
SPHINX: A System for Metapath-based Entity Exploration
in Heterogeneous Information Networks

Serafeim Chatzopoulos
Univ. of the Peloponnese &

“Athena” RC
Greece

schatzop@uop.gr

Kostas Patroumpas
“Athena” RC

Greece
kpatro@athenarc.gr

Alexandros Zeakis
“Athena” RC

Greece
azeakis@athenarc.gr

Thanasis Vergoulis
“Athena” RC

Greece
vergoulis@athenarc.gr

Dimitrios Skoutas
“Athena” RC

Greece
dskoutas@athenarc.gr

ABSTRACT
We present SPHINX, a system for metapath-based entity
exploration in Heterogeneous Information Networks (HINs).
SPHINX allows users to define different views over a HIN
based on both automatically selected and user-defined meta-
paths. Then, entity ranking and similarity search can be
performed over these views to find and explore entities of
interest, taking also into account any spatial or temporal
properties of entities. A Web-based user interface is pro-
vided to facilitate users in performing the various function-
alities supported by the system, including metapath-based
view definition, index construction, search parameters spec-
ification, and visual comparison of the results.

PVLDB Reference Format:
Serafeim Chatzopoulos, Kostas Patroumpas, Alexandros Zeakis,
Thanasis Vergoulis, Dimitrios Skoutas. SPHINX: A System for
Metapath-based Entity Exploration in Heterogeneous Informa-
tion Networks. PVLDB, 13(12): 2913-2916, 2020.
DOI: https://doi.org/10.14778/3415478.3415507

1. INTRODUCTION
Heterogeneous Information Networks (HINs) are graphs

comprising different types of nodes (entities) and edges (re-
lationships) [4]. HINs offer an intuitive and generic model
for representing complex information in various domains. A
core concept for analyzing HINs is that of metapath, which
is a path defined on the schema of the HIN [5]. Metapaths
represent relationships of different semantics between enti-
ties of the same or different type, providing a mechanism for
exploring and analyzing a HIN from multiple perspectives.
Thus, they are fundamental for several types of analyses in
HINs, ranging from similarity joins to HIN embeddings and
recommendations [5, 1, 3].

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415507

Figure 1: Illustrative example of a HIN containing articles,
persons, organizations and locations.

Figure 1 presents an illustrative example of a HIN contain-
ing articles (a1, a2), persons (p1, p2, p3, p4), organizations
(o1, o2, o3) and locations (`1, `2, `3). Consider metapaths
that connect two persons if they are mentioned in the same
article (PAP) or in two articles mentioning the same person
(PAPAP), organization (PAOAP) or location (PALAP). Then, p2
and p3 are connected according to PAPAP and PAOAP, but not
according to PAP and PALAP.

Hence, both the neighborhood and the centrality of a node
in a HIN become relative to the metapaths under consider-
ation. This raises the need for tools that can facilitate users
in defining and computing different views of a HIN based on
different (combinations of) metapaths, which can then be
used to compute and compare answers to questions such as
which entities are the most important (central) in the net-
work or having the highest similarity (common neighbors) to
a query entity. The task becomes even more complex in the
presence of entity types that are additionally associated with
spatial or temporal properties (e.g., geospatial coordinates or
timestamps). Spatial and temporal proximity are important
factors in several analyses. Yet, since spatial and temporal
relationships are typically not represented explicitly in the
network structure, they cannot be captured by metapaths.
Thus, analysis methods that are purely metapath-based will
inevitably overlook these aspects, resulting in significant loss
of information that is present in the data.

Motivated by the above, we have developed SPHINX1, a
system for metapath-based entity exploration in HINs, in-
cluding support for spatial and temporal entities. SPHINX
includes a workflow manager for executing preprocessing
and offline tasks involving metapath-based view materializa-
tion, index construction and random walk computations, as

1http://sphinx.magellan.imsi.athenarc.gr/

2913

http://sphinx.magellan.imsi.athenarc.gr/


Figure 2: SPHINX architecture.

well as a query engine for executing top-k similarity search
queries. A Web-based user interface is provided for users to
preprocess a HIN, submit queries, and visualize the results.
The main functionalities of SPHINX are:

• Compute and index different views of a HIN based on
automatically selected or user-defined metapaths.

• Index spatial and temporal attributes of entities.

• Execute random walks on selected HIN views to gen-
erate entity rankings.

• Find the top-k most similar entities to a query with re-
spect to different weighted combinations of metapaths
and/or spatio-temporal attributes.

