
nKV in Action: Accelerating KV-Stores on Native
Computational Storage with Near-Data Processing

Tobias Vinçon, A. Bernhardt, Ilia Petrov
[firstname].[surname]

@reutlingen-university.de
Data Management Lab,
Reutlingen University

Lukas Weber, Andreas Koch
[surname]@esa.tu-darmstadt.de

Embedded Systems and Applications Group,
Technische Universität Darmstadt

ABSTRACT
Massive data transfers in modern data-intensive systems re-
sulting from low data-locality and data-to-code system de-
sign hurt their performance and scalability. Near-data pro-
cessing (NDP) designs represent a feasible solution, which
although not new, has yet to see widespread use.

In this paper we demonstrate various NDP alternatives
in nKV, which is a key/value store utilizing native compu-
tational storage and near-data processing. We showcase the
execution of classical operations (GET, SCAN) and com-
plex graph-processing algorithms (Betweenness Centrality)
in-situ, with 1.4×-2.7× better performance due to NDP.
nKV runs on real hardware - the COSMOS+ platform.

PVLDB Reference Format:
Tobias Vinçon, Lukas Weber, Arthur Bernhardt, Christian Rieg-
ger, Sergey Hardock, Christian Knoedler, Florian Stock, Leonardo
Solis-Vasquez, Sajjad Tamimi, Andreas Koch, Ilia Petrov. nKV in
Action: Accelerating KV-Stores on Native Computational Stor-
age with Near-Data Processing. PVLDB, 13(12): 2981 - 2984,
2020.
DOI: https://doi.org/10.14778/3415478.3415524

1. INTRODUCTION
Besides substantial data ingestion, yielding an exponen-

tial increase in data volumes, modern data-intensive systems
perform complex analytical tasks. To process them, systems
trigger massive data transfers that impair performance and
scalability, and hurt resource- and energy-efficiency. These
are partly caused by the scarce bandwidth in combination
with poor data locality, but also result from traditional
(data-to-code) system architectures.

Near-Data Processing (NDP) is a code-to-data paradigm
targeting in-situ operation execution, i.e. as close as possi-
ble to the physical data location, utilizing the much better
on-device I/O performance. NDP leverages several trends.
Firstly, hardware manufacturers can fabricate combinations
of storage and compute elements economically, and pack-
age them within the same device – so called NDP-capable

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415524

computational storage. As a result, even commodity stor-
age devices nowadays have compute resources that can be
effectively used for NDP, but are executing compatibility
firmware (to traditional storage) instead. Secondly, with
semiconductor storage technologies (NVM/Flash) the device-
internal bandwidth, parallelism, and latencies are signifi-
cantly better than the external ones (device-to-host). Both
lift major limitations of prior approaches like ActiveDisks or
Database Machines.

In this paper, we demonstrate nKV, which is a RocksDB-
based key/value store utilizing native computational stor-
age and near-data processing (Figure 1). nKV eliminates
intermediary layers along the I/O stack (e.g. file system)
and operates directly on NVM/Flash storage. nKV directly
controls the physical data placement on chips and chan-
nels, which is critical for utilizing the on-device I/O prop-
erties and compute parallelism. Furthermore, nKV can ex-
ecute access operations like GET or SCAN, or more com-
plex graph processing algorithms such as Betweenness Cen-
trality as software NDP on the ARM cores or with FPGA
hardware support (NDP:HW+SW). Under nKV we target
intervention-free NDP-execution, i.e. the NDP-device has
the complete address information, can interpret the data
format, and access the data in-situ (without any host inter-
action). To reduce data transfers nKV also employs novel
ResultSet-transfer modes. nKV is resource efficient as it
eliminates compatibility layers and utilizes freed compute
resources for NDP.

a b

Tr
ad

iti
on

al
 S

to
ra

ge

N
D

P

2x
30%Ex

ec
ut

io
n

Ti
m

e

 F
PG

A

N
VM

, F
la

sh

Traditional Storage Native Computational
Storage

RocksDB

Storage
Mgmnt.

a b

Compatibility

ScanGET Application

NVM, Flash

BC

 C
PU

GET,
Scan,BC

Execute Storage
Mgmnt.Execute

invoketransfer
result

re
tr

ie
ve

da
ta

transfer
back

retrieve
data

nKV

Betweenness
Centrality

read,
write

File System
Block Device

SC
A

N
: 2

x
G

ET
: 1

.4
x

B
C

: 2
.7

x

Figure 1: KV-Store transferring data along a traditional
I/O stack (a); and (b) nKV executing operations in-situ on
native computational storage.

