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ABSTRACT
Ridesharing algorithms operate in environments that are dy-
namic and uncertain due to traffic effects. Evaluating an
algorithm by deploying it in a real environment is costly
and often inaccessible, yet the traditional approach of us-
ing static inputs and applying an objective function on the
outputs may give unrealistic results. Jargo is a novel real-
time simulator that provides more realistic evaluation. It
lets users implement their own algorithms, speed field func-
tions, and evaluators, and then it reports on multiple quality
metrics that are useful to service providers. To support any
new and existing algorithm, simulate traffic, and compute
the metrics, it is supported by a new relational model of
ridesharing. Relations naturally express empirical concepts
such as customer pick-up time, and their flexibility can al-
low any feasible routing strategy. Relational algebra is also
convenient for defining operations on the system as well as
formalizing service-related metrics. We will show how a ser-
vice provider considering whether or not to deploy the well-
known greedy insertion algorithm could use Jargo to uncover
its limits and guide the development of new techniques.
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1. INTRODUCTION
In large-scale ridesharing systems, thousands of passen-

ger vehicles move in their own ways through a road network.
How they transport customers can be described by their mo-
tions, and these motions can be controlled to some degree
toward measurable objectives such as maximizing revenue.
Service providers seek high-quality ridesharing algorithms
that can compute optimal motions or determine the opti-
mal customer assignments. Generally, the quality of an op-
timization algorithm can be measured using static inputs
and applying an objective function on the outputs. But for
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ridesharing algorithms, this approach may give unrealistic
results. Under normal operation, inputs to these algorithms
are not static but depend on prior outputs and on through-
put. For example, a prior assignment can remove a vehicle
as a future input due to motion or seating constraints, and a
slow throughput can prevent customer requests from getting
processed. Outputs themselves can differ from actual mo-
tions due to stochastic travel times, invalidating an objective
value computed solely on the algorithm’s outputs. These ef-
fects are hard to quantify in a static setting. Quality could
be measured by deploying an algorithm on real vehicles and
customers, but this approach is costly and inaccessible to
many researchers.

Existing simulators are either black-box with unknown
capabilities, unavailable to the public, or do not consider
all the effects on inputs and outputs [5, 7, 6, 4, 1]. The
difficulty of evaluating these algorithms may contribute to
why after a decade of study there are still no widely accepted
benchmark instances or results, despite many for the closely
related Dial-A-Ride Problem [2].

Jargo is our second attempt at a suitable evaluation tool.
It improves on our previous work [5] by including stochastic
effects and formalizing many more quality-related metrics
that are useful to service providers. Thus it can be used
by industrial researchers to assess algorithm quality across
realistic workloads and traffic conditions, and it can be used
by academia to form a corpus of benchmarking results.

In our demonstration, we will use the New York City
2018–19 New Year’s Eve for-hire requests data1 as our work-
load. The main feature is a 135% increase in the request
arrivals rate within a short span of 5 minutes. For spiky
workloads, current providers may use “surge pricing” to dis-
courage requests and reduce workload, potentially at the ex-
pense of customer satisfaction 2. We will show how a service
provider can investigate the limits of the popular greedy in-
sertion (GRINS) algorithm [3] for the workload, and under
heavy traffic. The results then lead to designing a new fall-
back mechanism when low throughput is detected and to a
new traffic-avoidance strategy.
A New Relational Model of Ridesharing. We intro-
duce a new ridesharing model to overcome the limitations
of the graph-based model favored by [8] and others. In the
graph-based model, each vehicle is associated to a sequence
of customer pick-up and drop-off locations called a sched-
ule, and also to a path through a graph representing the

1Obtained from https://data.cityofnewyork.us/
2https://hbr.org/2015/12/everyone-hates-ubers-
surge-pricing-heres-how-to-fix-it
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Figure 1: Jargo architecture.

road network. To formalize specific path segments, the path
is required to be a shortest path so that elements can be
uniquely identified by value. Then, metrics such as cus-
tomer onboard duration can be formalized by taking the
path segment between the pick-up and drop-off locations.
Cycles break these formulations because segment endpoints
would be unidentifiable. To allow cycles, for example to
model a vehicle that circles the airport several times, times-
tamps on each element would enable relational predicates to
be used to define these segments. The model also has dif-
ficulty modeling vehicles with different travel durations for
the same edges, for example to model a vehicle that waits
at the airport compared to one that does not. Again, times-
tamps added to the vehicle paths would solve this problem.

