
Tabula in Action: A Sampling Middleware for Interactive
Geospatial Visualization Dashboards

Jia Yu
Arizona State University

jiayu2@asu.edu

Kanchan Chowdhury
Arizona State University

kchowdh1@asu.edu

Mohamed Sarwat
Arizona State University

msarwat@asu.edu

ABSTRACT
In this paper, we demonstrate Tabula, a middleware that
sits between the data system and the geospatial visualiza-
tion dashboard to increase user interactivity. The proposed
system adopts a sampling cube approach that stores pre-
materialized spatial samples and allows data scientists to
define their own accuracy loss function such that the pro-
duced samples can be used for various user-defined visual-
ization tasks. The system ensures that the difference be-
tween the sample fed into the dashboard and the raw query
answer never exceeds the user-specified loss threshold. For
demonstration purposes, we connect Apache Zeppelin, a vi-
sualization dashboard, to the system and show how Tab-
ula accelerates interactive visualizations on NYC Taxi Trip
data, Yelp review data and San Diego Smart Streetlights
data.

PVLDB Reference Format:
Jia Yu, Kanchan Chowdhury and Mohamed Sarwat. Tabula in
Action: A Sampling Middleware for Interactive Geospatial Visu-
alization Dashboards. PVLDB, 13(12): 2925-2928, 2020.
DOI: https://doi.org/10.14778/3415478.3415510

1. INTRODUCTION
When a user explores a spatial dataset using a visual-

ization dashboard, such as Tableau, Apache Zeppelin and
ArcGIS, this often involves several interactions between the
dashboard and the underlying data system. In each inter-
action, the dashboard application first issues a query to ex-
tract the data of interest from the underlying data system
(e.g., PostGIS and Apache Spark SQL), and then runs the
visual analysis task (e.g., heat maps and statistical analysis)
on the selected data. Based on the visualization result, the
user may iteratively go through such steps several times to
explore various subsets of the database.

Every interaction between the visualization dashboard
and the underlying data system may take a significant
amount of time (denoted as data-to-visualization time) to

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415510

run, especially over large-scale data because: (1) The data-
system query time proportionally increases with the volume
of the underlying data table. Even scalable data systems
such as Apache Spark still exhibit non-negligible latency
on large scale data. (2) Existing spatial visualization dash-
boards such as Tableau, Apache Zeppelin and ArcGIS work
well for small size data but do not scale to large datasets.

To remedy that, one approach that practitioners use is to
draw a smaller sample of the entire data table (e.g., 1 million
tuples) and materialize the sample in the database (denoted
as SampleFirst). The caveat is that running queries on the
sample may lead to inaccurate visualization results since the
query answer may significantly deviate from the actual an-
swer especially for some small data populations. There has
been a flurry of research papers that addressed the problem
by enhancing the accuracy of pre-built stratified samples
for approximate query processing, such as Sample+Seek,
BlinkDB / SnappyData [3]. However, the pre-built strat-
ified samples have no deterministic accuracy guarantee and
only apply tailored optimizations on classic OLAP aggre-
gate measures such as SUM, COUNT, and AVG. Therefore,
they cannot be easily extended to other types of data anal-
ysis (e.g., linear regression and most spatial visual effects in
Figure 2).

Instead of creating pre-built samples, an alternative ap-
proach runs data-system queries over the entire table for ev-
ery interaction, draws a sample of the extracted population
and sends it back to the visualization dashboard to shorten
the visualization time. Although this approach (denoted as
SampleOnTheFly) can certainly achieve higher accuracy for
the selected population [2], it is prohibitively expensive since
it has prepared a sample for each user interaction.

