Kyu Hwan Kim, Mi-
hnea Andrei, Friedrich Keller, Wook-Shin Han. Asymmetric-
Partition Replication for Highly Scalable Distributed Transaction
Processing in Practice. PVLDB, 13(12): 3112-3124, 2020.
DOI: https://doi.org/10.14778/3415478.3415538

∗Corresponding author

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415538

1. INTRODUCTION
Database replication is one of the most widely studied and

used techniques in the database area. It has two major use
cases: 1) achieving a higher degree of system availability and
2) achieving better scalability by distributing the incoming
workloads to the multiple replicas. With geographically dis-
tributed replicas, replication can also help reduce the query
latency when it accesses a local replica.

Beyond those well-known use cases, this paper shows how
an advanced replication engine can serve three other prac-
tical use cases that have not been studied very well. In
addition, in order to lay a solid foundation for such ex-
tended use cases of replication, we propose the novel notion
of asymmetric-partition replication where replicas of a table
can be independently partitioned regardless of whether or
how the primary copy of the table is partitioned. Note that,
in this paper, the term table partition denotes a part (or a
subset) of such a partitioned table.

Furthermore, to address a challenge encountered while ap-
plying the asymmetric-partition replication to a practical
system, we propose a novel optimization called optimistic
synchronous commit that avoids the expensive two-phase
commit protocol while preserving the strict transactional
consistency. This optimization is possible by fully exploit-
ing the fact that the replica table is a derivable and recon-
structable data structure based on the corresponding pri-
mary table data.

The three practical use cases are presented as follows.

1.1 Independently Partitioned Replica
First, when handling both OLTP and OLAP workloads

in the same database system, asymmetric-partition replica-
tion enables the system to maintain an updateable primary
copy of a table in a single, larger physical node, while its
replica copies are independently partitioned and distributed
across multiple smaller physical nodes, as shown in Figure 1.
With this architecture, we can avoid the cross-partition two-
phase commit for OLTP workloads, while serving partition-
friendly OLAP workloads in a more scalable way with the
multiple smaller replica nodes.

3112



16CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

Table T1 
(non-partitioned)

Primary DB node

Partition P1
of T1

Partition P2
of T1

Partition P3
of T1

Partition P4
of T1

Replica DB nodes

O
LT

P 
w

or
kl

oa
d

Pa
rti

tio
ne

d 
O

LA
P 

w
or

kl
oa

d

Figure 1: Scalable Processing of OLTP/OLAP-mixed
workloads (Use Case 1).

Table T1, 
partitioned by PK

PK SK1 SK1 Ref

Replicate

Read

Sub-table replicas, 
partitioned by SK1 and SK2, 

respectively

SK2 RefSK2

Figure 2: Partitioned Secondary Index with Asymmetric-
Partitioned Replication (Use Case 2).

A recent work with an academic prototype [17] suggested
a similar replication architecture, called STAR. In the pro-
posed replication architecture, partitions of a primary ta-
ble are co-located in the same node while partitions of a
replica table can be scattered across multiple nodes. How-
ever, it assumes that the primary and replica copies of a
table are still partitioned in the same layout. Compared to
that, our proposed asymmetric-partition replication allows
the replica tables to be differently partitioned and differently
distributed from the primary table. As a result, in our pro-
posed architecture, the replica table can be re-partitioned
and re-distributed without affecting the primary table’s par-
titioning scheme.

1.2 Distributed Secondary Index
The second use case of asymmetric-partition replication

is to efficiently maintain a secondary index for a partitioned
and distributed table. When a table is partitioned by its
primary key or its subset, it is relatively easy to identify a
target partition for an incoming point query that includes
the primary key predicate. Its partition pruning can be per-
formed with the input parameter value of the predicate at
either the client library or the server that initially received
the query. However, when a point query needs to be evalu-
ated with a secondary key, then its target partition is not so
obvious, since the table is partitioned by the primary key.
That can force the query to access all the database nodes to
identify the corresponding table partition.

Asymmetric-partition replication provides a convenient
and efficient solution to the distributed secondary index

management problem. A secondary index for a partitioned
table can be modeled as a sub-table replica of its primary
table. The sub-table replica can be considered a vertical sub-
table replica, since it only needs to contain a few necessary
columns from the primary table: secondary key columns and
a reference (source table partition ID and row ID) pointing
to the corresponding primary table record. Subsequently,
the sub-table replica can be partitioned by the secondary
key itself, not necessarily with the same partitioning key as
its primary table. This architecture is illustrated in Fig-
ure 2 with an example of the two secondary indexes (for two
secondary keys, SK1 and SK2).

One may implement the described distributed secondary
index from scratch without relying on a replication engine,
but it requires significant time and developer resources. Mo-
reover, the proposed optimistic synchronous commit proto-
col enables elimination of the expensive two-phase commit
cost when a change made at a primary table needs to be
synchronized with its remote sub-table replica.

1.3 Online Table Re-partitioning
The third use case of asymmetric-partition replication in-

volves re-partitioning an existing table online. To support
dynamic workloads, the system needs to be able to ad-
just the partitioning scheme of an existing table dynami-
cally. One solution uses a table-level exclusive lock, but this
would block other concurrent DML transactions during the
re-partitioning operation. Thus, the re-partitioning should
be processed very efficiently.

Here again, asymmetric-partition replication provides a
convenient and efficient solution. The online repartitioning
operation can be logically mapped to a sequence of oper-
ations: 1) creating an online replica by copying the table
snapshot, 2) replicating delta changes that are incoming to
the original primary table during the snapshot copy opera-
tion, 3) transferring the primary ownership of the table to
the new replica, and 4) dropping the original primary table
in the background. In this procedure, asymmetric-partition
replication allows the new replica to have a partition scheme
different from that of its original table. Similar to the second
use case, this type of online DDL can be implemented from
scratch, but we can save development time and resources by
leveraging asymmetric-partition replication.

1.4 Contribution and Paper Organization
The key contribution of this paper is as follows.

• We propose the novel notion of asymmetric-partition
replication, so that replicas of a table can be indepen-
dently partitioned regardless of whether or how the
primary copy of the table is partitioned.

• We show how asymmetric-partition replication enables
a scalable distributed database system - economically
and efficiently. More specifically, we describe 1) how
OLTP and OLAP workloads can efficiently be pro-
cessed with the proposed replication architecture, 2)
how the secondary key access query for a partitioned
table can be accelerated in distributed systems, and
3) how the online repartitioning DDL operation can
be implemented while minimizing its interference with
other concurrent DML transactions.

• To overcome the challenge in the write performance
overhead encountered while applying the replication

3113



Log & 
checkpoint

Log & 
checkpoint

Log & 
checkpoint

…

Applications
DB client library

DB node 1 DB node 2 DB node N

In-memory 
table space

T1

T3.P1 T3.P2 T3.PN

T2

T4 T4
Replicated 

table

Partitioned table

Figure 3: A simplified view of HANA distributed in-
memory database architecture.

engine to those practical use cases, we propose opti-
mistic synchronous commit protocol that avoids the
expensive two-phase commit protocol while preserving
the strict transactional consistency. The basic idea of
optimistic synchronous commit protocol has also been
briefly discussed in [13], but we detail implementation
issues in this paper (Section 4.1).

• The three use cases are studied with extensive experi-
ments using a concrete implementation in SAP HANA.

The rest of this paper is organized as follows. In Section
2, we provide technical background for the presented work
in this paper. In Section 3, we present the three practical
use cases in more detail. Section 4 describes the optimiza-
tions implemented to more efficiently support the three use
cases. Section 5 provides the experimental evaluation re-
sults. Section 6 gives an overview of related works. Section
7 discusses future works and Section 8 concludes the paper.

