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ABSTRACT

Existing stream processing and continuous query processing sys-
tems eagerly maintain standing queries by consuming all available
resources to finish the jobs at hand, which can be a major source of
wasting CPU cycles and memory resources. However, users some-
times do not need to see the up-to-date query result right after the
data is ready, and thus allow a slackness of time before the result
is returned, which provides new opportunities to avoid wasting re-
sources. We proposed CrocodileDB, a resource-efficient database,
where users specify a performance goal representing the maximally
allowed slackness of time and the system generates a query plan
to minimize resource consumption (e.g. memory consumption or
CPU cycles) while meeting this performance goal at the same time.
In this paper, we demonstrate how users interact with CrocodileDB
and show how the time slackness enables our optimization of re-
ducing CPU consumption: Incrementability-aware Query Process-
ing (InQP). With the slackness specified by users, InQP can reduce
computing resource waste by selectively deferring the execution of
parts of a query that are not amenable to incremental executions
(i.e. outputting tuples that can be deleted by later executions in a
high probability). In this demonstration, users can set the perfor-
mance goal as a trade-off between CPU consumption and query
latency, and observe the CPU usages and other statistics to under-
stand how InQP reduces computing resources.
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1. INTRODUCTION

Resource efficiency is a crucial challenge for database designs
as (1) the growth of data is outpacing the expansion of computing
and memory resources, (2) environmental concerns demand more
judicious use of available resources, and (3) there are emerging
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Figure 1: An example of a performance goal in CrocodileDB

resource-constrained scenarios that require more efficiently utiliz-
ing limited resources for desired performance. Examples of such
resource-constrained scenarios include edge computing in IoT de-
vices with limited battery capacity and cloud-based databases with
a pay-per-use-model where users want to best utilize their resources
and dollars.

Unfortunately, existing database systems for dynamic data, such
as stream processing and continuous query processing [3], are not
optimized for resource-efficient query execution. They eagerly main-
tain standing queries to immediately process new tuples by con-
suming all available resources. This eager query execution could
significantly waste both CPU cycles and memory resources on tu-
ples that will be removed later, and the system may excessively
maintain intermediate states that are barely used for future query
processing. We find in resource-constrained scenarios, users com-
monly do not need to see the query result immediately after the
data is complete and allow a slackness of time before the result is
returned. This slackness provides new opportunities for reducing
resource waste, which are not fully exploited by existing systems.

We proposed CrocodileDB [5], a resource-efficient database that
exploits the slackness in generating query results to minimize re-
source consumption. CrocodileDB integrates users’ performance
goals (i.e. the maximal slackness) into query planning such that the
query execution plan can intelligently delay some parts of a query
execution to reduce CPU consumption and discard some interme-
diate states for reducing memory consumption.

To enable these optimizations, we allow users to specify a per-
formance goal that represents the maximally allowed time to return
the result after the data is complete. Figure 1 shows an example of
querying a window of data. Here, the performance goal is the max-
imally allowed time between when the last tuple arrives for this
window and the query result is returned. Our query optimizer in-
ternally leverages the information about users’ performance goals
along with information about the query structure and data arrival
patterns (i.e. which relations having new data and the correspond-
ing data arrival rates) to generate a query plan that can reduce CPU
consumption [7] and memory usage [6] while meeting the perfor-
mance goal.
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In this demonstration, we focus on our optimization technique
Incrementability-aware Query Processing (InQP) [7], which prior-
itizes selectively maintaining parts of a standing query to reduce
CPU consumption. Maintaining a standing query involves incre-
mental execution, where new data is incrementally incorporated
into prior results to reduce the time of providing up-to-date results.
Incremental executions can waste CPU cycles because for some
queries, tuples output in prior executions are removed by later ex-
ecutions. For example, consider a SQL query that finds all cus-
tomers with an above-average balance. To incrementally maintain
this query, on each new customer tuple, we not only need to up-
date the running average but also re-scan all the existing customers
(or search appropriate indices) to update the query result when the
average balance changes. In this case, outputting the whole query
result upon the arrival of each tuple wastes resources. In InQP,
we define a metric, incrementability, to quantify how amenable a
query is to incrementally executions. We further observe that a
query includes substructures, each of which has a different level of
incrementability. Consider the aforementioned example. Maintain-
ing the average balance is incrementable, while outputting the av-
erage balance to maintain the query result is less incrementable. To
reduce the wasted CPU cycles of incremental executions, InQP se-
lectively executes the parts of the query with lower incrementability
more lazily. For the parts of the query with higher incrementability,
we execute them more eagerly to meet users’ performance goals.

