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ABSTRACT
We consider the problem of integrating heterogeneous data
(relational, JSON, key-values, graphs etc.) and querying
it efficiently. Traditional data integration systems fall into
two classes: data warehousing, where all data source content
is materialized in a single repository, and mediation, where
data remains in their original stores and all data can be
queried through a mediator.

We propose to demonstrate Obi-Wan, a novel mediator
following the Ontology-Based Data access (OBDA) paradigm.
Obi-Wan integrates data sources of many data models un-
der an interface based on RDF graphs and ontologies (classes,
properties, and relations between them). The novelty of
Obi-Wan is to combine maximum integration power (GLAV
mappings, see below) with the highest query answering power
supported by an RDF mediator: RDF queries not only over
the data but also over the integration ontologies. This makes
it more flexible and powerful than comparable systems.
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1. INTRODUCTION
Prior mediator approaches can be classified according to

two main dimensions (see Table 1 that references some of the
most prominent works). A first dimension concerns the data
model and query language provided by the mediator to
its applications.

(i) Many mediators mimic a single database, and expose
to their users one data model and its query language, e.g.,
relational and SQL, or XML and XPath/XQuery. More re-
cent polystore systems support side-by-side different (data
model, query language) pairs. These database-style media-
tors appear in the DB row in Table 1.

(ii) Ontology-based mediators provide a view of the data
sources as a set of classes and relationships, also endowed
with a set of semantic constraints, or ontology . In such sys-
tems, users ask conjunctive (relational) queries; answering
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Table 1: Positioning of Obi-Wan in the related lit-
erature.

Mappings
GAV LAV GLAV

M
o
d
el

DB [15, 12, 14] [2, 12, 17] [10]
CQ [20, 19] [16, 1, 18] [9]
S-data [8] [22] [11]
SPARQL [21, 7] Obi-Wan [6]

them involves not only evaluation over the data (as in DB
mediators), but also reasoning on the data with the help of
ontologies. This mediation approach is also commonly called
Ontology-Based Data Access (OBDA) [19], with ontologies
expressed in Description Logics (DL, in short). Works fol-
lowing this approach are listed in the CQ row in Table 1.

(iii) RDF is naturally suited as an integration model,
thanks to its flexibility, its wide adoption in the Open Data
community, its close relationship with ontology languages
such as RDFS and OWL, and the presence of its associated
standard SPARQL query language. Accordingly, several me-
diators from the above CQ group have been extended to
support RDF as an integration model and SPARQL query
answering. However, while SPARQL allows querying the
data together with the ontology, e.g., “find the properties of
node n, as well the classes to which the values of these prop-
erties belong”, a DL-based mediation approach shares with
all logic-based query languages, e.g., Datalog, SQL etc., the
inability to do so. RDF mediators which support SPARQL
but limited to querying the data only (not the ontology)
appear in the row we label S(PARQL)-data.

(iv) Recent RDF mediators support joint querying of the
data and ontology; we list them in the SPARQL row.

A second dimension is how source (or local) schemas
are connected to the global (integration) schema us-
ing mappings [13]. There are three types of mappings, each
corresponding to a column in Table 1. Global-As-View, or
GAV mappings define each element of the global schema,
e.g., each global relation, as a view over the local schemas.
A query over the global (virtual) schema is easily trans-
formed into a query over the local schemas by unfolding
each global schema relation, i.e., replacing it with its defi-
nition. In contrast, Local-As-View (LAV) mappings define
elements of the local schemas as views over the global one.
Query answering then requires rewriting the query with the
views describing the local sources. Global-Local-As-View
(GLAV) data integration generalizes both GAV and LAV.
A GLAV mapping pairs a query q1 over one or several local
schemas with a query q2 over the global schema having the
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same answer variables. The semantics is: for each answer
of q1, the integration system exposes the data comprised in
a corresponding answer of q2. GLAV maximizes flexibility
or, equivalently, integration expressive power: unlike LAV,
a GLAV mapping may expose only part of a given source’s
data, and may combine data from several sources; unlike
GAV, a GLAV mapping may include joins or complex ex-
pressions over the global schema.