2981

We demonstrate nKV for the use-case of a database of re-
search papers, and on a 2.4GB graph dataset with 48 million
KV-pairs. Our demonstration scenarios involve interacting
with the paper DB, browsing and analyzing it: (a) Analysis
scenario (BC): verifies if the 10-year best paper award was
awarded the most prominent paper from 10 years ago and
offers some unexpected insights; (b) Latency-based (GET):
we let the audience pick a paper from the BC ResultSet and
display its details; (c) Bandwidth-based (SCAN): we retrieve
other papers from same Venue/Author/Year. nKV performs
1.4×-2× better than RocksDB: GET latency – 1.4×; SCAN
bandwidth – 2×; Betweenness Centrality – 2.7×.

2. ARCHITECTURE OF nKV
This section offers a brief overview of the key architectural

modules of nKV. More details are provided in [16].
NDP Interface Extensions. nKV defines NDP-Extensions
besides the native storage interface. Furthermore, nKV has
a dedicated high-performance in-DBMS NVMe layer (Fig-
ure 2). It does not rely on an NVMe kernel driver, but is
deeply integrated in the DBMS and hence runs in user-space.
The native NVMe integration reduces the I/O overhead, as
it avoids expensive switches between user and kernel space
(drivers), and shortens the I/O even further, as no drivers
are needed. This lean stack improves execution times for
I/O and NDP, especially for short-running calls e.g. GET.
Computation Placement. By using native computational
storage, nKV can place computations directly on the hetero-
geneous on-device compute elements, such as ARM CPUs
or the FPGA. nKV can execute various operations such as
GET or SCAN, or more complex graph processing algo-
rithms like Betweenness Centrality as software NDP on the
ARM cores, or with hardware support from the FPGA. nKV
demonstrates that hardware implementations alone cannot
reach the best performance as pure software implementa-
tions do not. For its NDP-operations nKV utilizes hard-
ware/software co-design to handle the proper separation of
concerns and achieve best performance.
In-situ data access and interpretation. Under nKV
the NDP-device can interpret the data format and access
the data without host intervention. To this end, nKV ex-
tracts definitions of the Key- and Value-formats [14]. These
are then passed as input parameters to NDP-commands.
Moreover, the data format such as the Key- and Value-
formats can be automatically extracted from the DB cata-
logue (system-defined), or can be defined by the application.

nKV employs a thin on-device NDP-infrastructure layer
that supports the execution and simplifies the development
of NDP-operations (Figures 2). It comprises data format
parsers and accessors that are implemented in both software
and hardware (Figure 3). The in-situ accessors are used

N
VM

,
Fl

as
h

N
at

iv
e

C
om

pu
ta

tio
na

l
St

or
ag

e

BC, GET,
SCAN

N
VM

,
Fl

as
h

 F
PG

A

 C
PU

Format
Parser
Layout

Accessors,
Access

Methods
ResultSet
Processor

D
M

A

nKV
Executor

Native
Storage
Interface

NVMe (native)
ResultSet

PCIe

Native Storage Mgmnt.

NDP

invoke

transfer
result

Figure 2: Architecture of nKV

used to traverse and extract the contained sub-entities of the
persistent data. Whereas, the in-situ data format parsers
process the layout of each persistent entity, and extract the
sub-entities by invoking further accessors (Figure 3).

