
A system design for elastically scaling transaction
processing engines in virtualized servers

Angelos-Christos Anadiotis‡, Raja Appuswamy∗, Anastasia Ailamaki†,
Ilan Bronshtein/, Hillel Avni/, David Dominguez-Sal., Shay Goikhman/, Eliezer Levy/

‡ Ecole Polytechnique & EPFL, ∗ EURECOM, † EPFL & RAW Labs
/ Huawei Tel Aviv Research Center, . Huawei Munich Research Center

{name.surname}@{‡polytechnique.edu, ∗eurecom.fr, †epfl.ch, /.huawei.com}

ABSTRACT
Online Transaction Processing (OLTP) deployments are mi-
grating from on-premise to cloud settings in order to exploit
the elasticity of cloud infrastructure which allows them to
adapt to workload variations. However, cloud adaptation
comes at the cost of redesigning the engine, which has led
to the introduction of several, new, cloud-based transaction
processing systems mainly focusing on: (i) the transaction
coordination protocol, (ii) the data partitioning strategy,
and, (iii) the resource isolation across multiple tenants. As a
result, standalone OLTP engines cannot be easily deployed
with an elastic setting in the cloud and they need to migrate
to another, specialized deployment.

In this paper, we focus on workload variations that can
be addressed by modern multi-socket, multi-core servers and
we present a system design for providing fine-grained elastic-
ity to multi-tenant, scale-up OLTP deployments. We intro-
duce novel components to the virtualization software stack
that enable on-demand addition and removal of computing
and memory resources. We provide a bi-directional, low-
overhead communication stack between the virtual machine
and the hypervisor, which allows the former to adapt to
variations coming both from the workload and the resource
availability. We show that our system achieves NUMA-
aware, millisecond-level, stateful and fine-grained elasticity,
while it is not intrusive to the design of state-of-the-art, in-
memory OLTP engines. We evaluate our system through
novel use cases demonstrating that scale-up elasticity in-
creases resource utilization, while allowing tenants to pay
for actual use of resources and not just their reservation.

PVLDB Reference Format:
Angelos Christos Anadiotis, Raja Appuswamy, Anastasia Aila-
maki, Ilan Bronshtein, Hillel Avni, David Dominguez-Sal, Shay
Goikhman, Eliezer Levy. A system design for elastically scaling
transaction processing engines in virtualized servers. PVLDB,
13(12): 3085-3098, 2020.
DOI: https://doi.org/10.14778/3415478.3415536

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415536

1. INTRODUCTION
The past few years have witnessed a growth in the popu-

larity of cloud-hosted Online Transaction Processing (OLTP)
engines. Today, both traditional enterprise applications and
modern web services increasingly use OLTP engines as trans-
actionally consistent storage back-ends. In addition to be-
ing able to provide with high throughput and low latency
for application transactions, these OLTP engines also have
to provide resilience to unpredictable variations in demand
from the application workloads. Such variations are a norm,
rather than an exception, in emerging application workloads
where factors like skew due to few popular records, diur-
nal access patterns, and hockey-stick effect due to sudden
increase in popularity of an application, result in sudden,
unpredictable load spikes that OLTP engines must handle
without scalability issues [9].

Traditionally, on-premise OLTP engines dealt with load
spikes by over provisioning hardware resources. However,
this approach has three problems. First, it leaves a substan-
tial amount of resources underutilized in periods of normal
activity. Second, it may not be possible in many cases to
predict the peak of a load spike and, hence, over-provisioning
will fail to meet performance requirements under excessively
high loads. Third, upgrading a database installation in the
on-premise case often requires a cumbersome forklift up-
grade with long outages due to data reorganization. The
growing popularity of public/private cloud infrastructures
for hosting enterprise databases, has made it feasible today
to right-provision computational resources and dynamically
provision additional resources on the fly. Such elasticity in
resource provisioning is often touted as one of the major
benefits of migrating on-premise installations to the cloud.

Lately, several elastic OLTP engines exploit elasticity to
deal with unpredictable load spikes in their workloads. A
big part of existing elastic approaches focus on distributed,
scale-out, shared-nothing OLTP engines, where elasticity
is implemented through dynamic data redistribution. This
is achieved by monitoring data access patterns, identifying
an optimal partitioning of data across nodes in a shared-
nothing cluster, and perform background data reorganiza-
tion without any application down time [14, 35, 39]. By do-
ing so, these OLTP engines can effectively meet load spikes
in the workload by relying on cloud infrastructure elasticity
to dynamically perform resource allocation and data migra-
tion in tandem. Other approaches addressing VM placement
and migration, and query operator placement for cloud data

3085



analytics [20, 21, 26, 28], do not consider the special require-
ments of an OLTP engine which needs to maintain its state
consistent, while meeting its performance guarantees.

Another design approach for cloud-hosted OLTP engines
is to enable multi-tenancy from within the database, effec-
tively offering database-as-a-service. AzureSQL, which is
based on the SQLVM research prototype [15, 16, 27], and
AWS Aurora [40, 41] are two representative examples in
this category. These engines introduce a novel design, which
shifts the standard OLTP engine architecture and focuses on
fine-grained resource isolation across tenants as well as on
availability and fault-tolerance, offered at cloud-scale. How-
ever, following this approach requires tenants to switch from
their own standalone engine deployment to a different one,
which is hosted by the cloud provider.

As prior work focuses either on the challenges of elasti-
cally scaling out OLTP or on new elastic database designs,
it fails to take into account two important aspects of the
cloud infrastructure and the application workloads. On the
infrastructure front, cloud providers have started offering
more “beefier” hosted instances that offer a way to scale-up
services instead of scaling out using multi-socket multi-core
servers. For instance, Amazon EC2 offers instances pack-
ing up to 488 vCPUs and 12TB of DRAM per instance.
On the application front, it is well-known that most OLTP
installations comfortably fit in the memory of a single large-
memory server [24, 34]. Several OLTP engines have been
designed based on this argument to first scale-up on shared-
everything servers before scaling out to a shared-nothing
cluster. Over the past few years, such shared-everything
OLTP engines are also migrating to the cloud and are in-
creasingly being deployed on scale-up cloud instances. For
instance, SAP HANA on EC2 can run on servers that con-
tain up to 488 vCPUs and 24TB of DRAM [6].

As modern multi-socket servers transition from multi-core
to many-core setups [3, 4, 5], cloud instances that offer sev-
eral hundreds of CPUs are available for deploying shared-
everything OLTP installations. Achieving elasticity in such
a scale-up scenario is a different problem than the scale-
out case. First, in a scale-up scenario, all data are stored
in globally-accessible, cache-coherent shared memory. Thus,
the issues of data partitioning and migration that play a cru-
cial role in scale-out elasticity are not relevant in the scale-up
context. Second, the granularity at which resources are al-
located in the scale-out scenario is an instance with multiple
cores. Expanding an OLTP installation is done by starting
the engine on the new instance, repartitioning data as nec-
essary, and modifying the distributed transaction execution
machinery to redirect transactions to the new instance. In
the scale-up context, resource allocation can happen at a
much finer granularity of a core or a socket. However, to ex-
ploit such flexibility, an OLTP engine should be able to react
to dynamic changes in the underlying resource availability.
While prior work focuses on elasticity in either a scale-out or
a multi-tenant databases context, there has been no study,
to our knowledge, that targets such scale-up scenarios.

In this paper, we present a system design providing fine-
grained elasticity for shared-everything, scale-up OLTP sys-
tems deployed in virtualized multi-socket, multi-core servers.
Our design spans through the whole virtualization software
stack and introduces novel components in the hypervisor
and the virtual machine (VM), which enable the dynamic
addition and removal of computing and memory resources.

We introduce two-way communication protocols between
the hypervisor (host) and the VM (guest), which enable
guest applications to request resources from the hypervisor,
and vice versa. We provide mechanisms guaranteeing com-
pliance of the host and the guest to resource allocation and
usage. We evaluate our system through novel and practical
use cases that outline the benefits of scale-up elasticity in
OLTP engines and can be used as a basis for more complex
ones. In summary, we make the following contributions:

• We show that our design is non-intrusive to the cur-
rent state-of-the-art in-memory OLTP engines, which
makes it generalizable to other stateful cloud applica-
tions with an elastic thread and memory pool.

• We demonstrate that our system achieves millisecond-
level, NUMA-aware, stateful, and fine-grained com-
puting and memory elasticity allowing the fast reac-
tion of the application to changes in the workload and
in the availability of resources.

• We introduce a novel spot instance model which in-
creases the resource utilization on large, virtualized
servers, while allowing tenants to pay for the actual
use of resources and not just for their reservation.

• We show that our approach, albeit more generic, does
not impose overheads compared to specialized, mul-
titenant databases, whereas it eliminates distributed
transaction execution overheads that cause at least 8x
performance degradation in our experiments.

2. BACKGROUND AND RELATED WORK
Our system focuses on several aspects of cloud-hosted

OLTP engines. First, it provides an efficient solution for
cloud deployments, offering elasticity and resource isolation.
Second, it leverages this elasticity in order to provide an end-
to-end adaptive system for scale-up servers. In this section,
we present related work around these topics and we discuss
the difference with our approach.