We propose to demonstrate Obi-Wan, a novel GLAV
mediator system supporting SPARQL queries over
the data and the ontology, described in a recent work [6].
As Table 1 shows, Obi-Wan is the first capable of integrating
multiple data sources of heterogeneous data models through
GLAV mappings, for SPARQL querying over the data and
the ontology. A benefit of using GLAV is the ability to
support a form of incomplete information, naturally present
in RDF through the so-called blank nodes, in the virtual
RDF graph exposed by the mediator (see Section 2).

Our closest competitors only support GAV mappings, even
though some support more expressive ontology and/or query
languages [7, 21]. Some formal OBDA frameworks based on
GLAV mapping, e.g., [9] lack known implementations.

Below, we introduce our query answering setting, novel
query answering techniques, and the demonstration scenar-
ios.

2. RDF INTEGRATION SYSTEM (RIS)
We consider integrating data from heterogeneous sources

(each with its own data model and query language) into a
virtual RDF graph. This graph consists of an RDFS ontol-
ogy, and of data triples derived from the sources by means of
GLAV mappings. A mapping specifies (i) which source data
is made available in the integration system, and (ii) how to
expose it as RDF triples using classes and properties from
the ontology. Users can query the (virtual) RDF graph con-
taining this data by means of conjunctive SPARQL queries;
query answers need to reflect not only the data exposed in
the graph, but also the reasoning enabled by the ontology.
Star Wars example scenario Consider the (partial) on-
tology:
O = {(:uses,←↩d, :Character), (:uses, ↪→r, :Object),

(:LightSaber,≺sc, :Object), (:StarShip,≺sc, :Object),
(:StarFighter,≺sc, :StarShip), (:usesWeapon,≺sp, :uses)
(:pilotOf,≺sp, :uses), (:pilotOf, ↪→r, :StarShip)}

where ≺sc, ≺sp,←↩d and ↪→r stand for the RDFS properties
subClassOf, subPropertyOf, domain and range, respectively.
This ontology states that characters use fictional objects,
some of which are light sabers or starships; starfighters are
specific starships. Using weapons or piloting are two specific
ways of using fictional objects, in the latter case the object
is a starship.

A mapping is of the form m = q1(x̄) ; q2(x̄) where
the mapping body q1 is a query on a data source (in SQL,
XQuery, etc.), and the mapping head q2 is a query over the
RDF graph; q1 and q2 have the same answer variables. The
extension of m is the set of answer tuples of q1 on a data
source D that m integrates, transformed into tuples of RDF
resources. Intuitively, m specifies that the extension of m is
exposed to the system as the result of q2.
Example 1(Mappings) We consider the mappings m1,m2

with heads q12(x) ← (x, :pilotOf, y), (y, τ, :StarFighter) and
q22(x, y) ← (x, :usesWeapon, y), (y, τ, :LightSaber), where τ
is a shortcut for the property rdf:type. Assume the body of
m1 retrieves a value v translated into the IRI :p. Then, the

extension of m1 is: ext(m1) = {Vm1(:p)}, where Vm1 is a
view relation name. Similarly, we assume the extension of
m2 is ext(m2) = {Vm2(:p, :a)}.

Given a set of RIS mappingsM, the extent E ofM is the
union of the mappings’ extensions, i.e., E =

⋃
m∈M ext(m).

The data triples induced by M and E define an RDF graph
GM

E containing all the data which is exposed (can be queried)
through a RIS. Because we use GLAV mappings, RIS data
triples may include fresh blank nodes, as exemplified below;
these correspond to the non-answer variables, i.e., incom-
plete information, allowed in GLAV mapping heads.
Example 2 Let M = {m1,m2} for the mappings intro-
duced above; the extent ofM is E = {Vm1(:p), Vm2(:p, :a)}.
The RIS data triples they lead to are:

GM
E = {(:p, :pilotOf, :bc), ( :bc, τ, :StarFighter),

(:p, :usesWeapon, :a), (:a, τ, :LightSaber)}
These triples are obtained by instantiating the answer

variables in m1 and m2 by values appearing in the extent
E . The first and second triples contain the blank node :bc,
introduced by the non-answer variable y in the head of m1.