For wide appeal, a ridesharing simulator should support
any feasible routing strategy, including cycles and waits. It
should also simulate traffic effects and report useful met-
rics. Jargo uses relations to support these features. Vehicle
paths (routes) are stored into a table with time and posi-
tion columns to address the above limitations. With this
table, traffic is simulated by adjusting values in the time
column based on a configurable traffic function. As real-
world speed data is often unavailable, such a function can
provide synthetic speed values for every road over all time
in the simulation, or look up real values if data is available.
Relations also facilitate reporting metrics. Route duration,
for instance, is simply the range of the time column. For
customer-related metrics, a seperate table of pick-up and
drop-off times is used. Relational algebra is convenient for
formalizing read/write operations and metrics.

Throughout the demonstration, attendees can use the in-
terface to submit investigate queries, monitor the quality
metrics, and interact with the live map.

2. OVERVIEW
The ridesharing problem can be formulated as: Given a

road network G, a problem instance X, and a traffic func-
tion G, produce a server relation X that can optimize an
objective function based on service metrics. The purpose
of Jargo is to provide simulated real-world conditions under
which X is constructed.
Road Network. Road network G is modeled as a directed
graph, including maximum free-flow speeds along each edge
and physical coordinates for each vertex.
Problem Instance. Problem instance X is a listing of
customers and vehicles (the ridesharing participants) and
their properties. Each participant has a unique identifier,
an integer load, a time window, and an origin-destination
pair. Customers have positive loads indicating number of
required seats while vehicles have negative loads indicating
seating capacity. Time windows consist of the “early” time
when the participant appears on the network and the latest
acceptable “late” time the participant can arrive at its des-
tination. Time windows generalize detour-based constraints
used in other works. Origins indicate where on the road
network the participant appears, and destinations indicate

where the participant desires travel to. For vehicles with
no destination of their own such as taxi-like vehicles, Jargo
supports an “imaginary” destination.
Traffic Function. Traffic function G(v1, v2, t) returns a
real number between 0..1 indicating the percentage of max-
imum speed on edge (v1, v2) at time t. If real data is avail-
able, G could look up and return the real value. If G = 1
for all (v1, v2, t), then no stochastic effects are simulated.
Ridesharing Algorithm. The Client class can be used
to implement both search and join-based algorithms [5].
Runtime Mode. In addition to real-time mode, Jargo can
run in sequential mode where the simulation pauses until an
algorithm finishes processing customers before continuing.
This mode eliminates throughput effects.

2.1 Simulation Results
Server Relation. Server relation X maps vehicles to times,
locations, and pick-up and drop-off events. It can be an-
alyzed using SQL queries against the produced r server

view, or by querying other pre-built metric views. For exam-
ple to count the number of pick-ups and drop-offs for vehi-
cle s, use select count (Lr) from r server where sid=s
where column Lr contains individual pick-up and drop-off
events. Metric views contain an identifier colum and a val

column with metric value. For example to get the pick-up
duration for customer r, use select val from dur r pickup

where rid=r where view dur r pickup uses a subquery to
find the difference of the pick-up time and the request early
time. Other metrics are listed in Table 1.
Visualization. A graphical interface is included to visu-
alize customers and vehicles in real time. It also displays
running metrics by issuing continuous queries on X . If G
and X are geolocated, GIS software (such as QGIS3) could
be used for visualization.

2.2 Architecture
Jargo is implemented as a Java library (Figure 1). It pro-

vides inheritable base classes Client and Traffic for devel-
oping ridesharing algorithms and traffic functions. It also
has an API for developing evaluators. The release pack-
age includes example algorithms and traffic functions along
with command-line and graphical evaluators. The Client

and Traffic classes use the Communicator API to read and
write state changes. Evaluators use the Controller API to
set simulation parameters and display metrics to the end
user. Both Communicator and Controller use the Storage

API to access the underlying data model. Simulation state
is stored in an Apache Derby4 database.
Workflow. An evaluator calls either startSequential or
startRealtime to start a simulation. The Controller reads
the reference world time from the problem instance, then it
launches four threads (Figure 2). The threads run in paral-
lel if the runtime mode is real-time, otherwise they run se-
quentially. If real-time, the clock thread advances the world
time by one unit every physical second. The request re-
trieval thread uses Storage to retrieve customers appearing
on the road network at each world time. It then places them
into the Client’s job queue. The request handling thread
calls Client.handleRequest on each of the requests in the
queue. The server thread retrieves vehicle locations at each
world time and places them into Client’s internal memory.

3https://www.qgis.org
4http://db.apache.org/derby/
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Figure 2: Simulation workflow.

