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ABSTRACT
Subsequence anomaly detection in long sequences is an im-
portant problem with applications in a wide range of do-
mains. However, the state-of-the-art approaches have se-
vere limitations: they either require prior domain knowl-
edge, or become cumbersome and inefficient/ineffective in
situations with recurrent anomalies of the same type. We
recently proposed Series2Graph, a novel method based on
a graph representation of a low-dimensionality embedding
of subsequences, that detects anomalous subsequences. The
experimental results, on the largest set of synthetic and real
datasets used to date, demonstrate that the proposed ap-
proach correctly identifies single and recurrent anomalies of
various types without any prior knowledge of the character-
istics of these anomalies, outperforming by a large margin
several competing approaches in accuracy, while being up
to orders of magnitude faster. In this demonstration, we
present GraphAn, a system based on Series2Graph, show-
case the challenges of the problem, and demonstrate the
advantages of the proposed system.
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1. INTRODUCTION
Time series1 anomaly detection is a crucial problem with

application in a wide range of domains. Examples of such

1A time series, or data series, or sequence, is an ordered se-
quence of real-valued points. If the dimension that imposes
the ordering is time then we talk about time series, but
it could also be mass, angle, position, etc. We will use the
terms time series, data series, and sequence interchangeably.
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applications can be found in manufacturing, astronomy, en-
gineering, and other domains [13, 14]. This implies a real
need by relevant applications for developing methods that
can accurately and efficiently achieve this goal.
[Anomaly Detection in Sequences] Anomaly detection
is a well studied task [4, 16, 19, 11, 5] that can be tackled
by either examining single values, or sequences of points.
In the specific context of sequences, which is the focus of
this paper, we are interested in identifying anomalous sub-
sequences [19, 15, 11, 5, 6], which are not single abnor-
mal values, but rather an abnormal sequence of values. In
real-world applications, this distinction becomes crucial: in
certain cases, even though every individual point may be
normal, the trend exhibited by the sequence of these same
values may be anomalous. Evidently, failing to identify such
situations could lead to severe problems that are only de-
tected when it is too late [3].
[Limitations of Previous Approaches] Some existing
techniques explicitly look for a set of pre-determined types
of anomalies [10, 1]. These are techniques that have been
specifically designed to operate in a particular setting, they
require domain expertise, and cannot generalize. Other
techniques identify as anomalies the subsequences with the
largest distances to their nearest neighbors (termed dis-
cords) [19, 15, 11]. The assumption is that the most distant
subsequence is completely isolated from the ”normal” sub-
sequences. However, this definition fails in the case where
an anomaly repeats itself (approximately the same). In this
situation (sometimes called the twins freaks problem [17]),
anomalies will have other anomalies as close neighbors, and
will not be identified as discords. In order to remedy this
situation, the mthdiscord approach has been proposed [18],
which takes into account the multiplicitym of the anomalous
subsequences that are similar to one another, and marks as
anomalies all the subsequences in the same group. However,
this approach assumes that we know the cardinality of the
anomalies, which is not true in practice (otherwise, we need
to try several different m values, increasing drastically the
execution time). Furthermore, the majority of the previous
approaches require prior knowledge of the anomaly length,
and their performance deteriorates significantly when the
correct length value is not used.
[Proposed Approach] In order to address the aforemen-
tioned problems, we proposed Series2Graph [7], an unsu-
pervised graph-based approach for subsequence anomaly de-
tection in large data series. This approach first converts the
data series into a directed graph (in which a node is a subse-
quence) and then computes a normality score for each path
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(i.e. subsequences) in the resulted graph. This graph is built
in three steps, which consist on (i) embedding every subse-
quence of the data series in a 2-dimensional space, followed
by (ii) the extraction of the densest parts of that space,
to which we assign nodes, (iii) that are finally connected
together by edges that represent the number of time sub-
sequences followed each other. An experimental evaluation
has shown that Series2Graph outperforms current state-of-
the-art anomaly detection methods, even though being an
order of magnitude faster [7].
[Contributions] We present a graph-based subsequence
anomaly detection system (GraphAn) based on Se-
ries2Graph. It is a web application that enables the users
to upload their own data series, run and visualize the inner
steps of Series2Graph, and then compare its accuracy and
time execution to other anomaly detection algorithm.

