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ABSTRACT 
Both RDBMS and NoSQL database vendors have added varying 
degrees of support for storing and processing JSON data.  Some 
vendors store JSON directly as text while others add new JSON 
type systems backed by binary encoding formats.  The latter 
option is increasingly popular as it enables richer type systems 
and efficient query processing.  In this paper, we present our new 
native JSON datatype and how it is fully integrated with the 
Oracle Database ecosystem to transform Oracle Database into a 
mature platform for serving both SQL and NoSQL style access 
paradigms.  We show how our uniquely designed Oracle Binary 
JSON format (OSON) is able to speed up both OLAP and OLTP 
workloads over JSON documents. 
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1. INTRODUCTION 
JSON has a number of benefits that have contributed to its growth 
in popularity among database vendors.  It offers a schema-flexible 
data model where consuming applications can evolve to store new 
attributes without having to modify an underlying schema.  
Complex objects with nested master-detail relationships can be 
stored within a single document, enabling efficient storage and 
retrieval without requiring joins.   Further, JSON is human 
readable, fully self-contained, and easily consumed by popular 
programming languages such as JavaScript, Python, and Java.  As 
a result, JSON is popular for a broad variety of use cases 
including data exchange, online transaction processing, online 
data analytics.  

OLTP for JSON: NoSQL vendors, such as MongoDB [11] and 
Couchbase [4] provide JSON document storage coupled with 
simple NoSQL style APIs to enable a lightweight, agile 
development model that contrasts the classic schema-rigid SQL 
approach over relational data. These operational stores provide 
create, read, update and delete (CRUD) operations over 

collections of schema-flexible document entities.  This contrasts 
traditional relational databases which support similar operations 
but over structured rows in a table. However, over the past 
decade, many relational database vendors such as Oracle [29], 
Microsoft SQL Server [10], MySQL [12], PostgreSQL [16] have 
added support for storing JSON documents to enable schema-
flexible operational storage.    

OLAP for JSON: Both SQL and NoSQL databases have added 
support for real-time analytics over collections of JSON 
documents [4, 16, 15].  In general, analytics require expressive 
and performant query capabilities including full-text search and 
schema inference.   SQL vendors, such as Oracle [28] are able to 
automatically derive structured views from JSON collections to 
leverage existing SQL analytics over JSON. The SQL/JSON 2016 
standard [21] provides comprehensive SQL/JSON path language 
for sophisticated queries over JSON documents. NoSQL users 
leverage Elastic Search API [8] for full text search over JSON 
documents as a basis of analytics. All of which have created 
online analytical processing over JSON similar to the classical 
OLAP over relational data. 

While well suited for data exchange, JSON text is not an ideal 
storage format for query processing.  Using JSON text storage in a 
database requires expensive text processing each time a document 
is read by a query or is updated by a DML statement. Binary 
encodings of JSON such as BSON [2] are increasingly popular 
among database vendors. Both MySQL [12] and PostgreSQL [16] 
have their own binary JSON formats and have cited the benefits 
of binary JSON for query processing.  Oracle’s in-memory JSON 
feature that loads and scans Oracle binary JSON (OSON) in-
memory has shown better query performance compared with 
JSON text [28]. In addition to better query performance, binary 
formats allow the primitive type system to be extended beyond the 
set supported by JSON text (strings, numbers, and booleans).   

Supporting a binary JSON format only to enable efficient query 
processing and richer types is not enough for OLTP use cases.  In 
such cases, it is critical that applications can also efficiently 
create, read, and update documents as well.  Efficient updates 
over JSON are especially challenging and most vendors resort to 
replacing the entire document for each update, even when only a 
small portion of the document has actually changed.  Compare 
this to update operations over relational data where each column 
can be modified independently.  Ideally, updates to JSON 
documents should be equally granular and support partial updates 
in a piecewise manner.  Updating a single attribute in a large 
JSON document should not require rewriting the entire document. 

In this paper, we describe the native JSON datatype in Oracle 
Database and how it is designed to support the efficient query, 
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update, ingestion, and retrieval of documents for both OLTP and 
OLAP workloads over JSON.  We show how fine-grained updates 
are expressed using the new JSON_TRANSFORM() operator and how 
the underlying OSON binary format is capable of supporting 
these updates without full document replacement. This results 
in update performance improvements for medium to large JSON 
documents. 

We will show how data ingestion and retrieval rates are improved 
by keeping OSON as the network exchange format and adding 
native OSON support to existing client drivers.  These drivers 
leverage the inherent read-friendly nature of the format to provide 
"in-place", efficient, random access to the document without 
requiring conversions to intermediate formats on the server or 
client.  OSON values are read by client drivers using convenient 
object-model interfaces without having to first materialize the 
values to in-memory data structures such as hash tables and 
arrays.  This, coupled with the natural compression of the format, 
results in a significant improvement in throughput and latency for 
simple reads.  We will show how ingestion rates are not hindered 
by the added cost of client document encoding but instead tend to 
benefit from reduced I/O costs due to compression. 

In this paper, we also present the set of design principles and 
techniques used to support JSON datatype in the Oracle Database 
eco-system.  The design is driven by variety of customer use 
cases, including pure JSON document storage usecases to 
process both OLTP (put/get/query/modify) and OLAP (ad-hoc 
query report, full text search) operations,  hybrid usecases where 
JSON is stored along-side relational to support flexible fields 
within a classic relational schema, JSON generation usecases 
from relational data via SQL/JSON functions, and JSON 
shredding usecases where JSON is shredded into relational tables 
or materialized views.   Both horizontal scaling via Oracle 
sharding and vertical scaling via Oracle ExaData and In-Memory 
store have been leveraged to support all these cases efficiently. 
The main contributions of this paper are:  

1. The OSON binary format to support the efficient query, 
update, ingestion, and retrieval of JSON documents.  To the 
best of our knowledge, OSON is the first binary JSON 
format that supports general piecewise updates and efficient 
in-place server and client-side navigation without sacrificing 
schema-flexibility. The novel design enables queries and 
updates to be done in logarithmic rather than linear running 
time. 

2. The JSON_TRANSFORM() operator provides declarative partial 
updates over JSON documents in a way that is amenable to  
efficient piece-wise evaluation over OSON. 

3. Integration of the JSON datatype with all the salient features 
of Oracle Database to achieve high performance for both 
OLTP and OLAP workloads. In particular, the in-memory 
path-value index format and inverted keyword hash index 
format for JSON_EXISTS() and JSON_TEXTCONTAINS() 
in memory predicate evaluation for OLAP is novel.  

4. An extensive performance study of the benefits of using 
OSON storage over JSON text for both server and client. 

The rest of the paper is organized as follows. Section 2 gives an 
overview of JSON datatype functionality. Section 3 describes its 
design. Section 4 is on support of JSON OLTP and OLAP 
workloads. Section 5 is on performance experiments. Section 6 is 

on related work. Section 7 is on future work. Section 8 is 
conclusion with acknowledgments in section 9. 

2. JSON DATATYPE FUNCTIONALITY  
2.1 SQL/JSON 2016 
The SQL/JSON 2016 [21] standard defines a set of SQL/JSON 
operators and table functions to query JSON text and generate 
JSON text using VARCHAR2/CLOB/BLOB as the underlying 
storage. JSON_VALUE() selects a scalar JSON value using a path 
expression and produces it as a SQL scalar.  JSON_QUERY() 
selects a nested JSON object or array using a path expression and 
returns it as a JSON text.  JSON_TABLE() is a table function 
used in the SQL FROM clause to project a set of rows out of a 
JSON object based on multiple path expressions that identify rows 
and columns.   JSON_EXISTS() is used in boolean contexts, such 
as the SQL WHERE clause, to test if a JSON document matches 
certain criteria expressed using a path expression. These JSON 
query operators accept SQL/JSON path expressions that are used 
to select values from within a document. The SQL/JSON path 
language is similar to XPath and uses path steps to navigate the 
document tree of objects, arrays, and scalar values.   Each step in 
a path may optionally include predicates over the values being 
selected. Like XPath, SQL/JSON path leverages a sequence data 
model and the intermediate result of any SQL/JSON path 
expression is a sequence of JSON values (objects, arrays, scalars).  
While the mechanics of SQL/JSON path follows XPath, the 
syntax is more similar to JavaScript.  