‘We note that this optimization is impossible in existing systems [1,
2, 4] because these systems, instead of allowing users to specify
performance goals about when the result is desired, require users
dictate when the query should be maintained (or executed), such
as using time-based or count-based triggers. For example, in prior
work [1, 2, 4] users need to specify a time-based trigger to dictate
the refresh frequency of the whole query (e.g. update the query for
every 1 min of new data). This prohibits any optimization opportu-
nity of leveraging the different levels of incrementability within the
substructures of a query to reduce computing resources. By con-
trast, CrocodileDB allows users to specify a performance goal and
the system decides the query execution plan (e.g. when to maintain
a query) to reduce resource consumption.

2. PERFORMANCE GOALS & RESOURCES

CrocodileDB maintains a standing window query over a stream
of tuples. While CrocodileDB currently supports tumbling win-
dows, we can support other window semantics, such as sliding win-
dows. We later briefly discuss how to support performance goals in
more general cases.

Performance goals for tumbling window: In CrocodileDB, users
can explicitly express a performance goal, which is the maximally
allowed time slackness between when all tuples for a window arrive
and the actual result is returned to users.

The performance goal is a knob that users can tune to make trade-
offs between resource consumption and query latency. With dif-
ferent performance goals, the system will generate corresponding
plans to minimize resource consumption. Consider an example of
a windowed query with a window of 10 minutes. If users allow a
large slackness (e.g. a performance goal of 2 mins), CrocodileDB
can selectively maintain some parts of the query lazily to reduce
CPU consumption [7] or selectively discard some intermediate states
of incremental executions to reduce memory consumption [6]. If
the slackness is large enough (e.g. 10 mins), CrocodileDB can
start the query after all tuples arrive (i.e. batch processing) and
avoid the CPU or memory resources waste introduced by incre-
mental executions. On the other hand, if users prioritize query per-

formance (e.g. return the result within 1 sec for every 10 mins
of data), CrocodileDB will execute this query more eagerly with
higher resource consumption. As shown in our demonstration plan
of Section 4, users can observe the estimated total resource con-
sumption, such as the total number of CPU seconds the query will
use for a given performance goal.

With the performance goal specified by users, CrocodileDB un-
locks many optimization opportunities [5] that are impossible in
existing systems[1, 2, 4]. Existing systems let users decide when
to execute the query, instead of allowing users to specify when to
expect a query result in CrocodileDB. For example, users need to
set a time trigger of maintaining the whole query periodically (e.g.
every 1 min) to achieve the desired performance. This query plan
executes the whole query in a single pace and ignores that some
parts of a query are less amenable to incremental executions. In
this paper, we focus on the optimization of selectively delaying
some parts of a query to reduce CPU consumption, which is dis-
cussed in Section 3.

Extensions of performance goals to more general cases: The
performance goal of CrocodileDB can be extended to sliding win-
dows. Semantically, a sliding window can be regarded as a list of
independent windows. We can apply the performance goal to each
of them. We note that the underlying system optimizations should
consider the overlaps between sliding windows to reduce redundant
work, which is beyond the scope of this paper.

The performance goal can also be applied to general incremen-
tal view maintenance. Consider an example of maintaining a view
over a stream of tuples. Users can specify the condition of comput-
ing an up-to-date result (e.g. updating the result for every 10 mins
of data) and additionally submit a performance goal to decide when
they can see an up-to-date result. For example, if the performance
goal is 10 secs, for every 10 mins of data, we will incorporate them
into the query result within 10 secs after the data is ready.

3. INCREMENTABILITY-AWARE QUERY
PROCESSING

We now discuss how the time slackness specified by users en-
ables a new optimization technique Incrementability-aware Query
Processing (InQP [7]). InQP is optimized to minimize CPU con-
sumption while meeting a performance goal. To meet a perfor-
mance goal, the system may start query execution before all data ar-
rive for a window and incrementally incorporate new data into prior
results. Incremental executions can waste CPU cycles because tu-
ples generated by earlier executions can be removed by later ex-
ecutions. Interestingly, we find that the amount of work wasted
in incremental executions depends on the structures of the query
and the new data. Therefore, we define a metric, incrementabil-
ity, to quantify the cost-effectiveness of an incremental execution.
The higher incrementability a query is, the less work the query will
waste and thus is more amenable to incremental executions. We
further observe that a query plan can be decomposed into smaller
pieces (i.e. a query path in InQP) and each query path has a dif-
ferent level of incrementability. Intuitively, InQP will execute the
query path with a higher incrementability more frequently and de-
lay the execution of query path with a lower incrementability to
reduce CPU consumption.