In this paper, we demonstrate Tabula [7], a middleware
that sits between the data system and the geospatial vi-
sualization dashboard to increase user interactivity. The
proposed system adopts a materialized sampling cube ap-
proach, which pre-materializes sampled answers for a set
of potentially unforeseen queries (represented by an OLAP
cube cell). In each iteration, the system returns a materi-
alized sample for the SQL query, rather than the original
query answer. The system employs two main strategies to
mitigate the initialization time and memory utilization while
still achieving interactive performance: (1) a partial initial-
ization algorithm to only materialize custom-built samples
of those queries for which the global sample (the sample
drawn from the entire dataset) exceeds the required accu-
racy loss threshold. (2) a sample selection technique that
finds similarities among materialized local samples, only per-

2925



Spatial visualization
dashboard

By passenger count
& trip distance

By passenger count
& payment method

By passenger count

By trip distance

Cash

[0, 5)

[15, 20)

[20, 25)

1 2 3 4Dispute
Credit

[5, 10)
[10, 15)

All

By
pay

men
t me

tho
d

& trip
dist

anc
e

By
pay

men
t me

tho
d

My accuracy
loss func

Partially materialized sampling cube

Initialize

Sampling cube
Initialization

Representative
sample selection

Accuracy loss
aware Sampling

Visual-aware
loss func

Stat. mean
loss func

Tabula

Query1:
CREATE TABLE SamplingCube AS
SELECT D, C, M, SAMPLING(*,θ) AS sample
FROM nyctaxi GROUPBY CUBE(D, C, M)
HAVING loss(pickup point, Sam_global ) > θ

Query2:
SELECT sample
FROM SamplingCube
WHERE D = [0, 5) AND C = 1

User

Pre-built
sample

Visualized
analysis result

Data system
Figure 1: Tabula overview. Samples in red cells are material-
ized. DCM cuboid is omitted. Example queries use NYC Taxi
dataset (100GB)[4] which contains 700 million trip records in
NYC from year 2009 to 2012. Each record includes dropoff loca-
tions, trip distances (D), passenger count (C), payment method
(M), itemized fares, and so on.

sists a few representative samples, then uses the represen-
tative samples as an answer to many queries. We built an
initial prototype of Tabula 1 inside SparkSQL. In this demo,
we tailor Tabula to several visualization tasks such as map
visualization / linear regression and connect it with a visu-
alization dashboard

2. SYSTEM OVERVIEW
Initialization query. Figure 1 gives an overview of Tab-

ula. A data scientist must initialize Tabula by providing
the following system parameters to assemble an initializa-
tion query: (1) User-defined accuracy loss function (abbr.
loss()): This function determines how to calculate the ac-
curacy lost due to using the sample as opposed to the origi-
nal query answer. (2) Accuracy loss threshold θ: this param-
eter decides the acceptable accuracy for all queries processed
by Tabula. (3) Cubed attributes: the set of attributes that
will be used to build the sampling cube (e.g., attributes D,
C and M depicted in Figure 1). Data-system SQL queries
will use a subset of these attributes in WHERE clause predi-
cates. The data scientist feeds such parameters to Tabula
as follows:

CREATE TABLE [sampling cube name] AS
SELECT [cubed attrs], SAMPLING(sampled attr,[θ]) AS sample
FROM [table name]
GROUPBY CUBE([cubed attrs])
HAVING [loss function name](sampled attr, Samglobal) > [θ]

where Samglobal represents a sample built by Tabula over
the entire table using random sampling. SAMPLING() is a
Tabula-specific function that takes a dataset represented as
a set of tuples and produces a sample of that dataset such

1Tutorial video: https://jiayuasu.github.io/files/
video/tabula-demo.mp4

that the accuracy of the produced sample, compared to the
original dataset, does not exceed the accuracy loss threshold
θ deterministically. Query1 in Figure 1 is an initialization
query.

Data-system query. Once the sampling cube is initial-
ized, the data scientist, via the visualization dashboard, can
issue SQL queries to Tabula as follows:

SELECT sample FROM [sampling cube] WHERE [conditions]

After receiving this query, Tabula directly fetches a mate-
rialized sample from the sampling cube and returns it back
to the visualization dashboard. This way, Tabula signifi-
cantly reduces both the data system time and visualization
time. Besides, the system always guarantees with 100% con-
fidence level that the accuracy loss from using the returned
sample, as compared to the original query answer, does not
exceed the accuracy loss threshold θ.