2.2 JSON Datatype 
In Oracle Database 20c, the "JSON" type can be used to store 
JSON data instead of VARCHAR/CLOB/BLOB.  The JSON type 
data model is closely aligned with JSON text and includes objects, 
arrays, strings, numbers, true, false, and null.  But like other JSON 
formats [2], the data model is also extended with SQL primitive 
types for packed decimal, IEEE float/double, dates, timestamps, 
time intervals, and raw values.  We refer to this logical data model 
as the JSON Document Object Model (JDOM). The OSON binary 
format for JSON datatype is a serialization of a JDOM.  
SQL/JSON 2016 supports type casting item functions, such as 
.number(), .string(), .date(), .binary() etc,  that can cast string to 
non-string built-in datatypes. 

The JSON datatype can be used as the type of a table column, 
view column, parameter, return value, or a local variable datatype 
in SQL and PL/SQL functions. The SQL/JSON operator 
JSON_QUERY() by default returns JSON datatype. JSON_TABLE() can 
return JSON datatype as projected column datatype. SQL/JSON 
generation functions can return JSON datatype.  All of these have 
overcome the limitation from the JSON text with IS JSON 
constraint based pseudotype which in some cases may lose type 
information between SQL operations.    Implicit conversion 
between JSON datatype and JSON text is supported by the SQL 
compiler. 

Figure 1 shows a set of SQL/JSON queries and DML statements 
over a purchaseOrder table whose DDL definition is shown as 
D1. The JSON type column jdoc stores a purchase order JSON 
document. DML statement I1 shows an example of a JSON 
document representing a purchase order being inserted into the 
purchaseOrder table. In I1, the compiler will implicitly wrap the 
JSON string within a JSON() constructor that encodes JSON text 
to OSON binary during insertion. 
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D1  

CREATE TABLE purchaseOrder  
  (did NUMBER PRIMARY KEY, jdoc JSON) 

I1  

INSERT INTO purchaseOrder 
VALUES (1, ' {"purchaseOrder": { 
 "podate": "2015-06-03", 
 "shippingAddress": {"street": "3467 35th Ave",  
   "city" : "Berkeley", “state”: “CA”, "zip": 
94612}, 
 "comments" : "Discounted sales Independence Day", 
 "sparse_id" :"CDEG35", 
 "items": [  
    {"name" : "TV", "price": 345.55, "quantity": 2, 
     "parts": [ 
       {"partName": "remoteCon", "partQuantity": 1}, 
       {"partName": "antenna”, "partQuantity": 2}]}, 
    {"name": “PC”, “price”: 446.78, "quantity": 10, 
      "parts": [ 
       {"partName": "mouse", "partQuantity": 2}, 
       {"partName": "keyboard", "partQuantity": 1}]} 
 ]}}'); 

Q1  

SELECT did,  
  po.jdoc.purchaseOrder.podate.date(), 
  po.jdoc.purchaseOrder.shippingAddress, 
  po.jdoc.purchaseOrder.items[*].count(), 
  po.jdoc.purchaseOrder.item[1] 
FROM purchaseOrder po 
WHERE po.jdoc.purchaseOrder.podate.date() =   
TO_DATE(‘2015-06-03’,'YYYY-MM-DD') AND    
po.jdoc.purchaseOrder.shippingAddress.zip.number() 
BETWEEN 94610 AND 94620 

Q2  

SELECT did,  
  JSON_QUERY(jdoc,  
    ‘$.purchaseOrder.items?(@.price > 300)’), 
  JSON_VALUE(jdoc, 
    '$.purchaseOrder?(exists(@..parts?(@.partName ==  
     "mouse" && @.partQuantity >=2 ))).podate’) 
FROM purchaseOrder po 
WHERE 
  JSON_EXISTS(jdoc, 
    ‘$.purchaseOrder.sparse_id?(@ == “CDEG35”)’) AND 
  JSON_EXISTS(jdoc, 
    ‘$.purchaseOrder.items?(@.name == “TV” &&  
     @.parts.partQuantity >= 2)’) 

Q3  

SELECT po.did, jt.*  
FROM   purchaseOrder po, JSON_TABLE (jdoc 
COLUMNS ( 
 poid NUMBER PATH ‘$.purchaseOrder.id’, 
 podate DATE PATH ‘$.purchaseOrder.podate’,  
 sp_id       PATH ‘$.purchaseOrder.sparse_id’, 
 NESTED ‘$.purchaseOrder.items[*]’ 
  COLUMNS (name, price NUMBER, quantity NUMBER), 
  NESTED ‘$.parts[*]’ 
    COLUMNS (partName, partQuantity NUMBER ))) jt 

 

Q4  

SELECT jdoc  
FROM purchaseOrder 
WHERE JSON_EXISTS(jdoc,  
  ‘$.purchaseOrder.items?( 
     @.price > $price && @.quantity >= $qty &&   
     (exists(@.parts?( 
        @.partName == $pname &&  
        @.partQuantity >= $pquantity))))’  
  PASSING TO_NUMBER(:1) AS "price",  
        TO_NUMBER(:2) AS “qty”,  
        :3 AS “pname”,  
        TO_NUMBER(:4) AS “pquantity”)  

AND JSON_TEXTCONTAINS(jdoc,      

    ‘$.purchaseOrder.comments’, 

    ‘{Independence} NEAR {discount}’) 

Q5  

SELECT JSON { 
  ‘name’  : li.itemName,  
  ‘sales’ : li.price * li.quantity  
} 

FROM lineItems_rel li 

Q6  

SELECT  

  JSON { 
    'id'     : po.Id,  
    'poDate' : po.podate, 

    'items'  : (SELECT JSON_ARRAYAGG(JSON {*}) 

                FROM lineItems_rel E 

                WHERE E.fid_po = po.Id)  
   } 

FROM PurchaseOrder_rel po 

U1  

UPDATE purchaseOrder po 
SET jdoc = JSON_TRANSFORM(jdoc,  
  REPLACE 
‘$.purchaseOrder.shippingAddress.city’ 
           = ‘Oakland’, 
  REPLACE ‘$.purchaseOrder.shippingAddress.zip’ 
           = 94607, 
  SET '$.purchaseOrder.contactPhone' =  
    JSON('["(415)-667-8960","(510)332-8888"]'), 
  REMOVE ‘$.purchaseOrder.sparse_id’, 
  APPEND ‘$.purchaseOrder.items’ =  
         JSON(‘{“items” :[{“name”:”iphone”,  
         “price” : 635.54, “quantity” :2}]}’)) 
WHERE po.jdoc,purchaseOrder.podate.date() =  
      TO_DATE(‘2015-06-03’) 

Q7  

SELECT did,  
  JSON_QUERY(jdoc,  
    '$.purchaseOrder.items?(@.price > 300)’), 
  JSON_VALUE(jdoc,  
    ‘$.purchaseOrder?(@..parts?(@.partName == 
“mouse”  
     && @.partQuantity >=2 )).podate’) 
FROM purchaseOrder po 
WHERE EXISTS( 
   SELECT 1  
   FROM MV_PO  
   WHERE MV_PO.FID = po.did AND  
         MV_PO.sp_id = 'CDEG35' AND  
         MV_PO.name = 'TV' AND  
         MV_PO.quantity >= 2) 

 

Figure 1. Example SQL/JSON queries and DMLS statements  
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2.3 Simplified Syntax for SQL/JSON 
Oracle Database provides a simplified syntax for querying JSON 
values as an alternative to calling more expressive but verbose 
SQL operators such as JSON_QUERY() and JSON_VALUE().  A 
simple JSON path navigation without any predicates can be 
abbreviated using the dot notation as shown in the select list of 
Q1. Tailing step functions such as number(), binary(), date(), 
and timestamp() can be used to specify the return type of the 
expression. For example, po.jdoc.purchaseOrder.podate. 
date(), is internally translated into JSON_VALUE( po.jdoc, 
'$.purchaseOrder.podate' RETURNING DATE ). The trailing step 
function casts the value to the corresponding SQL built-in type (in 
this case, DATE). Without a trailing step function, the return type 
of the expression is JSON. For example, 
po.jdoc.purchaseOrder.shipping, is translated into JSON_QUERY( 
po.jdoc, '$.purchaseOrder.shipping' RETURNING JSON).  

