
ExplainED: Explanations for EDA Notebooks

Daniel Deutch, Amir Gilad†, Tova Milo, and Amit Somech‡

Tel Aviv University
danielde@post.tau.ac.il, {amirgilad†,amitsome‡}@mail.tau.ac.il, milo@cs.tau.ac.il

ABSTRACT
Exploratory Data Analysis (EDA) is an essential yet highly
demanding task. To get a head start before exploring a
new dataset, data scientists often prefer to view existing
EDA notebooks – illustrative exploratory sessions that were
created by fellow data scientists who examined the same
dataset and shared their notebooks via online platforms.
Unfortunately, creating an illustrative, well-documented note-
book is cumbersome and time-consuming, therefore users
sometimes share their notebook without explaining their ex-
ploratory steps and their results. Such notebooks are diffi-
cult to follow and to understand.

To address this, we present ExplainED, a system that au-
tomatically attaches explanations to views in EDA note-
books. ExplainED analyzes each view in order to detect
what elements thereof are particularly interesting, and pro-
duces a corresponding textual explanation. The explana-
tions are generated by first evaluating the interestingness of
the given view using several measures capturing different in-
terestingness facets, then computing the Shapely values of
the elements in the view, w.r.t. the interestingness measure
yielding the highest score. These Shapely values are then
used to guide the generation of the textual explanation.

We demonstrate the usefulness of the explanations gen-
erated by ExplainED on real-life, undocumented EDA note-
books.

PVLDB Reference Format:
Daniel Deutch, Amir Gilad, Tova Milo, and Amit Somech. ExplainED:
Explanations for EDA Notebooks. PVLDB, 13(12): 2917-2920,
2020.
DOI: https://doi.org/10.14778/3415478.3415508

1. INTRODUCTION
Exploratory Data Analysis (EDA) is an important step

in any data scientific (DS) pipeline. Typically, EDA is done
by applying a series of data-analysis operations (such as fil-
tering, aggregation, and visualization) on an input dataset,
with the goal of better understanding its nature and char-
acteristics. The information accumulated thereby is often

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415508

useful for subsequent parts of the pipeline such as feature
engineering, model selection, etc.

Since EDA is known to be a difficult process, data scien-
tists often examine EDA notebooks prepared and shared by
others [8]. An EDA notebook contain a curated summary of
an EDA process, presented through a notebook interface – a
literate programming environment that allows users to eas-
ily document a sequence of programmatic operations, their
results, as well as to add free-text explanations (see Figure 1
for an illustration).

However, creating illustrative, well-documented notebooks
requires time and effort, and thus users sometimes refrain
from adding explanations to their exploratory steps [8]. Note-
books without explanations are much harder to follow and
to understand what exactly is interesting and important in
each exploratory step.

To that end, we showcase ExplainED, a system for auto-
matically explaining views in EDA notebooks. The explana-
tions are presented in Natural Language (NL) and describe
the particular elements of the view that are the most inter-
esting. ExplainED analyzes the interestingness of each view,
and computes the Shapley values [14] of its elements w.r.t.
the interestingness score of the entire view. Shapley values
were originally proposed in the context of Game Theory as
a means of quantifying the contribution of each player to
the achieved game value. Here, ExplainED uses Shapely to
measure the contribution of each tuple to the interesting-
ness score of the view. ExplainED then presents the view
elements with the highest Shapley values; for clarity, these
elements are presented in NL, using pre-defined textual tem-
plates. To illustrate, consider the following example:

Example 1.1. Consider the EDA notebook illustrated in
Figure 1 exploring the ‘flights.csv’ dataset (publicly avail-
able on Kaggle1), containing details on delays and cancel-
lations of domestic US flights. To illustrate the benefit of
ExplainED, we demonstrate the explanations that were au-
tomatically generated for two views out of the four depicted
in Figure 1 (the explanation for the third view is omitted for
brevity). The first operation in the notebook is a group-by
(denoted by the number 1), shows the average flight delay
per month of the year. To highlight the interesting parts in
the view it generates, ExplainED first analyzes the intersting-
ness of the view, and determines that it is interesting since it
contains diverse values (we explain how this is done in Sec-
tion 2). It then derives the tuples most influencing the diver-
sity of the view, and outputs a corresponding textual expla-
nation, as appears in the red frame. This explanation allows
1See https://www.kaggle.com/usdot/flight-delays.