An RDF Integration System (RIS) is a tuple S =
〈O,R,M, E〉. It allows to access (query) the data triples
induced by the mappings M and their extent E ; it also al-
lows to reason on this data, with the ontology O and the
reasoning power of the entailment rule set R for RDFS on-
tologies [6]. Importantly, R is partioned into two subsets:
Ra derives new data triples, while Rc derives new ontol-
ogy triples. A sample Ra rule is (p1,≺sp, p2), (s, p1, o) →
(s, p2, o), stating that if a graph asserts that p1 is a sub-
property of p2, and a resource s1 has the property p1 with
value o1, then s1 has the property p2 with value o1. Rc

rules state that ≺sc and ≺sp are transitive; they also al-
low deducing new triples with property←↩d or ↪→r, e.g., the
triple (:pilotOf, ↪→r, :Object) from (:pilotOf, ↪→r, :StarShip)
and (:StarShip,≺sc, :Object). The (finite) process of enrich-
ing a graph with all the triples it entails through R is called
saturation.

The query answering problem we consider is answer-
ing conjunctive RDF queries1 in a RIS. The certain answers
of q on S, denoted by cert(q, S), result from the evaluation of
q on the saturation of the RDF graph O∪GM

E , restricted to
tuples fully built from source values (i.e., excluding incom-
plete tuples containing blank nodes generated by mappings).
Example 3 (Certain answers) Consider the RIS S = 〈O,R,
M, E〉 introduced in the previous examples and the query
q(x, y)← (x, y, z), (z, τ, t), (y,≺sp, :uses), (t,≺sc, :StarShip),
(x, :uses, a), (a, τ, :LightSaber) that asks “Who uses a light
saber, and how is she/he using starships?” Then cert(q, S) =
{〈:p, :pilotOf〉}. This answer is obtained by matching q on
(:p, :pilotOf, :bc), ( :bc, τ, :StarFighter), (:pilotOf,≺sp, :uses),
(:StarFighter,≺sc, :StarShip), (:p, :uses, :a), (:a, τ, :LightSaber)
in the saturation of O ∪GM

E , where (:p, :uses, :a) is derived
using the above-mentioned Ra rule.

3. QUERY ANSWERING STRATEGIES
Since we adopt a mediator-style approach, the RIS data

triples GM
E are not materialised, hence the saturation of

O ∪ GM
E cannot be computed to answer queries as defined

above. Instead, queries are rewritten in terms of the re-
mote heterogeneous sources, based on the RIS ontology O,
reasoning power R and mappings M. We present three

1Commonly called Basic Graph Pattern Queries (BG-
PQs) in the literature.
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Figure 1: Outline of query answering strategies.

Qc,a = q(x, :pilotOf)← (x, :pilotOf, z), (z, τ, :StarFighter),
(x, :uses, a), (a, τ, :LightSaber)

∪ q(x, :pilotOf)← (x, :pilotOf, z), (z, τ, :StarFighter),
(x, :usesWeapon, a), (a, τ, :LightSaber)

∪ q(x, :pilotOf)← (x, :pilotOf, z), (z, τ, :StarFighter),
(x, :pilotOf, a), (a, τ, :LightSaber)

∪ q(x, :usesWeapon)←(x, :usesWeapon, z), (z, τ, :StarFighter),
(x, :uses, a), (a, τ, :LightSaber)

∪ q(x, :usesWeapon)←(x, :usesWeapon, z), (z, τ, :StarFighter),
(x, :usesWeapon, a), (a, τ, :LightSaber)

∪ q(x, :usesWeapon)←(x, :usesWeapon, z), (z, τ, :StarFighter),
(x, :pilotOf, a), (a, τ, :LightSaber)

Figure 2: Reformulation of q in Example 4.

query answering strategies, which differ in how the ontolog-
ical reasoning is incorporated: we may have all, some or no
reasoning performed at query time, as outlined in Figure 1.