2. SERIES2GRAPH APPROACH

2.1 Problem Formulation
We formulate an approach for subsequence anomaly de-

tection based on the data series representation into a Graph.
We first define several basic elements related to graphs.

We define a Node Set N as a set of unique integers. Given a
Node Set N , an Edge Set E is then a set composed of tuples
(xi, xj), where xi, xj ∈ N . w(xi, xj) is the weight of that
edge. Given a Node Set N , an Edge Set E (pairs of nodes in
N ), a Graph G is an ordered pair G = (N , E). A directed
graph or digraph G is an ordered pair G = (N , E) where N
is a Node Set, and E is an ordered Edge Set.

We now provide a new formulation for subsequence
anomaly detection. The idea is that a data series is trans-
formed into a sequence of abstract states (corresponding to
different subsequence patterns), represented by nodesN in a
directed graph, G(N , E), where the edges E encode the num-
ber of times one state occurred after another. Under this
formulation, paths in the graph composed of high-weight
edges and high-degree nodes correspond to normal behavior.
Then, the Normality of a data series is defined as follows.

Definition 1 (θ-Normality). Let a node set be de-
fined as N = {N1, N2, ..., Nm}. Let also a data series T

be represented as a sequence of nodes 〈N (1), N (2), ..., N (n)〉
with ∀i ∈ [0, n], N (i) ∈ N and m ≤ n. The θ-
Normality of T is the subgraph Gνθ (Nν , Eν) of G(N , E) with

E = {(N (i), N (i+1))}i∈[0,n−1], such that: Nν ⊂ N and

∀(N (i), N (i+1)) ∈ Eν , w((N (i), N (i+1))).(deg(N (i)) − 1) ≥ θ.

Similarly, we define an anomaly as follows.

Definition 2 (θ-Anomaly). Let a node set be de-
fined as N = {N1, N2, ..., Nm}. Let a data series T be

represented as a sequence of nodes 〈N (1), N (2), ..., N (n)〉
with ∀i ∈ [0, n], N (i) ∈ N and m ≤ n. The θ-
Anomaly of T is the subgraph Gαθ (Nα, Eα) of G(N , E) with

E = {(N (i), N (i+1))}i∈[0,n−1], such that: Gνθ (Nν , Eν) ∩
Gαθ (Nα, Eα) = ∅.

We now define the membership criteria of a subsequence
to a θ-Normality subgraph.

Definition 3 (θ-Normality Membership). Given a
data series T represented as a sequence of abstract states

〈N (1), N (2), ..., N (n)〉, a subsequence Ti,`, represented by

〈N (i), N (i+1), ..., N (i+`)〉, belongs to the θ-Normality of T if

and only if ∀j ∈ [i, i+ `], (N (j), N (j+1)) ∈ θ-Normality(T ).
On the contrary, Ti,` belongs to the θ-Anomaly of T if and

only if ∃j ∈ [i, i+ `], (N (j), N (j+1)) /∈ θ-Normality(T ).

Based on the above definitions, using θ-Normality sub-
graphs naturally leads to a ranking of subsequences based
on their ”normality”. For practical reasons, this ranking
can be transformed into a score, where each rank can be
seen as a threshold in that score. We used such a score in
GraphAn to detect abnormal subsequences. Note that given
the existence of graph G, the above definitions imply a way
for identifying the anomalous subsequences. The problem is
now how to construct this graph, and formalized as follows.

Problem 1 (Pattern graph construction).
Given a data series T , we want to automatically construct
the graph G(N , E).

2.2 Series2Graph Framework
We now briefly describe Series2Graph [7], our unsuper-

vised solution to the subsequence anomaly detection prob-
lem. For a given data series T , the overall Series2Graph
process is divided into four main steps as follows.