2. BACKGROUND
In this section, we briefly summarize the key character-

istics of SAP HANA distributed system architecture and
HANA Table Replication both of which lay background for
the work to be presented in this paper.

2.1 SAP HANA Distributed Database System
Architecture

Figure 3 gives a simplified view of SAP HANA distributed
in-memory database, which generally follows the shared-
nothing partitioned database architecture. For the purpose
of increasing the total computation resource and/or the total
in-memory database space, it exploits multiple independent
database nodes which are inter-connected through a com-
modity network.

The multiple database nodes belong to the same database
schema whose tables can be distributed across the database
nodes. In addition, a single table can be horizontally par-
titioned into multiple partitions, each of which contains a
disjoint set of records of the table. The partitions of a ta-
ble can be distributed across multiple database nodes. A
partition key needs to be designated to partition the table
along with a partitioning function, such as hash, range, or
their combination. Typically, the primary key, or its subset,
is chosen as the partition key of the table.

Regardless of how tables are partitioned and distributed,
the multiple database nodes belong to the same transaction
domain, ensuring strict ACID properties even for cross-node
transactions. For this, two-phase commit and distributed
snapshot isolation [14, 9] are incorporated. While queries
can be routed to any of the database nodes by the client
library directly, the client library finds an optimal target
database node for a given query by looking up a part of
its compiled query plan, which is transparently cached and
refreshed at the client library. For a partitioned table, its
partitioning function is also cached at the client library, so
that the target table partition can be pruned at run time
by evaluating a part of query predicate. This client-side
statement routing is described in more detail in [14]. When
a query needs to involve multiple nodes, a server-side query
execution engine coordinates the distributed query process
by exchanging intermediate query results.

2.2 HANA Table Replication
HANA Table Replication [15, 13] has been designed and

implemented primarily for the purpose of enabling real-time
reporting over operational data by minimizing the propa-
gation delay between the primary and its replicas. Its key
features are highlighted as follows.

First, it supports replicating a table or only a sub-table
(a subset of columns of a table, for example) without nec-
essarily replicating the entire database or the entire table
contents. The replica of a table or sub-table can be located
in a database node, while the primary copy of the table is
located in another node.

Second, it supports cross-format replication with a storag-
e-neutral logical log format. To maximize the performance
of the mixed OLTP/OLAP workloads, it enables creation of
a column-oriented replica layout for a row-oriented primary
table. For this, the replication log is defined as a logical
format decoupled from its underlying storage layout.

Third, it uses record-wise value logging with row ID (called
RVID in [15, 13]) to maintain mapping between a primary
record and its replica record. To avoid the non-deterministic
behavior of a function logging, it captures record-level DML
execution results. Together with the cross-format logical
logging, it enables the replica table to have a different table
structure (or partitioning scheme) from its primary table.

Fourth, in order to minimize the propagation delay be-
tween the source and the replica, HANA Table Replication
employs a few novel optimizations such as lock-free parallel
log replay with record-wise ordering and an early log ship-
ping mechanism, which are explained in detail in [15, 13].

Finally, HANA Table Replication supports transaction-
consistent online replica creation. By using the charac-
teristics of multi-version concurrency control, HANA Ta-
ble Replication allows other concurrent DML transactions
to continue even while a new replica is being added online.
Section 4.2 provides more detail about the online replica
creation protocol.

3. ASYMMETRIC-PARTITION REPLICA-
TION AND ITS PRACTICAL USE CASES

In this section, we describe how the presented HANA
Table Replication is evolved and extended to asymmetric-
partition replication and then present its three practical use
cases in detail.

3114



Table 1: Summary of Key Properties of Asymmetric-Partition Replication.

Properties Usefulness in the three scenarios
Replication object granularity with table or
sub-table

Enables applying the asymmetric-partition replication only to the nec-
essary tables and columns (Use Cases 1 to 3)

Cross-format logical logging and record-wise
value logging

Enables replica table structure to be decoupled from its primary table
structure because the primary-to-replica relationship is maintained at
record level (Use Cases 1 to 3)

Lock-free parallel log replay Reduces the write transaction overhead by fast update propagation
(Use Cases 1 and 2) or reduces the DDL elapsed time (Use Case 3)

Two commit options with asynchronous com-
mit and optimistic synchronous commit

Enables avoiding the expensive two-phase commit (Use Cases 1 to 3)

Online replica addition with MVCC Provides a basis for lock-free repartitioning operation (Use Case 3)

3.1 Asymmetric-Partition Replication
Asymmetric-partition replication enables replicas of a ta-

ble to be independently partitioned regardless of whether
or how its primary table is partitioned. It is an extended
form of HANA Table Replication which inherits and ex-
pands upon the beneficial properties of HANA Table Repli-
cation described in Section 2.2. Table 1 provides a summary
of its key properties and how they contribute to efficient and
convenient implementation for the three practical use cases.

To extend HANA Table Replication to asymmetric-parti-
tion replication, the mapping between a primary-table reco-
rd and its replica record is managed in a different way com-
pared to HANA Table Replication. When a replica partition
is initially populated, its initial snapshot is generated from
the primary table by performing the partition pruning func-
tion, instead of physically copying the entire table image.
When a DML operation occurs at the primary table, the
corresponding DML replication log entry is generated and
then its target replica partition is dynamically determined
by performing the partition pruning function for the changed
record. When a column value corresponding to the replica’s
partitioning key is updated at the primary table, a single
DML operation at the primary can generate two DML log
entries depending on the before-update value and the after-
update value: a deletion log entry for a replica partition and
an insertion log entry for another replica partition.

Note that the asymmetric-partition replication implemen-
tation has been incorporated and officially available in pro-
duction versions of SAP HANA since April 2018. The fol-
lowing is one example of a possible SQL that creates an
asymmetric-partition replica with hash partitioning. In ad-
dition to hash partitioning, range, round robin, or their cas-
caded partitioning are also possible [4]. The choice of the
partitioning scheme for the replica is totally independent
from how its corresponding primary table is partitioned.

CREATE TABLE <replica table name>

LIKE <primary table name>

[ASYNCHRONOUS|SYNCHRONOUS] REPLICA PARTITION BY

HASH (<partition key for the replica>)

PARTITIONS <the number of the partitions>

AT <locations of the replica partitions>;

3.2 Use Case 1: Partitioned Replication for
scaling out mixed OLTP/OLAP Workloads

The capability to handle both OLTP and OLAP work-
loads in the same database system is an attractive feature for

modern database systems. Compared to traditional ETL-
based OLAP systems, it can reduce visibility delay between
the source OLTP and target OLAP systems by eliminating
the need of an intermediate application-driven ETL process-
ing layer. In addition, it eliminates the application-side bur-
den of maintaining consistency and compatibility between
the OLTP and OLAP database schemas.

For such a database system that handles OLTP and OLAP
workloads, asymmetric-partition replication offers an inter-
esting optimization opportunity. While the updateable pri-
mary copy of a table is still maintained in a single larger
physical node, its replicas can be independently partitioned
and distributed across multiple smaller physical nodes as
already shown in Figure 1.

A similar replication architecture for mixed OLTP/OLAP
workloads has already been proposed by the authors’ earlier
works [15, 13]. In the previous replication architecture, mul-
tiple replicas of a table can be created to scale out OLAP
performance. In contrast, the proposed architecture in this
paper can leverage multiple smaller replica nodes by horizon-
tally partitioning a single logical replica table into multiple
smaller sub-tables. While the replication architecture in [15,
13] requires each of the replica tables to maintain a full copy
of the entire table contents, the partitioned replication archi-
tecture proposed in this paper enables a reduction of mem-
ory consumption at each replica and also a decrease in the
required network resource consumption between the primary
node and its replica nodes. Therefore, for a partitionable
OLAP workload, the proposed asymmetric-partition repli-
cation becomes a practical option.