In all strategies, RIS mappings of the form m = q1(x̄) ;

q2(x̄) are seen as relational LAV views of the form Vm(x)←
rel(q2)(x̄), where rel(q2) is the translation of q2 into a con-
junctive query (CQ). The two first strategies make use of
query reformulation, which injects relevant ontological knowl-
edge into the query: given an ontology O and entailment
rules R, an RDF query q is reformulated into a union of
queries Q, such that for any set G of data triples, the evalu-
ation of Q on G yields the same answers as the evaluation of
q on the saturation of G∪O by R. We use the reformulation
technique introduced in [5].

All reasoning at query time (REW-CA). The first strat-
egy starts with reformulating the query q, based on the
RIS ontology O and entailment rules R = Rc ∪ Ra, into
a query Qc,a (step (1) in Figure 1). Since RIS data triples
are not materialized, we rewrite Qc,a, seen as a union of
CQs (UCQ), using the RIS mappings M seen as relational
LAV views (step (2)). This yields a relational rewriting qr
over the integrated sources (step (3)), whose evaluation in a
mediator engine provides the answers (steps (4) and (5)).
Example 4 (REW-CA) Consider again the RIS and query
q from Example 3.The reformulation Qc,a of q is shown
in Figure 2. Then Qc,a is turned into a UCQ, using a
single ternary relation name t (for triple), i.e., any triple
(s, p, o) becomes t(s, p, o). This UCQ is finally rewritten us-
ing mappings seen as LAV views: m1 is seen as Vm1(x) ←

t(x, :pilotOf, y), t(y, τ, :StarFighter) and m2 as Vm2(x, y)←
t(x, :usesWeapon, y), t(y, τ, :LightSaber). It turns out that
only the second conjunctive query in Qc,a yields a CQ that
can be rewritten. The obtained (maximally-contained) rewrit-
ing on the integrated sources is: qr(x, :pilotOf) ← Vm1(x),
Vm2(x, y), which yields the answer 〈:p, :pilotOf〉 on E =
{Vm1(:p), Vm2(:p, :a)}.
Some reasoning at query time (REW-C). The second

strategy has the best performances and is a main contribu-
tion of Obi-Wan. First, it reformulates (step (1’)) the query
q based on O and Rc only (not R = Rc∪Ra as previously).
The obtained reformulation Qc yields the expected answers
when evaluated on the RIS data triples saturated with O and
Ra (see details in [5]). Again, since these RIS triples are not
materialized, hence cannot be saturated, Qc is rewritten us-
ing the mappings saturated with O and Ra, seen as LAV
views. These saturated mappings, denoted Ma,O, are ob-
tained (step (A)) from the original ones by adding to their
head queries (q2) all the implicit RIS data triples they en-
tail w.r.t. O and Ra. Hence, the data triples induced by the
saturated mappings Ma,O and the extent E are exactly the
data triples in the saturation of the graph induced by O, the
original mappings M and E , i.e., O ∪ GM

E . Then, the par-
tially reformulated query Qc is rewritten using Ma,O (step
(2’)) and the resulting query (step (3)) is evaluated as in the
first strategy (steps (4) and (5)). Importantly, mappings are
saturated offline and the result has to be updated only when
some mapping changes. This technique limits both the rea-
soning effort at query time and the syntactic complexity
(size) of the reformulated UCQ to rewrite, hence the time
needed to obtain a rewriting qr over the data sources; this
translates into reducing the query answering time by up to
two orders of magnitude [6].
Example 5 (REW-C) The mappings in Ma,O have the fol-
lowing heads (where added implicit triples are in blue):

(m1) qRa,O
2 (x)← (x, :pilotOf, y), (y, τ, :StarFighter),

(x, :uses, y), (y, τ, :StarShip), (y, τ, :Object),
(x, τ, :Character)

(m2) qRa,O
2 (x, y)←(x, :usesWeapon, y), (y, τ, :LightSaber),

(x, :uses, y), (y, τ, :Object),
(x, τ, :Character)

The reformulation Qc of q is:
q(x, :pilotOf)← (x, :pilotOf, z), (z, τ, :StarFighter),

(x, :uses, a), (a, τ, :LightSaber)
∪ q(x, :usesWeapon)←(x, :usesWeapon, z), (z, τ, :StarFighter),

(x, :uses, a), (a, τ, :LightSaber)

Rewriting Qc using the views obtained fromMa,O yields,
as previously, qr(x, :pilotOf)← Vm1(x), Vm2(x, y), obtained
only from the first union term in Qc.