Resource isolation. SQLVM [27] isolates performance
across tenants for Database as a Service applications. It fo-
cuses on fine-grained resource isolation, whereas it includes
a telemetry component, which monitors the resource alloca-
tion and scheduling for each tenant to make sure that they
meet the tenants’ requirements. This design is leveraged in
the context of a full system in [16] which focuses on per-
formance isolation of CPU resources. This system achieves
fine-grained isolation, where each tenant can take a fraction
of the CPU time. Based on this feature, the system also
provides dynamic resource scheduling, which can be adapted
to the dynamics of the workload. This last point is further
elaborated in [15], where the authors exploit the database
telemetry infrastructure to devise efficient adaptive resource
allocation policies. In addition, the system enables tenants
to reason about the resources that they will use and the
price that they will pay based on the performance of the
engine, rather than the resources that they will use.

This approach focuses on fine-grained isolation in a multi-
tenant database setting. Instead, our system delegates this
task to the virtualization infrastructure, and focuses on the
end-to-end design of a generic system, including both the
VM where the database is running and the hypervisor. This
way, the OLTP engine can be deployed on the same scale-up
server with other applications that are based on our design.

3086



Elastic Scale-out: E-store [39] and P-Store [38] build
on H-Store [23] and provide an end-to-end design for elas-
tic scale-out OLTP engines. Since scale-out systems mostly
suffer from distributed transactions and load imbalance, E-
store provides a repartitioning scheme which adapts data
placement to the dynamic characteristics of the workload.
Instead, P-Store predicts the workload patterns to adapt
the resource allocation before the workload changes.

Accordion [35] provides elasticity through partitioning and
minimizes data movement through dynamic partition place-
ment. Accordion implements a server capacity estimator
which monitors the bottlenecks on each server and uses
this information to adapt its partitioning and achieve load
balancing. ElasTras [14] packs small tenants together and
scales out large tenants across servers. ElasTras achieves
load balancing through tenant migration with tenants mov-
ing from the most to the least busy nodes. Tenant migration
is supported through Albatross [17] which enables the seam-
less transfer of the database state and caches to the desti-
nation server. In Zephyr [19], the database migrates to new
nodes without any service disruption by making use of both
active instances: the one already running and the one that
started after migration. However, this system comes with
the cost of making the index structures immutable during
the migration process. Slacker [11] migrates the database
to a different machine without any downtime and through
an automated interface which does not require much human
intervention. It performs the migration with minimum pro-
cessing overhead to avoid interference with other tenants.

The above systems focus on data repartitioning and com-
puting migration. However, apart from their complexity,
they often depend on workload properties, like partition-
ability, whereas from some point on, they pay the overhead
of moving data over the network inside the data center. Es-
pecially in case the changes in the workload are short-lived,
their reconfiguration overhead becomes more significant. On
the other hand, our approach is more suitable for such cases,
since it can reconfigure the system with minimal overheads.

3. DESIGN AND IMPLEMENTATION
Scale-up elasticity addresses workload variations by dis-

tributing resources to VMs deployed on a single server [12,
37]. Resource allocation decisions are performed by a Re-
source Manager following scheduling policies which assign
resources based on workload requirements and Service Level
Agreements (SLAs) of each VM. Accordingly, resources are
moved across VMs at execution time and to support this, a
virtualization infrastructure requires: (i) a two-way commu-
nication channel between the guest applications and the re-
source manager, (ii) separation of the resources that can be
removed from the VM from the ones that are statically allo-
cated to it, and, (iii) ability to add and remove resources dy-
namically at runtime at three different levels, namely guest
application, guest operating system, and hypervisor. To ad-
dress the above requirements, we designed a system that
cuts vertically the virtualization software stack.

We focus on computing (CPU) and memory resources,
since they are the most commonly used ones and have a sig-
nificant impact on the performance of OLTP engines. Hy-
pervisors like QEMU and vSphere, allow CPUs and memory
to be hotplugged into VMs dynamically. However, this func-
tionality is either available via external tools as it is intended

Figure 1: System architecture

to be an out-of-band operation that will be manually per-
formed by an administrator [2], or does not involve the guest
operating system which needs to be aware of the resources
that have been hotplugged, in order to expose specialized
control over them to the applications [1, 7, 37]. As a result,
if the OLTP engine has to release specific memory blocks
and CPUs and pass them to another tenant, it has no in-
formation about which part of its memory and worker pool
corresponds to the memory and CPUs to be released, since
such information is not exposed to the guest applications.

Figure 1 depicts the architecture of our elastic scale-up
system which has been designed to meet the above require-
ments of cloud-hosted OLTP engines. In our design, we
have introduced novel components in both the host and the
guest sides of the virtualization software stack, indicated
with dark color. The host side includes a modified version
of QEMU hypervisor that provides support for dynamic ad-
dition and removal of CPUs and memory to VMs. We have
extended the host–guest interface of QEMU to provide an
API that can be used by OLTP engines running within VMs
to poll for changes in the availability of resources, and to
make explicit requests for addition or removal of CPUs and
memory. On the guest side, the VM includes Trireme, an in-
memory OLTP engine which can dynamically expand and
shrink based on changes in the available resources. Trireme
uses the VM Monitor which is responsible for collecting sys-
tem and application level statistics. Finally, the VM also
includes the Host Monitor which monitors the resource avail-
ability from the host. In the rest of this Section, we describe
how these modules are used to provide scale-up elasticity.

We have chosen widely used and open source software
modules, as this allows us to integrate our system design
in GaussDB [10], which is deployed in Huawei Cloud, to
provide scale-up elasticity. This allows us to take advantage
of the multi-socket, virtualized scale-up Huawei servers.

3.1 Host–Guest Communication
The resources that can be assigned to each VM are main-

tained by the Resource Manager (RM). The RM has to com-
municate with all the VMs to receive requests and send noti-
fications for changes in resource availability. This is achieved
by virtualizing it as a Virtual Hotplug Device which is im-

3087



Figure 2: Communication protocols

plemented as a character device inside the guest OS. This
device is triggered through ioctl calls that are handled by
the Guest Hotplug Driver. The latter communicates with
the Host Hotplug Driver leveraging virtio [32] which en-
ables asynchronous host–guest communication through a set
of ring buffers. Finally, the Host Hotplug Driver triggers the
RM according to the request. Accordingly, the final decision
on the resources requested by a VM is performed individu-
ally by every application, based on the expected benefit of
the resources to the application performance.

Communication between the guest and the host supports
three operations: (i) dynamically add (hotplug) CPUs/ mem-
ory, (ii) dynamically remove (hotunplug) CPUs/memory, and,
(iii) poll for changes in the availability of CPUs/memory.
As shown on the upper side of Figure 2, the hotplug device
acts as a proxy between applications running inside the VM
userspace and the hypervisor. Depending on the type of
resource, the protocol is given on the table of Figure 2.

The CPU hotplug request includes the number of CPUs,
the associated NUMA node, and a flag indicating whether
HyperThreads are allowed. The hotplug device forwards
this request to the hypervisor which replies back with a list
of CPUs added to the VM and a HyperThread indicator for
each one of them. The application receives a response with
the list of the CPU ids as they have been associated by the
guest OS. This list does not necessarily contain the same
ids as the one received by the hypervisor, since the guest
OS may use different numbering than the hypervisor. The
same holds for the NUMA node as well and for this reason,
they are both indicated with the hv prefix in the communi-
cation protocol with the hypervisor. The hotunplug request
issued by an application includes the id of the CPU to be
removed from the VM. The hotplug device forwards the re-
quest to the hypervisor which replies with a code indicating
success or reason of failure and the application is notified
accordingly. The poll request issued typically by the Host
Monitor indicates that it expects updates on the availability
of CPUs. The hypervisor replies to that request with a code
indicating whether the VM should expand or shrink and if
the given CPUs correspond to HyperThreads, the number of
CPUs, and the NUMA node that they are associated with.
The application receives this response from the hypervisor
and decides whether to perform a request to hotplug or to
hotunplug the CPUs listed in the response.

Similarly, the memory hotplug request includes the size
and the desired NUMA node. The Guest Hotplug Driver
forwards this request to the hypervisor which replies back
with a list of the memory devices added to the guest OS and
their total size. The application in turn receives a virtual
memory address that it can use. To hotunplug memory,
the applications send the address that the memory to be
removed starts and its size. The guest OS resolves the ad-
dress and finds the corresponding memory devices which are
passed to its request to the hypervisor. The hypervisor re-
turns a code indicating whether the memory devices have
been removed and the application is notified by the guest
OS with a success or failure notification. Finally, the poll
request from the userspace indicates that it expects updates
on the memory availability. This request is forwarded to the
hypervisor by the guest OS. The response of the hypervisor
includes a code indicating whether memory can be added
or it should be removed, its size and the associated NUMA
node. If this is a request to remove memory, the guest OS
replies with the memory address and its size that the appli-
cation should remove. Otherwise, if this is a request to add
memory, the guest OS replies with the NUMA node that
the memory is available and its size, so that applications
can perform the corresponding request.