Moreover, when only a subset of a table (e.g., the most re-
cent set of data in the table) is needed by the OLAP queries,
the asymmetric-partition replication enables the creation
of replicas for the needed table partitions alone. There-
fore, the proposed asymmetric-partition replication provides
more flexibility in choosing the right configuration for the
replica table. Note that the cross-format replication pre-
sented in [15, 13] (replicating from a row-store table to
a column-store table) can be combined with the proposed
asymmetric-partitioned replication. For example, the pri-
mary table can be formatted to a row-store non-partitioned
layout while its replica table is formatted to a column-store
partitioned layout.

Note that the proposed asymmetric-partition replication
architecture does not exclude having multiple copies for a
replica partition for higher level.

3115



4CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

Table T1 = {A1, A2, …} with primary key at A1 and
partitioned by A1 to three table partitions {P1, P2, P3}

Secondary index for A2, partitioned by A1

Query with secondary key (A2)

Node N1 Node N2 Node N3

Client

Local
secondary

index for A2

Partitioned
base table T1

T1.P1 T1.P2 T1.P3

1

2

3

Query with secondary key (A2)

Node N1 Node N2 Node N3

Client

Distributed
secondary

index for A2

Partitioned
base table T1

T1.P1 T1.P2 T1.P3

1

2

3

Secondary index for A2, partitioned by A2

Figure 4: Local secondary index for a partitioned table by
its primary key.

3.3 Use Case 2: Scalable Distributed
Secondary Index for Partitioned Tables

For queries having a partition key predicate, the target
database node that owns the matching records can be eas-
ily identified by performing the partitioning function. On
the other hand, queries having a non-partition key predi-
cate require a full table scan at all nodes where the table is
distributed. To more efficiently handle such secondary key
access queries, maintaining a distributed secondary index is
necessary.

A straightforward way of maintaining such a distributed
secondary index is to co-partition a table and its secondary
indexes together using the same partitioning key and then
to maintain a separate local index for each table partition.
Figure 4 shows an example of the local secondary index.
A database table T1 is partitioned into three partitions by
taking the primary key (A1) as its partition key. Each of the
three table partitions has its own local secondary index that
spans the records belonging to the co-located table partition.

With this approach, the full table scan can be avoided
but all the database nodes still need to be accessed for the
secondary key access query because the partition key and
the secondary key do not match. As a result, as the num-
ber of nodes where the table is distributed increases, the
cost of a secondary key access query grows proportionally
both in network resource and CPU consumption. While the
response time can be optimized by performing multiple lo-
cal index accesses in parallel, the number of accessed nodes
remains unchanged, and the resource cost remains high.

To overcome such a limitation, it might be desirable to
partition the secondary index with its own secondary key in-
dependently from its base table. Figure 5 shows an example
of an independently partitioned distributed secondary index.
By early pruning the target secondary key index partition
(at the step 1 in the figure), the number of accessed node for
a secondary key access query can be reduced to one (when
the secondary index lookup result points to a base record
in the co-located table partition) or two (when the result
points to a base record in a remote table partition), regard-
less of the number of table partitions and their distribution.
However, this approach may need to pay the price on the
write transaction side because an update at a table partition
could involve updating a secondary index partition located
in a remote node.

4CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

Table T1 = {A1, A2, …} with primary key at A1 and
partitioned by A1 to three table partitions {P1, P2, P3}

Secondary index for A2, partitioned by A1

Query with secondary key (A2)

Node N1 Node N2 Node N3

Client

Local
secondary

index for A2

Partitioned
base table T1

T1.P1 T1.P2 T1.P3

1

2

3

Query with secondary key (A2)

Node N1 Node N2 Node N3

Client

Distributed
secondary

index for A2

Partitioned
base table T1

T1.P1 T1.P2 T1.P3

1

2

3

Secondary index for A2, partitioned by A2

Figure 5: Independently partitioned secondary index for a
partitioned table by its primary key.

Asymmetric-partition replication makes implementing su-
ch a distributed secondary index more efficiently and with
less development cost. The secondary index is created as a
form of replica table which is independently partitioned from
its primary table. Then, on a DML operation at a base ta-
ble partition, the DML results are automatically propagated
and applied to the corresponding secondary index partition
(i.e. a replica partition) in a transaction-consistent way.
Regarding how to generate and where to forward the DML
replication log entries, it follows the same DML replication
protocol of the asymmetric-partition replication which was
explained in Section 3.1.

Such asymmetric-partition replication brings the following
important performance benefits to the distributed secondary
index implementation.

• Optimistic transaction commit : At the time of com-
mitting a transaction that updated both a local table
partition and a remote secondary index partition, the
optimistic synchronous commit ensures the cross-node
atomicity without relying on the expensive two-phase
commit protocol. This commit protocol will be pre-
sented in more detail in Section 4.

• Fine-grained sub-table replication: The fine-grained su-
b-table replication capability enables replication of on-
ly the necessary columns for the secondary index and
thus saves in memory footprint and network band-
width. At the secondary index partitions, only the
secondary key columns and a reference (base table par-
tition ID and row ID) to the original source record are
maintained.

• Client-side statement routing: Combined with the clie-
nt-side statement routing described in Section 2.1, the
input value of the secondary key parameter of a query
can be evaluated with the corresponding partition fun-
ction cached at the client library. Then, the client li-
brary can early route the query to an optimal database
node location where the corresponding secondary in-
dex partition is located.

One may implement such a distributed secondary index
by using SQL triggers and a separate table for maintaining
the secondary key values and the references. However, this
is subject to the performance overhead incurred by (1) the
general-purpose SQL trigger and (2) the two-phase commit
for cross-node write transactions. Another may use more
native and specialized implementation from scratch but it
requires non-trivial time and developer resources.

3116



0) Initial state: 

Concurrent DMLs

Concurrent DMLs

1)

2)

3) Switch primary role 
4) Drop the original table 
in the background

Concurrent 
DMLs

1) Populate initial replica 
2) Replicate incoming delta 
in parallel

Figure 6: Online table repartitioning with asymmetric-
partition replication.

3.4 Use Case 3: Online Table Re-partitioning
As discussed in Section 1, the overall performance of a

shared-nothing distributed database system can be signifi-
cantly affected by how well the database is partitioned for
a given workload. Considering the dynamic nature of many
enterprise application workloads and also the ever growing
data volume, it is often required to continuously re-partition
a given table. Under such a situation, it is desirable to sup-
port an efficient online re-partitioning operation that can
minimize service downtime or interference to other concur-
rent normal transactions during the re-partitioning opera-
tion. Relying on the table-level exclusive lock during the
re-partitioning operation can not meet such a demand.

Asymmetric-partition replication offers a beneficial option
for implementing such an online re-partitioning operation
exploiting the MVCC-based online replica addition proto-
col, instead of relying on a long-duration table lock. The
online repartitioning operation can be logically mapped to
a sequence of operations, as illustrated in Figure 6. First,
an online replica is initially populated by copying the table
snapshot (step 1). Second, delta changes that are incoming
during the step 1 are asynchronously replicated by replica-
tion log entries (step 2). Third, once the step 1 is completed,
a synchronization point between the primary and its replica
is made and then the primary ownership of the table is trans-
ferred to the new replica (step 3). After that, the original
primary table is dropped asynchronously in the background
(step 4). In this procedure, asymmetric-partition replication
allows the new replica to have a partition scheme different
from that of its original table.

Like the second use case, the described online re-partition-
ing operation can be implemented by a more native and spe-
cialized implementation from scratch but it requires non-
trivial time and developer resource. Note that the other
types of online DDL operations that require copying the ta-
ble data (for example, conversion from a row-oriented table
format to a column-oriented table format) can be benefited
from such an online replica creation protocol in general.