No reasoning at query time (REW). Finally, in the
third strategy, the mappings are saturated offline as above
(step (A)) in order to model all explicit and implicit RIS
data triples. Moreover, these mappings are complemented
with another set of mappings, denoted MORc (step (B)),
comprising all the explicit and implicit ontology triples
w.r.t. O and R; since only Rc rules entail new ontology
triples, OR is actually equal to ORc . This second set of
mappings is also computed offline and is updated upon on-
tology updates. A query q does not have to be reformulated
at all. It just needs to be rewritten using the mappings
Ma,O ∪ MORc seen as LAV views (step (2”)) to obtain,
as above, a rewriting qREW over the data sources (step (3’))
evaluated through (steps (4’) and (5)).

2935



q(x, :pilotOf)← Vm1(x), Vm≺sp
(:pilotOf, :uses),

Vm≺sc
(:StarFighter, :StarShip), Vm2(x, a)

∪ q(x, :pilotOf)← Vm1(x), Vm≺sp
(:pilotOf, :uses),

Vm≺sc
(:StarShip, :StarShip), Vm2(x, a)

∪ q(x, :pilotOf)← Vm1(x), Vm≺sp
(:pilotOf, :uses),

Vm≺sc
(:Object, :StarShip), Vm2(x, a)

∪ 15 other BGPQs...

Figure 3: Sample rewriting for Example 6.

Example 6 (REW) Figure 3 shows part of the (maximally-
contained) rewriting of q. This rewriting is much larger than
those from the two previous techniques, which is due to the
additional ontology mappings. As previously, cert(q, S) =
{〈:p, :pilotOf〉}, which results here from the evaluation of
the first CQ in the rewriting; the other CQs yield empty
results because some required ≺sc or ≺sp contraints do not
hold in the ontology.
How do our strategies compare? They all produce the
same answers, however they do not all compute the same
view-based rewritings. Indeed, REW considers the additional
setMORc of ontology mappings. Hence, for queries over the
ontology, i.e., featuring in a property position ≺sc, ≺sp,←↩d,
↪→r, or a variable, a REW rewriting is larger than a REW-CA

or REW-C rewriting and, to be answered, requires the ad-
ditional ontology source. In contrast, REW-CA and REW-C

yield logically equivalent rewritings; we minimize them both
to avoid possible redundancies, thus they even become iden-
tical (up to variable renaming). Hence, REW-CA and REW-C

do not differ in how these rewritings are evaluated. Instead,
they differ in how the rewritings are computed, or, equiva-
lently, on the distribution of the reasoning effort on the data
and mappings, across various query answering stages. As
our experiments show, given the computational complexity
of view-based query rewriting, this difference has a signifi-
cant impact on their performance.

4. ARCHITECTURE AND SCENARIOS
Obi-Wan is developed in Java 1.8 on top of Tatooine [4],

a mediator system handling JSON, relational, key-value and
RDF data (based on MongoDB, Postgres, Redis, and Jena
TDB, respectively); Tatooine also provides physical query
operators (selections, joins etc.) within the mediator. For
query rewriting, Obi-Wan relies on Graal [3], a toolkit for
query answering in knowledge bases.

Our demonstration will introduce a set of RISs, compris-
ing RDF, relational and JSON sources, together with their
ontologies. For each (RIS, query) pair, the query reformula-
tion/rewriting stages and mappings transformations are vi-
sualized in step-by-step fashion through a sequence of dedi-
cated visualizations, until the Tatooine query execution plan
which computes the final results.

Details on our RISs (data, mappings, query plans...) are
available at: https://obi-wan.saclay.inria.fr/
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