The dynamic components are the routes and schedules in
the server relation. A route is a sequence of waypoints. A
waypoint is a pair (ti, vi) indicating that a vehicle is at lo-
cation vi at time ti. A schedule is a route subsequence that
lists pick-up and drop-off events, with each waypoint (tj , vj)
associated to a set of customer labels indicating which cus-
tomers are being picked up or dropped off. The complete
time-evolutions of all vehicle routes are kept. Motion is sim-
ulated by sliding over routes to reveal last-visited locations
based on the world time. The number of simulated moving
vehicles is limited by the read operation with no need for
physics-based simulation. Traffic is simulated by adjusting
future location timings in the routes based on G.

Through Communicator, Jargo controls which data are ex-
posed to ridesharing algorithms. In the offline problem, any
update to any part of the routes and schedules can be per-
mitted. But in the online problem, prohibiting updates to
the traveled portions of routes and schedules is a more real-
istic condition. Likewise, only information about previously
revealed customers can be used when making routing and
scheduling decisions. The SQL schema enforces constraints
on routes, schedules, and vehicle capacity.

3. RIDESHARING MODEL
User Relation. Customers and vehicles are called requests
and servers in the model. Their properties are loaded from
X and stored in the user relation U , with each row (tuple)
representing a single request or server. In the database, U
is split into key-value property tables to use in foreign keys.
Server Relation. Server relation X consists of a server
identifier s, a time t, a vertex v ∈ G, and a set of labels L.
Each row indicates that a server was at a specific location at
the indicated time, and that the requests in L were picked
up or dropped off by that server at the (t, v) waypoint. Set
L can be empty if no pick-up or drop-off events occurred.
Constraints. Constraints on X enforce physical rideshar-
ing constraints, namely: (1) vehicles start and finish ser-
vice at their origins and destinations, and within certain
time windows; (2) vehicles pick-up and drop-off customers at
customer origins and destinations, with pick-ups preceding
drop-offs, and within certain time windows; (3) a customer is
serviced by at most one vehicle; (4) vehicle seating capacity
is never exceeded. The rules are implemented by splitting U
and X into solution and constraint tables. Solution tables
store routes and schedules, and they enforce path integrity
of routes and maximum edge speeds. Constraint tables store
columns from other tables for cross-table constraints.
3.1 Read Operations
Unassigned Customers. At time t, new requests are re-
trieved by selecting from U where t is within the request’s
time window and where the request is not yet assigned. A
single relational equation can formalize this set, but to avoid
recomputation we first do σe≤t∧q>0(U) to get eligible re-
quests, then compare against a cache of assignments to get
the unassigned ones. The e-component is the “early” time
and the q-component is the load.

Table 1: Jargo base metrics (s = server, r = request).
For definitions see (https://jargors.github.io).

S. Travel Dist. D(X , s) S. Travel Dur. δ(X , s)
S. Service Dist. Dservice(X , s) S. Service Dur. δservice(X , s)
S. Cruising Dist. Dcruising(X , s) S. Cruising Dur. δcruising(X , s)
R. Transit Dist. Dtransit(X , r) R. Transit Dur. δtransit(X , r)
R. Detour Dist. Ddetour(X , r) R. Detour Dur. δdetour(X , r)
Service Rate µ(X , t) R. Travel Dur. δtravel(X , r)
Assigned Requests Rok(X , t) R. Pick-up Dur. δpickup(X , r)
Unassigned Requests Rko(X , t)

Table 2: Demonstration dataset.

Parameter Value
Road network Manhattan (31,444 edges, 12,320 vertices)
Problem instance 1,000 vehicles, 22,168 customers

Vehicle capacity 3
Time windows +6 minutes

Start time 12/31/2018 11:30 PM
Duration 120 minutes

23:30 23:45 00:00 00:15 00:30 00:45 01:00 01:15

New Year’s Eve: New Requests every 5 Minutes

Time of Day

C
o
u
n
t

Line indicates 1,000

Figure 3: For-hire vehicle trips, 2018–2019 New Year’s Eve.