• Visualize and compare the results obtained from dif-
ferent views or weight parameters.

2. SYSTEM OVERVIEW
The main components of SPHINX are illustrated in Fig-

ure 2 and can be distinguished in the following core parts:

• Workflow Engine. The workflow engine handles tasks
that are executed offline, as they typically have longer
execution times, especially in large HINs. This in-
cludes metapath-based view materialization, index con-
struction, and entity ranking via random walk compu-
tations. We use Apache Airflow2, an open-source and
scalable platform that allows to programmatically au-
thor, schedule and monitor workflows.

• Query Engine. The query engine executes top-k sim-
ilarity search queries containing preferences over dif-
ferent combinations of metapaths and/or spatial or
temporal attributes. For each criterion, a k-nearest
neighbor (KNN) search is triggered, and the individ-
ual ranked lists of results are aggregated to produce
the final top-k answers. Appropriate indices are built
to speed up these KNN queries, including inverted in-
dices, R-trees and B+ trees.

• User Interface. A Web-based user interface provides
views for selecting metapaths, specifying indices to be
constructed, defining query conditions and weight pa-
rameters, and visualizing the results. Client-side and
server-side components communicate via REST APIs.

2https://airflow.apache.org/

3. MAIN FUNCTIONALITIES

3.1 Workflow Engine
The workflow engine is responsible for long-running tasks

that are executed offline. It provides a REST API that
allows triggering these tasks and monitoring their execution.
Implementations for the following main tasks are included.

Metapath-based View Materialization. This is a core com-
ponent for any metapath-based method for HIN exploration
and analysis. It materializes a view of the HIN according to
one or more specified metapaths. Such a view is essentially
a set of edges, where an edge between two entities in the
HIN is created if these entities are connected with one or
more paths of the specified type. Consequently, this allows
to define, for each entity, a set of neighbors that is relative
to the given metapath. In particular, if the metapath un-
der consideration is cyclic, i.e., the source and target nodes
are of the same type, then the resulting view is a homoge-
neous network; otherwise, it is a bipartite graph, connecting
entities of the source type to entities of the target type.

Index Construction. This component allows the creation
of three types of indices. For each metapath-based materi-
alized view, an inverted index is constructed on the set of
relative neighbors of each entity for that metapath. More-
over, for spatial and temporal attributes, an R-tree and B+
tree are constructed, respectively. Creating these indices is
necessary for performing similarity search over the respec-
tive metapaths or spatial and temporal attributes.

Entity Ranking. Once a homogeneous network has been
constructed by materializing a view of the HIN based on a
cyclic metapath, this component executes a random walk
process to assign ranking scores to the nodes of this net-
work. Specifically, we use the PageRank algorithm for this
purpose. The result is, for each entity, a relative ranking
score with respect to the metapath under consideration.

3.2 Query Engine
The query engine executes KNN queries and rank aggrega-

tion. Top-k queries are more intuitive in this setting, since it
is not straightforward for a user to specify similarity thresh-
olds, especially when the query involves multiple attributes
of different types. Specifically, given a query entity, SPHINX
can identify the top-k most similar entities in the HIN, ac-
cording to a given set of criteria. These criteria can involve
one or more metapaths, having as source type the type of
the query entity, as well as spatial or temporal attributes, if
applicable to the query entity. Moreover, different weights
can be assigned to different criteria.

Formally, a query is a tuple Q = 〈T , C, k〉, where T is the
type of entity to search for, C = Cm ∪ Cs ∪ Ct are condi-
tions over metapaths, spatial and temporal attributes, re-
spectively, and k is the number of results to return. Each
condition C ∈ C is a tuple of the form C = 〈c, v, w〉, where
c denotes an attribute name, v specifies the desired value
for that attribute, and w ∈ (0, 1] is a weight parameter.
For conditions on metapaths, c specifies a metapath start-
ing from T and ending at another entity type T ′, while v
is a set of entity ids of type T ′. For conditions on spatial
or temporal attributes, c denotes the name of the attribute,
and v is a spatial point or a timestamp, respectively.

Processing a query involves two components, namely KNN
Search and Rank Aggregation, whose operations are inter-
leaved, as described next.

2914

https://airflow.apache.org/


KNN Search. Given a condition, this component executes
a KNN query returning a ranked list of results. For condi-
tions on metapaths, we execute top-k set similarity join [6],
exploiting the respective inverted index that has been con-
structed earlier. This retrieves the nodes having the most
similar sets of neighbors with respect to the given metap-
ath. For spatial and temporal attributes, we execute KNN
queries using the respective R-tree and B+ tree indices. A
challenge arises from the fact that different similarity mea-
sures or distance functions are used for different types of
conditions. Next, we explain how to obtain unified ranking
scores.