3.2 CPU and Memory Hotplug
The natural incentive for a VM is to expand as much as

possible. On the other hand, the cloud provider typically
gains more from hosting several tenants instead of provid-
ing more resources to a single one. Therefore, an elastic
scale-up system should ensure that the resources of a VM
cannot go either above or below a given threshold. More-
over, the cloud provider needs to be able to force the VM
to shrink, especially when the VM is a spot instance, and
the hotplug infrastructure needs to enforce shrinking. Fi-
nally, as it has been well-investigated, the memory topology
of a multi-socket, multi-core server has a significant impact
on the performance of the OLTP engine [25, 29]. Hence,
it should be left on the OLTP engine to decide the NUMA
node that hotplugged CPUs and memory should belong to.

In our system, the Guest Hotplug Driver keeps all infor-
mation on the available CPUs and memory. For each CPU,
this information includes its id, NUMA node, and if it is
a HyperThread. For each memory block, this information
includes its id, size and NUMA node. We rely on the native
OS device data structures to represent hotplugged CPUs
and memory blocks and we extend them with further in-
formation on their mapping with the applications and the
hypervisor. The CPUs and the memory blocks that have
been initially allocated to the VM are kept in the startup
set and the ones that have been hotplugged are kept in the
hotplug set. This separation is used by the hotplug device to
block any requests to remove resources that have not been
hotplugged. The startup set is determined by the driver at
boot time and remains constant throughout the VM lifetime.

3.2.1 CPU Hotplug
When an application sends a CPU hotplug request to the

hotplug device, the Guest Hotplug Driver forwards it to the
hypervisor. Upon a successful hotplug, the hypervisor re-
turns the CPU ids and their NUMA node. The Guest Hot-
plug Driver then makes a call to the CPU hotplug infrastruc-
ture of the Linux kernel and boots the added CPUs. Finally,

3088



for each CPU, it adds their guest id in the hotplug set and
associates it with the id sent by the hypervisor. When an
application sends a hotunplug request for a specific CPU id,
the Guest Hotplug Driver first makes sure that the CPU
belongs to the hotplug set. In this case, it first requests the
Linux kernel to shut down the CPU, then it retrieves the as-
sociated CPU id that was sent by the hypervisor and sends
the hotunplug request to the hypervisor with this id.

On the host, similar information is kept by the Resource
Manager (RM) for each VM, which further keeps a pool of
CPUs that can be hotplugged to a VM. We refer to this pool
of CPUs as the available hotplug set. CPUs in the available
hotplug set may be shared across VMs, in case they are spot
instances, or they may be statically associated to a specific
VM. Therefore, the availability of these CPUs depends on
the SLAs between the users and the cloud providers and the
RM implements policies to comply with these SLAs.

When the Host Hotplug Driver receives a request to hot-
plug CPUs of a NUMA node, it retrieves from the RM a
set of host CPUs that are available to the requesting VM
and match its requirements. Then, it issues a request to the
QEMU hotplug infrastructure to add CPUs of the requested
NUMA node to the VM. QEMU starts a new thread for each
CPU and assigns it to the VM, enabling the latter to pass
instructions to the CPUs. Then the Host Hotplug Driver
affinitizes the newly created threads to the hotplugged CPUs
and adds them to a shielded set dedicated to that VM so
that the OS does not schedule any threads on them in the
future. Finally, the Host Hotplug Driver generates a ran-
dom id for each hotplugged CPU, maps it to the physical
CPU id, and passes it to the VM. In case of failure the corre-
sponding error code is returned with an empty set of CPUs.
Failures can happen due to lack of available CPUs for that
VM on the NUMA node it requested, an SLA violation, or
a hardware failure of the requested CPU.

Accordingly, when the Host Hotplug Driver receives a re-
quest from a VM to hotunplug a set of specific CPUs, it first
retrieves their host ids and then requests QEMU to use its
hotplug infrastructure to remove them from the VM. Finally,
the Host Hotplug Driver removes the CPUs from the shield
and notifies the RM that they are available again. The RM,
then, places them in the available hotplug set again. How-
ever, requests to hotunplug CPUs may also come from the
RM, in order to enforce SLA conformance. The most typ-
ical case is that the VM is a spot instance and it has to
remove some of its CPUs so that they are given to another
VM. Even though the VM will be notified through the Host
Monitor that it has to remove a set of CPUs, the application
using them may either not be willing to release them, or sim-
ply crash and not issue any requests to hotunplug resources.
For this reason, the RM issues a timeout to each hotunplug
request to the VMs. In case the VMs have not issued an ex-
plicit request for hotunplug until that timeout has passed,
the RM issues a request to the Host Hotplug Driver to re-
move the corresponding CPUs and they are force removed
from the VM as described above.

3.2.2 Memory Hotplug
Memory hotplug is performed similar to CPU hotplug and

therefore the workflow is the same as the one described for
the CPU in terms of adding and removing memory banks
to/from the VM. However, there is a difference in the way
that memory becomes available to the applications. Specif-

ically, applications allocating memory with malloc, or re-
lated calls, are not aware whether they are using hotplugged
memory. Then, in case memory has to be hotunplugged,
the application cannot know which data it keeps on each
memory block and will have to ask the OS for the mem-
ory addresses. In the worst case, the OS will have to page
walk the whole memory allocated by the application to find
the corresponding memory blocks to remove. We solve this
problem by exposing through the Virtual Hotplug Device an
mmap handler to the applications which we implement in the
Guest Hotplug Driver. This way, applications can allocate
memory only through explicit calls to the driver, enabling
the former to keep track of the data that they keep on each
part of the memory and the latter to keep track of the usage
of hotplugged memory across applications.

Despite its usefulness, memory elasticity also brings over-
heads, as every call to mmap requires to update the page
tables with the newly allocated memory, similar to [33]. To
alleviate this overhead, we follow a lazy approach, where
we process only the amount of hotplugged memory which
is requested every time by the application, by following the
page faults. The granularity of hotplugged page map can
be adjusted based on the workload and the time required
to fill every page. Instead, when hotplugged memory ar-
rives to the VM, the Linux kernel registers the page frame
numbers and keeps an index separating the hotplugged from
the static ones. This way, the application can easily handle
hotplugged memory as a dynamic memory pool.

3.3 Resource Management and Monitoring
Resource management is associated with the SLA govern-

ing the use of cloud resources from the VMs. Each SLA is
implemented as a policy in the Resource Manager which
decides the resource distribution to the VMs. To make
these decisions, the RM abstracts the host hardware topol-
ogy and maintains a data structure with information such
as the NUMA nodes, the amount of memory that each node
has, and the CPUs associated with it. For each CPU, the
RM maintains its physical id and an indicator pointing out
whether that CPU is a HyperThread (i.e., whether there
is another CPU on the same core). Accordingly, for each
memory block, the RM keeps an id, its starting address and
its size. Finally, it distributes CPUs and memory to the
startup, hotplug, and available hotplug sets for each VM.

We have implemented two policies: fair, and strict re-
source allocation. The fair policy allows each VM to takes
an equal share of the resources in the available hotplug set.
Conversely, the strict policy restricts VMs from sharing any
resources. Since the RM receives all the hotplug requests
from the VMs, it can monitor the resource allocation of the
host across the VMs and decide whether a VM can add or
should remove resources. However, this information cannot
be exposed to the VMs, whereas they still need to receive
notifications from the host regarding changes in the resource
availability. For this reason, the Host Monitor in the guest
polls the hypervisor periodically for changes in the availabil-
ity of resources for the VM. This information is kept locally
by the Host Monitor, which is also polled by the applications
to find out whether they need to take any actions.

In general, applications running in the VM will directly
execute hotunplug requests coming from the hypervisor, since
the latter will anyway remove the resources after a timeout.
However, they will not always hotplug all the available re-

3089



sources of the host. As explained in Section 4, there are
cases where the VM prefers to drop CPUs, for instance due
to high contention in the workload. Moreover, using memory
from a remote NUMA node can have negative effects in the
performance. To make such decisions, the application needs
to monitor its performance, workload and CPU utilization.
For this reason, we have introduced the VM Monitor, which
keeps track of these metrics and an API to store and re-
trieve information from it. This way, when an application
receives an offer from the Host Monitor to hotplug CPUs, it
checks with the telemetry data of the VM Monitor to decide
whether it will issue a hotplug request.

3.4 Elastic OLTP Engine
The infrastructure described so far enables VMs to add or

remove CPUs and memory dynamically, as well as to moni-
tor the resource usage from the host and the guest sides. To
exploit elasticity, an OLTP engine has to dynamically adjust
its thread and memory pool to the changes in the availability
of resources. In this work, we use Trireme, an open source
OLTP engine that has been used in prior research to perform
a side-by-side comparison of various OLTP engine architec-
tures [8]. We configure Trireme as a shared-everything, in-
memory OLTP engine and we integrate it with our hotplug
infrastructure to make it elastic. In the following, we first
present the system design of Trireme, and then we describe
the steps required to exploit CPU and memory elasticity.