Other types of trailing step functions are also supported. For 
example, po.jdoc.purchaseOrder.items[*].count() in Q1 
illustrates a sequence item aggregation function that returns the 
total number of items in an array. This avoids using the general 
purpose JSON_TABLE() operator for simple aggregations. 

Examples Q5 and Q6 show the simplified syntax for 
JSON_OBJECT().  This JSON constructor syntax allows users to 
create new JSON objects and arrays using a syntax that resembles 

the JSON that the expression creates.  In Q6, the expression 
JSON{*} automatically creates a JSON object representation of the 
relational row. There are other syntax simplifications for 
accessing JSON as well, all of which map to the core SQL/JSON 
operators [20,21].   

2.4 Updating with JSON_TRANSFORM 
JSON_TRANSFORM() is a new SQL operator to declaratively apply a 
sequence of  modification operations to JSON values selected by 
the SQL/JSON path language. Figure 2 shows the grammar for 
the JSON_TRANSFORM() operator.  The INSERT operation inserts a 
new value into a JSON object or array. REPLACE operation replaces 
an existing value with a new value. The APPEND operation appends 
a new value into an array. The SET operation either replaces an 
existing value by a new value or adds a new value if the original 
one does not exist. REMOVE operation removes values. U1 in Figure 
1 is an example of a SQL UPDATE statement that uses 
JSON_TRANSFORM to modify a JSON column value. Logically, the 
update is a full replacement of the existing value with the 
modified value.  However internally, the update is applied 
piecewise without materializing the new and old value at once 
(see section 3.4).  JSON_TRANSFORM can also be used in the select 
list of a query to perform a transformation on a JSON value 
without changing the persistent storage.  For example, 
JSON_TRANSFORM could be used to redact a social security number 
using a REMOVE operation before sending the document to the 
client. The KEEP operation is the inverse of REMOVE: only values 
identified by path expressions are kept and all others are removed.  

2.5 Client JSON Datatype Access 
Both JDBC (Java Database Connectivity) and OCI (Oracle Call 
Interface) have been enhanced with OSON support. Using these 
libraries, applications can read, create, and modify JSON type 
values, convert values between JSON text and OSON, and store 
and retrieve values in the database. These libraries provide simple 
object model access APIs to randomly navigate and access values 
within a document.  For example, the package oracle.sql.json 
in JDBC implements  JSR374/JSON-P interfaces (javax.json.*) 
over OSON and is compatible with  JSR367/JSON-B so that user 
domain objects can be mapped directly to and from JSON type 
values without incurring JSON text parsing or serialization costs.  
 

 

PreparedStatement select = con.prepareStatement 
   ("SELECT jcol FROM purchaseOrder WHERE did =1"); 
ResultSet rs = select.executeQuery(); 
rs.next(); 
JsonObject doc =  
   rs.getObject(1, javax.json.JsonObject.class); 
System.out.println(doc.getString("sparse_id")); 
rs.close(); 
 

Figure 3. JSON datatype in JDBC 
 
Figure 3 is an excerpt from of a Java program that uses JDBC to 
retrieve a purchase order document from the server.  In this case, 
the OSON bytes for the purchase order are transferred directly to 
the application and exposed to the developer using the standard 
javax.json.JsonObject interface.  The value for sparse_id is 
read from the object in-place without processing or converting the 
rest of the document.  This is discussed more in sections 3 and 4.  

 

'JSON_TRANSFORM' '('  
    input_expr ',' operation (',' operation)*      
    JSON_TRANSFORM_returning_clause?  
    JSON_passing_clause?  
')' 
 
operation := (removeOp | insertOp| replaceOp |  
  appendOp | setOp | renameOp | keepOp) 
 
removeOp := 'REMOVE' pathExp  
  (('IGNORE' | 'ERROR') 'ON' 'MISSING')? 
 
insertOp := 'INSERT' pathExp '=' rhsExpr  
  (('REPLACE' | 'IGNORE' | 'ERROR') 'ON' 'EXISTING')?   
  (('NULL' | 'IGNORE' | 'ERROR' | 'REMOVE') 'ON'  
    'NULL')? 
 
replaceOp := 'REPLACE' pathExp '=' rhsExpr  
  (('CREATE' | 'IGNORE' | 'ERROR') 'ON' 'MISSING')?  
  (('NULL' | 'IGNORE' | 'ERROR' | 'REMOVE') 'ON'  
    'NULL')? 
 
appendOp := 'APPEND' pathExp '=' rhsExpr  
  (('CREATE' | 'IGNORE' | 'ERROR') 'ON' 'MISSING')?   
  (('NULL' | 'IGNORE' | 'ERROR') 'ON' 'NULL')? 

 
setOp := 'SET' pathExp '=' rhsExpr  
  (('IGNORE' | 'ERROR' | 'REPLACE') 'ON' 'EXISTING')? 
  (('CREATE' |'IGNORE' | 'ERROR') 'ON' 'MISSING')?   
  (('NULL' | 'IGNORE' | 'ERROR') 'ON' 'NULL')? 
 
renameOp := 'RENAME' pathExpr 'WITH' stringLiteral  
  (('IGNORE' | 'ERROR') 'ON' 'MISSING')? 
 
keepOp := 'KEEP' (pathExpr (('IGNORE' | 'ERROR')  
  'ON' 'MISSING')? )  
  (',' pathExpr (('IGNORE' | 'ERROR')  
  'ON' 'MISSING')? )*  
 
rhsExpr := sqlExpr ('FORMAT JSON')?  
 
 

Figure 2. JSON_TRANFORM grammar 
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2.6 Simple Oracle Document Access (SODA) 
SODA [19] is Oracle’s simple document access API for 
developers to use Oracle Database as a pure JSON document 
store.  This API provides NoSQL-style access (CRUD) based on 
the document's ID, presenting a key/value model similar to other 
common document stores.  With SODA, data is logically 
managed by an application using collections of simple documents 
rather than tables containing rows.  However, SODA collections 
are still backed by internally managed relational tables having ID, 
JSON, and other metadata columns.  With this model, applications 
can be written without using SQL but SQL/JSON can still be 
leveraged over collection data for analytics and reporting if ever 
needed.  More complex queries over JSON documents are 
specified as QBEs (Query By Example). QBE's are JSON 
documents themselves which are internally transformed to 
equivalent SQL/JSON queries over the underlying JSON datatype 
column of the table. SODA is available in all popular client 
programming languages: Java, Node.js, Python, C, PL/SQL.   

3. JSON DATATYPE DESIGN  
3.1 JSON Datatype Derivation from BLOB  
The JSON datatype is internally designed as a derivation of the 
BLOB datatype for storing OSON bytes. This simple approach 
enables Oracle to provide complete implementation support for 
the JSON datatype in every part of Oracle's ecosystems within a 
yearly based release. However, this is all transparent to developers 
because the general LOB APIs, to read and write LOBs using 
offsets, cannot be used on JSON type.  One main advantage of 
being a SQL datatype is that SQL static typing can enforce 
desired type semantics over JSON.  And in contrast, with JSON 
text storage developers use the more complicated LOB API 
explicitly to access and modify JSON.   
Classic BLOB was initially designed to store large binary objects 
and provide random access over any file or media (e.g. a music 
file).  However, JSON documents for operational data are 
typically smaller (kilobytes to megabytes). To achieve optimal 
performance, we inline OSON values up to the database block 
size to avoid out of row BLOB access as much as possible. This 
allows SQL/JSON evaluation to directly access OSON bytes as if 
it were normal relational RAW column inside a row. When an 
OSON value is larger than the block size, it is stored outside of 
the row using multiple data blocks managed by the Oracle 
securefile i-node infrastructure [13]. Data blocks for OSON 
BLOB storage are lazily read and cached in the buffer cache 
based on tree navigation patterns instead of linearly reading 
everything. For large OSON, we only need to read OSON data 
blocks that are relevant to answer the path query. 