For each condition C, we use a distance function d to
measure the distance between the query value and the entity
value with respect to that condition. Recall that, if C ∈ Cm,
these values are sets; hence, in that case, we choose d to be
the Jaccard distance. If C ∈ Cs ∪ Ct, we use as d the L2

norm, which, for temporal attributes, corresponds to the
absolute value of the difference between two timestamps,
whereas, for spatial attributes, corresponds to the Euclidean
distance of two points.

We then need a way to scale these distances in each con-
dition, so that the results become comparable. To this end,
given a query value vq and the respective value ve of an
entity e, we define a scaled (i.e., relative) distance δ as:

δ(vq, ve) =
d(vq, ve)

dk
(1)

where dk is the distance of the k-nearest neighbor in that
condition. Given these relative distances, we can now define
a ranking score for each condition as:

score(vq, ve) = e−λδ(vq,ve) (2)

where λ is an exponential decay parameter.
Rank Aggregation. The KNN queries for each query con-

dition can be executed in parallel, each one producing a
ranked list of results. Each result is a tuple of the form
R = 〈id, score〉, where id is the entity id and score is calcu-
lated according to Equation 2. Notice that rank aggregation
is also applied in the same manner for aggregating individual
entity rankings that have been computed offline.

The goal of rank aggregation is to return a global top-k
list of results, where each entity e is ranked according to an
aggregate score over all conditions in the query Q as:

γ(Q, e) =
∑
C∈C

wc × scorec (3)

where wc is the weight assigned to condition C. This is per-
formed using the Threshold Algorithm [2]. This algorithm
scans each ranked list in parallel, performing two actions:
(a) it computes the aggregate score of each seen item, and
(b) it maintains a non-increasing upper bound on the score
of unseen items. The search terminates once k items have
been found with scores higher than the current unseen upper
bound. These items constitute the global top-k results.

For entity ranking, the Threshold Algorithm can be ap-
plied directly on the individual ranked lists that have been
computed already. However, for similarity search it requires
two adaptations, since the individual ranked lists are not
fully available but are instead constructed on the fly as a

result of KNN queries. First, the rank aggregation compo-
nent includes a mechanism for looking up the information
about an entity using its id. This is required for computing
the aggregate score of entities that have been seen only in
a subset of the ranked lists. Second, it is possible that the
contents of the ranked lists are exhausted before the search
has produced k results. In that case, new KNN queries with
larger values for k need to be issued.

Result Comparison. The top-k similar entities to a query
depend on the specified conditions as well as the respective
weight parameters. To facilitate and guide the user in select-
ing different query conditions and weight parameters, this
component computes the differences between two result sets.
Given two top-k lists Li and Lj , we compute: (a) the Spear-
man’s rank correlation coefficient, which provides an indica-
tor of the overall agreement between the two rankings, and
(b) for each individual result, a score ∆ = ranki−rankj , in-
dicating the difference between its rankings in the two lists,
or null if it does not appear in the other list.

4. USER INTERFACE
SPHINX provides a Web-based user interface that allows

users to perform the functionalities described above and vi-
sualize the results. The UI includes the following pages.

Indexing. In this view (Fig. 3a), the user can select a type
of entity, and then choose one or more metapaths starting
from this entity type. For each selected metapath, a but-
ton allows to trigger the respective workflow for materializ-
ing the view and creating the inverted index. To bootstrap
the metapath selection process, SPHINX automatically sug-
gests certain metapaths. Specifically, given the schema of
the HIN, it suggests, for each pair of entity types T and T ′:
(a) the shortest path from T to T ′ and (b) the shortest cycle
from T to T via T ′. The intuition for relying on shortest
paths to suggest default metapaths lies on the observation
that longer metapaths are typically less meaningful [5]. Fi-
nally, if the entity type under consideration also has spatial
or temporal properties, the respective buttons are enabled
for building spatial or temporal indices.

Similarity Search. In this view (Fig. 3b), the user can is-
sue similarity search queries and view the results. For the
selected entity type, the indexed metapaths, as well as any
spatial or temporal properties, if applicable, are listed. The
user can select which conditions to include as criteria in the
search, and specify a value and a weight for each condition.
The number k of results can also be determined. The re-
trieved results are displayed in a list, ordered by their score,
and showing the attribute values in each one, which allows
the user to inspect why each result matches the search.