Trireme consists of three components, namely the Stor-
age Manager (SM), the Transaction Manager (TxM), and
the Worker Manager (WM). The SM provides in- memory
storage of database records. The TxM works together with
the SM to provide transactional access to records. Accord-
ingly, the TxM maintains data structures necessary for im-
plementing various concurrency control protocols. In this
work, we configured TxM to use two-phase locking (2PL)
with deadlock avoidance. WM is responsible for managing
the thread pool. Trireme runs as a multi-threaded process
with one worker thread assigned to each available CPU. The
WM in unmodified Trireme creates the thread pool at sys-
tem initialization time and affinitizes each worker thread to
one CPU, whereas it also keeps the id of the NUMA node
that the CPU belongs to. Once started, each worker thread
repeatedly executes transactions one after another.

CPU elasticity in Trireme is managed by the WM. Each
worker thread periodically reports to the VM Monitor its
status, including transactional throughput, abort rate, la-
tency, and access frequency. Moreover, the WM periodi-
cally polls the Host Monitor for changes in the availability
of CPUs. In case the Host Monitor requests to remove a
set of CPUs from a specific NUMA node, the WM iterates
over the worker threads and signals the ones that should
be removed to stop transaction execution. After the worker
threads have stopped executing transactions, they report
their final statistics to the VM Monitor and the WM removes
them from the thread pool. Instead, if the Host Monitor sug-
gests to add CPUs, the WM checks the statistics from the
VM Monitor to decide whether more computing resources
will be beneficial. In this case it makes a call to the hotplug
device to add the CPUs, and when they become available,
the WM starts new worker threads, affinitizes them to the
corresponding hotplugged CPUs and starts transaction ex-
ecution on them.

Similarly, memory elasticity in Trireme is driven by the
SM which also reports its status to the VM Monitor and
receives notifications from the Host Monitor about changes
in the availability of memory resources. In case memory has
to be removed, the SM first tries to release memory which
is either unused or used for maintenance tasks, like index
maintenance. If this is not enough, it releases memory where
it keeps database records. In this case, it first flushes the
memory to the disk, and then releases it, following an anti-
caching approach [18]. On the other hand, when memory is
available, it checks its locality and uses it either to restore
data from the disk or for maintenance tasks.

Generalization. Even though our system design is driven
by OLTP engines, any stateful cloud application with sim-
ilar properties can also be integrated. Specifically, the ap-
plication needs to have an elastic worker and memory pool
which can enforce the hypervisor decisions within the speci-
fied time bounds. Further, by keeping the Host Monitor as a
separate component in the userspace, any application inside
the VM can communicate with the hypervisor to elastically
manage its resources. Therefore, our system design can be
used to pack several applications within the same server, by
relying on VMs for isolation across tenants. Accordingly,
the cloud provider can schedule multiple VMs on the same
server to maximize resource utilization and the tenants can
take up, and pay for, resources only when needed.

4. USAGE SCENARIOS AND EVALUATION
In this section we evaluate the performance of our sys-

tem considering different scenarios that outline the benefits
of scale-up elasticity for OLTP. We first present a proof of
concept and four different scenarios focusing on CPU hot-
plug. Then, we demonstrate the case of memory scaling,
which can apply to a number of different scenarios, which
we also give. Even though CPU and memory elasticity can
clearly be mixed, we have split them in order to isolate their
effect on the performance. We present each scenario as fol-
lows: first we give the motivation, then the experimental
setup, then the execution timeline, and finally, the control
flow that maps all the operations to our design. In the first,
proof of concept, scenario we also compare our elastic scale-
up approach with two alternative ones, namely multi-tenant
databases and scale-out with distributed transactions.

We conducted our experiments on three servers with dif-
ferent hardware configurations to demonstrate the scalabil-
ity of our infrastructure. More specifically, we used: (i) a
server equipped with 2x8-core Intel Xeon E5-2640 v2 pro-
cessors (32-KB L1I + 32-KB L1D cache, 256-KB L2 cache,
and 20-MB LLC) clocked at 2.0-GHz with HyperThreads en-
abled and 256-GB of DDR3 DRAM, (ii) a server equipped
with 4x18-core Intel Xeon E7-8890 v3 processors (32-KB L1I
+ 32-KB L1D cache, 256-KB L2 cache, and 45-MB LLC)
clocked at 2.5-GHz with HyperThreads enabled, and 512-
GB of DDR4 DRAM, and, (iii) a server with 8x10-core Intel
Xeon E7-L8867 processors (32-KB L1I + 32-KB L1D cache,
256-KB L2 cache, and 30-MB LLC) clocked at 2.13-GHz
with HyperThreads enabled and 192-GB of DDR3 DRAM.

The benchmark that we used for our experiments is the
Yahoo! Cloud Serving Benchmark (YCSB) [13]. We used
YCSB because it has been widely used for the evaluation of
both OLTP engines (scale-up and scale-out) and other cloud
applications, which can be benefited from our system [14, 17,
35, 39, 36, 42, 43]. Each YCSB record has a single primary

3090



Figure 3: Trireme throughput as VM size changes

key and ten string fields with 100 characters length. Each
transaction either reads or updates 10 records. Unless ex-
plicitly stated otherwise, we use a 72GB database containing
a single table with 72M records, and we set the update rate
of our workload to 20%. All record accesses follow the Zip-
fian distribution with parameter theta 0.5, except a single
scenario where we vary theta to switch between low and high
contention. All the experiments are performed in timed exe-
cutions and the metrics reported are in one-second intervals,
similarly to existing work [39]. As for all our servers there
is a one-to-one mapping between CPU sockets and NUMA
nodes, we will use these terms interchangeably.

Every scenario is supported either by the fair or the strict
resource allocation policy. We use the former to uniformly
distribute the resources across all the active VMs on a server,
and the latter to restrict the resource distribution within cer-
tain bounds for every VM. These policies represent the two
extreme cases, allowing several combinations in-between.
Accordingly, we demonstrate that our system can efficiently
adapt in the extreme cases, whereas we leave more complex
policies for future work.

4.1 Proof of Concept
Motivation. A cloud-hosted OLTP engine should be

able to dynamically scale-up and down based on the avail-
ability of resources on top of different hardware configura-
tions. Accordingly, our goals in this scenario are: (i) to show
how the components of our system interact in order to ex-
pand or shrink the VM CPUs based on triggers generated
either by the host or the guest side, and (ii) to show that
Trireme can effectively scale over different hardware config-
urations and at different hotplug granularities.

Experimental setup. A VM starts with a small startup
set of CPUs and the rest of the CPUs available in its hotplug
set. Then, we periodically add a part of the hotplug set to
the VM until all the physical cores of the host are used.
Finally, we follow the reverse the procedure, until the VM
has remained with the startup set of CPUs.

To demonstrate the scalability of the platform under dif-
ferent CPU hotplug granularities, we hotplug a different
number of CPUs every 5 seconds on every server. For the
2-socket server, we start with 1 CPU available and we hot-
plug 1 CPU every 5 seconds. For the 4-socket server, we
start with 4 CPUs available and we hotplug 4 or 5 CPUs
every 5 seconds alternating the number at each iteration.
For the 8-socket server, we start with 5 CPUs available and
we hotplug 5 CPUs every 5 seconds. For all servers, after all
the CPUs have been added, we follow the inverse procedure.

Timeline. Figure 3 shows the throughput of Trireme in
million transactions per second (MTps), reported every 1
second, throughout the execution of this scenario. Each line

in the figure corresponds to a different hardware configura-
tion, namely the 2-, the 4-, and the 8-socket server. Note
that the servers are equipped with different generations of
x86 processors and with different core counts. More specif-
ically, the 8-socket server has Intel Westmere CPUs, which
are older that 2-socket server’s Ivy Bridge CPUs, which,
in turn, are older than the 4-socket server’s Haswell CPUs.
Thus, our goal here is not to provide an apples-to-apples
comparison of throughput across servers. Instead, our goal
is to show that there are no bottlenecks in our elastic scaling
framework that limits scalability to a few CPU sockets.

As can be seen in the figure, after the experiment starts,
Trireme increases its throughput periodically, every time a
set of CPUs is hotplugged to the VM. This continues until
all the physical cores of the host have been added to the
VM, at 80 seconds. From that point on, performance starts
decreasing in a symmetric way, and when all the CPUs be-
longing to the hotplug set of the VM have been removed,
then it becomes the same as it was at the beginning of the
experiment. This behaviour is reflected in all the three dif-
ferent configurations used for this experiment.

We have also measured the latency for dynamically adding
and removing sets of CPUs on all the three servers. The
average latency for dynamically adding CPUs to the VM is
within the range of 20ms–30ms for all servers, whereas the
average latency for dynamically removing CPUs from the
VM is within the range of 30ms–50ms for all servers. Since
hotplug operations do not take place very frequently during
the workload execution of the OLTP engine, these latencies
do not impose any overhead to transaction execution. We
study this in more depth in Section 4.5.

Control flow. To implement this scenario, we injected
specific policies in Trireme WM and in the hypervisor RM.
For simplicity, we describe these policies with the parame-
ters used for the 2-socket server. There, RM allows a VM
to take 1 CPU of the host after every hotplug request. If
there are no CPUs left in the available hotplug set, the pol-
icy requires that the VM returns back 1 CPU. The Host
Monitor polls the hypervisor every second, whereas Trireme
WM polls the Host Monitor every 5 seconds.