3.1 System Background

Given a performance goal, CrocodileDB needs to find a plan that
minimizes the total resources (i.e. CPU consumption in InQP) and
has a query latency (i.e. the time of returning the result after all
tuples for a window arrive) no larger than the performance goal.
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Figure 2: A query with multiple query paths

In InQP, we estimate the CPU consumption and the query latency
using the metrics of fotal work and the final work respectively. The
total work represents the total amount of work done by this query
based on the cost model of our existing work [7]. The final work
represents the amount of work the query needs to do after all data
arrives. Therefore, the goal of InQP is to minimize the total work
under a given final work constraint.

A query path is a dataflow segment in the query plan delineated
by blocking operators, inputs, or outputs. Note that an operator
may belong to more than one query path. Figure 2 shows a exam-
ple query that finds the IDs and balance of customers with a bal-
ance larger than the average balance (i.e. Bal > Avg(Bal)). This
query has three query paths: (1) the first query path A takes balance
from Customer to compute the average balance (i.e. I' 4vg(Ba1))s
(2) the second query path B takes I 4,,¢(Bar), joins it with the all
tuples from Cust omer and outputs customer IDs and balance, and
(3) query path C' takes tuples from Customer and joins them with
the average value. One execution of a query path represents flush-
ing the buffered tuples of a blocking operator or an input relation
all the way to the end of this query path where it reaches another
blocking operator or the output. All blocking operators including
aggregate, sort, and distinct have buffers to delay outputing new
tuples. Similarly, we consider all base relations, delta logs and the
final output as buffers. On the other hand, simple operators like a
filter or a join output tuples without buffers.

A pace determines how frequently we execute a query path (i.e.
flushing its input buffers). We assume that new tuples arrive at a
steady rate and consider one flushing with respect to the percentage
of the total number of tuples arrived for a time window. Each query
path with a pace k will flush its input buffer whenever the system
has received new % of all the estimated tuples. A pace configu-
ration can be represented as a vector P = (K1, K>, ..., Kq) for
Q query paths. A special pace configuration P, = (1,1,...,1)
represents the case of all tuples being processed by a single final
step.

3.2 Incrementability Definition

We now define the metric of incrementability. If the system starts
the query execution when all tuples arrive, the query execution has
the lowest total work and the highest final work, which is the case of
batch processing. Its pace configuration is Pi. If we increase any
paces in the pace configuration P1, we include more incremental
executions, which may increase the overall total work but decrease
the final work. In other words, the benefit of performing more in-
cremental executions is the reduced final work and the correspond-
ing cost is the increased total work. Figure 3 shows an example
of the “benefit” and “overhead” of incremental executions. We de-
fine incrementability of a pace configuration P with respect to Py
as the ratio between the “benefit” (i.e. the amount of reduced fi-
nal work) and the “cost” (i.e. the amount of additional total work).
Note that the definition of incrementability can be generalized to
any two pace configurations P; and P», where P> executes more
eagerly than P;. This means that each query path’s pace in P is
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Figure 3: An example of the benefit (i.e. reduced final work) and
cost (i.e. additional work) for an incremental execution plan.

no smaller than the pace in P;, and there is at least one query path
in P> whose pace is larger than the pace in P;.

Depending on the structures of a query path and the input data,
a query has different levels of incrementability when we increase
paces of different query paths. If the incrementability is no larger
than zero (i.e. no “benefit”), this query path is non-incrementable
(i.e. increasing pace for this query path does not reduce final work).
On the other hand, if the “overhead” is zero and the incrementabil-
ity is oo, this query path is fully incrementable. All cases that lie
between the two ends are partially incrementable. The value of
incrementability is larger than O but less than co.

3.3 Optimization via Incrementability

We use the example in Figure 2 to illustrate how to find a pace
configuration that minimizes the total work and meets a final work
constraint. We have three query paths in Figure 2 and assume a
pace configuration P = (Pa, P, Pc). The optimization starts
with P1 (i.e. batch processing). At each optimization step, we
increment the pace for one query path by 1. For the first step,
we consider increasing the pace 1 to 2 for one of the three query
paths. Specifically, we have three possible pace configurations to
consider: (1,1,2), (1,2,1), and (2,1,1). We note that (1,2,1)
is not valid since query path B is the parent of query path A and
cannot execute more eagerly than query path A. We compute the
incrementability of (1,1,2) and (2, 1,1) with respect to (1,1,1)
respectively and choose to increase the pace of the path with the
higher incrementability. We repeat this step by increasing one pace
in the new pace configuration by 1 until we meet the final work
constraint.