2917

https://www.kaggle.com/usdot/flight-delays

…

Figure 1: EDA Notebook with Explanations Produced by ExplainED (in the red frames)

users to focus on the fact that delays are considerably longer
in June, compared to the other months. Then, for the view
created by operation 3, ExplainED has determined that there
is a group whose aggregated value significantly changed due
to the filter operation, and therefore highlighted this group in
the explanation. In both views, ExplainED assists users in
finding the interesting parts of the view. This feature may
be useful for users who analyze undocumented notebooks, as
well as for users who create notebooks themselves and wish
to quickly understand the gist of the view and document their
EDA process.

In a nutshell, ExplainED takes as input a view from a
given EDA notebook, and generates a textual explanation
as follows: First, the interestingness of the view is evaluated
using several measures, each corresponding to a different
interestingness facet (e.g., diversity, conciseness, exception-
ality, etc.). Next, focusing on the measure that yielded the
highest score, ExplainED computes the Shapley values of the
top-k elements in the view (i.e., groups/tuples) w.r.t. the
interestingness measure. Last, the top-k elements with the
highest Shapely values are used to compose an explanation
sentence based on a prefabricated textual pattern, chosen
according to the interestingness measure we focus on.
ExplainED can assist users in two ways: (1) explaining

undocumented notebooks created by other users (in partic-
ular, automatically-generated EDA notebooks [1]), and (2)
documenting their own EDA notebooks.

In our demonstration, We will first present the audience
with an undocumented EDA notebook, then reveal the ex-
planations generated by ExplainED for each exploratory step.
Finally, we will present the manner in which ExplainED

chooses the most interesting tuples and generates explana-
tions that incorporate them.

Related Work. Various methods of explaining query results
have been proposed in the literature. Prominently, explana-
tions using provenance [7, 2], interventions [13], influence
[17], Shapley values [9], or using NL [4] among others. The
main difference between these works and ours is that these
works explain which input tuples affected the output of a

query, while we try to find the input tuples that make the
view interesting (i.e., that most affect the view’s interest-
ingness score). There are also other tools for assisting users
in composing EDA steps. For example, recommendations
of EDA next-steps (e.g., [12]), and highlighting promising
features to explore (e.g., [6]). However, such tools do not
explain why are the generated views considered interesting.

2. TECHNICAL OVERVIEW
We next define our data model for EDA notebooks and

the considered interestingness measures. In Section 2.2, we
describe how ExplainED generates an explanation for a view.

2.1 Model & Background
We first describe our data model for EDA notebooks.

Data Model for EDA Notebooks. An EDA notebook cre-
ated w.r.t. a given input dataset is defined as a sequence of
views V0, . . . , Vn, where V0 is the initial dataset. Each view
is modeled as a set of elements Vi = {e1, . . . , ek}, where an
element ei is either a tuple or a group (in case vi is grouped-
by). Each element ei is a vector of values (v1, . . . , vt) over
an attribute vector Attr. To get Vi from Vi−1 we use an
EDA operations qi.

Following common data manipulation routines in note-
books (such as Python and R) the sequence is constructed
in a parametric, incremental manner: each operation qi
is applied on one of the previous views and takes addi-
tional parameters. For example, a filter operation is de-
fined by FILTER(V, attr, op, term), and is used to select data
tuples from view V that match a criteria. It takes an at-
tribute, a comparison operator (e.g. =,≥, contains) and
a numeric/textual term, and results in a new view repre-
senting the corresponding data subset. Another operator is
GROUP(g attr, agg func, agg attr) which groups and aggre-
gates the data. It takes a single2 attribute to be grouped
by, an aggregation function (e.g. SUM, MAX) and another
attribute to employ the aggregation function on. Additional

2Complex group-by operations, are possible by employing
consecutive group-by operations.