Following this set of policies, when the experiment starts,
the Host Monitor waits for 1 second and then polls the hy-
pervisor. The hypervisor replies back that there is 1 CPU
available and the NUMA node of this CPU. After 5 seconds
that the WM of Trireme polls the Host Monitor, it sees that
there is 1 CPU available, and performs a hotplug request
for that CPU. The request is granted by the Resource Man-
ager, the CPU is added to the VM and the WM starts a new
worker thread on that CPU. After the request to add the last
CPU available in the host, the Resource Manager changes
its response to the Host Monitor to a request to remove 1
CPU from a given NUMA node. The WM takes this value,
finds a worker thread running on a CPU of that NUMA
node, stops it and hotunplugs the CPU. In the meanwhile,
each worker thread reports its throughput every 1 second to
the VM Monitor, and we report the aggregate in Figure 3.

Comparison with multi-tenant databases. An alter-
native to our design is SQLVM, a cloud-based design for SQL
server. Instead of deploying databases inside VMs, SQLVM
provides performance isolation within the database. This
provides flexible resource allocation for the database, but
lacks the generality of our approach which (i) supports any
application with an elastic worker and memory pool, and,

3091



Figure 4: Performance of SQLVM and Trireme

Figure 5: Trireme performance with remote accesses

(ii) can host multiple applications within a single server.
To investigate possible overheads of our design compared to
SQLVM, we have implemented a SQLVM emulator inside
Trireme. When Trierme runs in SQLVM mode, it starts as
single multi-threaded process and assigns a set of threads
and a data partition to each tenant, while transaction exe-
cution for each tenant is limited in its own partition.

We have executed an experiment on our 4-socket server,
where we vary the number of tenants per socket. We use
YCSB, but in order to have a fair comparison, the size of
the database is 1 GB per worker thread. We consider a
read-only workload and we set the theta parameter of the
Zipfian distribution to 0.5, to avoid any overheads coming
from the workload. When we use 1 tenant per socket, in the
SQLVM case we use one process with 72 threads and a 72 GB
database split across 4 tenants, with each tenant taking the
18 CPUs of each socket. For Trireme-VM, we deploy 4 VMs,
one on each socket. Inside each VM we deploy a Trireme
instance with 18 worker threads performing transactions on
an 18 GB database. Similarly, we run the same experiment
for 2, 3, and 4 tenants per socket. As shown in Figure 4,
as we increase the number of tenants per socket from 1 to
4, the performance of Trireme remains the same regardless
the configuration. This shows that the overheads of using a
general purpose software infrastructure do not produce any
significant interference with the workload execution.

Comparison with scale-out databases. Traditionally,
cloud-hosted applications were designed to scale-out to ex-
ploit the availability of servers in data centres. One ap-
proach to elastically scale-out is data repartitioning, which
works best with partitionable workloads, otherwise it has
overheads for moving data across instances over the net-
work. An alternative is to use a distributed transaction
coordination protocol like two-phase commit (2PC). 2PC
has two phases: first, the thread that issued the transaction
(coordinator) sends a prepare message to all the partici-
pants; then, each participant sends back either a commit or
an abort message; if all participants sent commit, then the
transaction commits, otherwise it aborts and the coordina-
tor notifies the participants accordingly.

To investigate the impact of 2PC on main-memory OLTP
performance, we have implemented 2PC in Trireme, and we
have configured it to work as a scale-out engine. We have
executed an experiment using YCSB with a 72 GB database
where each transaction executes 10 read-only operations un-
der low contention (theta=0.5). In this experiment, we used
two nodes, each one running on a different socket of our 4-
socket server and using all their 18 cores. Figure 5 shows
Trireme performance as we increase the number of remote
operations. As shown in the figure, a single remote oper-
ation causes a performance drop around 8x, whereas after
that point performance plateaus. Therefore, the communi-
cation latency imposed by 2PC, both due to the network
communication and the protocol complexity, cause signifi-
cant performance issues even with just a single remote ac-
cess. In the same figure, we also show the impact of remote
memory accesses on the performance of the system, when
every worker thread access a record located on a different
NUMA node. In this case, Trireme uses two sockets and 36
worker threads and we observe that the effect of NUMA is
much less than the overheads of 2PC. Thus, in the presence
of enough resources on a single server, scaling up is simpler
and more beneficial than scaling out.

Comment on comparison. This work does not intend
to replace multi-tenant or scale-out approaches in all cases.
Instead, it focuses on the cloud migration of in-memory
OLTP engines to large-scale servers, provided that they have
enough resources to satisfy the workload requirements. Ac-
cordingly, it relies on existing virtualization frameworks for
resource isolation, whereas its design is non-intrusive to the
OLTP engine. In the following, we focus on use cases that
outline the benefits of scale-up elasticity in OLTP systems.

Having demonstrated the scalability of our infrastructure
on all our servers, for the remainder of this paper, we only
present results obtained from the 4-socket server.

4.2 Elasticity and Dynamic Scaling
Motivation. Cloud providers offer spot instances which

are VMs billed by the second at a cheaper price than re-
served instances with the agreement that the provider can
withdraw their resources any moment. Depending on the
demand, cloud providers move resources between spot and
reserved instances. Spot instances improve the ratio of billed
resources while providing cheaper prices to customers.

However, the current spot instance model is very strict
since it means an all-or-nothing condition for customers as
spot instances can be terminated without notice. In many
cases, particularly when the VM is running stateful services
like an OLTP engine, an all-or-nothing compromise is not a
suitable option. Thus, today, cheaper VMs provided by spot
instances are only used for non-critical systems and tasks
without a hard deadline or well-defined SLA requirements.

In our use case, spot instances are VMs that are started
with minimum and ideal computational requirement specifi-
cations. Under low-demand, where CPUs are available, they
can be allotted to spot instances at a cheaper rate. However,
as more tenants use the server, CPUs are taken away from
spot instances shrinking them back to the specified mini-
mum and allotted to other tenants. By using such spot in-
stances, customers can make flexible cost-performance trade-
offs. They can also schedule low priority services, like index
maintenance and data reorganization, to be performed only
when resources are available at spot prices.

3092



Figure 6: Trireme throughput while spot scaling

As resources are added to and removed from the VMs, the
Resource Manager is expected to allocate resources which
are local to the data used by each VM. This is achieved
by using the protocol semantics of our infrastructure, where
the RM suggests available CPUs from specific NUMA nodes.
Then, applications can implement NUMA-aware policies by
issuing requests for specific NUMA nodes [30].

Experimental setup. In this experiment we show that
our system adapts to the changes in the CPU availability
when an OLTP engine is deployed inside a spot instance.
We consider 3 VMs that will share the CPUs of two sockets
of our server. Thus, each VM starts with a startup set of 1
CPU and a hotplug set of 35 CPUs. First, a VM starts exe-
cuting transactions and expands to all the CPUs of the two
sockets. Then, after 10 seconds, the second VM starts and
gets its share of the CPUs. Finally, after 10 more seconds,
the third VM joins and also starts using the CPUs of these
sockets. After it has executed transactions for 10 seconds,
the third VM stops and releases its CPUs. Then, after 10
seconds, the second VM also stops and releases its CPUs.

Timeline. Figure 6 shows Trireme performance, obtained
by the VM Monitor of each VM throughout the experiment.
As shown in the figure, the throughput of VM 1 remains
high for the first 10 seconds, and then it drops as VM 2
starts. At that point VM 1 and VM 2 have almost the same
throughput, since they have use the same number of CPUs.
After 10 seconds, VM 3 also starts, receives cores from the
hypervisor, and starts executing transactions. The through-
put of VM 1 and VM 2 drops accordingly and matches the
throughput of VM 3. After VM 3 has finished executing
transactions, it releases its cores and the throughput of VM
1 and VM 2 returns back to the level as it was before VM
3 had started. Following this VM 2 finishes execution and
terminates, returning its CPUs back to VM 1.

Control flow. In this experiment, the Resource Manager
employs the fair resource allocation policy which distributes
CPUs uniformly across the VMs. When VM 1 starts, its
Host Monitor polls the hypervisor and receives a reply that
it can use all the cores of the two sockets since it is the only
active VM. Accordingly, Trireme WM requests to hotplug
all CPUs of both NUMA nodes that are available. After
the CPUs have been added to the VM, Trireme uses them
to execute transactions. In the meanwhile, the Host Mon-
itor polls the hypervisor for changes in the availability of
resources every 100 milliseconds. When VM 2 starts, the
hypervisor asks VM 1 to remove 18 CPUs and gives them
to VM 2. Following these instructions, the WM of Trireme
running in VM 1 issues a request to hotunplug 18 CPUs,
whereas the WM of Trireme running in VM 2 issues a re-
quest to hotplug these CPUs. Similarly, when VM 3 starts,

Figure 7: VM/Socket deployment combinations

the Resource Manager notifies VM 1 and VM 2 to release
6 CPUs each, and it gives them to VM 3. Finally, when
each VM finishes executing transactions, Trireme WM ho-
tunplugs its CPUs and the Resource Manager distributes
them to the remaining VMs.