For a BLOB storing OSON bytes for the JSON datatype, we 
applied value based LOB semantics on both the server and client. 
A large client side prefetch buffer is auto-configured for OSON 
BLOB. The lifecycle for OSON BLOB is restricted to cursor fetch 
duration in order to prevent resource leakage. 

3.2 OSON Binary Format Design 
The following section describes the OSON binary format and its 
characteristics.  Space precludes giving a full formal definition of 
OSON but Figure 4 gives a pseudo-grammar that identifies the 
salient aspects of its structure.  This section gives an overview of 
the structure and highlights its benefits. 

3.2.1 OSON Structure 
An OSON image consists of a header, a dictionary, and a value 
segment.  The header gives a fixed signature specific to OSON 
and records various aspects about the image that are needed by a 
reader, such as the size of byte offsets used within the document.   
The dictionary contains the set of distinct field names used within 
all objects in the document.  Specifically, it first stores a sorted 
array of hash codes for each distinct key (sortedFieldHashes).  
This array is followed by a second array of equal length 
(fieldNameOffsets) that stores the corresponding offset of the 
key string.  These offsets reference a third array (fieldNames) that 
contain the actual field strings.  The unique field ID of a given key 
is its ordinal position within fieldNameOffsets .   
The tree value segment follows the dictionary and encodes the 
objects, arrays, and primitive values used within the document. 
Objects are encoded by a set of size-prefixed parallel arrays that 
encode the entries in the object.  The first array (sortedFidArray) 
gives the sorted field IDs of the field names in the object.  The 
second array (offsetArray) gives the corresponding offsets to 
values in the value segment.  Arrays are encoded by a single size-
prefixed offset array containing the offsets of the values in the 
array.  The upper part of Figure 5 shows an example of the OSON 
layout without any partial updates. After a partial OSON update, 
extended tree segment is appended as show in the bottom half of 
Figure 5. The update replaces the string ‘CDEG4’ with 
‘CDEG52’. Note if ‘CDEG4’ is replaced by ‘CDEG8’, then a 

 

oson_document := header dictionary tree_seg  
                 (extended_tree_seg) 
dictionary    := sortedFieldHashes fieldNameOffsets  
                 fieldNames 
tree_seg := value+ 
extended_tree_seg := tree-seg 
value  := object | array | scalar | forward_offset 
object := OBJECT_CODE (fields | delegate_offset)  
          offsetArray  
fields := size sortedFidArray  
array  := ARR_CODE size offsetArray 
scalar := scalarCode sqlScalar 
 

Figure 4. OSON Binary Format (pseudo grammar) 

 
 
 

 
 

Figure 5. OSON example 
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direct replacement is done without appending in the extended tree 
segment. 

3.2.2 Self-contained and platform independent  
Similar to JSON text and BSON, OSON does not depend on any 
external schema information and supports unencumbered schema 
evolution. This is a critical property to support distributed 
computing over the data without synchronizing on central schema 
access. Many database features, like partitioning, replication, 
sharding, import/export, and transportable tablespace require data 
to be self-contained and accessible on any platform without data 
conversion. 

3.2.3 Compact  
Unlike JSON text and BSON, OSON maintains a local dictionary 
in the header that encodes each distinct field name.  For JSON 
documents having many repeating field names due to arrays of 
identical JSON object structures or recursive JSON object 
structures, OSON is often much smaller than the equivalent UTF-
8 encoded JSON text or BSON since the repeated field names are 
replaced by small field IDs. Furthermore, multiple objects 
containing the same field names will only have their field ID array 
stored once.  Objects can reference the offset of the other object 
that shares the same structure (delagate_object) instead of 
repeating the same field ID array. For example, in the 
purchaseOrder JSON document shown in Figure 1, there is an 
‘item’ array, each of which has an identical object structure of 
‘name’, ‘price’, ‘quantity’, ‘parts’ fields. Each ‘part’ array has 
identical object structures of ‘partName’, ‘partQuantity’ fields. 
These repeating field IDs are stored just once and reused by 
multiple objects. The field ID size is fixed within an OSON 
document as either 1 or 2 or 4 bytes depending on how many 
distinct field names there are in the document. Commonly, 
documents have less than 256 distinct keys and a 1-byte field ID 
is thus sufficient.  Similarly, the size of value offsets used to 
reference values will be either 2 or 4 bytes depending on whether 
the total size of the OSON exceeds 64K.  Both the field ID and 
offset sizes in effect are encoded in the OSON header. 

3.2.4 Efficient in-place navigation 
Tree navigation is performed in-place over the OSON bytes 
without first loading the data into other in-memory structures. A 
value offset is used as direct pointer to the OSON bytes that 
encode that value. Searching for a key name within an object, 
or an array indexed element uses jump navigation to efficiently 
skip past irrelevant portions of the document.  Specifically, 
when searching for a given key within an object, a binary search 
over sortedFidArray is performed to identify the offset in the 
corresponding offsetArray.  This offset can be used to jump 
directly to the corresponding value.  Likewise, elements within an 
array can be efficiently located at any position using the 
offsetArray. Both the server and client drivers make use of in-
place jump navigation to support efficient data access without 
converting the OSON image to other data structures.   

3.2.5 Efficient piece-wise updates 
OSON supports partial updates so that changes can be made 
without replacing the entire document, as would be required for 
JSON text or BSON. Partial BSON update is limited to the case 
that the new content length exactly matches the old content length 
because BSON uses fixed offsets throughout the document which 
need to be recalculated after a size changing update. Partial update 
for OSON can handle complex update operations. When the old 

content length is bigger than or equal to the new content length, it 
does an in-place update. When in-place update is not feasible, the 
old value is tombstoned with the forwarding address 
(forward_offset) of the new content that is appended at the end 
of the original OSON bytes. Subsequent change of the same node 
but with larger content creates a new forwarding address that is 
still stored in the original tombstone location to avoid forwarding 
address chaining. See bottom part of Figure 5. When accumulated 
appended pieces exceed a certain threshold relative to the original 
document size, the encoding is re-compacted and the resulting 
OSON bytes fully replace the old document. Partial update 
leverages the fact that OSON uses tree offset based jump 
navigation. To avoid a rebuild of the dictionary due to the 
insertion of new distinct field names, OSON supports partial 
dictionary rebuilding by tracking dictionary codes that have been 
actually changed due to insertion of new distinct field names and 
then only patching those changed dictionary codes in the end. 
Compared with the OSON format described in paper [28], this 
OSON format is enhanced to support piece-wise update of OSON 
using concept of forward offsets (forward_offset) and reduces 
OSON size for common JSON documents by allowing object 
encodings to share field structures (delegate_offset).   

3.2.6 SQL scalar binary compatibility 
All JSON scalar values use the same encoding as existing SQL 
built-in datatypes. For example, JSON packed decimal is encoded 
using the same binary format as that of the NUMBER built-in 
type in Oracle SQL.  This allows for efficient conversions and low 
impedance mismatch when working with JSON inside the 
database.  JSON scalar content is mapped to relational columns 
and back without loss of fidelity.   