4. OPTIMIZATIONS
In this section, we present two key optimizations that

make asymmetric-partition replication more efficient for the
three use cases.

Transaction T1 
at primary

Transaction T1 
at replicaClient

DML1 1

2DML2

Query1 3

Commit 4 56

7

8

async-replicate

Write a 
commit log 

Write a post-
commit log 

async-replicate

Wait until DML replay 
completes and 

precommit

Figure 7: Replication protocol using optimistic syn-
chronous commit (OSC-R).

replicate

replicate

Write a prepare-

commit log 

Write a 

commit log 

Write a post-

commit log 

Figure 8: Replication protocol using synchronous DML
trigger and two-phase commit (2PC-R).

4.1 Optimistic Synchronous Commit Protocol
Optimistic synchronous commit protocol, called OSC-R

in this paper, takes a hybrid approach by combining asyn-
chronous DML replication with synchronous transaction co-
mmit. A DML log entry is generated at the DML time,
but its propagation to the replica is asynchronously initiated
without affecting the DML response time. After waiting un-
til all its previous DML log entries are successfully applied
to the replicas, the transaction proceeds to the commit pro-
cessing. To highlight the performance gain from OSC-R,
we compare OSC-R with an alternative replication protocol
that is based on synchronous DML and two-phase commit,
called 2PC-R. Figure 7 and Figure 8 show OSC-R and 2PC-
R protocols, respectively.

At OSC-R, replication does not affect DML response time
as in steps 1 and 2 of Figure 7, while each DML involves
a synchronous network round trip to the replica in 2PC-R
(steps 1 an 2 in Figure 8).

At the transaction commit phase, in contrast to 2PC-
R that incurs two network round trips (Steps 4 and 7)
and three log I/O operations (Steps 5, 6, and 8), OSC-R
can commit the transaction immediately after one network
round trip (Step 4) and one log I/O operation (Step 6),
both of which are interleaved with each other. Such an op-

3117



timistic optimization is possible by leveraging the fact that a
replica is basically a data structure derived from its primary
table. When a failure occurs in the middle of the OSC-R
transaction’s commit phase, there is still a chance that the
replica can be recovered to the latest committed state by
re-synchronizing with the primary. By the same reason, the
recovery redo log and the post-commit log entries generated
at the replica can be persisted asynchronously (Step 8). The
replica recovery protocol for HANA Table Replication is de-
scribed in more detail in Section 4.1 of [13].

The transaction commit at OSC-R can proceed after wait-
ing until its previous DML replay operations complete (Step
5 in Figure 7). However, for multi-statement transactions,
which are quite common in many enterprise applications,
there is high chance that the asynchronous replication of an
earlier DML statement is overlapped with the next state-
ment execution at the primary transaction and thus the de-
lay at Step 5 is minimized.

Differently from the commit protocol under the lazy repli-
cation presented in [15, 13], OSC-R must ensure visibility
atomicity of the changes made by the primary transaction
and its corresponding replayer transactions. Under the lazy
replication, if a database client accesses a replica node af-
ter it receives the commit acknowledgement of its primary
transaction, then its written changes may not be yet visible
at the replica node. To ensure visibility atomicity across
the primary and its replicas at OSC-R, however, when a
concurrent query tries to access a replica record version in
precommitted state after Step 5 and before Step 8 (Figure 7),
the access to the record version is postponed until the state
of the record version is finally determined to be either post-
committed or aborted by Step 7 at the primary node and
then informed to the replica node by Step 8.

Figure 7 omitted the transaction abort scenario, but it can
be explained as follows. If the primary transaction aborts
after sending the precommit request to the replica (for ex-
ample, by a failure while writing a commit log to the disk at
Step 6), then the corresponding replica record versions are
marked as aborted by Step 8. And thus, those replica record
versions are ignored by the pending concurrent query. The
overall protocol for reading the replica record versions under
OSC-R is provided by Algorithm 1.

Algorithm 1 Read a replica record version under OSC-R

Require: A query, Q.
Require: A replica record version, V , found by evaluating

the search condition of Q.
1: if V .State = precommitted then
2: Wait until V .State gets updated.
3: end if
4: if V .State = committed AND

V .Timestamp <= Q.Timestamp then
5: return V .Value.
6: else
7: return NULL.
8: end if

One potential drawback of OSC-R compared to 2PC-R is
that the uncommitted changes made by a transaction might
not yet be visible if the same transaction tries to read its
own uncommitted changes at a replica - by the consequence
of asynchronous DML replication. This read-own-write can

be still achieved under OSC-R by assigning monotonically
increasing sequence numbers to the executed statements in
a transaction and then letting the replica-routed read state-
ment wait until the previous statement is applied to the
replica node. Or, more simply, such a read-own-write query
can be routed to the primary node directly by the client
library.

4.2 MVCC-based Online Replica Addition
Figure 9 shows the procedure of adding a new replica on-

line in a transaction-consistent way. It starts with activating
replication logging for all the DMLs occurring at the target
primary table (Step 1). Then, while a consistent snapshot
image of the primary table is being retrieved and applied
to the replica (Step 3), the replication logger captures and
replicates all the newly committed changes (Step 3’).

To allow concurrent DML operations during Step 3, it
is important to perform this phase without relying on any
exclusive lock on the primary table because this operation
can take a long time depending on the size of the table.
For this purpose, we exploit the characteristics of MVCC.
The replica initializer is implemented as a snapshot isolation
transaction [8] that accesses a consistent set of database
record versions as of its acquired snapshot timestamp. In
Figure 9, the transaction timestamp acquired at Step 2 be-
comes the snapshot timestamp of the replica initializer trans-
action. And then, based on the assigned snapshot times-
tamp and the MVCC protocol that is also described in [16],
a consistent set of record versions is retrieved at Step 3.

Note that, as a potential side effect of using the snapshot
isolation transaction for the replica initializer, the MVCC
version space can keep growing during Step 3 in order to
maintain a consistent set of record versions as of the acquired
snapshot timestamp. However, by using the hybrid garbage
collection technique [16] implemented in SAP HANA, the
space overhead at the version space is effectively minimized.

The operation of copying the initial table snapshot (Step
3) and the DML replication for the delta changes (Step 3’)
are performed in parallel, as illustrated in Figure 9. This
parallel processing does not cause any consistency issue be-
cause both Step 3 and Step 3’ follow the record-wise order-
ing scheme based on RVID (record version ID) [13]. RVID
is an unique identifier of a record version in a table. A new
RVID value is assigned when a new record version is cre-
ated. Using the RVID management, before applying a DML
log entry to the replica, the log replayer checks whether the
RVID value of the target replica record equals to the Before-
Update RVID of the propagated DML log entry. If not, the
DML log replay operation is postponed since it means that
an earlier change is not yet applied to the replica. This
RVID-based record-wise ordering is described in more de-
tail in Section 3.3 of [13]. At Step 3’, the delta changes
are asynchronously propagated to the replica and thus the
other concurrent DML transactions do not need to wait for
its change propagation to the replica.

Finally, at Step 4, once Step 3 is completed, the replica
starts accepting new queries after waiting until the pre-
viously generated delta changes are being applied to the
replica - to make the replica state up-to-date. When creating
a lazy-mode replica, the replica can already start accepting
new queries as soon as Step 3 is completed.

3118



12CONFIDENTIAL© 2018 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

1: Activate replication logging for the table

2: Acquire transaction snapshot timestamp

3: Retrieve a table snapshot based on the
snapshot timestamp acquired at the step 2;
and apply it to the replica

3’: On any new change at the primary table,
generate its replication log and apply
to the replica

4: Mark the replica as ACTIVE and then
the replica starts accepting new queries

1 2 3 (copying initial snapshot)

3’ (for the new DMLs incoming during the snapshot copy)

4

Figure 9: MVCC-based online replica creation.