Vehicle Routes and Schedules. The route for server
s is obtained by selecting from X where the s-component
equals s and projecting the t and v components, formally
πt,v(σs=s(X )). The schedule is obtained by selecting rows
with non-empty label sets, πt,v(σs=s∧|L|>0(X )).
Vehicle Position. When problemX is loaded, initial routes
are computed using G-tree [9] and using maximum speeds
on the edges. The last-visited location for s at time t equals
πv((w≤t)|w≤t|) where w≤t = πt,v(σs=s∧t≤t(X )) contains the
route segment where the time component is no later than
t, ordered by time ascending. We set a lower-bound on t
during the selection to take advantage of B+ tree indexing.
Quality Metrics. We propose definitions for a variety of
real-world service metrics using relational equations on our
model (Table 1). For example, for request r with origin ro
and early time re, the request pick-up duration is defined as
δpickup(X , r) = πt(σv=ro∧r∈L(X ))− re
3.2 Write Operations
Route Update. To update a route, we delete the untrav-
eled portions w>t = πt,v(σs=s∧t>t(X )) from a server’s route
and replace it with the new updated segment.
Traffic Simulation. Before any route update hits the data
tables, it is modified for traffic effects. We scan it from
beginning to end, and for each adjacent (ti−1, vi−1) and
(ti, vi) pair, the speed multiplier G(vi−1, vi, ti−1) is com-
puted. Then, ti is modified so that d(vi−1, vi)/(ti − ti−1)
is within the adjusted flow speed, where d is the distance
along the edge. This adjustment is propogated to the later
waypoints. The complexity is O(n2) for an n-length route,
and we only need to perform the procedure when the route
is inserted or updated.

4. DEMONSTRATION
A service provider wants to avoid surge pricing on upcom-

ing New Year’s Eve. We will estimate the revenue potential
(F rev) for GRINS while also measuring the customer in-
convenience (F inc) and environmental impact (F env). We
formulate these objectives using Table 1 metrics:

• F rev(X ) = pbase|Rok(X ,∞)|+ pkm
∑

s∈S D
service(X , s),

• F inc(X ) =
∑

r∈Rok(X ,∞) δ
travel(X , r) + pko|Rko(X ,∞)|,
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Figure 4: Jargo usage scenario.

• F env(X ) = psmog

∑
s∈S D(X , s).

For F rev, we multiply a base price pbase by number of as-
signed request, plus a price-per-kilometer pkm for the to-
tal in-service distance traveled by the vehicles. A vehicle
is “in service” if it has customers onboard. To get as-
signed requests, we use Rok(X , t) that counts up requests
in X that are in exactly two labels, indicating they were
serviced. We use ∞ for the second parameter to say we
want the final count. For F inc, we sum the total request
travel duration plus a penalty pko for each unassigned re-
quest. The request travel duration includes time until pick-
up in addition to time spent in a vehicle. For F env, we
multiply a “smog” factor psmog by the total distance trav-
eled by the vehicles. Based on current estimates, we set
pbase = $2.50, pkm = $1.56, pko = 15 minutes, and psmog =
0.374 grams of hydrocarbons.

We will use historical New York City for-hire trips during
2018–2019 New Year’s Eve (Table 2) as an example work-
load. Figure 3 shows the number of new customer requests
every 5 minutes, starting from 11:30 PM on December 31,
2018. A dip is seen near midnight (00:00) followed by a surge
an hour later (01:00). We generate 1,000 synthetic vehicles
with 3-capacity. We initialize the speeds to 10 meters per
second (36 kilometers per hour) for all roads.

To establish a baseline, we evaluate GRINS using real-
time mode without traffic and find that it achieves 76%
service rate (Figure 4a), meaning that a quarter of the cus-
tomers are not serviced. The algorithm struggles to clear the
jobs queue, inspiring a fallback mechanism. The new vari-
ation GRINS-F reverts to a fast nearest-neighbor strategy
if the queue size exceeds 60. We find GRINS-F can achieve
83% service rate (Figure 4b), an improvement of +9%. New
techniques may be needed for further improvement. Now
as Broadway is a popular road, we want to see the effect
when speed along it is reduced to 20%. The service rate
drops back to 76% for GRINS-F, and visual inspection shows
many vehicles stuck along Broadway (Figure 4c). This re-
sult inspires an avoidance strategy. Variation GRINS-FB
adds a large routing cost to Broadway in order to avoid
it. We find GRINS-FB can restore the service rate to 83%.
The server relation is available for offline analysis after each
run, and we use it to compute the final objectives shown
in Figure 5. Notably GRINS-FB can achieve +7.7% more
revenue compared to baseline GRINS, even when traffic is
present. Additionally, revenue seems to be directly propor-
tional to environmental impact while inversely proportional
to customer inconvenience. Analyzing these and other rela-
tionships can help service providers determine which algo-

rithms to deploy in which scenarios, for example reducing
environmental impact or reducing customer inconvenience.

Revenue F rev(X )

High=$114,202

Low=$106,071

Environmental Impact

F env(X )

High=17.07 kg, Low=15.30 kg
Customer Inconvenience

F inc(X )

Low=3873 hrs, High=4392 hrs

GRINS (No Traffic)

GRINS-F (No Traffic)

GRINS-F (Broadway Traffic)

GRINS-FB (Broadway Traffic)
Figure 5: Summary of scenario results.
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