4.3 Elasticity and Performance Isolation
Motivation. Cloud providers often need to ensure that

tenants applications do not interfere. Figure 7 depicts the
throughput of Trireme in three different multi-tenancy de-
ployment setups. In the first setup, a single instance is
deployed in a VM that is allocated 36 threads across two
sockets, using 18 cores per socket. In the second, the single
tenant VM is allocated 36 threads from a single socket, thus
using 18 cores and 18 HyperThreads. In the third, we run
two VMs representing different tenants, each hosting an in-
dependent instance and we report the average throughput
of the two VMs. Therefore, in this configuration, con-
trary to what was presented in the previous section, all the
72 hardware threads that are available on each socket are
being used. There are two important observations to be
made in this experiment. First, in the single tenant case
(first two scenarios), we see that thread placement plays an
important role as the setup with two sockets outperforms
its single-socket counterpart. This is expected given that
using two sockets instead of one provides a much larger cu-
mulative cache space, whereas using cores instead of Hyper-
Threads results in less contention at the microarchitectural
level. Second, in the two-tenant case (third scenario), we
see that the throughput drops further 20% due to resource
sharing across tenants.

Therefore, resource allocation should be dynamically de-
cided based on the degree of multi-tenancy. An elastic OLTP
infrastructure should spread out the threads of an OLTP en-
gine across multiple sockets when resources are available to
ensure peak performance. However, in the presence of mul-
tiple tenants, the infrastructure should allocate threads to
VMs in such a way that VMs do not share sockets. In our
system, this is achieved by the RM which can redistribute
CPUs to keep the VMs within the socket boundary. Even
though this is relatively cheap for compute resources, mov-
ing memory between nodes can be costly, and thus, it may
be better to share the memory bandwidth between the VMs
instead of full memory-level isolation.

Experimental setup. In this scenario, we consider that
there is one spot VM already executing transactions using
36 cores across two sockets available on our server. Then, we
start a second VM that also requires 36 cores and we isolate
transaction execution in a single socket for both of them.
In the following, we show the benefit of using elasticity to
isolate VMs execution to the socket boundary.

3093



Figure 8: Performance isolation within socket

Figure 9: Effect of contention on performance

Timeline. Figure 8 shows the throughput of each VM
when we isolate execution to the socket boundary. As shown
in the figure, after VM 1 executes transactions for ten sec-
onds, VM 2 starts. Then, VM 1 releases all the CPUs from
the second socket and uses HyperThreads on the first socket,
whereas VM 2 does exactly the same on the second socket.
As a result, the performance of VM 1 drops by 20%, whereas
the performance of both of them is better by about 35%
compared to the non-isolation case, as shown in Figure 7.

Control Flow. In this experiment, the Resource Man-
ager employs the performance isolation policy. When the
Host Monitor of VM 2 polls the hypervisor, then the Re-
source Manager requests VM 1 to remove all of the CPUs of
the second socket and suggests to add the HyperThreads of
the first one. Likewise, it suggests VM 2 to add all the phys-
ical cores and HyperThreads of the second socket. Similarly
to the previous experiments, Trireme adapts its execution
accordingly. When VM 2 finishes its execution, then the
Resource Manager suggests VM 1 to add CPUs of the sec-
ond socket. The WM of Trireme in this case hotplugs all the
CPUs corresponding to the second socket, moves the affinity
of the worker threads to these CPUs and then hotunplugs
the CPUs of the first socket that remained idle.

4.4 Elasticity and Contention Scaling
Motivation. The scalability of OLTP engines depends

on the degree of workload contention. For low contention
workloads, modern in-memory OLTP engines can provide
near-linear scalability. However, when the contention is high
due to skewed data access, OLTP engines suffer because
of concurrent transactions performing conflicting operations
that cannot be serialized. Thus, beyond a degree of con-
tention in the workload, the addition of more resources can
have the adverse effect of reducing the system throughput.

Figure 9 exemplifies this behaviour showing the perfor-
mance of Trireme when we increase the level of contention
in the workload by increasing the theta parameter of the
Zipfian distribution. The four bars correspond to four sce-
narios. In the first scenario, the VM has 72 threads running

Figure 10: Throughput as contention changes

across two sockets using 36 hardware threads per sockets
(physical cores and HyperThreads). In the second, the VM
has 36 threads from two sockets by using only physical cores.
In the third, the VM has 36 threads in one socket by using
HyperThreads. In the fourth, the VM has only the 18 phys-
ical cores of a single socket. As shown in the figure, when
the contention is low, it is better to use all the hardware
threads available in both sockets, whereas when the con-
tention is high, it is better to limit within a single socket.

Therefore, an elastic scale-up OLTP engine should moni-
tor the degree of contention in the workload to decide whether
it should proactively release some CPUs and limit itself to
the socket boundary to improve performance. Doing so re-
sults in three benefits. First, by releasing CPUs, a VM ex-
periencing contention can optimize for cost rather than per-
formance, due to the lack of workload scalability. Second,
releasing CPUs will improve throughput due to a propor-
tionate reduction in the number of conflicting transactions.
Third, the released CPUs can be used by other VMs or sim-
ply put in a low power state to reduce power consumption,
thus benefiting other tenants and the cloud provider.

Note that, releasing CPUs of a socket which contains data,
might lead to remote data accesses. However, as shown in
Figure 5, the impact of remote operations in a transactional
workload is much less than the impact of cross-socket atom-
ics in high-contention, as transaction operations do not gen-
erally access big amounts of data.

Experimental setup. We consider a VM running on
two sockets using all the hardware threads. Initially, the
VM executes a low contention workload that we have used
throughout this section. At some point, contention changes
to high with theta becoming 0.99, and then it changes back
to 0.5 as it was initially. In the following, we demonstrate
that Trireme adapts its CPU allocation in order to achieve
better throughput and resource utilization.

Timeline. Figure 10 shows the performance of Trireme
when the contention in the workload changes. In the begin-
ning the workload has low contention (theta 0.5). After 10
seconds, theta increases to 0.99 and throughput drops, as
shown in the figure (1). Then, the WM of Trireme removes
all the CPUs of the second socket and executes the work-
load with half its worker threads. This isolates contention
within the socket boundary (2) and provides an increase in
throughput. At time 25, contention drops as theta is re-
duced back to 0.5. The WM of Trireme then hotplugs all
the CPUs of the second socket and the throughput becomes
the same as it was in the beginning (3).

Control Flow. In this experiment, the Resource Man-
ager uses the strict resource allocation policy, where the VM
controls fully a fixed set of resources. The WM of Trireme
polls the VM Monitor every second. When the VM Moni-

3094



Figure 11: Throughput as the traffic levels change

tor captures the change in the contention, the WM adapts
its resource allocation by hotunplugging all the CPUs from
the second socket. Similarly, when the contention becomes
again low, the VM Monitor captures it and the WM expands
again its worker pool with all the CPUs of the second socket.

4.5 Elasticity and Peak Traffic Scaling
Motivation. One of the main incentives to move from

on-premise to cloud deployments is to address peak traffic
demands that take place for short time periods and require
fast adaptation. In this execution model, an OLTP engine
runs normally with some pre-allocated CPUs which remain
fixed throughout the lifetime of the VM. However, when
there is a peak in traffic, for instance due to an increase to
the users’ interests, then the OLTP engine needs to expand
its worker pool to meet its performance requirements. In this
case, the cloud provider can take CPUs from spot instances
running on the same server and give them to the VM where
the OLTP engine runs. This model has benefits both for
customers and cloud providers. The former gain from not
overprovisioning resources to their VMs, and the latter by
allocating the unused resources to spot instances, thereby
increasing the number of users in their infrastructure.

Experimental setup. In this experiment, we consider
that there is a VM with Trireme executing transactions on
one socket, using 18 CPUs. We split execution in two pe-
riods, of 5 seconds each. In the first period, the traffic is
normal, whereas in the second period, the traffic doubles.
Since each worker thread of Trireme first generates a trans-
action and then executes it, to emulate the traffic doubling
we set it to execute transactions for 500 ms and then sleep
for another 500 ms, while we report throughput every sec-
ond. In the static allocation case, we keep the number of
threads fixed to 18 to show the impact on the performance
of the system. In the dynamic allocation case, we hotplug
one CPU from the second socket every time a worker thread
goes to sleep and, then, we hotunplug it when the worker
thread wakes up again. Then, to give a microscopic view
of the system, we take shorter time intervals, where each
period lasts for 500 ms, threads switch every 50 ms, and we
report throughput every 100 ms.

Timeline. Figure 11 shows the performance of Trireme.
During the first 5 seconds, both the static and the dynamic
approach have the same performance, since they run with
the same 18 CPUs. After 5 seconds that the traffic dou-
bles, the performance of the static approach cuts in half,
as expected, whereas the performance of the dynamic ap-
proach remains the same. The reason is that at that point,
Trireme hotplugs the 18 CPUs of the second socket to exe-
cute transactions. This behaviour repeats consistently over
time showing the stability of the system.