3.3 Fast SQL/JSON Path Evaluation 
Q1, Q2, and Q4 in Figure 1 show SQL/JSON path language 
expressions used in JSON_VALUE(), JSON_QUERY(), and 
JSON_EXIST().  Notice that in addition to simple child steps, 
Oracle also supports a recursive descendant path step. See 
"..parts" in Q2 of Table 1 which selects all entries for key 
"parts" within each descendant object of the current value. Q3 
uses JSON_TABLE() to project a master detail hierarchy within a 
document as a set of flat table rows. The path expressions used 
within these SQL/JSON operators are evaluated efficiently over 
the input OSON column value using in-place jump navigation. 
When compiling a path expression, a hash function is applied to 
the field names in the path to generate a corresponding hash code 
for each field name.  These hash codes are stored in the compiled 
execution plan for the path expression.  The OSON field name 
dictionary (sortedFieldHashes) is organized based on the sorted 
hash id.  At run time, the hash ID from the path is first located 
within the OSON field name dictionary using a binary search to 
obtain the corresponding field ID within the document.  If the 
field is not found in the dictionary, it means the field does not 
occur anywhere in the document. This is particularly helpful for 
the heterogeneous JSON collection where there are many possible 
sparse optional fields. Searching for non-existence of fields within 
JSON text or BSON requires a scan of the entire document to the 
end whereas OSON only requires a binary search within the 
OSON field name dictionary. When the object field ID is found in 
the dictionary, it is then located in the field ID array of the current 
object, again using binary search, to get the corresponding child 
offset.    
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Oracle's built-in SQL datatype format is designed to support type 
agnostic byte comparable for range comparison. This property is 
exploited for range comparisons in SQL/JSON path expressions 
because OSON scalar binary is the same as that of SQL built-in 
SQL datatype. Also, when the SQL return type used within 
JSON_VALUE() matches a JSON scalar,  its bytes are copied out 
directly from OSON bytes without any datatype conversion.  

3.4 Fast JSON_TRANSFORM() Evaluation 
Consider execution of the update statement U1 in Figure 1.  
Logically, the JSON_TRANSFORM() expression on the right-hand 
side of the SET clause is evaluated over the input JSON value, 
applying a sequence of modification operations to yield a new 
temporary document that replaces the JSON column value. 
However, replacing the entire document in this manner is 
inefficient as it requires the database to generate a redo log entry 
proportional to the size of the document. Oracle Database 
optimizes U1 execution by applying piece-wise updates on the 
OSON storage without generating a temporary new OSON 
document to fully replace the previous stored OSON document. 
With this optimization, transaction redo log size is usually 
proportional to the size of the change rather than the full 
document size. At runtime, JSON_TRANSFORM() evaluates the 
update over the OSON bytes using only 3 low-level update 
operations: length preserved byte replacement, append bytes at the 
end and truncate bytes at the end. Typical OSON update 
operations only result in few database BLOB storage block 
changes instead of every BLOB storage block being modified. 
Therefore, update performance using JSON_TRANSFORM() is 
improved significantly.  When there are many partial updates that 
have accumulated on an OSON document, re-compacting the 
OSON document to reclaim the space due to deletion occurs 
automatically. The partial BLOB update API is similar to the 
POSIX/UNIX file system API [13]. We note this partial OSON 
update technique is applicable to OSON stored in file systems as 
well. 

4. JSON WORKLOADS  
The traditional model of using separate databases for different 
types of workloads is more and more breaking in favor of so-
called translytic databases that support both transactional and 
analytic workloads at once.  We have designed JSON type and the 
SQL/JSON facilities to support both types of workloads over 
JSON data.    

4.1 OLTP Performance 
JSON OLTP workloads require high performance document 
retrieval (i.e. get() operations). A primary key index on a 
document identifier is required to efficiently retrieve a JSON 
document by id lookup. For example, the DDL statement D1 in 
Table 1 shows the primary key specification for column did of the 
purchaseOrder table.  A functional index is needed to facilitate 
common secondary access paths. Efficient execution of Q1 in 
Table 1 needs two functional indexes on paths 
po.jdoc.purchaseOrder.podate.date(),  po.jdoc. 
purchaseOrder.shippingAddress.zip.number().  B+ tree based 
functional indexes offer the best tradeoff to speed up document 
retrieval based on range or equality predicates while being both 
statement and transactionally consistent with respective to 
underlying DML.  DML statements, such as inserts, must compute 
the functional index expression to maintain the B+ tree for each 

operation.  Since OSON uses jump navigation to evaluate 
SQL/JSON path expressions, it provides the best performance to 
compute the JSON_VALUE() expression during functional index 
maintenance. 

OSON also reduces transfer costs and enables efficient client-
access to documents.  The OSON bytes for the document 
retrieved are transferred directly to the client application, avoiding 
any transformation or serialization costs on the server.  The 
OSON bytes are also typically smaller than the corresponding 
JSON text or BSON value which reduces both IO and network 
transfer overhead.  Like the server, the client application can read 
the OSON bytes using jump offset navigation, avoiding any 
transformation costs on the client as well.  In contrast, for JSON 
text or BSON, the application must load the data into alternative 
data structures such as hash tables to enable efficient random 
access to the document. Some database vendors use binary JSON 
as a storage format but then serialize the value to JSON text 
before sending it to a client. These conversions can consume 
significant resources on the database server, especially in OLTP 
type use cases where many clients are using the database at once.   

OLTP workloads also require high performance ingestion (i.e. 
put() operations).  Using OSON reduces I/O and network transfer 
costs during an insert since the OSON value is typically smaller 
than the corresponding JSON text.  Client-side encoding of OSON 
also reduces server side CPU usage during an insert since the 
server can directly store the bytes received from the client with 
OSON bytes verification. 

As discussed in section 3.4, document updates are also important 
to OLTP workloads.  OSON has efficient partial OSON update 
capability that typically result in transaction redo-log size 
proportional to small changes of OSON instead of the full OSON 
document replacement. Execution of U1 in Table 1 uses a 
functional index to locate the document and then performs partial 
update.  

4.2 OLAP Performance 
4.2.1 Incrementally Refreshable Materialized Views 
Materialized views (MVs) have traditionally been used for 
materializing aggregations persistently. Depending on the 
complexity of SQL expressions used in MVs, Oracle allows 
developers to control whether MVs are refreshed incrementally or 
fully, and the frequency of refresh at the statement level, at the 
transaction level or at scheduled intervals.  MVs are typically used 
to speed up OLAP queries. In this paper, we have applied 
JSON_TABLE() MV to speed up SQL/JSON OLAP queries. 
JSON_TABLE() queries, such as the one shown in Q3, can be used 
to define MV for analytics.  The view can be set to refresh at the 
statement or transaction commit level. This is feasible because the 
underlying JSON_TABLE() MV table stores the primary key of the 
JSON datatype column in the original table as a foreign key. In 
this example, when new JSON document is inserted in the 
purchaseOrder table, Oracle MV maintenance runs JSON_TABLE() 
over the new JSON document to return a set of relational rows 
tagged with the primary key of the new document and then inserts 
them into the MV table.  JSON_TABLE() evaluation over OSON is 
more efficient than JSON text for the reasons discussed in section 
3. When JSON documents are deleted from the purchaseOrder 
table, Oracle MV maintenance deletes those rows in MV table 
whose foreign key value matching the primary keys of the deleted 
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rows. Update of JSON datatype column in purchaseOrder table is 
triggered as deletion followed by insertion operations in the MV 
maintenance layer. The JSON_TABLE() MV maintenance can be  
triggered at individual DML statement completion time. This 
statement level consistency is semantically equivalent to that of 
index maintenance during which a session can see its own change 
immediately without committing the transaction. The MV table 
update is rolled back if the transaction containing these DML 
statements is rolled back.  
Due to the MV statement level consistency semantics, 
JSON_TABLE() based MVs can be used to transparently rewrite not 
only queries that use JSON_TABLE() in the FROM clause but also 
queries that use JSON_EXISTS() as predicate in WHERE clause.  For 
example, assume that MV_PO is a MV defined over the 
JSON_TABLE() query given in Q3.  The query given in Q2 can be 
internally rewritten to the query given in Q7.  Q7 uses MV_PO to 
help evaluate the query over the purchaseOrder table.  The 
JSON_EXIST() expressions in the original Q2 are transformed in 
Q7 into a semi-join using an EXISTS subquery.  MV_PO.FID is the 
internal foreign key of the MV table that joins to the primary key 
did in the purchaseOrder table.  Semi-joins like this one are 
amenable query optimizations for efficient execution plans. For 
example, when MV_PO has secondary indexes on sp_id, name and 
quantity columns or if the table is placed in the Oracle in-memory 
columnar store, significant performance improvement is 
achievable. 