User-defined accuracy loss function. The visual
analysis results obtained from a sample should be very close
to the results obtained from the raw data. In this paper, we
formalize the difference as accuracy loss. There are many
ways to compute accuracy loss, which serves different pur-
poses. The accuracy loss highly depends on the type of
visualization the data scientist plans to perform. The body
of this function is a user-defined scalar expression over sev-
eral aggregate functions. Users can define this function via
CREATE AGGREGATE loss(Raw, Sam).

Such a function takes raw data and sample data as input,
then returns a decimal value which is the accuracy loss. For
instance, consider a visual analysis task which requires a
low relative error between the statistical means of the sam-
ple and the raw data. This accuracy loss function can be

implemented as follows: BEGIN ABS(
AV G(Raw)−AV G(Sam)

AV G(Raw)
)

END.
Tabula requires that the accuracy loss function must be

algebraic [1]. To achieve that, all aggregate functions and
mathematical operators involved in calculating loss(Raw,
Sam) must be distributive or algebraic. In fact, many com-
mon aggregations satisfy this restriction including SUM,
COUNT, AVG, MIN, TOP-K, excluding MEDIAN.

Sampling cube initialization algorithm. First, Tab-
ula draws a global random sample, called Samglobal, from
the entire raw dataset. Second, the system builds the sam-
pling cube by running a set of GroupBy queries to calculate
all cuboids in the cube. Given the grouped raw data of each
cube cell, if applying the global sample to this cell satisfies
the HAVING condition - loss(cell data, Samglobal) > θ, Tab-
ula will identify this cell as an iceberg cell and materialize
a local sample (called Samlocal) for it. However, the cost
of the second step increases exponentially with the number
of cubed attributes (2n GroupBy). Tabula avoids that by
dividing it into two sub-stages: (1) Dry run for iceberg cell
lookup: the system identifies all iceberg cuboids (cuboids
that have iceberg cells) by scanning the raw table data only
once; (2) Real run for sampling cube construction: based
on the iceberg cell information learned in the dry run stage,
Tabula constructs a sampling cube that only contains ice-
berg cuboids. For each iceberg cell in this cuboid, the al-
gorithm draws a local sample using the accuracy loss-aware
sampling method.

Accuracy loss-aware sampling. The sampling func-
tion (i.e., SAMPLING(*,[θ]) in Tabula generates a sample

2926

https://jiayuasu.github.io/files/video/tabula-demo.mp4
https://jiayuasu.github.io/files/video/tabula-demo.mp4


Visualization front end

Figure 2: Geospatial visualization dashboard powered by Tabula, SampleFirst and SampleOnTheFly (POIsam [2])

for the raw data. It minimizes the sample size while guar-
anteeing loss(Raw, Sam) ≤ θ. Finding such sample is NP-
complete because there are 2N candidate sample sets to be
checked, where N is the cardinality of raw data. The sam-
pling module employs a greedy algorithm which guarantees
that loss(T, t) ≤ θ, but the sample size may not be minimal.

Sample selection technique. After the cube initial-
ization, the partially materialized sampling cube may still
possess a large memory footprint. To further reduce the
memory footprint, Tabula only persists a representative set
of local samples, and re-uses the representative samples
in many iceberg cells rather than persisting every individ-
ual local sample. SampleA can represent SampleB only if
loss(CellB , SamA) ≤ θ. Tabula first evaluates the represen-
tation relationships in a sample representation graph and
then selects the minimal set of samples that can represent
the entire graph. This problem is harder than the Minimum
Dominating Set problem which is known to be NP-Complete
(see the proof in [7]), so Tabula develops a greedy algorithm
which may not always find the minimal set of samples but
guarantees the accuracy loss.