4. DEMONSTRATION PLAN

We implement CrocodileDB in Spark by extending Spark to sup-
port delete and update operations. We develop a framework to
demonstrate how users interact with CrocodileDB and how its un-
derlying optimization InQP can reduce CPU consumption com-
pared to Spark with the same performance goal, where Spark uses
a single uniform pace. We find this pace based on InQP’s cost
model to minimize the CPU consumption with respect to a perfor-
mance goal. This framework contains an interactive configuration
interface and a real-time performance monitoring component. The
configuration interface allows users to 1) submit a window query
and specify a performance goal; 2) tune the performance goal to
observe the trade-off between CPU consumption and query latency
(i.e. the time of returning the result after all tuples for a window
arrive); and 3) observe the different pace configurations between
InQP and Spark. The monitoring component allows users to com-
pare two key metrics between InQP and Spark: 1) the CPU usages
during query processing and 2) the statistics of how many prior
output tuples are removed by later executions. The two metrics
help users understand how the pace configuration of InQP can re-
duce CPU consumption by intelligently delaying the executions of
query paths with lower levels of incrementability.
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Figure 4: CrocodileDB configuration component

4.1 Configuration

Users will experience querying a stream of tuples that are being
loaded from an external source. Figure 4 shows the configuration
interface of CrocodileDB. In the Configuration Panel, users first
choose a query from all TPC-H queries and several hand-written
queries based on the TPC-H schema. Then, users set the window
size and the performance goal. For example, Figure 4 shows that
users select Q-HighCustBal query to be executed. It will compute a
result over every 3 mins of loaded tuples given the window size of 3
mins. For a window of tuples, the system needs to return the up-to-
date result within 8 seconds after all tuples arrive, which is bounded
by the performance goal. When users hit the Set Configuration
button, the details of the configuration are shown below.

The top-left part of Configuration Details shows the SQL query
selected by users. Users are able to observe the estimated trade-
off between CPU consumption and query latency for both InQP
and Spark. Given the performance goal set by users, the estimated
CPU consumption is also highlighted in the trade-off curve. For
example, Figure 4 shows that for a performance goal of 8 seconds,
InQP is estimated to use 65 seconds of CPU time, while Spark
is estimated to use 130 seconds of CPU time. Below that, users
can observe the different pace configurations for both InQP and
Spark, and how InQP decomposes a query plan into query paths.
Each query path in the query plan has a different color and the
corresponding label (e.g. Query Path I) shares the same color as
its query path.

If users hit the Submit Query button, the configuration frame-
work will submit the query to systems InQP and Spark. Users are
able to observe the runtime statistics of both systems side-by-side
in our monitoring component.

4.2 Runtime Monitoring

Our monitoring component, shown in Figure 5, monitors the exe-
cution of the same query with the same performance goal for InQP
and Spark side-by-side. We show the returned result and the ac-
tual latency of returning this result at the top-left corner of each
system’s panel. Users are expected to observe similar latencies
for both systems since they use the same performance goal. To
the right of the result, we have the CPU usages during the query
execution. For InQP, users can observe that the system has var-
ied CPU usages over time, where a lower CPU usage indicates the
time when InQP delays the executions for some query paths. By
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Figure 5: CrocodileDB monitoring component

contrast, Spark should have steady CPU usages over time. Users
will see that InQP has lower overall CPU consumption than Spark.

Below the CPU trace, the query paths statistics show how many
insert/delete tuples are output from each operator at runtime. The
more delete tuples there are, the more prior output tuples are re-
moved by later executions, which wastes CPU cycles. For example,
in Figure 5 we see that the join operator in InQP outputs much less
delete tuples compared to Spark. Users can compare the number
of tuples output from each operator at runtime and understand why
InQP can significantly reduce CPU consumption.

5. CONCLUSION

This demonstration highlights how CrocodileDB enables resource-
efficient query execution. We show how users can express the max-
imally allowed time slackness (i.e. performance goal) and how this
slackness enables the new optimization of InQP. We not only show
the resource efficiency of InQP in terms of CPU consumption, but
also explain the rationals behind InQP via interactive configuration
interfaces and showing runtime statistics.
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