4.2.2 Parallel Query 
SQL/JSON OLAP queries can be executed in parallel with 
multiple slaves executing SQL/JSON operators used in the select, 
where, group by and order by clauses. JSON_TABLE() is executed 
in the same slave process which reads the JSON column. 
SQL/JSON operators in the select list are pushed down to each 
slave process so that they are executed in parallel. Slave processes 
add intermediate results as temporary OSON BLOBs in the 
parallel table queue.  The query coordinator processes the queue 
and ships the final results to DB client. 

4.2.3 In-memory Indexes 
Although JSON search index is powerful, it is based on disk 
structures that inevitably impact DML performance. Oracle DB 
in-memory store[22], however, is able to maintain an alternative 
format of data for fast query without paying the disk I/O cost to 
persist them while still providing transactional consistency. 
The Oracle In-Memory store has an in-memory expression feature 
(IME) [1] that enables storing virtual column expressions in 
memory. JSON_VALUE() is used to shred the JSON into multiple 
columns and load them into an in memory columnar format that 
is amendable to SIMD scans [28]. JSON datatype is further 
integrated with IME as a memory pool to maintain a compact 
JSON search index based memory representation so that 
JSON_EXISTS() and JSON_TEXTCONTAINS() predicates can be 
evaluated in-memory. This is achieved by using both a path-
value index format to support JSON_EXISTS() and a inverted 
keyword hash index format to support JSON_TEXTCONTAINS(). 
The Oracle in-memory store assigns each row an ordinal number 
within a memory unit, and we use that ordinal number as the 
document id (docid) for keyword inverted-list and path-value 
indexing. The hash index maps keywords into posting lists having 
that keyword using a serialized in-memory hash table. The posting 
list is a bitmap for docid with the doc offset. Path-Value in-

memory maps a 16 byte hash id for each unique path to a sorted 
distinct leaf scalar values, each of which maps to a bitmap for the 
docid having that scalar value.  
If the in-memory index fails to load in an IME unit due to lack of 
memory or if it cannot keep up with heavy DML rates, execution 
automatically falls back to use OSON bytes for evaluation. Unlike 
disk-based indexes, the in-memory index maintenance does not 
slow down the main DML execution path because its population 
is trigged periodically and is done in the background. 

4.2.4 Predicate Scans in Exadata Storage Cells 
Oracle Exadata [14] is an engineered system for Oracle Database. 
A key aspect of the Exadata architecture is to separate compute 
and storage and push predicate evaluation down to storage server. 
SQL predicates evaluated during a table scan are pushed down 
and evaluated in the storage layer by parallel kernel threads. The 
storage layer returns matching rows. This improves the 
performance of scans by orders of magnitudes by reducing the 
amount of data sent back to compute nodes. JSON support takes 
full advantage of this by supporting SQL/JSON functional 
evaluations in the storage cells, so that SQL/JSON predicates, 
such as JSON_EXISTS() and JSON_VALUE() in WHERE clauses are 
pushed down to storage cell server for evaluation when any 
indexing mechanism in the compute node are not available or 
determined to be non-beneficial by optimizer. 

4.3 Sharding & Full Text Search 
This section covers sharding and full-text search which are 
common features of NoSQL databases and useful for improving 
both operational and analytical workloads.   

4.3.1 Full-text Search 
Oracle Database supports the operator JSON_TEXTCONTAINS(), 
usable in WHERE clause to facilitate JSON path context aware full 
text search. For example, Q4 in Figure 1 uses 
JSON_TEXTCONTAINS() to perform the full text search 
‘{Independence} NEAR {discount}’ under a SQL/JSON path 
$.purchaseOrder.comments. OLAP queries over JSON data 
typically have ad-hoc path value range searches that are not 
possible to create many functional indexes or statement 
refreshable MVs to capture all possible paths in a JSON datatype 
column. Therefore, Oracle JSON Search Index is designed to 
index everything in a JSON datatype column, both full text and 
leaf scalar values. The SQL compiler detects all SQL/JSON 
operators: JSON_TEXTCONTAINS(), JSON_EXISTS(), JSON_VALUE() 
in WHERE clause over the same JSON datatype column and then 
combines them into one tree pattern search operator to be 
evaluated by the JSON search index. 

There are two components in the JSON search index. One 
component indexes keyword tokens of both scalar strings and 
hierarchical tree structures. It uses an inverted index layout to map 
each keyword token to its document ids and its containing 
hierarchical path as intervals. The other component indexes leaf 
number and timestamp values and its leading JSON path. It has 
B+ tree index to index a combination of 16 bytes hash of each 
unique JSON paths and its distinct leaf scalar node value for path-
value range search. The posting list is compact because the 
posting list uses ordinal numbers as document ids and does delta 
compression of them. Furthermore, ordinal number based 
document ids also facilitate fast bitmap joins and pre-sorted merge 
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joins when combining posting list results from multiple full text 
and path value ranges. 

The posting lists are not DML friendly structures. To keep up with 
high volume of DML rates, the index can be configured as synch 
on transaction commit or synch at certain intervals. It internally 
uses a log structured merge mechanism to initially keep less 
compacted posting lists tailored for fast DMLs and then gradually 
merge and compact multiple posting lists for the same key 
together into read friendly structures using parallel group by / 
aggregation query execution as the underlying map-reduce 
framework. As for functional indexes, OSON storage helps with 
indexing time as it can be more efficiently read in-place. 

4.3.2 Sharding 
NoSQL databases typically use sharding to scale horizontally in a 
distributed environment.  Data is partitioned out to multiple 
machines based on a shard key which may be document id or 
document creation dates etc. Oracle Database also supports 
sharding stored JSON data, and each shard can have a locally 
defined JSON search index. NoSQL style OLTP and OLAP 
operations, with sharded key specifications, are routed to the 
corresponding shard server. NoSQL style cross-shard OLAP 
queries are distributed to each shard server to be executed in 
parallel. SQL/JSON operators, including JSON_TABLE(), are 
pushed down to each shard server. 

5. PERFORMANCE EXPERIMENTS 
We compare the performance of JSON text storage in BLOB with 
an ‘IS JSON’ check constraint to that of JSON type backed by 
OSON storage.  Specifically, we show that document retrieval, 
ingestion, queries, and updates all benefit from using OSON.  For 
JSON text storage, the document is stripped of insignificant 
whitespace and encoded as UTF-8 to be as small as possible. The 
database character set is ALU32UTF8. All experiments ran on a 
compute node in Oracle's US East (Ashburn) data center [17].  
The compute node used was a VM.Standard2.24 [25] type virtual 
machine with the following characteristics: 24 OCPU/2.0 GHz 
Intel® Xeon® Platinum 8167M, 320 GB of memory, and 1TB 
encrypted block volume, ext4 [3].  In Section 5.2, we use two of 
these compute nodes - one for the database and one for the Java 
application.  Otherwise, the experiments are run on a single node.   
Figures presented in this section show ratios rather than absolute 
numbers. The purpose of these experiments is not to demonstrate 
the absolute performance numbers, but rather comparing the ratio 

among different approaches to show what relative improvement 
can be achieved. Also, since we use a variety of document sizes, 
using ratios helps show all the data in a single figure/scale.  
Measurements are done after a warm-up period so that the 
working set of data is fully loaded in-memory to eliminate 
measuring physical I/O overhead.  

5.1 Encoding Size 
We compare the encoding size of JSON text, BSON, and OSON.  
Encoding size is an important metric as it determines how much 
data is read and written to disk by the database as well as how 
much data is sent over the network to the client.  We use a set of 
11 JSON documents where 4 were taken from public sources and 
the rest were given to us by customers.  Our goal here is to use 
only real-world, non-synthetic data that covers a variety of 
document sizes.  Since we cannot disclose the specific customers 
and public sources used, we instead give each document a generic 
identifier (D1 - D11).  

Table 1 summarizes the encoding sizes of the 11 documents we 
selected.  The first column gives the identifier of the document 
while the next three columns give the size of the JSON text, 
BSON, and OSON values.  The Dict. column gives the percentage 
of space taken by the OSON dictionary.  The vsUTF8 and 
vsBSON columns give the size of JSON text and BSON relative 
to OSON. The last five columns give the total number of objects, 
keys, arrays, numbers, and strings in each document.  The #Keys 
column gives two values - the total number of keys in the 
document followed by the total number of distinct keys.  