[Subsequence Embedding]: As illustrated in Fig-
ure 1(a), we project all the subsequences (of a given length
`) of T in a three-dimensional space that corresponds to the
three most important components of the Principal Com-
ponent Analysis (PCA). This space is subsequently trans-
formed into a two-dimensional space, composed of two com-
ponents ~ry, ~rz corresponding to two orthogonal vectors of
~vref , an axis composed of every flat sequence (a ∗1`−λ with
a ∈ R). In the later space, the shape similarity is pre-
served [7]. For instance, Figure 1 depicts three subsequences
T1, T2 and T3. T1 and T2 have the same shape and thus the
same location in the embedding space, whereas T3 (which
has a different shape) is not.

[Node Creation]: We then create a node for each one
of the densest parts of the above two-dimensional space (see
Figure 1(b)). The space is first discretized by a set of radius
Iψ of angle ψ. We then estimate the density of subsequences
along each one of these radius using Gaussian kernels. The
maximal values of the estimated densities are assigned to
nodes and form our Node Set N . These nodes summarize
all major patterns of length ` that occurred in T [7].

[Edge Creation]: We then retrieve all transitions be-
tween pairs of subsequences represented by two different
nodes: each transition corresponds to a pair of subsequences,
where one occurs immediately after the other in the input
data series T . As shown in Figure 1(d), we represent tran-
sitions with an edge between the corresponding nodes, and
we thus form the Edge Set E . The edge weights are set to
the number of times the corresponding pair of subsequences
was observed in T . Finally we build our graph G`(N , E).

[Subsequence Scoring]: We compute the normality
(or anomaly) score of a subsequence of length `q ≥ `
(within or outside of T ), based on the previously computed
edges/nodes and their weights/degrees. Formally, for a sub-
sequence Ti,`q of T , represented by a path in G`(N , E),

Pth = 〈N (i), N (i+1), ..., N (i+`q)〉, the normality score is de-

fined as: Norm(Pth) =
∑i+`q−1
j=i

w(N(j),N(j+1))(deg(N(j))−1)
`q

,

where w(e) and deg(n) are the weight of edge e and the
degree of node n, respectively.
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Figure 1: Series2Graph steps in order to build the graph from a data series (a): embed the subsequences
(b), create the nodes (c), and extract the edges (d).

3. GRAPHAN OVERVIEW
The GraphAn GUI is a stand alone web application, de-

veloped using Python 3.6 and the Dash framework. Figure 2
displays the different frames of GraphAn. The main frame is
shown in Figure 2(a). Once the user opens the web applica-
tion, they can upload a dataset (as well as the anomaly anno-
tations, if available) that will appear as in Figure 2(a.1). The
user can then change the values of ` and `q by clicking in the
Series2Graph dropdown in the navigation bar in the middle,
and subsequently, visualize and rotate/zoom in the embed-
ding space (Figure 2(a.2)) and the resulted graph G`(N , E)
(Figure 2(a.3)). By clicking on the points in the embedding
space, the user can visualize the corresponding subsequences
(Figure 2(a.2.1)). Similarly, the user can click on a node
in the graph in order to see which subsequences belong to
it (Figure 2(a.3.1)). Once these steps are performed, the
user can perform the Series2Graph anomaly score computa-
tion, which will be displayed under the uploaded data series
(Figure 2(a.4)). The user can also run other anomaly de-
tection methods: STOMP [9], Isolation Forest [12] (IF) and
Local Outlier Factor [8] (LOF). Their anomaly scores will
be shown together with the Series2Graph anomaly scores
(Figure 2(a.4)). If annotations are provided, a performance
analysis can be done by clicking on the performance button:
a new frame will appear (Figure 2(b)) displaying accuracy
and time execution evaluations. The accuracy evaluation
graphs are as follows: a first graph depicting Recall (num-
ber of correctly detected anomaly points divided by the to-
tal number of anomalous points, shown in Figure 2(b.1));
a second graph depicting Precision (number of correctly de-
tected anomaly points divided by the total number of points
detected, shown in Figure 2(b.2)); and a third graph depict-
ing F1 = 2∗Recall∗Precision

Recall+Precision
(shown in Figure 2(b.3)). The

F1 Area Under the Curve (AUC) and the maximal value
is computed and summarized for all methods in bar plots
(respectively Figure 2(b.5) and Figure 2(b.6)). Finally the
execution time for every method is summarized in another
bar plot (Figure 2(b.4))).