KV-Stores like LevelDB or RocksDB organize the per-
sistent LSM-Tree data in to so called Sorted String Tables
(SST). To process a GET(key) request, for instance, nKV
first identifies the respective SST and invokes an NDP GET()
command with the physical address ranges (of these SSTs),
the respective Key- and Value-formats as well as further pa-
rameters. First, the SST layout accessor is invoked to access
data and index blocks. Subsequently, the index block parser
is invoked to interpret the data, verify if the key is present,
and extract its location. If this is the case, the data block
accessor and parser are invoked to extract the Key/Value
entry. In case of an NDP SCAN(key val condition) oper-
ation, the KV accessor is subsequently invoked to extract
it, followed by a field parser to extract its value and verify
the condition. The result are massive I/Os since especially
SCANs must retrieve a huge number of data blocks.
Native computational storage. To make efficient use
of the on-device I/O nKV extends [15] and employs native
storage (Figures 1 and 2). This way it eliminates interme-
diary layers along the critical I/O path like the file system,
and can operate directly on NVM/Flash storage using phys-
ical addresses. nKV can therefore precisely control physical
placement of SST data, which is critical for utilizing the on-
device I/O properties and compute parallelism. I.e. nKV
physically places SST data blocks and SST index blocks on
different LUNs and Channels to utilize the on-device paral-
lelism and lower the processing latency (see Figure 3). This
accelerates especially the demonstrated I/O-intensive opera-
tions SCAN and BC significantly. Native storage is essential
for reducing read- and write-amplification, and also for exe-
cuting NDP-operations avoiding information hiding through
these layers of abstraction.
ResultSet Handling. nKV aims to bulk-transfer the Re-
sultSet of an NDP-Operation to avoid the data transfer over-
head caused by a record-at-a-time model. Thus nKV mate-
rializes the ResultSet, partially or fully, depending on the
NDP operation. It is then DMA-transferred with multiples
of the COSMOS+’s DMA-engine transfer unit (4KB).

3. DEMONSTRATION WALK-THROUGH

SST Block Layout

SST Block Format

KV Record Layout

KV Record Format

Field Layout
Field Format

ValueIdentifier

KeyValue

KV1 TrailerKV2 KVN

SST 1

Data
Block 1

Data
Block N

Index
Block

SST n

TrailerRecords

KV-Value Storage represenation (RocksDB)Logical

Block
Accessor

Parser/A
ccessor

Parser/A
ccessor

Parser/A
ccessor

Data
Block 2

Physical Storage
Organisation

IndexData
SST-Data Organisation

Layout

SST-Data Organisation
Format

KV
Accessor

Value
Parser

SST
Parser

Block
Parser

KV Form
at

Parser

SST
Accessor

Result

Figure 3: In-situ access and data interpretation in nKV,
based on layout accessors and format parsers.

2982

Demo Setup. The demonstration setup comprises a
desktop PC as host equipped 3.4 GHz Intel I5 CPU, 4 GB
RAM, connected to COSMOS+ via NVMe over PCIe (Fig-
ure 4). The COSMOS+ [11] has a Zynq 7045 SoC with
an FPGA, two 667 MHz ARM A9 CPU Cores and an MLC
Flash module configured as SLC. We configure both RocksDB
and COSMOS+ with 5 MB cache.

COSMOS+
Fl

as
h

Fl
as

h

ARM A9

FPGA
Zynq 7000

D
R

AM

Flash
Ctrl.
Tiger

NVMe
Ctrl.

Host

PCIe
chipset

nKV

NVMe
(native)

PC
Ie

Figure 4: COSMOS+ and the Demonstration Setup

We demonstrate nKV on the use-case of a database of re-
search papers, and on a rather smaller 2.4GB dataset due
to practical runtime constraints of the demo. This graph
dataset includes 48 million Key/Value-pairs, comprising ap-
prox. 3.8M papers, 40M references, 18K venues, and 4.2M
authors. BC operates on a graph with varying number of
relevant edges: from 2.5K to 2 million. The audience will
browse and analyze the paper set using a GUI (Figures 5),
triggering different operations on the paper graph in differ-
ent scenarios.

Figure 5: Interactive GUI.

3.1 Demonstration Walk-Through
1. Complex Graph Analysis – BC. The demo starts
by letting the audience pick a DB conference venue and
an year (e.g., VLDB, 2000). Subsequently, nKV executes
Betweenness Centrality to determine the most prominent
paper from that year. The audience can then verify if that
paper had indeed been awarded the 10-year best paper award
ten years later. Expect some unexpected(!) insights.