5. EXPERIMENTAL EVALUATION
To evaluate the performance of the proposed architec-

tures, we conduct a number of experiments with a develop-
ment version of SAP HANA. The tested SAP HANA system
is configured as a distributed system which consists of up to
nine database nodes. Each of them has 60 physical CPU
cores (120 logical cores with hyper-threading enabled), 1TB
of main memory and four 10Gbit NICs. They are intercon-
nected by a commodity network within the same local data
center.

5.1 Partitioned Replication for OLTP/OLAP-
mixed Workloads

To show the benefit of asymmetric-partition replication
for mixed OLTP/OLAP workloads, we tested its perfor-
mance with a TPC-CH benchmark, which was initially used
in [20]. The benchmark generates both TPC-C and TPC-H
workloads simultaneously over the same data set consisting
of nine TPC-C tables and three other tables used exclusively
by TPC-H (NATION, REGION, and SUPPLIER). To those tables,
the initial data were populated with 100 warehouses as in
[20].

The test system consists of one primary node and up to
eight replica nodes. At the primary node, all 12 tables are
created and placed without any partitioning. Each of those
12 primary tables creates its replica table. Among them,
eight tables which have Warehouse_ID column create their
replicas as a partitioned form by the Warehouse_ID column.
For the other four tables (the three TPC-H tables and ITEM

table), a full replica table is created for each replica node.
For example, for the ORDERLINE table, we created its replica
with range-partitioned asymmetric replicas using the below
DDL. The number of partitions is set as the the number of
the used replica nodes in each experiment.

CREATE TABLE REP.ORDERLINE LIKE

SRC.ORDERLINE ASYNCHRONOUS REPLICA

PARTITION BY RANGE (Warehouse_ID)

(PARTITION 1 <= VALUES < 26,

PARTITION 26 <= VALUES < 51,

PARTITION 51 <= VALUES < 76,

PARTITION 76 <= VALUES < 101)

AT ’host1:port1’, ’host2:port2’,

’host3:port3’, ’host4:port4’;

TPC-H read-only queries are distributed to the replica
nodes simultaneously, while TPC-C read/write transactions
are directly routed to the primary node. To evenly distribute

0

1

2

3

4

5

6

7

8

1 2 4 8

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of replica partitions

OLTP tps OLAP qps

Figure 10: TPC-CH performance with asymmetric-
partition replication.

the TPC-H queries over the four replica nodes, a query pred-
icate (Warehouse_ID = ?) is added to each of them. The
TPC-C workload is generated by 30 concurrent clients in
total and the TPC-H workload is generated by 90 concur-
rent clients per replica node. Each of the TPC-H clients
repeats execution of the 22 TPC-H queries serially during
the test.

Figure 10 shows the experimental result. The TPC-H
throughput values are normalized by 1-replica TPC-H throu-
ghput. The TPC-C throughput values are normalized by
1-replica TPC-C throughput. As the number of the replica
nodes (and thus the number of the corresponding replica
partitions) increases, the total aggregated processing throu-
ghput of TPC-H (OLAP qps) increases almost scalably. Me-
anwhile, the overhead imposed to the write transaction is
maintained at a minimum, as the TPC-C processing throu-
ghput shows in the result (OLTP tps). Note that TPC-C
throughput does not increase with the increasing number of
the replica nodes in this experiment, because the number
of the primary nodes remains unchanged and the TPC-C
transactions are directed to the primary nodes only.

The plain forms of symmetric replication show nearly the
same results as Figure 10. However, they impose other over-
heads. For example, in a form of symmetric replication, both
the primary and its replica tables can be created as non-
partitioned tables and each replica node can maintain a full
copy of the primary table. Then, such a symmetric replica-
tion configuration requires additional memory consumption
at each replica node and additional network resource con-
sumption between the primary and its replica nodes. As an
alternative under symmetric replication, the primary table
can be partitioned by the same partitioning scheme as its
replica table and then the partitions of the primary table can
be co-located within the same single primary node. How-
ever, this alternative also adds a disadvantage in that the
primary table must be re-partitioned whenever the parti-
tioning scheme of the replica table changes. In the proposed
asymmetric-partition replication, the replica table can be
re-partitioned without necessarily affecting the partitioning
scheme of the corresponding primary table.

5.2 Distributed Secondary Index
To show the benefit of the proposed replication-based dis-

tributed secondary index implementation, we extracted a
real-application table and its involved queries from a real en-
terprise financial application workload [5]. The table called
DFKKOP represents items in contract account documents. Th-

3119



0

5

10

15

20

25

30

8 16 32 64 128

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of clients

LSI DSI

Figure 11: Multi-client scalability of secondary key search
throughput (4 database nodes).

ere are in total 170 columns and its primary key consists of
five columns among them. The table is hash-partitioned on a
column called OPBEL (representing a contract document ID)
which is one of the five primary key columns. The initially
populated table size is about 56GB and it was evenly dis-
tributed across the database nodes by the hash-partitioning
function. The table has a secondary index on a column
called VKONT (representing a contract account ID), which
does not belong to the primary key column set.

The experiment consists of two parts. One is to measure
the improvement at the secondary key search performance
and the other is to measure the overhead incurred at the
write transaction. In both measurements, we compared the
performance of the proposed replication-based distributed
secondary index implementation (DSI) with that of a lo-
cal secondary index implementation (LSI). At LSI, the sec-
ondary index is co-partitioned with the base table by the
same partitioning key, OPBEL. At DSI, the secondary index
is partitioned by the VKONT column.

In DSI, the following DDL will create partitioned and dis-
tributed sub-table replicas that will act as secondary indexes
for the base table (DFKKOP).

CREATE TABLE DFKKOP_REPLICA LIKE

DFKKOP SYNCHRONOUS REPLICA (VKONT)

PARTITION BY HASH (VKONT)

PARTITIONS 4 AT ’host1:port1’, ’host2:port2’,

’host3:port3’, ’host4:port4’;

Note that the secondary index can be also created as a
range-partitioned replica to support range queries. As the
DDL indicates, the replica is created as a ”synchronous”
replica to ensure the atomic transactional visibility with its
source table. Also, only the necessary secondary key column
(VKONT) is stored in the replica together with two internal
columns ($reference_partid$ and $reference_rowid$) th-
at are used for referring to the corresponding base record.

5.2.1 Search Performance
First, we measure the secondary key search performance

with the following secondary key access query chosen from
the captured real-application workload. The query returns
a record for a given contract account ID with the additional
constant predicate for a certain category and status. We
omit the details of the constant predicate because it is spe-
cific to the application semantics and did not affect the ex-
perimental result significantly.

SELECT * FROM DFKKOP WHERE VKONT = ? AND ...;

0

1

2

3

4

5

6

7

2 nodes
32 clients

4 nodes
64 clients

6 nodes
96 clients

8 nodes
128 clients

No
rm

al
ize

d 
th

ro
ug

hp
ut

Number of nodes / clients

LSI DSI

Figure 12: Multi-node scalability of secondary key search
throughput (16 clients per node).

Note that, since the necessary integration at the query
processor for the distributed secondary index was not yet
available at the time of writing this paper, we revise the
test query into two consecutive queries for the DSI exper-
iment as follows. The first query finds one or more refer-
ences to the base records by looking up the replica table
(DFKKOP_REPLICA). The secondary query retrieves the tar-
get base record by giving the $reference_rowid$ value as
its second parameter after finding the target table partition
by giving the retrieved $reference_partid$ value as its first
parameter (PARTITION(?)). $rowid$ (64-bit numeric inte-
ger) denotes a unique identifier of a record within a table.