Ranking. This view is very similar to that for search;
the difference is that it does not include spatial/temporal
conditions and query values. The user can select one or more
metapaths, specify their weights, and retrieve a ranked list
of entities according to these conditions.

Result Comparison. For each executed similarity search
or ranking operation, an entry is added in the user’s history
for this session with a timestamp and the respective results.
Then, the user can select two entries from the history and
use the result comparison page (Fig. 3c) to compare the
results. First, the Spearman’s rank correlation coefficient
between the two ranked lists is displayed. Then, a pie chart
is presented, showing how many results appear in both lists,
and, among those, for how many the ranking has increased,

2915



(a) Index creation.

(b) Similarity search.

(c) Result comparison.

Figure 3: User Interface.

decreased or remained the same. Finally, for each entry in
each list, a number is included indicating the difference for
this result with respect to the other list. Thus, this view
assists users in exploring how different conditions or weight
parameters affect the results, and which entities are more
stable or more sensitive to these factors.

5. DEMONSTRATION SCENARIO
To demonstrate SPHINX, we have prepared a scenario

based on news articles and associated entities collected from
the GDELT project3. Specifically, we use all articles from
CNN and BBC during 2019. The resulting HIN contains the
following entity types: Articles (71,422), Persons (105,261),
Organizations (43,214), Locations (16,823) and Themes

(9,230). Each article is associated with a timestamp and
each location with geospatial coordinates.

First, we will present to the users the schema of this HIN
and introduce them to the concept of metapaths, explaining
how different metapaths express relationships with different

3https://www.gdeltproject.org/

semantics between the entities. We will guide them through
the indexing page of SPHINX, showing how to select meta-
paths suggested by the system or specify custom ones in
order to create and index different views of the HIN. Then,
we will demonstrate the following default scenarios:

• Ranking of persons. We have preprocessed, indexed
and ranked persons according to the metapaths PAP,
PAOAP and PALAP. The users will be able to retrieve
top-k persons according to any of these metapaths, or
combinations of them with varying weights, and vi-
sually compare the results. For instance, top-3 per-
sons for PAOAP include Donald Trump, Joe Biden and
Nancy Pelosi, while for PALAP, Nancy Pelosi is replaced
by Boris Johnson. This indicates that the centrality of
Boris Johnson in the network increases, when persons
are connected through articles mentioning the same
location rather than the same organization.

• Ranking of organizations. We use the following meta-
paths: OAO, OAPAO and OALAO. As with persons, the
users will be able to view and compare the ranked re-
sults for any combinations of these criteria. We can
observe that the top organizations tend to be less sen-
sitive to different metapaths or weights.

• Article search. We use the following metapaths: AP,
AO and AL. The users will be able to specify their pref-
erences on any of these, as well as on the publication
date, and then search for top-k articles with these cri-
teria. We can observe how the nearest neighbors of an
article change with varying preferences.

• Location search. We use the following metapaths for
locations: LAP, LAO and LAT. The users will be able to
specify their preferences on any of these, as well as on
geocoordinates. Then, they can search for top-k loca-
tions with these criteria, and observe how the nearest
neighbors of a location change accordingly.

6. ACKNOWLEDGMENTS
This work was supported by the EU H2020 project Smart-

DataLake (825041).

7. REFERENCES
[1] Y. Dong, N. V. Chawla, and A. Swami. metapath2vec:

Scalable representation learning for heterogeneous
networks. In SIGKDD, pages 135–144, 2017.

[2] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of
top-k query processing techniques in relational database
systems. ACM Comput. Surv., 40(4):11:1–11:58, 2008.

[3] C. Shi, B. Hu, W. X. Zhao, and P. S. Yu. Heterogeneous
information network embedding for recommendation.
IEEE Trans. Knowl. Data Eng., 31(2):357–370, 2019.

[4] C. Shi, Y. Li, J. Zhang, Y. Sun, and P. S. Yu. A survey
of heterogeneous information network analysis. IEEE
Trans. Knowl. Data Eng., 29(1):17–37, 2017.

[5] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. Pathsim:
Meta path-based top-k similarity search in
heterogeneous information networks. PVLDB,
4(11):992–1003, 2011.

[6] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set
similarity joins. In ICDE, pages 916–927, 2009.

2916

https://www.gdeltproject.org/

	Introduction
	system Overview
	Main Functionalities
	Workflow Engine
	Query Engine

	User Interface
	Demonstration Scenario
	Acknowledgments
	References