2918

data manipulation such as aggregate, join and project are
similarly represented.

Example 2.1. Reconsider the EDA notebook in Figure 1.
The first EDA operation is GROUP(MONTH, AVG,
DEP DELAY), performed on the raw dataset (i.e., V0). The
resulted view is denoted by V1. The second view, V2, was gen-
erated from V0 using GROUP(DEP TIME, AVG, DEP DELAY)
and then using GROUP(ORIGIN AIRPORT, AVG,
DEP DELAY). Last, View V3 was generated by employing
FILTER(FLIGHT DURATION,>,90) on V2.

Given a view Vi, ExplainED generates an explanatory text
Ei, which highlights the elements that are particularly in-
teresting in Vi. For example, see the generated explanations
in the red frames in Figure 1.

Interestingness Measure for EDA Views. As explained in
the sequel, ExplainED analyzes the interestingness of each
EDA operation qi before producing an explanation that de-
scribes what exactly is interesting in the resulting view Vi.
An interestingness measure I is a function mapping each
view to a real number (higher score indicates a more inter-
esting view).

There are multiple different interestingness measures de-
fined in the literature [5]. In our implementation, we fo-
cus on three common measures from the literature that we
adapted to the EDA use case, as follows:
Conciseness Evaluation. Intuitively, a “concise” group-
by view, that covers many tuples using a small number of
groups, is both informative and easy to understand [5]. Cor-
respondingly, the conciseness measure that we use evaluates
group-by operations, following similar lines as existing mea-
sures [5, 3]. In case the view is grouped, the measure takes
into account the number of groups, the number of attributes
that are currently grouped-by, and the number of the un-
derlying tuples, denoted g,a, and r (respectively). The cal-
culation is given by:

h(g · a)

h(r)
(1)

where h(·) is a normalized sigmoid function with a prede-
fined width and center. In case Vi is not grouped, the mea-
sure is defined by h(1

r
), giving a higher score to views with

a small number of tuples.

Exceptionality Evaluation. We follow common measures
in the literature that assess the exceptionality of an EDA op-
eration. Following [16], our measure favors operations whose
result view Vi deviates significantly from the previous one
Vi−1. To quantify such deviation, we use the KL divergence
measure, which determining the difference between proba-
bility distributions (Other measure, e.g., Earth Mover’s Dis-
tance, are also viable.) The calculation depends on whether
the view is grouped-by or not: In case Vi is not grouped, we
define the value probability distribution P i

A of an attribute
A ∈ Attr to be the relative frequency of its values (i.e., for
each value v of attribute A in Vi, p(v) is the probability to
randomly choose v). The exceptionality score is defined by:

max
A∈Attr

KL(P i−1
A , P i

A) (2)

Namely, the maximal KL divergence score obtained by the
attribute that demonstrates the most significant “change”
in its distribution due to the last filter operation. In case Vi

is grouped, the KL divergence is compared only w.r.t. cur-
rently aggregated attributes (rather than on all attributes).

Diversity Evaluation. We use the Variance [5] diversity
measure that rank higher views whose elements demonstrate
notable differences in values. The measure is defined by:

h(max
A∈Attr

Var(PA)) (3)

where PA is the value distribution of attribute A as above.

Example 2.2. Consider the views in Figure 1. V3 is gen-
erated from Operation 3 (filter). Intuitively (full calcula-
tion omitted for brevity), V3 has high exceptionality score,
as the aggregated value changes significantly from the one
in V2 due to the filter operation. Conversely, the number of
groups is quite large, therefore the conciseness score of V2

and V3 is low. Also, notice that V1 in Figure 1, generated
by Operation 1, has high diversity score, as the aggregated
values demonstrate high variance. Its conciseness score is
also rather high, as its total number of groups is only 12.