SELECT $reference_partid$, $reference_rowid$

FROM DFKKOP_REPLICA WHERE VKONT = ?;

SELECT * FROM DFKKOP PARTITION(?)

WHERE $rowid$ = ? AND ...;

Figure 11 shows the multi-client scalability of the sec-
ondary key search performance by varying the number of
clients from 8 to 128. The number of database nodes is
fixed to 4. The query throughput is normalized by that of
the 8-client LSI case.

In the result, DSI shows a scalable throughput with the
increasing number of clients and outperforms LSI signifi-
cantly by factors of 1.5 to 3.1. While the secondary key
access query at DSI involves accessing at most two database
nodes regardless of the total number of the database nodes,
the query at LSI accessed all the database nodes, including
the node where no matching record exists. Considering the
fact that DSI involves two separate queries, it is expected
that the gain would increase further by the right integration
with SQL processor in the future.

Figure 12 shows a multi-node scalability with the number
of clients fixed to 16 per node. The query throughput is
normalized by that of the 2-node LSI case. Similarly to
the previous experiment, DSI scales better than LSI as the
number of the database nodes increases and outperforms
LSI significantly by factors of 2.2 to 2.5. It is worth noting
that LSI exhibited 1.4 to 3.8 times higher CPU usage than
DSI in the experiment.

5.2.2 Write Performance
In the second part of the experiment, we measure the

performance overhead added to the write transaction. For
this purpose, we use the following write transaction that
involves 5 insert statements to the DFKKOP table.

3120



0

2

4

6

8

8 16 32 64 128

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of clients

LSI DSI-2PC DSI-OSC

Figure 13: Multi-client scalability of write transaction
throughput (4 database nodes).

0

1

2

3

4

2 nodes
32 clients

4 nodes
64 clients

6 nodes
96 clients

8 nodes
128 clients

No
rm

al
ize

d 
th

ro
ug

hp
ut

Number of nodes / clients

LSI DSI-2PC DSI-OSC

Figure 14: Multi-node scalability of write transaction
throughput (16 clients per node).

INSERT INTO DFKKOP VALUES ...;

// insert 5 different records

SELECT COUNT(*) FROM DFKKOP WHERE OPBEL = ?;

COMMIT;

To highlight the performance benefit of the DSI implemen-
tation that uses the optimistic synchronous commit proto-
col, we compared three approaches: (1) LSI, (2) DSI with
synchronous trigger and two-phase commit (DSI-2PC), and
(3) DSI with asymmetric-partition replication and the opti-
mistic synchronous commit protocol (DSI-OSC).

Figure 13 and Figure 14 respectively show multi-client
scalability and multi-node scalability of the above presented
write transaction. The throughput in Figure 13 is normal-
ized by that of the 8-client LSI case. The throughput in Fig-
ure 14 is normalized by that of the 2-node LSI case. In Fig-
ure 13, DSI-OSC scales comparably to LSI as the increasing
number of the clients and eventually DSI-OSC outperforms
DSI-2PC significantly. In Figure 14, DSI-OSC again scales
similarly to LSI as the increasing number of the database
nodes and eventually DSI-OSC outperforms DSI-2PC sig-
nificantly.

For more detailed analysis of the write transaction perfor-
mance, we measured the average response time of the DML
and commit operations, as shown in Figure 15 and Figure 16,
respectively. The number of database nodes varies from two
to eight with the number of clients fixed to 16 per node.

Figure 15 shows that the DML response time of DSI-2PC
takes on average 1.9 times longer than that of DSI-OSC. It

0

1

2

3

4

2 nodes
32 clients

4 nodes
64 clients

6 nodes
96 clients

8 nodes
128 clients

No
rm

al
ize

d 
DM

L t
im

e

Number of nodes / clients

LSI DSI-2PC DSI-OSC

Figure 15: Average response time of DML operation.

0

1

2

3

4

5

2 nodes
32 clients

4 nodes
64 clients

6 nodes
96 clients

8 nodes
128 clients

No
rm

al
ize

d 
co

m
m

it 
tim

e
Number of nodes / clients

LSI DSI-2PC DSI-OSC

Figure 16: Average response time of commit operation.

is because the DSI-2PC is implemented based on the syn-
chronous SQL trigger and thus, a DML operation can in-
volve cross-node communication if the target secondary key
index entry is located at a remote node.

Figure 16 shows that LSI shows the response time is short-
ened as expected because it accesses only a single database
node and performs a local commit. Compared to that, while
DSI-2PC shows significantly longer response time than the
LSI, DSI-OSC adds relatively smaller overhead to the trans-
action commit operation. It is because the optimistic syn-
chronous commit enables DSI-OSC to avoid the expensive
two-phase commit. Compared to LSI, DSI-OSC still shows
slightly higher response time because the primary transac-
tion can commit after confirming that all its DML opera-
tions are successfully applied to the in-memory replicas, in
order to ensure atomic transaction visibility as described in
Section 4.

0

0.2

0.4

0.6

0.8

1

1.2

0 15 30 45 60 75 90 105 120 135

No
rm

al
ize

d
th

ro
ug

hp
ut

time (s)

DDL-APR

DDL-Lock

DDL-Lock-Opti

Figure 17: Impact of online repartitioning to TPC-C
throughput.

3121



5.3 Online Table Repartitioning
To show the benefit of the proposed online table repar-

titioning implementation, we compare three alternative ap-
proaches: (1) online table repartitioning based on asymme-
tric-partition replication (DDL-APR); (2) table repartition-
ing with long-duration table lock (DDL-Lock); (3) table
repartitioning with long-duration table lock but a special-
ized optimization (DDL-Lock-Opti). At DDL-Lock, the ex-
clusive table lock is acquired during the entire table repar-
titioning operation. While both DDL-APR and DDL-Lock
are performing MVCC-based record-wise snapshot retrieval,
DDL-Lock-Opti copies the physical full table image at once
by exploiting the fact that there is no other concurrent
DML operation during the table copy operation by the long-
duration table lock acquisition.

To see how those three DDL implementations affect the
other concurrent DML transactions, we perform the on-
line repartitioning DDL while continuously running TPC-C
workload to the same system. The initial TPC-C database
is populated with 100 warehouses and the TPC-C workload
is generated by 30 concurrent clients, consistently with the
experiment of Section 5.1. The online repartitioning DDL
is performed against CUSTOMER table which is updated by
TPC-C Payment and Delivery transactions. CUSTOMER ta-
ble is initially formatted as a non-partitioned table and then
it is partitioned into four range partitions online.

Figure 17 shows the experiment result. The vertical axis
represents the throughput of the TPC-C transactions, nor-
malized by that measured while DDL operation is not yet
involved. In all of the three approaches, the repartitioning
DDL is performed in 30 seconds after the high-load phase
of TPC-C workload starts.

In DDL-Lock and DDL-Lock-Opti, during the DDL exe-
cution, the TPC-C performance dropped to 0 because all the
TPC-C transactions eventually get blocked by the long-term
exclusive table lock acquired by the online re-partitioning
operation. Compared to that, DDL-APR shows almost non-
blocking behavior except small performance drop at two
time points: one when starting the DDL operation (at the
time point 30) and another when completing the DDL op-
eration (at the time point 120). At the two points, the
current implementation at SAP HANA is relying on short-
term instant-duration table lock when acquiring the transac-
tion snapshot timestamp and when transferring the primary
ownership to the new replica. As already explained in Sec-
tion 4.2, the first short-term table lock is removable in the
future by additional implementation.