3. DEMONSTRATION SCENARIOS
For demonstration purposes, we use three datasets: (1)

NYC Taxi (see Figure 1), (2) denormalized and structured
Yelp dataset (50GB) [6]: It contains 6 million Yelp business
reviews. Each review consists of more than 20 columns in-
cluding star, comment, coordinate, day of week, user name,
business name, category and so on, (3) San Diego Smart
Streetlights [5] (100 GB): It contains the city status infor-
mation such as temperature, pedestrian, vehicles, reported
by IoT sensors every second.

Demonstration setting. We connect Apache Zeppelin,
a visualization dashboard, to Tabula (see Figure 2) in Spark-
SQL. All needed sampling cubes are pre-materialized and
cached. The dashboard has two panels, one SQL input box
and one visualization window. Attendees can freely inter-
act with the dashboard: enter SQL queries with different
WHERE filters in the input box and check visualization results
of the selected data population in the visualization window.
We conduct two types of visual analytics: (1) geospatial dot

map: depicts a map of the target region with a set of geospa-
tial objects (2) linear regression: describes a regression line
among a set of <x, y> data points. We also provide a back-
end for the attendees to learn the data-system query plans
and execution time (see Figure 3).

Compared approaches. In order to show the advantage
of Tabula, we prepare several existing approaches includ-
ing SampleFirst and SampleOnTheFly (POIsam [2]) with
Zeppelin dashboards running on top of them. After every
dashboard interaction, the backend system will report two
metrics: (1) data-to-visualization time (2) accuracy of the
produced visualization. This way, the attendees will be able
to quantify the performance of compared approaches and
verify the superiority of Tabula. Besides, we will also bring
SnappyData [3] which implements stratified samples for ag-
gregation queries but differentiate it from our approach.

Scenario I: Travel Habits of NYC Residents: NYC
Taxi Trip dataset includes detailed traveling information
for individual trip records and hence brings data scientists
an exclusive opportunity to understand how people arrange
their travel destinations (in terms of spatial distribution)
under different circumstances such as pickup periods (night,
morning, afternoon) and passenger count (1-6). We build
a Tabula materialized sampling cube on attribute Vendor

name, Payment type, Passenger count, Day of week, and
Time of day and draw samples on trip drop-off locations.
The demo attendee can give a set of conditions among
these attributes to specify a particular group of drop-off lo-
cations and Tabula will return a pre-materialized sample
whose accuracy loss (explained later) is within the thresh-
old. He or she then can immediately see sampled drop-
off locations on a dot map. For instance, as shown in
the first panel of Figure 2, he first enters a query as fol-
lows, and the dot map shows most people travel to Manhat-
tan: SELECT sample FROM nyc dropoff cube WHERE day =

’Monday’ AND passenger count = 1

Then he changes the first condition to day = ’Saturday’

and doesn’t observe significant clusterings. Next, he modi-
fies the second condition to passenger_count = 6 and no-
tices that many people travel to JFK airport and La Guardia
airport. Finally, the attendee reaches a conclusion that more

2927



SparkSQL backend

Cluster status

Figure 3: Tabula backend monitoring

people travel to Manhattan during weekdays, and they share
rides with others when doing long-distance travel.

To build this sampling cube, we plug a visualization-aware
accuracy loss function into Tabula. This function stems from
recent work on visualization-aware sampling (POIsam [2]).
It uses the average minimum distance between the sam-
ple and the raw data to measure the loss, calculated as
follows: BEGIN 1

|Raw|
∑

x∈RawMINs∈Sam(loss(x, s)) END,

where loss(x, s) is the Euclidean distance between two drop-
off locations.