In all cases except for D2, the size of the OSON encoding is 
smaller than the UTF-8, whitespace stripped JSON text.  D2 is a 
small, flat document with no repeating keys, short key names, and 
small numeric values.  In this case, the op codes and jump offsets 
in OSON made it 10% bigger than the corresponding JSON text.  
In all other cases, the OSON encoding is smaller than the 
corresponding JSON text, especially for documents having arrays 
of object structures or recursive structures that have many 
repeating keys.  For example, the OSON encoding of D6 and D7 
is half the size of the corresponding JSON text.  D11 achieved the 
largest relative compression at one third the size of the JSON text.  
D11 is a large document with 1.8 million keys but only 73 distinct 
values.    Thus, encoding these keys as numbers results in a large 
reduction in size. Similarly, the OSON encoding is typically 
significantly smaller than the corresponding BSON encoding for 
medium to large size documents because BSON does not encode 
key names as identifiers.  For D9, the customer document 

Table 1. Document sizes 

ID UTF8 (b) BSON (b) OSON (b) Dict
. 

vsUTF8 vsBSON #Object #Keys #Array #String  #Number 

D1 613 764 524 5% 0.9x 0.7x 20 33/5 1 31 0 
D2 1,782 1,813 1,950 30% 1.1x 1.1x 4 56/55 0 31 21 
D3 2,608 3,094 2,160 16% 0.8x 0.7x 26 100/32 14 124 1 
D4 2,943 3,293 2,476 6% 0.8x 0.8x 46 100/19 14 87 0 
D5 8,842 8,440 5,591 19% 0.6x 0.7x 38 307/74 29 107 56 
D6 40,285 37,526 20,486 18% 0.5x 0.5x 81 1,435/246 9 572 476 
D7 76,861 75,195 38,383 11% 0.5x 0.5x 490 3,300/282 23 1,263 1,129 
D8 141,051 133,307 103,897 0% 0.7x 0.8x 1,688 6,620/40 52 652 6,860 
D9 682,228 No Data 483,053 0% 0.7x No Data 9,727 36,778/42 42 666 40,375 
D10 3,374,379 3,303,387 2,167,101 0% 0.6x 0.7x 14,712 112,356/90 12,738 43,927 27,618 
D11 41,548,995 37,352,414 13,801,333 0% 0.3x 0.4x 100,141 1,839,847/73 1 100,143 901,263 
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contained large numeric values that caused the 3rd party BSON 
encoder we used to produce an error and we report "No Data". 

Just as JSON text and BSON, OSON is designed for OLTP use 
cases with OSON as an operating CRUD entity. Therefore, each 
OSON document is self-contained and it does not try to do 
common schema elements compression across document 
boundary as what relational storage would do by extracting and 
storing the common schema in central data dictionary. However, 
each OSON document contains common intra-document fields in 
the dictionary. Table 1 shows the percentage of the dictionary size 
relative to the whole OSON document in the Dict. column of 
Table 1. For small OSON documents, the OSON dictionary size 
represents average of 16% of the document. For medium to large 
OSON document, the OSON dictionary size is negligible. This 
means even if we do schema inference to extract and store 
common dictionary over a collection of OSON documents in a 
central dictionary, its results in 15% of saving in exchange for 
schema-evolution and migration issues. This is why the design of 
OSON using intra-document dictionary achieves the balance of 
schema flexibility and storage space compaction for OLTP JSON 
use case.  

On the other hand, for OLAP JSON use cases, Oracle [28] is able 
to do common schema inference over JSON document collection 
to derive JSON Data Guide to shred JSON collection as relational 
storage with columnar in-memory format whose size is similar 
closer to that of Dremel [18] and STREED [27] style of columnar 
encoding. While these are efficient columnar encodings for OLAP 
queries through leaf scalar value dictionary encoding and SIMD 
scans [1,22], they lack of efficient random update capability at 
document level in comparison with OSON for efficient OLTP 
JSON use case in the same way as that of row store and columnar 
store of relational model for OLTP and OLAP use cases 
respectively. 

5.2 Ingestion and Retrieval 
5.2.1 Ingestion 
In this experiment, we measure the insert throughput of a client 
Java application running on a compute node in the same data 
center as the database node.  The application contains 24 threads 
and each thread starts with a pre-parsed, in-memory object model 
representation of the given document.  Each thread repeatedly 
inserts the document into the database using a SQL insert 
statement.  In the case of JSON text, the document object is 
converted to UTF-8 JSON text to be inserted into a BLOB 
column. In the case of OSON, the document object is converted to 
OSON binary at the client side and inserted into a JSON type 
column with server side OSON byte verification (section 4.1). 
After a warm-up period of 6 seconds, the average inserts per 
second is recorded over a 1-minute window.   

 
Figure 6. Relative insert throughput, text vs OSON 

 

Figure 6 shows the insert throughput of JSON text compared to 
OSON binary storage.  The figure gives the ratio rather than 

absolute values since the insert rates for the smaller documents are 
much greater than that of the larger documents.    For D1 through 
D4 the average writes per second is essentially the same showing 
that the cost of encoding OSON at client side is not a significant 
factor.  Furthermore, for the remaining cases, the rate of insertion 
is significantly higher for OSON due to OSON storage of having 
a smaller size, reducing disk I/O and data transfer costs.   For 
D11, the OSON is about a third of the size of the JSON text and 
we consequently get about three times the insert throughput. 

5.2.2 Retrieval 
In this experiment, we measure the read throughput of a client 
Java application running on a compute node in the same data 
center as the database node.  The application contains 24 threads 
and each thread repeatedly retrieves the same document from the 
database and obtains a DOM API for the value.  In the case of 
JSON text, we use a popular, 3rd party, JSON parser that we 
found to be the most performant of several other Java JSON 
parsers we tested.  We use this parser to fully parse the JSON text 
and create an in-memory DOM for the value.  In the case of 
OSON, we use DOM API implemented on top of our in-place 
client side OSON decoder.   

 
Figure 7. Relative full read throughput, text vs OSON 

 

Figure 7 shows the relative read throughput when the client 
application fully iterates all of the values in the DOM.  All JSON 
strings are accessed as Java strings and all numbers are converted 
into Java's BigDecimal.  In this experiment, full document access 
performance with OSON is typically equivalent to or better than 
JSON text. For D11, the OSON is about a third of the size of the 
JSON text (saving on transfer costs) and reading the OSON is 
more efficient than JSON text parsing.    

Figure 8 shows the relative read throughput when only a single 
client path is accessed on the client instead of iterating every 
value.  For each document, we selected a path to some arbitrary 
value within the document (the path chosen is not shown).  The 
specific path used is not important as both the JSON parsed object 
model using hash tables and the jump offsets within the OSON 
image will provide fast access to any point in the document.  
However, the advantage of OSON is that any point in the 
document can be read without pre-processing the rest of the 
document.  In the case of JSON text, the entire document must be 
parsed before the path can be evaluated.  This advantage is also 
useful to applications that need low latency access to the first 
value read within a document.  For example, a page load on a 
social media feed can display the first 10 items without having to 
first process all 100 returned by the server.  And, this can be 
achieved without any of the limitations or usability issues 
typically imposed by a streaming text parser.  These benefits are 
most exaggerated for D11 where the relative increase is 7.7x as 
the client can skip reading portions of this large document.   
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Figure 8. Relative path read throughput, text vs OSON 

5.3 Query Performance 
In this section we compare query performance over JSON text and 
JSON type using 10 queries from the EYCSB [7] benchmark. In 
this experiment, there is no index created so that all queries use a 
table scan and evaluate the SQL/JSON operators over each 
document. The table used contains 2 million EYCSB JSON 
documents where the average size of a document is 2K. The total 
storage size of the table is 4.4 GB for JSON text and 4.2GB for 
OSON. The equivalent relational row storage by extracting all 
common meta-data and store them in central dictionary for 
EYCSB is 3.7 GB. Although OSON has 12% storage size 
overhead compared with pure relational row storage, in exchange 
for that, OSON storage has no schema evolution issue. 