Remark that the overall elapsed time of DDL-APR in-
creased compared to DDL-Lock or DDL-Lock-Opti. One
reason is that, in DDL-APR, the TPC-C clients keep gen-
erating new DML changes and thus the total amount of
data that needs to be applied to the new table increases
compared to DDL-Lock or DDL-Lock-Opti. In DDL-Lock-
Opti, the overall blocking period is shortened significantly
compared to DDL-Lock by applying the table-level phys-
ical image copy operation. However, this optimization is
applicable only when the exclusive lock is acquired during
the table copy operation. Considering that such a reparti-
tioning DDL operation in the practical systems is typically
performed in the background, it is more important to reduce
the interference to the normal DML transactions rather than
reducing the elapsed time of the DDL operation itself.

6. RELATED WORK

6.1 Asymmetric-Partitioned Replication
The conventional logical replication exploits replication

of logical statements from the primary to its replica sys-
tems, and thus it enables a replica table to be indepen-
dently structured from its primary table. Such logical repli-
cation has been already widely used by academic or indus-
trial systems. However, to the best of our knowledge, none
of those previous works exactly matches with the concept of
the asymmetric-partition replication proposed in this paper.

For example, MySQL allows that a table on the master
can have more or fewer columns than the slave’s copy of
the table. However, in MySQL, ”replication between tables
having different partitioning is generally not supported” [2].
It is also known that the logical replication in MySQL al-
lows the historical cold data of a table is replicated but not
deleted at the replica side any longer. It can be seen as a
special form of asymmetric-partition replication because the
primary table has less data or less partitions than that of its
replica table which holds both of recent (hot) and historical
(cold) data. However, such a configuration is enabled simply
by turning off the replication log generation for a particular
database session that executes the delete operations for the
historical data. It does not match with the generic form of
the asymmetric-partition replication proposed by our paper.

[18] proposed another type of logical replication, called
BatchDB. OLTP and OLAP replicas can have different stor-
age layouts (row oriented format for OLTP, column ori-
ented format for OLAP) to efficiently handle hybrid OLTP
and OLAP workloads. In addition, it focuses only on lazy
(asynchronous) replication. Compared to [18], our paper ex-
plores how logical replication can evolve into the concept of
asymmetric-partition replication and how synchronous repli-
cation can be further optimized without sacrificing transac-
tional consistency.

6.2 Distributed Secondary Index
The technique of implementing distributed secondary in-

dex by using a separate system table is not new. Our con-
tribution is not about using a separate table for the imple-
mentation of distributed secondary index, but about using
an advanced form of replication engine for economical and
efficient implementation of distributed secondary index for a
practical commercial DBMS. In addition, we addressed the
challenge of the node-to-node write synchronization over-
head by proposing the optimistic synchronous commit pro-
tocol without sacrificing any transactional consistency, as
shown in Section 4.1.

For example, [12] discusses two secondary index approa-
ches in the context of distributed NoSQL key-value store.
One is to store an inverted list in a separate system table
and another to co-locate data and its local secondary in-
dex. The first approach is equivalent to what we presented
as distributed secondary index and the second to local sec-
ondary index in Section 3.3. [12] shares the same conclusion
with our study: the first table-based approach incurs higher
communication overhead between nodes on write operations
while the second co-location approach incurs the develop-
ment cost because it has to be implemented from scratch.
However, while [12] does not further explore how the write
overhead is addressed, our work proposes a novel optimistic
synchronous replication protocol as in Section 4.1.

3122



Teradata [1] supports a special form of a table-based dis-
tributed secondary index implementation. It co-locates sec-
ondary index for the attributes with non-unique values, wh-
ile using a table-based approach for the attributes that have
unique values - via automatic hashing of the attribute val-
ues. However, by the nature of the hash-based partitioning
used for the distributed secondary index, operations such as
range searches need to be performed in all the nodes. Com-
pared to that, our work allows the secondary index table to
be partitioned by any general partitioning scheme including
hash and range schemes. In addition, from [1], we could
not find explicit description on how it addresses the node-
to-node write synchronization overhead.

Both DynamoDB [3] and Megastore [7] support distribu-
ted secondary index. However, both rely on ”asynchronous”
change propagation to the remote secondary index with sac-
rificing the transactional consistency. Under such an asyn-
chronous propagation, the query on the secondary index
could return result that are not up to date. It imposes sig-
nificant burden to application programmer since they have
to anticipate and handle such a sporadic stale query result.

Google F1 [23] provides a synchronous secondary index
that uses the two-phase commit for transactional consis-
tency. While its write transaction performance will be bound
by the two-phase commit overhead, our proposed optimistic
synchronous commit protocol reduces the commit overhead
by exploiting the fact that the secondary index is a data
structure derivable and recoverable from the base table data.

ScyllaDB [6] exploits the materialized view to support a
secondary index. For each secondary index, it creates a ma-
terialized view that has the indexed column as the partition-
ing key. Our work does not exclude the possibility of using
materialized view instead of replication for maintaining the
distributed secondary index. However, our proposed opti-
mization such as optimistic synchronous commit will still
hold for the implementation based on materialized view.

6.3 Online DDL
Many cloud DBMSs exploit replication for the purpose

of online upgrades or online database migration [19]. Com-
pared to those approaches, we propose exploiting table repli-
cation engine for online DDL operations that occur for a
particular table.

For online DDL or online schema change operations, var-
ious techniques are already known. For example, Google F1
[21] proposes a new protocol for online and asynchronous
schema evolution. In order to guarantee the database consis-
tency, it transforms the schema change operations into mul-
tiple steps of consistency-preserving schema changes. PRIS-
M/PRISM++ [11, 10] presents a special language for schema
change operations, tools to evaluate the effect of changes,
and a query rewriting method. Controvol [22] develops a
framework for controlled schema changes for NoSQL appli-
cations.

In contrast to those prior works, we showed that the on-
line DDL can be implemented economically and efficiently
be extending a replication engine and utilizing the charac-
teristics of MVCC.

7. DISCUSSION AND FUTURE WORK
We expect that our work can be further extended by con-

tributions from academia in the following aspects. First, it
is desirable in practice to automate the decision of which
tables need to be replicated for a given workload; how many
replicas are needed; and how the replica table needs to be
partitioned. Since replication itself needs to pay a cost for
additional resource consumption, it is not always trivial to
make a decision that maximizes the additional value over
the paid cost. Second, the presented optimistic synchronous
commit protocol can be further generalized to apply to other
scenarios that require transactional consistency between the
base data and its derived remote data, beyond the scope of
the replication. For example, tables that require transac-
tional consistency with each other by triggers or cascaded-
update foreign-key constraints will present another practical
use case. Third, the proposed asymmetric-partition replica-
tion and the optimistic synchronous commit protocol can
be extended to support multi-master replication, for exam-
ple by adding a conflict detection and resolution mechanism
among the changes made at different master replica nodes.

8. CONCLUSION
In this paper, we presented a novel concept of asymmetric-

partition replication engine as a foundation to serve three
important practical use cases in distributed database sys-
tems. In the asymmetric-partition replication, replicas of a
table can be independently partitioned regardless of whether
or how its primary copy is partitioned. The three practical
use cases include (1) scaling out OLTP/OLAP-mixed work-
loads with partitioned replicas, (2) efficiently maintaining a
distributed secondary index for a partitioned table, and (3)
efficient implementation of the online re-partitioning opera-
tion. In addition, to address the challenge in node-to-node
write synchronization overhead in asymmetric-partition re-
plication, we proposed optimistic synchronous commit by
fully exploiting the fact that a replica is a derivable and
reconstructable data structure from the corresponding pri-
mary table data. The proposed asymmetric-partition repli-
cation and its optimizations are incorporated in SAP HANA
in-memory database system. Through extensive experimen-
ts, we demonstrated the significant benefits that the pro-
posed replication engine brings to those three practical use
cases.