Figure 12: Throughput during CPU hotplug

Figure 12 shows the microscopic view of Trireme perfor-
mance. After the first 500 ms, we start putting worker
threads to sleep and hotplugging the CPUs of the second
socket. As we see the performance has very small variations
during that period, whereas it stabilizes right away. Af-
ter running with 36 worker threads for another 500 ms, the
reverse process is followed and for each CPU that is hotun-
plugged, a worker thread wakes up. Again, after some small
variations, performance becomes again stable. We also show
a second round of the same procedure to show the system
stability. Accordingly, we observe that Trireme performance
is negligibly affected during elastic scale-up.

Control flow. In this experiment, the Resource Man-
ager employs the static resource allocation policy. The Host
Monitor polls the hypervisor every 100 ms, and therefore, it
is aware that the CPUs of the second socket are available
when it does not use them. The WM of Trireme does not
use them until it realizes that there are transactions waiting
to be executed. At that moment, it hotplugs the CPUs and
expands its worker pool. Conversely, when the transactions
stop waiting, the WM of Trireme shrinks its worker pool
back to its original size, thus enabling the Resource Man-
ager to use the unplugged CPUs for another (spot) VM.

4.6 Elasticity and Memory Scaling
Motivation. In all the above scenarios, memory can also

be considered in parallel with CPU elasticity, since thread
and memory placement can affect the performance of the
applications running in a single multi-socket server [25] [12].

A typical scenario showing the benefits of memory elas-
ticity is when traffic demands increase. Then, memory elas-
ticity increases the available memory size while the traffic is
high, and then shrinks it back when traffic becomes normal
again. Similarly, memory elasticity is beneficial during pe-
riodic database operations, like index maintenance, where
the system needs additional memory for some time in order
to build the new index that will replace the old one. As
in both cases the memory is released when it is no longer
needed, it comes with almost zero overhead to the OLTP
engine. Moreover, memory elasticity can be used for mov-
ing data across VMs. There, we can consider a buffer of
memory blocks which are removed from one VM and added
to another VM, implementing send and receive operations
inside a single server. Given that the size of the buffers is not
generally high in these cases (order of few pages), these oper-
ations can enable fast inter-VM communication that bypass
the network stack. In general, it may be required to release
memory which contains useful data for the OLTP engine.
In this case, solutions like anti-caching can be used to store
the least popular data to the disk. However, anti-caching
brings overheads, which depend on the data size and access
patterns and are investigated in [18].

3095



Figure 13: Throughput as memory size changes

Experimental setup. We run an experiment where we
dynamically remove and add memory back. When the mem-
ory is removed, it is stored to a file in the hard disk, from
which it is read again when memory is added back. We con-
sider a single VM with Trireme hosting a 3.6GB database,
logically partitioned across 36 threads running on two sock-
ets of our server. Each thread is responsible for a data parti-
tion consisted of records and associated metadata of around
500MB. Note that there is an overhead from Trireme on the
size of the database, which is due to the nature of the sys-
tem being a testbed supporting several concurrency control
protocols and system architectures. Nevertheless, this does
not impact the insights of the experiment. Transaction exe-
cution lasts for 10 seconds with 36 threads, and then the 18
ones running on the second socket are requested back by the
hypervisor, along with their memory. Each thread stores its
partition to a file, releases its memory and then its CPU. Af-
ter all CPUs and memory has been removed, Trireme waits
for 5 seconds and it requests them back from the hypervisor
and starts again the worker threads running on the second
socket which reload the data from the files.

Timeline. Figure 13 shows the performance of Trireme.
As expected, after the first 10 seconds, performance drops
about to half, since the CPUs of the second socket are only
used to write data to the disk. Each worker thread writes its
data in a different file to avoid synchronization overheads.
Writing and reading data to/from the disk takes 70-75 sec-
onds every time, since the size is about 9GB and the disk is
a SATA 7200RPM HDD accessed as a shared directory over
QEMU. This explains that at 10 seconds (pt. 1) through-
put drops and until 160 seconds (pt. 2), when data have
been reloaded and Trireme executes transactions on both
sockets, like in the beginning. The cost for memory hotplug
operations is similar to the CPU, between 10-20ms.

Control flow. The Resource Manager requests the VM
to release CPUs and memory from the second socket after
10 seconds, and make it available again 5 seconds later. The
Host Monitor polls the hypervisor every second. When it re-
ceives the notification to release memory and CPUs, Trireme
is informed and it writes the memory to the files to finally
release it along with the CPUs. Then, after 5 seconds, the
Host Monitor receives the notification from the hypervisor
that memory and CPUs are available, so Trireme takes them
back and restores its previous configuration.

5. DISCUSSION
Cloud elasticity is typically realized in a scale-out fash-

ion. Even though scale-out elasticity allows us to expand
throughout a whole cluster, we show that it also imposes sig-
nificant overheads in the execution of stateful services, like
OLTP, due to coordination across the distributed partitions
of the system state. These overheads cannot be amortized in

workloads with short-lived variations. Such variations have
been addressed by scheduling solutions in the cloud, whereas
services like AzureSQL and AWS Aurora already offer scale-
up elasticity. Despite the relevant work, there has been no
end-to-end architecture that relies on open source software
and allows the enforcement of different schedules to stateful
applications running inside VMs. Further, current elastic
infrastructures only support a pre-defined range of database
engines and services. Instead, our system design can encap-
sulate different types of stateful applications, with an elastic
thread and memory pool. Thus, it allows the deployment of
third-party applications in the cloud and provides scale-up
elasticity with respect to their service-level agreements.

The combination of CPU and memory elasticity has sev-
eral practical use cases. First, it allows applications to
adapt to traffic spikes which require additional processing
and memory to serve additional requests, like placing new
orders. Second, it allows applications deployed in isolation
to communicate by exchanging memory and data-local com-
pute resources, for instance when considering heterogeneous
workload scheduling [22], or even HTAP systems, where
data and compute are exchanged between different engines
following an elastic schedule [31]. Third, it allows applica-
tions to execute periodic batch jobs at times when several
resources are available, for instance index and log file main-
tenance, data compaction and integrity checks.

The use of a generic infrastructure for elastic scale-up de-
ployments, also brings up a new spot instance model for
stateful application. We show that, in this model, compute
and memory resources can be added and removed to and
from the VM, dynamically at runtime. This way, users can
trade resources based on their workload requirements at ev-
ery point in time. In this case, the benefit for the cloud
provider is that host several users in the same virtualized
server. While, the benefit for the users is that they can
benefit from a pay-as-you-use pricing model, rather than a
pay-as-you-reserve, like it is today.

6. CONCLUSION
In this paper we present a system design providing fine-

grained CPU and memory elasticity to scale-up OLTP sys-
tems. Our design cuts through the whole virtualization soft-
ware stack and introduces novel components in the hyper-
visor and the virtual machine. We show that the extensions
required by the OTLP engines are minimal and, thus, any
application with elastic thread and memory pool can lever-
age our system. We present the benefits of scale-up elastic-
ity in different practical use cases, which are further used to
evaluate the performance of our system. We demonstrate
that our system design enables a new spot instance model
for stateful services, like OLTP, where instances are started
with minimum resource guarantees. Finally, we show that
our system, despite more generic, does not impose signif-
icant overheads compared to specialized, database-specific
approaches, whereas it avoids overheads like data reparti-
tioning and distributed transaction coordination.

7. ACKNOWLEDGMENTS
The authors would like to thank Anthony Iliopoulos for

providing the first hotplug implementation from within a
VM. This work was partially funded by the EU H2020 project
SmartDataLake (825041).

3096



8. REFERENCES
[1] Cluster configurations with dynamic LPARs. https:

//www.ibm.com/support/knowledgecenter/SSPHQG_

7.2/concept/ha_concepts_config_lpar.html.

[2] Features/CPUHotplug – QEMU.
https://wiki.qemu.org/Features/CPUHotplug.

[3] HPE Intergrity Superdome 2 QuickSpecs.
https://h20195.www2.hpe.com/v2/GetPDF.aspx/

c04123326.pdf.

[4] Kunlun Mission Critical Servers – Huawei.
http://e.huawei.com/en/products/

cloud-computing-dc/servers/mc-server/kunlun.

[5] Oracle SPARC M8-8 Server.
https://www.oracle.com/servers/sparc/m8-8/.

[6] SAP HANA on AWS.
https://aws.amazon.com/sap/solutions/saphana.

[7] vSphere Web Services API.
https://code.vmware.com/apis/358/vsphere.

[8] R. Appuswamy, A. Anadiotis, D. Porobic, M. Iman,
and A. Ailamaki. Analyzing the impact of system
architecture on the scalability of OLTP engines for
high-contention workloads. PVLDB, 11(2):121–134,
2017.

[9] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale
key-value store. In ACM
SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’12, London,
United Kingdom, June 11-15, 2012, pages 53–64, 2012.