In addition, we can also construct a Tabula material-
ized sampling cube to study the tip percentage at dif-
ferent situations. The demo attendee can select differ-
ent taxi trip records based on many criteria such as pas-
senger count and payment method and then perform lin-
ear regression analysis on ¡fare amount, tip amount¿ val-
ues. The regression line indicates the trend of tip per-
centage. This cube is built upon the same 5 attributes
but with a different accuracy loss function (explained
in [7]). For each query, Tabula returns a set of sampled
¡fare amount, tip amount¿ values. As shown in the sec-
ond panel of Figure 2, the demo attendee first specifies the
conditions such as payment method = ’creditcard’ and
passenger count = 2 in the SQL input box and views
the linear regression result immediately in the chart below.
Then he can apply new filters to check other data popula-
tion. After several iterations, he finally concludes that taxi
drivers receive less tips if people share taxis together.

Scenario II: Distribution of Yelp reviews: Yelp
releases its internal dataset once a year for encouraging
research to discover insights hidden in the data. Since
this dataset provides 6 million review records with their
coordinates and many categorical attributes, an interesting
application is to explore spatial distribution of these reviews
with different attributes such as category and stars. We
denormalize the original tables to a single relational table
for review records and then build a Tabula sampling cube
on attribute Category, Day of week, Time of day, and

Stars. Similar to that in Scenario I, this sampling cube
is tailored to the dot map visualization task. The demo
attendee enters several filters in the SQL input box in the
first panel of Figure 2 and checks the dot map. For in-
stance, he can enter a query like this: SELECT sample FROM

review coordinate cube WHERE category = ’Mexican

food’ AND stars = 5. Then he can remove the second
condition stars = 5 and re-query the sampling cube. By
visually comparing the two dot maps, he notices that most
acclaimed Mexican restaurants are located in the southern
part of the US. One possible reason of this phenomenon is
that Mexico borders the US in the south.

Scenario III: San Diego Smart Streetlights Pro-
gram: The city of San Diego has installed 4700 smart LED
streetlights (8000 in total by summer 2020) at different
road intersections across the entire city [5]. These smart
streetlights equip sensors to monitor the city status includ-
ing temperature, pedestrian movement, vehicle movement,
and parking activity at every second. With the help of
the sensors, San Diego now has the world’s largest Smart
City platform which produces massive data every month.
A Tabula sampling cube is built on the categorical at-
tributes Time of day, Traffic level, Pedestrian level,
Temperature level, and Parking level. We plug in the
visualization - aware accuracy loss function explained in
Scenario I and use dot maps as the visualization effect. The
demo attendees can freely apply different filters in the SQL
input box and check the city status in a timely manner. For
example, SELECT sample FROM city sensor cube WHERE

Day of week = ’Monday’ AND Traffic level = ’high’

will return a dot map to show the regions which have heavy
traffic on Monday.

4. ACKNOWLEDGMENT
This work is supported by the National Science Founda-

tion (NSF) under Grant 1845789.

5. REFERENCES
[1] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,

D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh.
Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub totals. Data
Mining Knowledge Discovery, 1(1):29–53, 1997.

[2] T. Guo, K. Feng, G. Cong, and Z. Bao. Efficient
selection of geospatial data on maps for interactive and
visualized exploration. In SIGMOD, 2018.

[3] J. Ramnarayan, B. Mozafari, S. Wale, S. Menon,
N. Kumar, H. Bhanawat, S. Chakraborty, Y. Mahajan,
R. Mishra, and K. Bachhav. Snappydata: A hybrid
transactional analytical store built on spark. In
SIGMOD, 2016.

[4] N. Y. C. Taxi and L. Commission. Nyc taxi records.
https://www1.nyc.gov/site/tlc/about/

tlc-trip-record-data.page, 2016.

[5] San diego smart streetlights program, 2019.

[6] Yelp. Yelp Dataset. https://www.yelp.com/dataset,
2019.

[7] J. Yu and M. Sarwat. Turbocharging geospatial
visualization dashboards via a materialized sampling
cube approach. In ICDE, pages 1165–1176. IEEE, 2020.

2928

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.yelp.com/dataset

	Introduction
	System Overview
	Demonstration scenarios
	Acknowledgment
	References