Under the hood, nKV executes a complex NDP opera-
tion pipeline, comprising a SCAN followed by a BC. Based
on the audience selection, nKV first filters out the relevant
papers and references by running a SCAN and applying
val condition on the values of all paper KV-pairs. This is
only possible since the data formats are available in-situ, and
the format parses and layout accessors execute on-device.
The intermediary result is materialized on-device, which is
essential for such NDP-pipelines. Subsequently, BC is ex-
ecuted on the intermediary results. nKV switch between
software NDP or software/hardware NDP. We demonstrate
how the hardware accessors and parsers can be instantiated
multiple times, and run in parallel on the FPGA yielding
best results.

Observation: nKV executes NDP-pipelines and complex
operations in-situ. Given the high parallelism and compute
intensity, NDP:SW+HW yields best results.

Ⓐ ⒶⒷ Ⓒ

Figure 6: Betweenness Centrality: (A) BC on different
stacks; (B) BC with different levels of parallelism; (C) BC
execution time vs number of relevant edges (complexity).

2. Latency – GET . After the BC analysis, the audience
can interactively pick a paper from the BC ResultSet and
have its details displayed.

Under the hood, the NDP execution of GET is performed
in SW and in NDP:SW+HW. Since only a single NDP GET()
is executed at a time, nKV utilizes native data placement,
but not the on-device parallelism.

Observation: Latency-critical operations are 1.4× faster
and best results are achieved with NDP:SW, closely followed
by NDP:SW+HW (Figure 7).

0 2 4 6 8 10 12

Duration [ms]

Blk

NDP: SW

NDP: SW + HW

11.694

7.213

8.106

Figure 7: GET Latencies on different stacks.

3. Bandwidth – SCAN . After the audience has been pre-
sented the details of a paper (previous scenario), they can
opt for retrieving other papers from the same Venue/Au-
thor/Year.

Under the hood, this results in an NDP SCAN(value condi-
tion). The operation is performed with different selectivities
and different result set sizes, based on the audience selection
(Figure 8a). Importantly, the selection condition is on the
value, which requires NDP format parsers and layout acces-
sors to be evaluated in-situ. Conversely, the Blk RocksDB
stack transfers the entire data to the host, to interpret the
values there, apply the val condition, and eventually discard
most of the data. Figure 8b shows the extra read volume
transferred by the Blk to perform the same SCAN.

Observation: Bandwidth-critical scan and selection op-
erations require I/O bandwidth and high hardware paral-
lelism. Hence, NDP:SW+HW is best and outperforms the
traditional stack by 2×.
4. Parallelism and Native Computational Storage
Last but not least we execute BC again, however this time
we demonstrate the effect of configurable parallelism in na-
tive computational storage, whenever nKV executes a com-
plex operation (Figure 6b).

nKV can configure the degree of parallelism required by
each NDP-operation. While the amount of compute paral-

2983

Ⓐ

ⒶⒷ
Figure 8: SCAN performance:(A) SCAN on different
stacks; (B) Data Transfer Volume

lelism is limited for NDP:SW, as there are few ARM cores,
the same does not apply to the FPGA. As described in Sec-
tion 2, there can be multiple parallel instances of the hard-
ware accessors and parsers on the FPGA. These are rela-
tively space-efficient, as 16 instances fit even into the small
Zynq 7045 FPGA. Interestingly, operating with the max-
imum available parallelism does not always yield the the
best results (Figure 6c).

Observation: nKV can employ the FPGA for NDP:SW+
HW, increasing the level of computational storage paral-
lelism. However, this capability only translates into perfor-
mance benefits for complex operations.

4. RELATED WORK
The Near-Data Processing approach is deeply rooted in

well-known techniques such as database machines or Active
Disk/IDISK. With the advent of Flash technologies and re-
configurable processing elements Smart SSDs [3, 13, 7] were
proposed. An FPGA-based intelligent storage engine for
databases is introduced with IBEX [17]. JAFAR [18, 1] is
one of the first systems to target NDP for Column-stores
use, whereas [6, 9] target joins besides scans. Recently, Sam-
sung announced its KV-SSD [12]. The use of NDP in the
realm of KV-Stores has been investigated in [8, 2]. Kanzi [4],
Caribou [5] and BlueDBM [10] are RDMA-based distributed
KV-Stores investigating node-local operations.