Overall, we believe that our work revealed that the data-
base replication can serve even more practical use cases,
beyond the traditional use cases, for modern distributed
database systems.

9. ACKNOWLEDGMENTS
The authors would like to thank the entire SAP HANA

development team for providing the solid foundation for the
work presented in this paper. We would especially like to
express our appreciation to Eunsang Kim, Hyoung Jun Na,
Chang Gyoo Park, Kyungyul Park, Deok Koo Kim, Jungsu
Lee, Joo Yeon Lee and Carsten Mueller. In addition, the
authors would like to sincerely thank anonymous VLDB
reviewers who provided invaluable comments and sugges-
tions. Seongyun Ko and Wook-Shin Han are partly sup-
ported by the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MSIT) (No. NRF-
2017R1A2B3007116).

3123



10. REFERENCES
[1] Introduction to teradata.

https://www.teradatapoint.com/teradata/

secondary-index-in-teradata.htm.

[2] Mysql: Replication and partitioning.
https://dev.mysql.com/doc/refman/8.0/en/

replication-features-partitioning.html, 2012.

[3] Using global secondary indexes in dynamodb.
https://docs.aws.amazon.com/amazondynamodb/

latest/developerguide/GSI.html, 2012.

[4] Sap hana sql and system views reference 2.0 sps 03.
https://help.sap.com/viewer/product/SAP_HANA_

PLATFORM/2.0.03, 2018.

[5] Sap s/4hana. https://www.sap.com/products/
s4hana-erp/features.html, 2019.

[6] Scylladb. https://www.scylladb.com/, 2019.

[7] J. Baker, C. Bond, J. C. Corbett, J. Furman,
A. Khorlin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd,
and V. Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services. In
CIDR, volume 11, pages 223–234, 2011.

[8] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ansi sql
isolation levels. In ACM SIGMOD Record, volume 24,
pages 1–10. ACM, 1995.

[9] C. Binnig, S. Hildenbrand, F. Färber, D. Kossmann,
J. Lee, and N. May. Distributed snapshot isolation:
global transactions pay globally, local transactions pay
locally. The VLDB Journal-The International Journal
on Very Large Data Bases, 23(6):987–1011, 2014.

[10] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo.
Automating the database schema evolution process.
The VLDB Journal-The International Journal on
Very Large Data Bases, 22(1):73–98, 2013.

[11] C. A. Curino, H. J. Moon, and C. Zaniolo. Graceful
database schema evolution: The prism workbench.
Proc. VLDB Endow., 1(1):761772, Aug. 2008.

[12] J. V. Dsilva, R. Ruiz-Carrillo, C. Yu, M. Y. Ahmad,
and B. Kemme. Secondary indexing techniques for
key-value stores: Two rings to rule them all. In
International Workshop On Design, Optimization,
Languages and Analytical Processing of Big Data
(DOLAP), 2017.

[13] J. Lee, W.-S. Han, H. J. Na, C. G. Park, K. H. Kim,
D. H. Kim, J. Y. Lee, S. K. Cha, and S. Moon.
Parallel replication across formats for scaling out
mixed oltp/olap workloads in main-memory databases.
The VLDB Journal-The International Journal on
Very Large Data Bases, 27(3):421–444, 2018.

[14] J. Lee, Y. S. Kwon, F. Färber, M. Muehle, C. Lee,

C. Bensberg, J. Y. Lee, A. H. Lee, and W. Lehner.
Sap hana distributed in-memory database system:
Transaction, session, and metadata management. In
Data Engineering (ICDE), 2013 IEEE 29th
International Conference on, pages 1165–1173. IEEE,
2013.

[15] J. Lee, S. Moon, K. H. Kim, D. H. Kim, S. K. Cha,
and W.-S. Han. Parallel replication across formats in
sap hana for scaling out mixed oltp/olap workloads.
Proc. VLDB Endow., 10(12):15981609, Aug. 2017.

[16] J. Lee, H. Shin, C. G. Park, S. Ko, J. Noh, Y. Chuh,
W. Stephan, and W.-S. Han. Hybrid garbage
collection for multi-version concurrency control in sap
hana. In Proceedings of the 2016 International
Conference on Management of Data, pages 1307–1318.
ACM, 2016.

[17] Y. Lu, X. Yu, and S. Madden. Star: Scaling
transactions through asymmetric replication. Proc.
VLDB Endow., 12(11):13161329, July 2019.

[18] D. Makreshanski, J. Giceva, C. Barthels, and
G. Alonso. Batchdb: Efficient isolated execution of
hybrid oltp+ olap workloads for interactive
applications. In Proceedings of the 2017 ACM
International Conference on Management of Data,
pages 37–50. ACM, 2017.

[19] T. Mishima and Y. Fujiwara. Madeus: database live
migration middleware under heavy workloads for
cloud environment. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of
Data, pages 315–329, 2015.

[20] I. Psaroudakis, F. Wolf, N. May, T. Neumann,
A. Böhm, A. Ailamaki, and K.-U. Sattler. Scaling up
mixed workloads: a battle of data freshness, flexibility,
and scheduling. In Technology Conference on
Performance Evaluation and Benchmarking, pages
97–112. Springer, 2014.

[21] I. Rae, E. Rollins, J. Shute, S. Sodhi, and
R. Vingralek. Online, asynchronous schema change in
f1. Proc. VLDB Endow., 6(11):10451056, Aug. 2013.

[22] S. Scherzinger, T. Cerqueus, and E. C. de Almeida.
Controvol: A framework for controlled schema
evolution in nosql application development. In Data
Engineering (ICDE), 2015 IEEE 31st International
Conference on, pages 1464–1467. IEEE, 2015.

[23] J. Shute, R. Vingralek, B. Samwel, B. Handy,
C. Whipkey, E. Rollins, M. Oancea, K. Littlefield,
D. Menestrina, S. Ellner, J. Cieslewicz, I. Rae,
T. Stancescu, and H. Apte. F1: A distributed sql
database that scales. Proc. VLDB Endow.,
6(11):10681079, Aug. 2013.

3124

https://www.teradatapoint.com/teradata/secondary-index-in-teradata.htm
https://www.teradatapoint.com/teradata/secondary-index-in-teradata.htm
https://dev.mysql.com/doc/refman/8.0/en/replication-features-partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/replication-features-partitioning.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://help.sap.com/viewer/product/SAP_HANA_PLATFORM/2.0.03
https://help.sap.com/viewer/product/SAP_HANA_PLATFORM/2.0.03
https://www.sap.com/products/s4hana-erp/features.html
https://www.sap.com/products/s4hana-erp/features.html
https://www.scylladb.com/

	Introduction
	Independently Partitioned Replica
	Distributed Secondary Index
	Online Table Re-partitioning
	Contribution and Paper Organization

	Background
	SAP HANA Distributed Database System Architecture
	HANA Table Replication

	Asymmetric-Partition Replication and its Practical Use Cases
	Asymmetric-Partition Replication
	Use Case 1: Partitioned Replication for scaling out mixed OLTP/OLAP Workloads
	Use Case 2: Scalable Distributed Secondary Index for Partitioned Tables
	Use Case 3: Online Table Re-partitioning

	Optimizations
	Optimistic Synchronous Commit Protocol
	MVCC-based Online Replica Addition

	Experimental Evaluation
	Partitioned Replication for OLTP/OLAP-mixed Workloads
	Distributed Secondary Index
	Search Performance
	Write Performance

	Online Table Repartitioning

	Related Work
	Asymmetric-Partitioned Replication
	Distributed Secondary Index
	Online DDL

	Discussion and Future Work
	Conclusion
	Acknowledgments
	References