[10] H. Avni, A. Aliev, O. Amor, A. Avitzur, I. Bronshtein,
E. Ginot, S. Goikhman, E. Levy, I. Levy, L. Fuyang,
L. Mishali, M. Yeqin, N. Pachter, D. Sivov,
V. Veeraraghavan, V. Vexler, W. Lei, and W. Peng.
Industrial Strength OLTP Using Main Memory and
Many Cores. PVLDB, 13(12):3099–3111, 2020.

[11] S. K. Barker, Y. Chi, H. J. Moon, H. Hacigümüs, and
P. J. Shenoy. ”cut me some slack”: latency-aware live
migration for databases. In 15th International
Conference on Extending Database Technology, EDBT
’12, Berlin, Germany, March 27-30, 2012,
Proceedings, pages 432–443, 2012.

[12] S. Blagodurov, D. Gmach, M. Arlitt, Y. Chen,
C. Hyser, and A. Fedorova. Maximizing server
utilization while meeting critical slas via weight-based
collocation management. In 2013 IFIP/IEEE
International Symposium on Integrated Network
Management (IM 2013), pages 277–285, May 2013.

[13] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC 2010,
Indianapolis, Indiana, USA, June 10-11, 2010, pages
143–154, 2010.

[14] S. Das, D. Agrawal, and A. El Abbadi. Elastras: An
elastic, scalable, and self-managing transactional
database for the cloud. ACM Trans. Database Syst.,
38(1):5:1–5:45, 2013.

[15] S. Das, F. Li, V. R. Narasayya, and A. C. König.
Automated demand-driven resource scaling in
relational database-as-a-service. In Proceedings of the

2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, pages 1923–1934, 2016.

[16] S. Das, V. R. Narasayya, F. Li, and M. Syamala. CPU
sharing techniques for performance isolation in
multitenant relational database-as-a-service. PVLDB,
7(1):37–48, 2013.

[17] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi.
Albatross: Lightweight elasticity in shared storage
databases for the cloud using live data migration.
PVLDB, 4(8):494–505, 2011.

[18] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and
S. B. Zdonik. Anti-caching: A new approach to
database management system architecture. PVLDB,
6(14):1942–1953, 2013.

[19] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi.
Zephyr: live migration in shared nothing databases for
elastic cloud platforms. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, SIGMOD 2011, Athens, Greece, June 12-16,
2011, pages 301–312, 2011.

[20] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart,
K. D. Bowers, and M. M. Swift. More for your money:
exploiting performance heterogeneity in public clouds.
In ACM Symposium on Cloud Computing, SOCC ’12,
San Jose, CA, USA, October 14-17, 2012, page 20,
2012.

[21] R. Grandl, S. Kandula, S. Rao, A. Akella, and
J. Kulkarni. GRAPHENE: packing and
dependency-aware scheduling for data-parallel
clusters. In 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016., pages
81–97, 2016.

[22] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety,
M. Syamala, V. R. Narasayya, H. Herodotou,
P. Tomita, A. Chen, J. Zhang, and J. Wang. Perfiso:
Performance isolation for commercial latency-sensitive
services. In H. S. Gunawi and B. Reed, editors, 2018
USENIX Annual Technical Conference, USENIX ATC
2018, Boston, MA, USA, July 11-13, 2018, pages
519–532. USENIX Association, 2018.

[23] R. Kallman, H. Kimura, J. Natkins, A. Pavlo,
A. Rasin, S. B. Zdonik, E. P. C. Jones, S. Madden,
M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi.
H-store: a high-performance, distributed main
memory transaction processing system. PVLDB,
1(2):1496–1499, 2008.

[24] A. Kemper and T. Neumann. Hyper: A hybrid
oltp&olap main memory database system based on
virtual memory snapshots. In Proceedings of the 27th
International Conference on Data Engineering, ICDE
2011, April 11-16, 2011, Hannover, Germany, pages
195–206, 2011.

[25] B. Lepers, V. Quema, and A. Fedorova. Thread and
memory placement on NUMA systems: Asymmetry
matters. In 2015 USENIX Annual Technical
Conference (USENIX ATC 15), pages 277–289, Santa
Clara, CA, 2015. USENIX Association.

3097



[26] K. Mahajan, M. Chowdhury, A. Akella, and
S. Chawla. Dynamic query re-planning using QOOP.
In 13th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2018, Carlsbad,
CA, USA, October 8-10, 2018., pages 253–267, 2018.

[27] V. R. Narasayya, S. Das, M. Syamala,
B. Chandramouli, and S. Chaudhuri. SQLVM:
performance isolation in multi-tenant relational
database-as-a-service. In CIDR 2013, Sixth Biennial
Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 6-9, 2013, Online
Proceedings, 2013.

[28] J. F. Pérez, R. Birke, M. Björkqvist, and L. Y. Chen.
Dual scaling vms and queries: Cost-effective latency
curtailment. In 37th IEEE International Conference
on Distributed Computing Systems, ICDCS 2017,
Atlanta, GA, USA, June 5-8, 2017, pages 988–998,
2017.

[29] D. Porobic, I. Pandis, M. Branco, P. Tozun, and
A. Ailamaki. Characterization of the impact of
hardware islands on oltp. The VLDB Journal,
25(5):625–650, Oct. 2016.

[30] I. Psaroudakis, T. Scheuer, N. May, A. Sellami, and
A. Ailamaki. Adaptive numa-aware data placement
and task scheduling for analytical workloads in
main-memory column-stores. PVLDB, 10(2):37–48,
2016.

[31] A. Raza, P. Chrysogelos, A. G. Anadiotis, and
A. Ailamaki. Adaptive HTAP through elastic resource
scheduling. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020, pages 2043–2054. ACM,
2020.

[32] R. Russell. virtio: towards a de-facto standard for
virtual I/O devices. Operating Systems Review,
42(5):95–103, 2008.

[33] T. Salomie, G. Alonso, T. Roscoe, and
K. Elphinstone. Application level ballooning for
efficient server consolidation. In Z. Hanzálek,
H. Härtig, M. Castro, and M. F. Kaashoek, editors,
Eighth Eurosys Conference 2013, EuroSys ’13, Prague,
Czech Republic, April 14-17, 2013, pages 337–350.
ACM, 2013.

[34] M. Schüle, P. Schliski, T. Hutzelmann,
T. Rosenberger, V. Leis, D. Vorona, A. Kemper, and
T. Neumann. Monopedia: Staying single is good
enough - the hyper way for web scale applications.
PVLDB, 10(12):1921–1924, 2017.

[35] M. Serafini, E. Mansour, A. Aboulnaga, K. Salem,
T. Rafiq, and U. F. Minhas. Accordion: Elastic
scalability for database systems supporting distributed
transactions. PVLDB, 7(12):1035–1046, 2014.

[36] A. Shamis, M. Renzelmann, S. Novakovic,
G. Chatzopoulos, A. Dragojevic, D. Narayanan, and
M. Castro. Fast general distributed transactions with
opacity. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June
30 - July 5, 2019., pages 433–448, 2019.

[37] S. Spinner, S. Kounev, X. Zhu, L. Lu, M. Uysal,
A. Holler, and R. Griffith. Runtime vertical scaling of
virtualized applications via online model estimation.
In 2014 IEEE Eighth International Conference on
Self-Adaptive and Self-Organizing Systems, pages
157–166, Sep. 2014.

[38] R. Taft, N. El-Sayed, M. Serafini, Y. Lu,
A. Aboulnaga, M. Stonebraker, R. Mayerhofer, and
F. J. Andrade. P-store: An elastic database system
with predictive provisioning. In Proceedings of the
2018 International Conference on Management of
Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018, pages 205–219, 2018.

[39] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J.
Elmore, A. Aboulnaga, A. Pavlo, and M. Stonebraker.
E-store: Fine-grained elastic partitioning for
distributed transaction processing. PVLDB,
8(3):245–256, 2014.

[40] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam,
K. Gupta, R. Mittal, S. Krishnamurthy, S. Maurice,
T. Kharatishvili, and X. Bao. Amazon aurora: Design
considerations for high throughput cloud-native
relational databases. In Proceedings of the 2017 ACM
International Conference on Management of Data,
SIGMOD Conference 2017, Chicago, IL, USA, May
14-19, 2017, pages 1041–1052, 2017.

[41] A. Verbitski, A. Gupta, D. Saha, J. Corey, K. Gupta,
M. Brahmadesam, R. Mittal, S. Krishnamurthy,
S. Maurice, T. Kharatishvili, and X. Bao. Amazon
aurora: On avoiding distributed consensus for i/os,
commits, and membership changes. In Proceedings of
the 2018 International Conference on Management of
Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018, pages 789–796, 2018.

[42] H. Yoon, J. Yang, S. F. Kristjansson, S. E.
Sigurdarson, Y. Vigfusson, and A. Gavrilovska.
Mutant: Balancing storage cost and latency in
lsm-tree data stores. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC 2018,
Carlsbad, CA, USA, October 11-13, 2018, pages
162–173, 2018.

[43] H. Zhao, Q. Zhang, Z. Yang, M. Wu, and Y. Dai.
Sdpaxos: Building efficient semi-decentralized
geo-replicated state machines. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC 2018,
Carlsbad, CA, USA, October 11-13, 2018, pages
68–81, 2018.

3098