 
Figure 9. Relative response time, text vs OSON (no index) 

 

Figure 9 shows a 6x-8x improvement in response time using 
OSON storage.  SQL/JSON path expressions can be efficiently 
evaluated over OSON values in-place using the technique 
described in section 3.3.  
As explained in section 4.2.3, JSON datatype is integrated with 
Oracle in-memory store by populating in-memory path/value 
indexes over OSON bytes.   Figure 10 shows an average of 200x 
response time improvement for the 10 EYCSB queries using IMC. 
Q6, Q7, and Q8 show a small improvement compared with the 
other queries because they return more rows that require post 
filters after in-memory index probes. 

5.4 Update Performance 
In this section we compare update performance of JSON type 
using JSON_TRANSFORM() for two customer datasets (D7 and D11 
in Table 1).  For JSON text storage, partial update is not feasible 
and, consequently, the corresponding transaction redo log size is 
proportional to the full document size. For OSON storage, 
transaction redo size is proportional to the actual delta update size, 
not the full document size. Consequently, partial update from 
OSON is significantly faster with significantly smaller redo size. 

 
Figure 10. EYCSB response time, IMC index speedup 

 
Figure 11. Update response time, full replacement  

versus piecewise update 

 
Figure 12. Update redo log size, full replacement  

versus piecewise update (log scale) 
 

We used 4 statements (U1-U4) that use JSON_TRANSFORM() to 
update over 20,000 documents generated from D7. The total 
storage size is 1.5 GB for JSON text and 0.77GB for OSON. The 
equivalent relational row storage by extracting all common meta-
data and store them in central dictionary is 0.73 GB. So for large 
OSON document, its equivalent relational row storage has 
negligible storage size advantage. 
For updating D7, Figure 11 shows 7x – 17x update response time 
improvement. Figure 12 shows 10x-31x transaction log redo size 
reduction.  We used another 4 statements (U5-U8) that use 
JSON_TRANSFORM() over 40 documents generated from D11. The 
total storage size is 1.6 GB for JSON text and 0.55GB for OSON.  
For updating DOC11, Figure 11 shows 112x – 125x update 
performance improvement. Figure 12 shows 105x-8809x 
transaction log redo size reduction. 

6. RELATED WORK 
Oracle [29], Microsoft SQL Server [10], MySQL [12], 
PosgreSQL [16], TeraData [23] support JSON text storage. 
MongoDB [11], TeraData [23], DB2 [6] support BSON storage. 
MySQL[12] and PosgreSQL[16] support their own binary storage. 
MySQL[12] and TeraData [23] support a JSON datatype. MySQL 
JSON datatype uses its own JSON binary format. TeraData 
supports JSON datatype with variety of storage formats: text, 
BSON [2], UBJSON [24]. Oracle supports fast in-memory OSON 
with JSON text storage on disk [28]. 
Similar to that of OSON [14], binary JSON formats from MySQL, 
PostgreSQL, Sinew[5], STREED [27] have all shared the 
common design strategy of supporting jump navigation based on 
indexed field key names in the binary format to speed up query. 
Therefore, all of these binary formats support faster query 
performance than JSON text storage. However, none of the query 
friendly binary formats addresses the issue of supporting partial 
update in the binary format. Our earlier work that used the OSON 
format loaded in-memory [28] does not address partial updates. 
The OSON format used for JSON datatype support in this paper 
does support partial update at binary format level. Mison [26] 
proposes SIMD based fast JSON parser for JSON query. 
However, it does not address partial update either. JSON text and 
streaming encoding based binary format, such as BSON [2] and 
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UBJSON [24], are very limited to support partial update 
efficiently without replacing the full document. Compared with 
JSON_TRANSFORM() that combines multiple modification 
commands in one operator, MySQL[12] and PostreSQL[16] 
JSON update operator can only do a single update command at a 
time. 
Sinew[5] and STREED [27] binary format separate dictionary 
meta-data out of binary formats to be stored in central location, 
this approach causes each binary instance to be  non-self-
contained and hard to distribute without shipping central 
dictionary.  Our design of OSON is self-contained without relying 
on a central location schema. Consequently, it is able to fully 
support database features such as partitioning, replication, 
sharding, import/export, and transportable tablespaces since it 
does not require any central schema synchronization. 
Dremel [18] and STREED [27] columnar layout are examples of 
JSON columnar encoding formats. However, both assume that all 
JSON documents in a collection have the same schema. This is 
required to correctly re-assemble the original JSON document 
through columnar decomposition of the data. However, for a 
generic JSON datatype, we need to handle both homogeneous and 
heterogeneous JSON collections. We store the OLTP friendly 
OSON format on disk and, to achieve columnar scan 
performance, we leverage Oracle in-memory store [22] and IME 
expressions [1] to load columnar projections of JSON into 
memory for columnar based SIMD scan.  Furthermore, we use 
path-value index and inverted keyword hash index format to 
facilitate JSON_EXISTS() and JSON_TEXTCONTAINS() in 
memory predicate evaluation and join. 
SQL++ [9] (Couchbase) and the similar PartiQL (Amazon) [15] 
represent approaches that take a "JSON first" approach to 
extending a simpler SQL-92 language with a singular JSON-like 
data model and dynamic typing.  Notably, these languages do not 
use explicit SQL/JSON operators or a secondary JSON path 
language to access JSON values.  The Oracle simplified syntax 
for SQL/JSON (section 2.3) represents a somewhat similar 
approach but is defined on top of SQL-2016's SQL/JSON 
operators.  SQL-2016 has been and will continue to be extended 
to support many more data models other than JSON. Oracle's 
approach integrates well with the latest version of the SQL 
standard and supports storing and querying many different data 
models side-by-side (relational, object relational, XML, JSON, 
spatial, graph, and so on).  At the same time, it does not sacrifice 
the performance or expressiveness of queries over JSON data. 
XML and JSON are both popular ways to represent semi-
structured data. XML is the more mature of these representations 
and has a larger body of academic and industry-led research on 
efficient processing using binary encodings. However, the JSON 
data model serves the same purpose and is semantically much 
simpler. XML is complicated by its document-oriented heritage, 
with concepts such as document node order, interleaved node 
types, mixed content, lack of in-line scalar data types, and no 
explicit array construct. In contrast, JSON doesn't specify a 
document node order, has explicit numeric and boolean types, and 
an explicit array type to connote ordering when it's required. The 
XML DOM interface requires implementations to provide costly 
semantics such as navigation to an explicit parent node and sibling 
traversals. XML has constructs such as attributes and namespaces 
that complicate processing without adding much expressive power 
for data representation. Our work on the OSON format has been 
able to exploit the simpler and cleaner JSON data model to allow 

JSON DOMs to be persisted with minimal storage space, fast 
queries, and efficient updates that cannot be achieved with 
comparable binary XML DOM representations.  

7. FUTURE WORK 
Multi-value functional indexes over JSON documents will be 
supported since there can be multiple values in a JSON array 
within a JSON document. Multi-value functional indexes are used 
for JSON array range predicates in JSON_EXISTS()  to determine a 
known set of scalar values that map to a given document. We will 
work with the SQL/JSON standards committee to add the JSON 
datatype, JSON_TRANSFORM(), and the simplified syntax and 
publish benchmark for hybrid JSON usecases.  

8. CONCLUSIONS 
The native JSON datatype, in combination with the SQL/JSON 
standard, establishes a strong semantic foundation to support 
JSON in a relational database.  Using OSON as the encoding 
format enables efficient query, update, ingestion, and retrieval of 
JSON documents. Features such as SODA, full-text search 
indexes, and sharding have filled the main functional gaps with 
NoSQL databases. Further, we support high performance OLAP 
workloads over JSON by deeply integrating JSON type with 
Oracle in-memory, parallel query, materialized views, and storage 
cell smart scans.  Combined, these features make a robust 
platform for processing JSON data. End-to-end OSON support 
accomplishes the goals of object databases - to be able to persist 
application level objects in a schema-flexible way without 
shredding them across multiple tables and rows. 
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