4. DEMONSTRATION SCENARIOS
This demonstration has 4 goals: (i) showcase the effective-

ness of GraphAn and compare it to competing approaches in

term of anomaly detection accuracy and execution time; (ii)
enable the user to understand and interpret the intermediate
steps of the Series2Graph method using the uploaded data
series, by visualizing the embedding space and the graph;
(iii) challenge the user to identify recurrent anomalies by
navigating and investigating the nodes of the graph; and
(iv) allow the user to appreciate the difficulty of the prob-
lem and the usefulness of automated tools, by asking them
to try to manually identify subsequence anomalies.
[Scenario 1: Effectiveness] This scenario begins with a
long data series (100,000 points with 50 anomalies of length
approximately equal to 100 points each) representing sim-
ulated engine disks data (SED), provided by the Rotary
Dynamics Laboratory at NASA [2]. We will first run Se-
ries2Graph by displaying the intermediate, inner steps be-
fore finally computing and displaying the anomaly scores
for all candidate subsequences. Then, we will run the com-
peting approaches and display their anomaly scores as well.
Through the use of the ground truth, we will show that Se-
ries2Graph is both faster and more accurate, making it more
suitable for long data series analysis.
[Scenario 2: System Internals] The second scenario will
allow the user to examine the Series2Graph inner workings.
Directly through the main frame, the user will be able to
visualize both the embedding space (by being able to zoom,
move and rotate it) and the computed graph. Then, the
user will also be able to inspect the embedded subsequences,
by clicking on the points in the embedded space represen-
tation in order to visualize the corresponding subsequences
of the original series. The user will be able to apply the
same process on the graph, by checking which subsequences
correspond to each one of the nodes in the graph. Finally,
by selecting a subsequence in the original data series, the
corresponding path in the graph will be highlighted.
[Scenario 3: Discovering Recurrent Subsequences]
The third scenario will focus on the analysis of the discov-
ered anomalies. This task will go beyond the anomaly de-
tection task, to finding (the positions of) all subsequences of
the original series that are similar to the detected anomaly.
The advantage that the graph structure provides to the user
is that it groups similar subsequences under the same node
(vertex). Thus, with a single click on one of the graph
nodes, the user can see both the anomaly score of the subse-
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(a) Screenshot of GraphAn (b) Screenshot of GraphAn when Performance button is pressed

(a.3)(a.2)

(a.1)

(a.4)

(a.2.1) (a.3.1)

(b.1) (b.2) (b.3)

(b.4) (b.5) (b.6)

Re
ca

ll

Pr
ec

isi
on

F1

F1
AU

C
sc

or
e

F1
m

ax
sc

or
e

Figure 2: GraphAn screenshots. (a) Main frame with data series (a.1), embedded space (a.2), and graph
(a.3). (b) Performance frame with accuracy (b.1-3,5-6) and execution time (b.4).

quence, as well as all similar subsequences of the same data
series. Therefore, in this scenario, the user will be able to
navigate through the graph, investigate subsequences (infre-
quent/frequent, anomalous/normal) and visualize when and
how many times they occurred.
[Scenario 4: Manual Anomaly Detection] The last sce-
nario begins with two datasets. The first dataset is the
New York City Taxi and Limousine Commissions dataset
(NTC)2 (10,000 points with 8 anomalies); the second dataset
is record 820 of the MIT-BIH Supraventricular Arrhythmia
Database (100,000 points with 76 anomalies). We will chal-
lenge participants to look for and identify anomalies in these
datasets. The participants will be able to visualize the en-
tire sequences, as well as zoom in/out and pan left/right.
This exercise will help participants appreciate the difficulties
and challenges of subsequence anomaly detection, especially
when there are multiple anomalies, when these anomalies are
subtle, and when the overall size of the sequence is large.

5. CONCLUSIONS
We proposed GraphAn, a novel, unsupervised system for

subsequence anomaly detection that is based on the repre-
sentation of the data series into a directed graph. This graph
summarizes and highlights crucial information that enables
us to detect and group together abnormal subsequences. In
our future work, we plan to compare GraphAn to SAD [6].
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