2.2 Explaining EDA Operations
Given a view Vi in an EDA notebook, we first assess its

interstingness w.r.t. the measures defined above, then derive
which specific elements in the view have the highest impact
on the interestingness score of the view, and present them
in an illustrative, NL template.

Choosing the Relevant Interestingness Measure. Each
of the measures presented above captures a different aspect
of interestingness. Therefore, views showing high score w.r.t
one measure may show a lower score w.r.t others. We there-
fore wish to find the measure most relevant to Vi.

Since the measures have different value ranges and dis-
tributions, we first employ the interestingness comparison
technique in [11], which derives an unbiased, relative in-
terestingness score, for each measure, w.r.t. the scores of
alternative views (that were generated by EDA operations
of the same type). We then focus our explanations, as de-
scribed next, on the measure producing the highest relative
interestingness for Vi

Finding Tuples to Include in the Explanation. Next, we
describe how to locate the elements in the view Vi that we
wish to showcase in the explanation, i.e., the elements that
make Vi interesting w.r.t. the chosen measure. This prob-
lem can be considered as a game theoretic problem, where
tuples are ‘players’ and each tuples has a certain value to
the game (the interestingness score, in our case). We are
interested in those tuples that provide the maximum value
to the interestingness score of Vi. Thus, a natural approach
is to look at the Shapley value of each element in the view
w.r.t. the interestingness score. This approach is common
practice for ML models [15, 10] to evaluate the contribution
of different features. We formalize the definition of a Shap-
ley value of an element in a view w.r.t. an interestingness
measure as follows.

Definition 2.3. Given an EDA view Vi generated from
Vi−1 and an interestingness measure I, the Shapley value of
the element e ∈ Vi is defined as:

Shap(Vi, I, e) =
∑

S ⊆ Vi \ {e}

|S|!(|Vi| − |S| − 1)!

|Vi|!
· (I(Vi|S∪{e})−

I(Vi|S))

2919

Note that Vi is represented as a set of elements.

The above definition intuitively says that the contribution
of each tuple to the interestingness of the view is given by
its Shapley value. We compute the Shapley value for every
element by flattening the table into a vector (s.t. each elee-
ment is associated with a coordinate) and then use SHAP
[10] w.r.t. the chosen interestingness measure. Finally, the
elements associated with the top-k Shapley values are used
for generating the explanation.

Example 2.4. Reconsider view V3 in Figure 1 (created
by Operation 3), where the relevant interestingness measure
is Exceptionality. The group we present in the explanation
is composed of the tuples associated with evening flights that
had a delay and left from the DFW airport, as the Shapley
value of this group is the highest among the groups in V3.
We show the computation of the Shapley value for the group
(‘Evening’, ‘DFW’, 25) (denoted D for brevity), consider-
ing only the four groups shown in V3. Based on Definition
2.3, we consider the 8 subsets: ∅, {A}, {M}, {O}, {A,M},
{A,O}, {M,O}, {A,M,O}, and for each one, we compute
the coefficient (e.g., for {A} and for {A,M} it is 1

12
) and the

difference between the KL-divergence function of the subset
with D and without it (e.g., the difference for KL-divergence
of both {A} and {A,M} is 162.9). Overall, the values we
get are: Shap(A) = 9.2, Shap(D) = 162.9, Shap(M) = 31,
Shap(O) = 3.1.

Generating NL Explanations. We employ NL patterns,
one per supported interestingness measure, that are aimed
to accommodate a textual description w.r.t. chosen mea-
sure. As depicted in Figure 1, each explanation begins
with stating the chosen measure: “This view shows high
[chosen measure]”. Then, the description of the top-k ele-
ments is generated via the template patterns shown in Fig-
ure 2 (for k = 1, group-by views). Every expression in
square brackets is filled-in with the relevant attribute or
value according to the top-k tuples. In general, more tem-
plates can be devised to provide tailored explanations.