Much of the prior work on persistent KV-Stores and NDP
focuses on bandwidth optimizations. NoFTL-KV [15] ad-
dresses the problem of write-amplification. The NDP exten-
sions demonstrated by nKV target the read-amplification,
latency improvements and computational storage.

5. CONCLUSION
We demonstrate nKV, which is a key/value store utiliz-

ing native computational storage and near-data processing.
We showcase the execution of classical operations (GET,
SCAN) and complex graph-processing algorithms (Between-
ness Centrality) in-situ, with 1.4×-2.7× better performance
due to NDP. nKV runs on real hardware - the COSMOS+
platform. nKV utilizes the the available I/O and compute
parallelism on the native computational storage through di-
rect data and operation placement. Complex operations
(BC, SCAN) benefit from it, whereas others (GET) benefit
from software NDP.

Acknowledgments. This work has been partially sup-
ported by BMBF PANDAS – 01IS18081C/D ; DFG Grant
neoDBMS – 419942270 ; HAW Promotion and KPK Service
Computing MWK, Baden-Würrtemberg, Germany.

6. REFERENCES
[1] O. O. Babarinsa and S. Idreos. JAFAR : Near-Data

Processing for Databases. 2015.

[2] A. De, M. Gokhale, S. Swanson, and e. al. Minerva:
Accelerating data analysis in next-generation ssds. In
Proc. FCCM, 2013.

[3] J. Do, J. Patel, D. DeWitt, and et al. Query
processing on smart ssds: Opportunities and
challenges. In Proc. SIGMOD, 2013.

[4] M. Hemmatpour, M. Sadoghi, and et al. Kanzi: A
distributed, in-memory key-value store. In Proc.
Middleware, 2016.

[5] Z. István, D. Sidler, and G. Alonso. Caribou:
Intelligent distributed storage. PVLDB, 10(11):1202
1213, 2017.

[6] I. Jo, D.-H. Bae, A. S. Yoon, J.-U. Kang, S. Cho,
D. D. G. Lee, and J. Jeong. Yoursql: A
high-performance database system leveraging
in-storage computing. PVLDB, 9(12):924935, 2016.

[7] Y. Kang, Y.-s. Kee, and et al. Enabling cost-effective
data processing with smart SSD. In Proc MSST, 2013.

[8] J. Kim and et al. Papyruskv: A high-performance
parallel key-value store for distributed nvm
architectures. In Proc. SC, 2017.

[9] S. Kim, S.-W. Lee, B. Moon, and et al. In-storage
processing of database scans and joins. Inf. Sci., 2016.

[10] S.-w. J. Ming, Arvind, and et al. BlueDBM: An
Appliance for Big Data Analytics. Proc. ISCA, 2015.

[11] OpenSSD Project. COSMOS Project Documentation,
January 2019. http://www.openssd-project.org.

[12] Samsung. KV-SSD.
https://github.com/OpenMPDK/KVSSD.

[13] S. Seshadri, S. Swanson, and et al. Willow: A
User-Programmable SSD. USENIX, OSDI, 2014.

[14] T. Vincon, A. Bernhardt, L. Weber, A. Koch, and
I. Petrov. On the necessity of explicit cross-layer data
formats in near-data processing systems. In Proc.
HardBD@ICDE, 2020.

[15] T. Vincon, S. Hardock, C. Riegger, J. Oppermann,
A. Koch, and I. Petrov. Noftl-kv: Tackling
write-amplification on kv-stores with native storage
management. In Proc. EDBT, 2018.

[16] T. Vincon, L. Weber, A. Bernhardt, A. Koch, and
I. Petrov. nKV: Near-Data Processing with KV-Stores
on Native Computational Storage. In Proc. DaMoN,
2020.

[17] L. Woods, J. Teubner, and G. Alonso. Less watts,
more performance: An intelligent storage engine for
data appliances. In Proc. SIGMOD, 2013.

[18] S. Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos.
Beyond the Wall: Near-Data Processing for
Databases. Proc. DAMON, 2015.

2984