Specifically ,when [& attribute=
value] the [& attribute] value is
[& higher/lower] than the mean in [&x]
standard deviations

(a) Diversity Pattern

Specifically , the major deviation occurs
on the group [top -1 group_name] where the
[attribute] value changed from [value in Vi−1]
to [value in Vi]

(b) Exceptionality Pattern

Specifically , the Group
[&top -1 groups in Vi] covers more than
[& coverage] of the underlying tuples

(c) Conciseness Pattern

Figure 2: Textual Patterns for View Explanations

3. DEMONSTRATION
We will demonstrate the explanations that ExplainED gen-

erates for EDA notebooks and their usefulness over the Kag-
gle Flights dataset (as described in Example 1.1).

Data Exploration with ExplainED: Using the flight
dataset, we will perform a live, interactive EDA process,
using a notebook interface, in pursuit of an exploration goal:
characterize delays in the datset. We will employ ExplainED

to dynamically generate an explanation for each view in the
notebook, demonstrating the value of the explanations to
the data analysis process.

Technical Details: We will let participants look under
the hood of ExplainED by showing the manner in which it
selects the most relevant interestingness measures and finds
the interesting tuples or groups in views based on their Shap-
ley values. Finally, we will explain how the system composes
the textual explanation.

Acknowledgements. This research has been funded by the
Israeli Science Foundation (ISF), the Binational US-Israel
Science Foundation, the Tel Aviv University Data Science
center, the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation pro-
gramme (Grant agreement No. 804302), and the Google
Ph.D. Fellowship.

4. REFERENCES
[1] O. Bar El, T. Milo, and A. Somech. Automatically

generating data exploration sessions using deep
reinforcement learning. In SIGMOD, 2020.

[2] P. Buneman, S. Khanna, and W. Tan. Why and where: A
characterization of data provenance. In ICDT, pages
316–330, 2001.

[3] V. Chandola and V. Kumar. Summarization - compressing
data into an informative representation. KAIS, 12(3), 2007.

[4] D. Deutch, N. Frost, and A. Gilad. Provenance for natural
language queries. PVLDB, 10(5):577–588, 2017.

[5] L. Geng and H. J. Hamilton. Interestingness measures for
data mining: A survey. CSUR, 2006.

[6] A. Giuzio, G. Mecca, E. Quintarelli, M. Roveri, D. Santoro,
and L. Tanca. Indiana: An interactive system for assisting
database exploration. Information Systems, 83:40–56, 2019.

[7] T. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, pages 31–40, 2007.

[8] M. B. Kery, M. Radensky, M. Arya, B. E. John, and B. A.
Myers. The story in the notebook: Exploratory data
science using a literate programming tool. In CHI, 2018.

[9] E. Livshits, L. E. Bertossi, B. Kimelfeld, and M. Sebag.
The shapley value of tuples in query answering. In ICDT,
pages 20:1–20:19, 2020.

[10] S. M. Lundberg and S.-I. Lee. A unified approach to
interpreting model predictions. In NIPS. 2017.

[11] T. Milo, C. Ozeri, and A. Somech. Predicting ”what is
interesting” by mining interactive-data-analysis session
logs. In EDBT, 2019.

[12] T. Milo and A. Somech. Next-step suggestions for modern
interactive data analysis platforms. In KDD, 2018.

[13] S. Roy and D. Suciu. A formal approach to finding
explanations for database queries. In SIGMOD, pages
1579–1590, 2014.

[14] L. SHAPLEY. A value for n-person games. Contributions
to the Theory of Games, (28):307–317, 1953.

[15] E. Strumbelj and I. Kononenko. Explaining prediction
models and individual predictions with feature
contributions. Knowl. Inf. Syst., 41(3):647–665, 2014.

[16] M. van Leeuwen. Maximal exceptions with minimal
descriptions. DMKD, 21(2):259–276, 2010.

[17] E. Wu and S. Madden. Scorpion: Explaining away outliers
in aggregate queries. PVLDB, 6(8):553–564, 2013.

2920

	Introduction
	Technical Overview
	Model & Background
	Explaining EDA Operations

	Demonstration
	References

